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Foreword Eileen Claussen, President, Pew Center on Global Climate Change

New technologies for electric power generation, transportation, industry, and consumer products 

are expected to play a major role in efforts to reduce the greenhouse gas (GHG) emissions that contribute to

global climate change. Yet technological change on this scale cannot happen overnight. Government policies

will be instrumental in encouraging more rapid development and adoption of technology. In the United

States—long a leader in innovation—well-crafted policies that encourage the development, deployment, 

and diffusion of new technologies will be essential complements to other GHG-reduction policies.  

The Pew Center commissioned this report to examine U.S. experience with technology and innovation

policies—both successes and failures—and to draw lessons for future applications, including efforts to

address climate change. The authors found that because innovation is a complex, iterative process, different

policy tools can be employed as catalysts at various phases (e.g., invention, adoption, diffusion). They also

discuss the roles that intellectual property protection and regulatory policies play in driving innovation, and

examine programs such as the Defense Advanced Research Project Agency (an innovative force in information

technology), as well as public-private collaborations such as the Partnership for a New Generation of Vehicles,

to glean lessons for climate change policy. The insights revealed are clear:  

• A balanced policy portfolio must support not only R&D, but also promote diffusion of knowledge

and deployment of new technologies: R&D, by itself, is not enough.

• Support for education and training should supplement research funding.  

• “Non-technology policies” provide critical signposts for prospective innovators by indicating 

technological directions likely to be favored by future markets. 

• Policy-makers should channel funds for technology development and diffusion through multiple

agencies and programs, because competition contributes to policy success.

• Public-private partnerships can foster helpful, ongoing collaborations. 

• Effective programs require insulation from short-term political pressures.

• Policy-makers must be prepared to tolerate some “failures” (i.e., investments that do not pay off),

and learn from them as private sector entrepreneurs do.

• In light of the inherent uncertainty in innovation processes, government policies should generally

support a suite of options rather than a specific technology or design. 

Technology policies, while important, cannot by themselves achieve the GHG reductions necessary 

to mitigate climate change. Rather, they should be part of a comprehensive approach that includes 

“non-technology policies,” such as a GHG cap-and-trade program. The authors and the Pew Center thank 

Bob Friedman, Ken Flamm, David Hart, and Ev Ehrlich for commenting on previous report drafts.

U.S.  technology and innovation policies
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Executive Summary
Large-scale reductions in the greenhouse gases (GHGs) that contribute to global climate change

can only be achieved through widespread development and adoption of new technologies. In the United

States, energy consumption is the dominant source of GHG emissions. Most of these emissions consist of

carbon dioxide (CO2), which accounts for approximately 84 percent of total GHG emissions. Although

other GHGs, such as methane (CH4), have a more powerful effect on global warming per unit of release,

CO2 enters the atmosphere in far greater quantities because it is produced whenever fossil fuels are

burned. Thus the technological innovations needed to reduce GHG emissions and eventually stabilize

GHG concentrations in the atmosphere are those that can, at reasonable cost: (1) improve the efficiency

of energy conversion and utilization so as to reduce the demand for energy; (2) replace high-carbon fossil

fuels such as coal and petroleum with lower-carbon or zero-carbon alternatives, such as natural gas,

nuclear, and renewable energy (e.g., wind and solar); (3) capture and sequester the CO2 from fossil fuels

before (or after) it enters the atmosphere; and (4) reduce emissions of GHGs other than CO2 that have

significant impacts on global warming. 

Although innovation cannot be planned or programmed, and most innovations come from private

firms, government policies of many types influence the rate and direction of technological change. This

report identifies technology policy tools that have fostered innovation in the past (see summary table

below) and draws lessons for GHG abatement. It also briefly discusses other measures such as environ-

mental regulations that would serve to induce innovation. 

A Summary of Technology Policy Tools

Direct Government
Funding of Research
and Development
(R&D)

• R&D contracts with private
firms (fully-funded or cost-
shared). 

