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ABSTRACT

The designers of PLC (power line carrier)
systems for distributigon networks must contend with
two sources of uncertainty. First, certain topolo-
gical parameters, such as transformer locations,
.cannot be determined accurately. Second, certain
other network parameters, such as loads, equipment
characteristics and circuit configurations, vary with
time. A previous paper [2] has shown that signal
‘attenuations and error rates of ALC systems are very
sensitive to these uncertainties. Therefore, it is
critical that they be taken Into account in the
design process. We develop stochastic modes to aid
In doing this. Specifically, the modes predict the
statistics'of signal attenuations and error rates In
arbitrary AL.C systems. This is done In two stages.
First, a quadratic approximation to the network's
propagation characteristics is developed. Second,
this approximation and Monte Carlo sampling are used
to obtain the requisite statistics.

An example is used to point out that conventional
deterministic models can grevlously underestimate
error rates and thus, to point out the nead for
stochastic models of the type described In the paper.

INTRODUCTION

Load Management and Distribution Automation
schemes usually require two-way communications be-
.tween a centralized control facility and a large set
of points dispersed over a distribution network. HC
(Powea Line Carrier) would appear to offer several
advantages as a coamunication medium [1], [4], [6].
However, its performance to date has been disappoint-
ing. It is not unamman for ALC systems under
demonstration to completely fail In their attempts
to reach some points and to have high error rates
with others. By and large, they ssem to under per form
their designers' expectations. The mog likely cause
is the widely used assumption that powe networks
provide a deterministic environment for high frequency
signals. There is some merit to this assumption when
one is dealing with transmission networks. Distri-
bution networks, however, are quite different. Their
high frequency (over 1 kH2 behavior is subject to
several uncertainties. In a previous paper [2] we
discussed the nature of these uncertainties in some
detail. Here we will only review their more important
features.
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Uncertainties

The uncertainties may be divided into two main
categories: short term and long term.

In the short teem (the period over which no
Important pieces of equipment are upgraded or replaced)
one must contend with two subcategories, namdy:

(&) anatomical uncertainties which arise
because it is Impractical and sometimes
impossible, to precisely determine the
values of all the relevant feeder para-
meters. Lengths of line segments, the
locations of transformers and their
electrical characteristics, etc. can only
be approximated unless heroic data
gathering measures are undertaken.

(b) temporal uncertainties which arise because
certain quantities, such as noise levels
and loads, vary with the time-of-day, wesk
and season. For Instance, distribution
transformers have resonances that are
affected by their secondary loading. As
this load varies, there can be profound
changes in the Impedances the transformers
present to carrier signals [2].

The result is that large numbes of the parameters
used In modding efforts mugs be treated as random
variables. This in turn makes the outputs of the
models random variables, as is illustrated In Fig. 1.

The long teem Impacts are of the same sort but
much more pronounced since one mus contend not
only with, the short term uncertainties but also with
those associated with changes in feeder structure
and equipment. Unless a ALC system is designed to
weather these evolutionary changes its useful life
expectancy will be short.

The Ned for Stochastic Modds

We conclude from the last section that the
attributes used to measure AL.C system performance will

‘be random variables because of "temporal uncertain-

ties" and that estimates of these attributes obtained
from modes will be additionally random because of
"anatomical uncertainties." Therefore, minimum
acceptable performance levels mugs be specified In
statistical terms. An example of such a specification
is: the expected numba of error free messages re-
ceived should be at least 9 of those sent. To
acconmodate such specifications we nead stochastic
nodels able to estimate the momenits and other statis-
tical properties of the performance attributes. Mae
specifically, the essence of a design procedure to
accommodate statistically corrected performance
criteria is as follows.

(&) Identify the uncertain parameters and
determine the ranges over which they can
vary as well as their joint probability
distributions over these ranges.
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(b) Select a nominal AL.C design and evaluate
its performance statistics using stochastic
models.

(c) HFanm the results lIdentify the points which
are unsuitable for H.C communication,
either because they are exceedingly
sensitive to the uncertainties or because
the signal levels reaching them are too
low. Arrange for these points to be
reached by other means like telephone lines.

(d) Using the stochastic modes interactively,
adjust the ALC system's decision variables
so that the remaining points perform
adequately. (Some typical decision
variables are carrier frequency, repeater
locations, receiver sensitivities and the
main transmitter locations.)