• R&D contracts and grants 
with universities. 

• Intramural R&D conducted 
in government laboratories. 

• R&D contracts with industry-
led consortia or collaborations
among two or more of the
actors above. 

Direct or Indirect Support
for Commercialization and
Production; Indirect Support
for Development

• Patent protection. 
• R&D tax credits. 
• Tax credits or production subsidies 

for firms bringing new technologies 
to market. 

• Tax credits or rebates for purchasers 
of new technologies. 

• Government procurement. 
• Demonstration projects. 

Support for Learning and
Diffusion of Knowledge and
Technology

• Education and training (technicians, engineers,
and scientists; business decision-makers;
consumers). 

• Codification and diffusion of technical
knowledge (screening, interpretation, and
validation of R&D results; support for
databases). 

• Technical standard-setting.*
• Technology and/or industrial extension services. 
• Publicity, persuasion, and consumer information

(including awards, media campaigns, etc.). 

* Refers only to standards intended to ensure commonality (e.g., driving cycles for comparing automobile fuel economy), or compatibility
(e.g., connectors for charging electric vehicle batteries), not to regulatory standards. 
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The key lessons of this analysis are supported by a large body of literature in economics and

other fields concerning the innovation process, and include the following: 

• Technological innovation is a complex process involving invention, development, adoption, learning,

and diffusion of technology into the marketplace. The process is highly iterative, and different poli-

cies influence outcomes at different stages.

• Gains from new technologies are realized only with widespread adoption, a process that takes con-

siderable time and typically depends on a lengthy sequence of incremental improvements that enhance

performance and reduce costs. For example, several decades passed before gas turbines derived

from military jet engines improved in efficiency and reliability to the point that they were cost-

effective for electric power generation. Today, gas turbines are the leading technology for new,

high-efficiency power plants with low GHG emissions. 

• Technological learning is the essential step that paces adoption and diffusion. “Learning-by-doing”

contributes to reductions in production costs. Adopters of new technology contribute to ongoing

innovation through “learning-by-using.” Widespread adoption accelerates the incremental improve-

ments from learning by both users and producers, further speeding adoption and diffusion. 

• Technological innovation is a highly uncertain process. Because pathways of development cannot

be predicted, government policies should support a portfolio of options, rather than a particular

technology or design.

Government policies influence technological change at all stages in the innovation process.

Lessons learned from U.S. experience with technology policies over the past several decades include the

following: 

• Federal investments contribute to innovation not only through R&D but also through “downstream”

adoption and learning. Government procurement of jet engines, for example, accelerated the

development of gas turbines by providing a (military) market that allowed users and producers to

gain experience and learn by using. Likewise, in the early years of computing, defense agencies

made indispensable contributions to a technological infrastructure that propelled the industry’s

rise to global dominance.

• Public-private R&D partnerships have become politically popular because they leverage govern-

ment funds and promote inter-firm collaboration. Partnerships may have particular advantages in

fostering vertical collaborations, such as those between suppliers and consumers of energy.

•  Adoption of innovations that originate outside a firm or industry often requires substantial

internal investments in R&D and human resources. Smaller firms may be less able to absorb

innovations without government assistance. 

• Just as competition in markets helps resolve uncertainties and improves economic performance,

competition within government can improve performance in fostering innovation. The messy and often

duplicative structure of U.S. R&D support and related policies creates diversity and pluralism,

fostering innovation by encouraging the exploration of many technological alternatives. 
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• Because processes of innovation and adoption are lengthy and convoluted, effective policies and

programs require insulation from short-term political pressures. Reliable political constituencies

have been essential for the development of new technologies in defense, for research in the

biomedical sciences, and for agricultural and manufacturing extension. By contrast, technology

policies for addressing climate change face a discordant political environment.

Technology policies alone cannot adequately respond to global climate change. They must

be complemented by regulatory and/or energy pricing policies that create incentives for innovation and

adoption of improved or alternative technologies. Such “non-technology policies” induce technological

change, with powerful and pervasive effects. Environmental regulations and energy efficiency standards

have fostered innovations that altered the design of many U.S. power plants and all passenger cars

over the past several decades. The technological response to climate change will depend critically on

environmental and energy policies as well as technology policies. Because climate change is an issue

with time horizons of decades to centuries, learning-by-doing and learning-by-using have special salience.

Both technology policies and regulatory policies should leave “space” for continuing technological

improvements based on future learning. Climate change policy must accommodate uncertainties,

not only regarding the course and impacts of climate change itself, but also in the outcomes of innovation. 



+

+

+ U.S.  technology and innovation policies

vi



+

+

+
1

U.S.  technology and innovation policies

I. Introduction

This report provides a selective survey of U.S. government policies that

have affected technological innovation in the post-World War II period, and

draws “lessons learned” for greenhouse gas (GHG) reductions. Throughout the

report, technology is viewed in an evolutionary context that is based on and consistent with a large body

of work by economists, historians, and policy analysts. 

The report downplays the role of radical innovations, not because they are unimportant but because

they are both infrequent and unpredictable, and because little is understood about the factors that affect

their appearance. Rather, the report highlights policies that influence the occurrence, pace, and adoption

of incremental innovations. These are more common, have great significance for long-term economic growth,

and respond in consistent ways to economic signals and public policies. If only because radical innovations

are uncommon and unpredictable, incremental innovations are the most appropriate policy targets.

The report begins with a brief review of global climate change (Section II), outlining the techno-

logical challenges. Section III then describes the general process of innovation, with several brief case

studies to illustrate the ways in which the benefits of innovation depend on widespread adoption and a

sequence of incremental improvements. Section IV reviews technology policy tools, along with several

well-known U.S. government programs intended to foster technology development and adoption. Section V

briefly discusses the influence of “non-technology policies” on innovation, especially environmental 

and other regulatory policies. Section VI examines the role of U.S. government policies in three high-

technology industries: commercial aircraft, electronics, and civilian nuclear power. Finally, Section VII

summarizes conclusions and major lessons learned. 
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II. Climate Change and Technological Innovation

Global climate change is arguably the most far-reaching and formidable

environmental issue facing the world. This section presents a brief overview of the climate

change problem and outlines some of the technology challenges that motivate this report. 

A. Overview of the Problem 

Over the past 150 years, there have been significant increases in the

atmospheric concentrations of GHGs, including carbon dioxide (CO2), methane

(CH4), nitrous oxide (N2O), and a group of industrial GHGs that include hydro-

fluorcarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).1

Greenhouse gases drive climate change by trapping heat in the atmosphere. Emission rates,

warming potential, and longevity in the atmosphere vary widely among these gases. For the United States

and other industrial economies, CO2 from combustion of fossil fuels (petroleum, coal, and natural gas) is

the major contributor to warming. In 2001, U.S. emissions of CO2 from energy use totaled nearly 1.6 bil-

lion metric tons of carbon equivalent, while all other GHG emissions amounted to a carbon equivalent of

0.3 billion metric tons. Because the energy sector also releases non-CO2 GHGs (primarily CH4 and N2O),

over 85 percent of all U.S. GHG emissions can be attributed to energy consumption.2

Global CO2 emissions are increasing, and much of the CO2 released today will remain in the atmos-

phere for a century or more. Over the long term, then, reductions in GHGs will require “decarbonization” 

of world energy supplies. At the same time, because some non-CO2 GHGs, such as CH4, are destroyed by

chemical reactions in the atmosphere at a much faster rate than CO2—e.g., time scales on the order of

decades—control of these non-CO2 GHGs can contribute significantly to limiting global temperature rise 

over the next half-century or so, before measures to limit CO2 could begin to have large effects.3

Figure 1(a) gives a breakdown of current U.S. CO2 emissions by fuel type and energy end-use

sector. As Figure 1(b) shows, electricity used by residential, commercial, and industrial consumers is the
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largest single contributor to U.S. CO2 emissions, accounting for 42 percent of current emissions. More

than half of this electricity comes from coal.