The last step of this design procedure calls for
me comment. Sme design problems require formal
optimization methods to find good values for their
decision variables. However, this does not ss=em to
be the case for A.C systems. It is easy to devise
measures to raise or lower their performance
attributes. Therefore, all that is needed to Hare in
on a good AC design for a given distribution network
is a stochastic modd of the nework and its
communication equipment together with a designer who
can address Intelligent "what if" questions to the

mode.
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Fig. 1. Some neasured and cal cul ated attenuations

for a representative feeder [2]. The
neasurenents were nade at one tine.

D fferent values were observed at other
tinmes but were not recorded. The cal cul ated
attenuati ons were obtained by using standard
nmodel s with the val ues of uncertain para-
neters randomy selected from ranges
‘typical of short termuncertainties. These
paraneters were assumed to be uniforny
distributed over their ranges. Notice that
the scatter of the calculated attenuations
is fairly wide indicating that the
attenuations are quite sensitive to para-
neter uncertainties.

| ntent

Wien we speak of PLC performance here, we are
thinking of whether receivers will be able to correctly
Interpret the nessages sent to them Crucial factors
are the signal and noise levels at each receiver's
termnals. The signal |evels can be determ ned using
network theory. Noise, however, is best handl ed by
nore enpirical neans - tables and nonograns of noise
data collected for representative feeders or measured
on site [3]. W will assune that the signal and noise
nodel s can be separated and that their results can be
added to give the signal-noise mx at a receiver's
term nal .

W will not deal
Rat her, we will
model s for signal

with the noi se nodel s here.
concentrate on devel opi ng stochastic
attenuation.

COVPONENT _MODELS

Transmtters in PLC systens are connected either
between two |ine conductors or between a conductor
and ground. Their signals rmust find their way through
and around | arge nunbers of feeder conponents Ilike
l'ine segments, capacitor banks and transfornmers,
before they reach the receivers. The attenuations
suffered by the signals can be cal cul ated using | unped
paraneter, steady state nodels for the conponents.
The forns of these nodels are well known [5], [7], [8]
Less well known are the uncertainties in sone of the
nmodel paraneters. W wll illustrate these uncer-
tainties with the exanpl es bel ow

Li ne_Segnents

A line segnent (a stretch of line with uniform
geonetry and no Irregularities such as branch points
or transformers except at its ends) can be represented
by an Equivalent-11 [7], [9] of the formshown in
Fig. 2. Because line |lengths and equi prent |ocations
cannot be precisely determned fromfeeder maps, the
paraneters of the Equivalent-11 cannot be precisely

calcul ated. These uncertainties are of the short
termvariety. Sone representative values are given

in Table I11.

In the long term the conductors of the segnent
could be replaced - a possibility that considerably
i ncreases the range of paraneter uncertainty.

Equi val ent ir nodel of a nultiphase line.

Z and Y are matrices calculated as in [7]
and of dinmension equal to the nunber of
equi val ent conductors whose identities are
to be preserved.

Fig. 2.




Di stribution Transforners

A sinple nodel for a distribution transforner is
shown In Fig. 3. Short termuncertainties occur
because the paraneters (and sonetinmes the transforner
type) are not known and because the load varies with
time of day. Representative values of the paraneters
and load are shown in Table V. The range of Im
pedances the transforner can present to carrier
signals on its prinary side is indicated by the
curves of Fig. 4.

SOVE NOVENCLATURE

Fram~the component models one can assemble an
admittance matrix for the entire distribution
network. This matrix can be quite Iar?e [10]. To
fceep it to a manageable size one must Invoke some
sheme for aggregating components and eliminating
nodes. Several such schemes are possible. Wasley %11].
has noted that when a line ssgment is of length 1/
or less of the carrier wavelength, it makes little
difference whether the ssgment Is treated as a
lumped or distributed device. This criterion can be
used to select points along a feeder's length at
which to aggregate transformers and other
components.

LOAD

Fig. 3. A sinple nodel of a distribution transforner.
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Fig. 4 Representative values of short and open
circuit impedances for a distribution
transformer. Light loading situations
approach the open circuit case; at rated
load the transiormer behaves almost as if it

were shorted.

Once the adm ttance. matrix has been obtained
one can wite expressions relating the voltage of
the injected signal to the voltages appearing at the

receivers' termnals [2], [9]. These expressions
have the form
Q(V,X,E,W) - O (1)
wher e V - (Vl'Vz"" ,}h)'r is a vector
of the magnitudes of the
carrier voltages appearing at
the receivers.
X - (xrxz,...,xp)T is a vector of the
network's uncertain parameters
e is a complex numba representing the
voltage of the injected signal
w is the signal's frequency
Q s a function vector of dimenson m.
Q is linear in V and e but nonlinear
InXandw.
Let: xt»xt *e upper and lower bounds on the

values the uncertain parameter, Xg

4= {le: sx.<xg i}, be the feasible

set of the uncertain parameters

P(X) be the joint probability density
function (pdf) of X over fl

£{*} denote the expected (memn) value of {*}
Var{*} denote the variance of. {*}
Covar{*,*} denote the covariance of {**}
X° - E{X)

A " [X.J be the covariance matrix of X,
. 1 iLe., AIE  ¥«ii*AY,

\13 - Covar{x,%.}.
ERORLEML STATEMENT,

The main problem we consider here is as follows:

Given: the component models, the network configura-
tion, 8, P(X), A, eand w
Find: the first few moments (expected value,

variance, etc.) of i»'2»"* ' "e carrier
voltages appearing at the receivers.

With these moments and some information on receivers
and noise levels one can estimate error rates and
other performance attributes.

The method for determining the moments of the
voltage at any one receiver is the same as for all
the other receivers. Therefore, we will consider
only the k-th receiver and for the sake of conven-
ience drop the subscript k from its voltage. That
is, we set

V-Vk.

_




A BRIEF REVIEW OF METHODS FOR ANALYZING
NETWORKS WITH UNCERTAIN PARAMETERS

Several methods have evolved for dealing with
problems of the sort we are considering here. Per-
haps the oldest are of the Monte Carlo (MC) variety
[12], [13]. They rely on sampling the feasible
region of the uncertain parameters, calculating the
network's response for each sample and processing
the responses through some estimator. Convergence
to the right results are guaranteed but are usually
very slow and computationally expensive.

Among the less expensive alternatives are:

(a) procedures that seek to map criteria for
acceptable performance into the space of
the uncertain parameters and then estimate
the "intersection” between the region that
meets these criteria and the feasible
region, Q [14], [15]. Such procedures
seem able to handle only small numbers of
uncertain parameters, typically 10 or less.

(b) procedures that improve the rate of conver-
gence of MC methods through variance-
reduction techniques such as "Importance
Sampling”" [16]. The difficulty here is to
find a suitable variance reduction
technique [20].

(c) procedures that decrease the cost of cal-
culating a network's response through the
use of streamlined techniques such as
"large sensitivity algoritlms" and "radfal
sampling" (17], [(18]. These help btut ome
must still contend with the slow convergence
of MC methods.

The PLC problem can include bundreds of uncertain
parameters. It is too large to be conveniently
handled by any of the standard methods listed above.
Therefore, we will synthesize a nonstandard method
better suited to its needs.

A STATISTICAL ANALYSIS PROCEDURE FOR LARGE NETWORKS

This procedure bas two main steps. First a
quadratic approximation to v is developed. Then an
MC sampling scheme will be used to construct a linear-
mean-square (IMS) model from which results of
improved accuracy can be obtained. The first step
will be referred to as prediction, the second, as
correction.

v 1s twice continuously differentiable w.r.t. X.
Therefore, we can approximate it with a quadratic
function, f, obtained by t ating the Taylor
series expansion of v about X ,as shown below:

v (X) = (X)=f (XO+AX)=v (X°)+G T AX+EAXT HAX (2)
3

where G and H are Gradient and Hessian matrices of v
w.r.t. X. These matrices can be efficiently calcu-
lated by using the well known Adjoint Method which
requires a single L-U factorization and some forward
and backward substitutions. See [19] for further
details.

As shown in Appendix A, the expected value of
f is given by:

E(e}e ()4 E jZ Byyhyy 3)

where the h's and A's are elements of the Hessian and
Covariance matrices respectively.