Transportation, which relies almost entirely on gasoline and other petroleum products, is the 

next largest source of GHG emissions. Together, the electric power and transportation sectors account for

75 percent of U.S. CO2 emissions; most of the remainder comes from oil and natural gas burned for

industrial processes and space heating in residential and commercial buildings. 

Fossil fuels also are by far the major source of global GHG emissions, although the proportion of

CO2 relative to other GHGs varies from country to country. While there is substantial uncertainty in future

world energy demand, and thus in future GHG emissions from fossil fuels, a rising world population

combined with prospects for economic growth and development means that global energy use and GHG

emissions will continue to increase. The potential consequences have led to worldwide calls for action. In

1992, over 150 nations (including the United States) adopted the United Nations Framework Convention

on Climate Change, with the stated objective of “stabilization of greenhouse gas concentrations in the

atmosphere at a level that would prevent dangerous…interference with the climate system.”4

3
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Figure 1a 
End-Use Energy Sectors

Figure 1b 
Electric Power Sector
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Overall, 42 percent of total CO2 emissions come from petroleum combustion, 37 percent from coal, and 21 percent from natural gas.

Source: Based on U.S. DOE, EIA, Emissions of Greenhouse Gases in the United States 2001, Report No. DOE/EIA-0573(2001) (Washington, DC:
U.S. Department of Energy, Energy Information Administration, December 2002).

Figure 1

Sources of U.S. CO2 Emissions from Energy Use 
(as a percentage of total energy-related CO2 emissions)
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Under the 1997 Kyoto Protocol, industrialized nations agreed to reduce growth in GHG emissions.5 Even

if the Kyoto targets were to be reached, the rate of GHG accumulation in Earth’s atmosphere would barely

slow. Far deeper cuts are required to stem global climate change. 

B. The Role of Technological Change in GHG Control Strategies

Stabilizing atmospheric concentrations of CO2 and other GHGs would

have profound implications for industrial and industrializing economies

alike. Although no specific levels or timetables have yet been defined, stabilization of GHG concentra-

tions in the atmosphere, regardless of the final level, implies that GHG emissions resulting from human

activities would have to be offset by processes that removed an equivalent amount of GHGs from the

atmosphere. This is a truly daunting prospect, given that human activity now adds around 8 billion 

metric tons of GHGs to the earth’s atmosphere each year, a total that is growing at an annual rate of

around 4 percent.6 A widely discussed goal of stabilizing atmospheric CO2 at twice the pre-industrial level

by 2100 (i.e., at 550 parts per million, 65 percent higher than today’s concentration) would require

worldwide CO2 emissions to average no more than the current level over the next 100 years, and then

decrease in the decades following. This implies reductions on the order of 60 to 80 percent below

projected “business as usual” levels for the remainder of the 21st century. 

How might technological innovation facilitate the achievement of such large reductions? A look at

Figure 1 suggests three general strategies to reduce energy-related emissions: (1) improve the efficiency

of energy utilization so that less fossil energy is used, resulting in lower CO2 emissions; (2) replace 

high-carbon fossil fuels such as coal and oil with lower-carbon or zero-carbon alternatives such as natural

gas, nuclear, and renewable energy sources (e.g., wind or solar); and (3) capture and sequester the CO2

emitted by the combustion of fossil fuels to prevent its accumulation in the atmosphere. 

Until recently, only the first two of these approaches have been widely considered. Figure 1

shows that if the average fuel consumption of cars and other transportation technologies in use in the

United States could be instantly cut in half, CO2 emissions would drop more than 16 percent. If all the

electrical equipment and appliances used in industrial processes, residential dwellings, and commercial

buildings were redesigned to use half as much electricity, the nation’s CO2 emissions would drop by

another 21 percent. And if today’s electric power generation technology could be replaced overnight with

zero-emission power plants, 42 percent of current CO2 emissions would be eliminated. 