We are now ready to move on to the correction
Consider the quantity O, defined as follows:

step.
0 =v(X) - a [£(X) - E{£}] 4)
whg:_e a is real.
Notice that:
Var {@)=Var {v}+a® Var{f}-2a. Covar{v,f} ()
Let a* be the value of & that minimizes Var{6} and

let O* be the corresponding value of ©. Then, by
finding the stationary points of Var{©} with respect

to @ we see that:
iy ’ Var{v}
VarifJ (6

Var{0%} = Mgn(Var{6}1= Var{v}{1-r’] 108}

Covar{f,v}.
Var {f

where r is the correlation coefficient of £ and v.
Because f and- v are strongly correlated (in fact f is
a quadratic approximation to v), r is close to unity.
Hence Var{6*} is much smaller than Var{v}. There-
fore, an MC procedure will converge to E{6*} much
faster than to E{v}. But, from (4) we see that:

E{O)=E{v}-a[E{f }-E{£}]=E(v} ¥ a @)

This suggests the following MC procedure for calcu-
lating E{v}:

(a) Select N samples of X, namely
H'LZ""’LN'

(b) Calculate v(xi) and !(xi), i €N
(c) Calculate E{f} from (3).
(d) Estimate a*.

(e) Estimate E{v} from:

ElviE(@'}= 2 | (v(x)-a'E(x)1+a"E(E} (9
vt 3 1

For comparable levels of accuracy this procedure will
require far fewer samples than if E{v} were calculated
directly. However, it does require the value of a*
and this is not easy to calculate. Fortunately, the
procedure is not very sensitive to the value of a.

One may use o=1 instead of o= a*, in which case the
procedure reduces to the method of Control

Variates [20] and an increase in efficiency is
achieved under fairly wide conditions, namely:

Covar{v,£} > %— Var{f} 10)




Anot her and better approach Is to estimate the
value of a* fromthe sanple results In which case
the procedure falls Into the class of |inear-nean-

square estimation (IM5) problens [21]. Notice that
(4) can be rearranged into the form
v- Bf +B,+9 (11)

wher e 8, and 62 are constants. In IMS procedures, 9
I's neglected and 8, and 8, are approxi mated by the
quantities B, and Br""*'® [20]:

I f(X)V(X)-NT ¥

B oaleN XX - (12
I f3(X.)-NT]?
i eN X
By=v-8 ¢ (13)
b Ly rap
= 1
v 'iiéﬂ viz) -

The resulting LMS model is:
vOOr 27 f(X) + B (14)

|n_Summary

The steps involved in applying the prediction-
“correction process described above
are:

(@ S(om%te the gradient and Hessian of v at

(b) usmlg ft and P(X) generate N samples of X,
naae

(c) usi ng a network similator and (2),
late v(X:) and f (X, VI£N

cal cu-

(d) using (12) and (13) calculate » and B,
the coefficients in the LMS nodel, (14)
(e) by sanpling the LM5 model, calculate the

requi site nmoments of v(X). This is an
l.nexpensi ve process because (L and BS are

constants and eval uating f(X) requi res only
a noderate amount of matrix nultiplication.

Renar ks

Consider a network with Mnodes, p uncertain
paraneters and mreceivers. The nunber of nulti-
plications required in formng the gradients and
Hessians for all the receivers is approximtely

fv? +mp Mz. The conputation of Bl and B2 takes about

NP mul tiplications. Therefore, the total operation
count for the prediction-correction process is about

(N+1)NP+ mp Mz. In contrast, a straightforward Mnte

Carl o procedure takes about Ui3 mul tiplications where
L is the nunber of sanples used. In our experience
the two processes produce results of conparable
accuracy when Nis about 50 and L is about 1000.
Therefore, unless the nunber of receivers and uncer-
tain parameters is so large that their product
exceeds 1000 M the predictor-corrector procedure
shoul d produce substantial savings over a straight-
forward Monte Carlo procedure. It should be noted
here that every receiver does not need to be

exdnmined separately. |Instead, a single representative
can be selected from each nei ghborhood of receivers.

APPLI CATI ONS - ESTI MATI NG RECEI VER PERFCRVANCE

Receiver Mdels

Recei vers can be nodel ed by threshold or binom al
functions such as:

Y-1ifv>a

- 0 otherw se

where v is the signal level at the receiver and a is
its threshold for adequate reception. This threshold
will vary with, the | evel of the noise present. Wen
Y-1 the reception is successful, when Y*0, unsuccesful.

The binonial nodel la sinple but does not really
reflect the behavior of receivers. Better nodels are
obtai ned by using continuous functions |ike the
function O(v> whose value is the probability of error
when the signal level is v. For exanple, suppose
that the noise present at a receiver's terninal is
white, additive and with variance RF2. If the

modul ati on schenme uses: PSK (phase shift keying) then
the probability of a bit béing In error [22] is:
o(v) -iexp(-vle) (15) -

Performance Attributes on Indices for Receivers

Several indices may be constructed to measure
receiver performance. Anmong the best and nost
obvious are E{y} and E{0}, the expected error rates
for the binomal and continuous receiver nodels,
respectively. Another index that is useful in
wor st - case- desi gn- appr oaches is 0(v m) wher e

Vigwer - E{Vv} - KVar{v}

By Making K large (say 3 or 4) we ensure that nost of
the signal s appearing at the receiver exceed .
‘lower* !'f wxnovdesignihe qusiem so that O(V. ,owek
is sufficiently small we ensure that nmost nessages

wi |l be successfully: received.

The predictor-corrector nodel s described in the
previous section provide the statistics of v and
hence, provide the data to cal culate Indices of the
type nentioned above. Alternatively, if a continuous
model is used for the receiver, 0 can be plugged into
the predictor-corrector nodels in place of v and the
Indices calculated directly.

An_Exanpl e

Consi der the system described in Appendix B.
This systemhas 5 nodes. Suppose that signals are
|njdect esd at node #1 and we exanine their reception at
node #




The statistics for voltage attenuations, cal-
culated by the predictor-corrector method described
previously, are shovn in Table I. Notice that the
scatter (4a-Interval) is fairly large and varies with
frequency. Deterministic models can give no indica-
tion of this scatter. Ther limitations can be
further illustrated by considering error rates.
Suppose we use a standard, deterministic modd [5],[10]
[11] in its mogs usual way, i.e. with the uncertain
parameters assumed to be constant at their expected
values. Suppose further, that we assume the noise
is Gaussian, additive and 12 db bdow the signal level,
calculated by the deterministic modd. (12-13 db are
-typical signal/noise ratios). L& the receiver be of
the PXK type so that error rates are given by
equation (15).

The eror rates calculated by the deterministic
and stochastic modds are compared in Table Il. Ther
differences reflect the well knomn fact that:

E{O(X)} * O(E{X»

Notice that the deterministic nodel is consistently
| ow,

sometimes by as nuch as a 3 orders of magnitude
3

(10%). This explains, at least in part, why field
measurenments tend to give far higher error rates than
are predicted by deternministic nodels.

CONCLUDI NG REMARKS

Concl usi ons ’
Performance attributes for PLC systens, such as
signal attenuations and receiver error rates, are best

characterized by randomvariabl es because of the tinme
dependent uncertainties in the network's structure
-and electrical characteristics. Mdels for estimting
these attributes nust contend with the additional
uncertainties introduced by the difficulties in pre-
cisely determning the values of certain network
paraneters such as the lengths of line segnents and
the locations of transformers. In the short term
these uncertainties can produce a significant

scatter in the estimates of the performance attributes
produced by the nodels. Long termeffects (when the
network changes as pieces of equipment are upgraded
and reconfigured) can be only more pronounced.

This paper has devel oped stochastic models for
estimating the expected values, scatter and other
statistical properties, of a PLC systenmts performnce

attributes. The use of such stochastic nodel s appears
to be crucial to the proper design of PLC systens.
Conventional deternministic nodels can provide very

m sl eading information on system performance. For
instance, in the exanple considered, a conventional
determnistic model consistently underestimted the
error rate by a factor in excess of 10 and sonetines

as high as 10°%
'~CoR-EEt-tH-E-

One may hypothesize that the extensive field
stuning/nodification that many PLC manufacturers have
had to undertake when demonstrating their systens is
due to their use of determnistic models in designing
the systenms. It is reasonable to expect that the
tuning/ modification process will have to be repeated
many times as the distribution network's conmponents
are replaced and upgraded. Mich of this could be

elimnated if the inpacts of short and long term
uncertainties are predicted(with stochastic nodels of

.[I] Mtre Co.,

the sort described in the paper; and taken into account
in the initial designs of the PLC systens.
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A SIMPLE SYSTEM

The arrangenent of the systemis shown In Fig. 5.
Data for the line segnents are given in Table I11.
These segnments are nodel | ed by Equival ent's whose
matri ces, obtained by BPA Line Constant Program are
shown In Table IV. Transforners are nodel | ed by
circuits of the formshown in Fig. 3 with data as in
Table V. Transforners occur on the central conductor
at nodes 2-3-4-5-6 in the network. The carrier signal
is Injected into the center phase at node #1 and re-
ceived on the same phase at node #5. Al uncertain
paraneters are assuned to be Independent and Gaussi an.