U.S.  technology and innovation policies
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Alternatively, carbon sequestration could make it possible to capture the CO2 from power plants

and other industrial sources, then store it in geologic formations such as depleted oil and gas wells or

possibly convert it to stable carbonate minerals. This option has gained substantial attention in recent

years, with efforts now underway worldwide to develop safe, lower-cost methods to capture and store CO2.7

Steps to reduce CO2 emissions should be accompanied by cost-effective reductions in non-CO2

GHGs. Examples abound of innovations that not only have reduced emissions but have saved money as

well, such as the control of PFCs by the semiconductor industry. Another example is the capture of CH4

emissions that normally escape to the atmosphere during the mining of coal. Coalbed CH4 augments

natural gas supplies as a source of low-carbon energy. 

More broadly, at least some adaptation to climate change will almost certainly be necessary.

Adaptations will require innovation—for example, changes in agricultural practices. In the more distant

future, more radical innovations such as orbiting solar mirrors to reflect sunlight from the Earth might

eventually contribute to reductions in global warming. In short, the development and adoption of new

technologies are essential parts of any comprehensive response to climate change.

C. Summary

Efforts to mitigate global climate change will require technological

innovations deployed on a massive scale. Although the problem is worldwide, this report

deals only with U.S. policies to encourage the development, deployment, and diffusion of new technolo-

gies. As Figure 1 suggests, substantial reductions in U.S. CO2 emissions would require that the United

States replace or retrofit hundreds of electric power plants and tens of millions of vehicles. In addition,

appliances, furnaces, building systems, and factory equipment numbering in the hundreds of millions

might also need to be modified or replaced. 

Technological change on this scale cannot happen overnight. Many of the technologies needed do

not yet exist commercially or are too costly. Some alternatives, such as carbon sequestration, have yet to

gain widespread social and political acceptance. Because the rates of development and adoption of new

technologies respond to government policies as well as market forces such as energy prices, this report

turns next to the innovation process and the factors that influence it. 

5
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III. The Process of Technological Change

Technological innovation is a complex process in which different

policies influence outcomes at different stages. In order to assess the structure and

impact of federal policies, this section begins with a brief sketch of the innovation process before turning

to a more detailed analysis of several case studies. The discussion highlights the intricate relationships

between technological developments and the scientific and technical knowledge that underpins them, the

high degree of uncertainty that characterizes innovation in modern industrial economies, and the often-

incremental nature of these processes.

A. Invention and Innovation 

“Invention” and “innovation” are distinct activities. Invention may be thought

of as the process of discovery that leads to scientific or technological advance, perhaps in the form of a

demonstration or prototype. Innovation refers to the translation of the invention into a commercial prod-

uct or process. The subsequent implementation by users of these embodiments of new technology is

referred to as “adoption” or “diffusion.” Schumpeter remarked upon these distinctions some 90 years

ago.8 They remain important for public policy today.

Transforming an invention into a product or process that can be commercialized and widely adopt-

ed typically requires significant improvements in performance and reductions in cost. Initially, the basic

operating principles of an invention may be poorly understood, and the improvements necessary for practi-

cal applications often require additional research. Commercialization calls for skills and knowledge that are

very different from those required for the inventive act. These differences were the basis for Schumpeter’s

distinction between inventors and entrepreneurs, the latter group taking on the tasks of innovation. 

The transistor, for example, made possible a vast array of products and services undreamed of by

its inventors in 1947. Nonetheless, the first transistors were of little use for commercial applications—

they were costly, fragile, and could not be manufactured in volume. Another five years of careful
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experimentation, much of which concerned the production of high-purity crystals of semiconducting

materials, was necessary. Moreover, the firm that pioneered commercial mass production of the transistor,

Texas Instruments, was not the firm responsible for its invention, AT&T.