&
._ ‘ »
1 2 3 4
5

Fig. 5. Ore line diagram of a test system.




TABLE | Voltage Attenuation Statistics for Point #5 of the Example System

E{v} Var{v} Third Mamet
Frequency *
kHz Pred. Correct. | Pred. Correct. | Pred. Correct. }4a-Interval

6.0 0.229 0.224 0.652E-3 0.733E-3| 0597E-5 0.189E-4 ¥ o487
10.0 0.425 0.423 0.494E-3 0.403E-3| 0.278E-5 0.552E-5 ¥ 19z
180 0.256 0.255 0.788E-3 0.537E-3 } -0.267E-5 0.171E-5 | + 36Z
20.0 0.132 0.128 0.925E-3 0.797E-3 | 0.171E-4  0.300E-5 ¥ 86z

' 30.0 0.110 0.113 0.147E-3  0.178E-3 | +0.922E-6 -0.589E-7 ¥ 472
40.0 0.131E-1 0.129E-1 | 0.105E-5 0.116E-5| 0.339E-9  0.248E-9 ¥ 33z

*az here is equivalent to Var{v}. Using the Chebyschev Inequality [21], the probability
that v will be inside this interval is calculated from:

P{v-E{v}f <40} >1-L - .94
- - 42
In other words, at 6 kHz 94Z or nore of the nessages vill have carrier voltage | evels

within +48Z of the nean carrier voltage, 0.224. At 10 kHz the scatter is much | ess.
of the carrier voltages vill be within 19Z of the nean. And so on.

947

TABLE Il Error Rates of a PSK Receiver at Point #5
of the Exanple System *
Expected Error Rate from
the Stochastic Modd
Error Rate-Predicted by (Error/bit transmitted)
Frequency | a Deterministic Modd *
kHz (Error/bit transmitted) Predicted Corrected
6.0 6.0 x 8.0 x 10" 1.0 x i0-°
10.0 6.0 x |0"8 1.0 x 10"’ 1.0 x ID"7
20.0 6.0 x |0"® 5.0 x 10~* 2.0 x |0"*
30.0 6.0 x 10"® 3.0 x 10"* 4.0 x io-®
40.0 6.0 x |ff8 9.0 x 10"’ 2.0 x ID"®
* o

The carrier voltage is calculated using X , the mean value of
the uncertain parameter vector.
consistently 12 db below this carrier voltage so that the deter-
ministic model yields the same signal-to-noise ratio at all
frequencies and hence, the same error rate.

The noise level ta assumed to be

TABLE I1I. Data for the 3-Phase Lines
of the Network in Fig. 5
' Nominal

: _ Line Length Uncertainty

Section Type Conductor (mi) in Length
: 1-2 Undg. #750 MOV 0.80 +10Z

2-3 Aerial #ATT ACR 0.90 +10Z

3-4 Aerial #ATT ACR 0.60 157

3-5 Aerial #A477 ACR 0.60 +157

3-6 Aerial H#ATT ACR 0.30 +102

8
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0.1161E+2 +
i 0.4131E+3

0.8809E+1 +  0.9365E+1 +
j 0.1275E+3 | 0.3767E+3
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J_CARCS DANGHO (S'76)
received a B.S. In Electrical
Engineering from Escola de
Engenharia Maua, Brazil in
1971. He received his M.S.

TABLE V Representative Parameter Values
for a Distribution Transformer

from Carnegie-Mellon University
in 1977 and he is presently
Parameter Lower Bound Upper Bound finishing his Ph.D. at CMU
His current research interests
Capacitance C 0.995 1.770 are in the areas of Circuits
(nF) and Systems Modeling and
Simulation, Computer Aided
Inductance L 26.0 92.0 Design and Statistical Network
(mH) Analysis.
Secondary Load 560.0 5000.0
(ohms) R




	Carnegie Mellon University
	Research Showcase @ CMU
	1981

	A stochastic model for PLC systems
	J. Carlos Dangelo
	Talukdar

	tmp.1333650098.pdf.jRwsQ