Research and Innovation 

The “linear model” of innovation, which views the process as a one-way

flow of ideas from basic scientific research into innovation, has been politi-

cally influential but fundamentally misrepresents the innovation process.

The linear model portrays a unidirectional flow of information and knowledge from fundamental research

through development into innovation, and treats feedback from downstream development, field service

experience, and the marketplace as much less important.9 But empirical studies of innovation show that

these feedbacks are critical.10 More accurate conceptualizations view innovation as the outcome of a

series of iterative steps linked by learning and feedback that flow both “downstream,” from research to

design and development, and “upstream,” from the development process to fundamental research.11 Such

perspectives highlight the importance of learning, including learning by both the innovators and the users

of their products. Even today, much of this learning takes place through processes of trial-and-error and

trial-and-success, with little or no contribution from formal research.

These more realistic models of the innovation process have several important implications. First,

investments in science are not always necessary precursors to invention or innovation. For example, the

microprocessor, the basis for the personal computer (PC) and many other products that are themselves

major innovations, was designed on the basis of existing knowledge.12 It embodied no new basic research,

yet became a path-breaking innovation that in turn gave birth to a host of other innovations. Second, the

national government or corporation that invests in the science and technology underpinning a body of

innovations may not always capture the economic returns from these innovations. For example, although

the British firm De Havilland designed and produced the first jet-propelled airliner, the Comet, no large

jet transports have been built in the United Kingdom for decades. Third, the translation of inventions into

innovations depends on knowledge acquired in a wide variety of settings, including the manufacture and

use of new products. 

7
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Radical vs. Incremental Innovation 

Despite their portrayal in the press and elsewhere as critical events,

“radical” breakthroughs in scientific or technological knowledge generally are

less economically significant than the lengthy series of incremental innova-

tions and improvements necessary to arrive at a cost-effective product that is

attractive to users. Such incremental improvements proved crucial for the transistor, and also were

essential for the development and adoption of the gas turbines that power jet aircraft and many modern

electric power plants. Early military jets burned so much fuel that they could not stay aloft for even an

hour, while their engines “wore out” after only a few flights. But decades of incremental improvement

have produced gas turbines descended from these early jet engines that operate for years with only rou-

tine maintenance and are lower in cost and more energy-efficient than competing technologies. Many of

these incremental improvements reflect operational and maintenance experience gained by users.13

An appreciation of incremental advances is essential to the formulation of policies for fostering

innovation. Early versions of new technologies often are costly and may offer only limited performance

improvements over existing technologies. Even today, photovoltaic (PV or solar) cells, though an order of

magnitude more efficient than those first flown aboard the Vanguard satellite in 1958, remain too expen-

sive for applications where grid-supplied electricity is available. And the fuel cell, based on principles

known since the first half of the 19th century and first applied in the Gemini spacecraft of the 1960s, is

still not cost-effective for widespread use. The broad-based deployment of these technologies will require

additional large reductions in costs and substantial improvements in reliability and other performance

measures. Incremental improvements receive little attention in the popular press, yet they remain

extraordinarily important for the ultimate economic effectiveness and adoption of new technologies. 

Learning

The translation of inventions into innovations and subsequent incremen-

tal improvements entail extensive learning on the part of both creators and

users of new technologies. This learning can be both risky and costly. Three of De Havilland’s

pioneering Comets crashed in 1953-54 because designers did not understand that repeated high-altitude

pressurization threatened catastrophic failure of the aircraft’s fuselage through metal fatigue. De Havilland

could not survive the lesson, but other firms incorporated the new knowledge into subsequent designs. 

U.S.  technology and innovation policies
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Innovators must learn what works and what users want, need, and will pay for. As they learn, they

modify their products and production processes accordingly. At the same time, users explore the new

capabilities of the innovation and extend these capabilities. Neither Apple Computer nor a number of

now-vanished makers of early desktop computers imagined that the first major market for their products

would be as replacements for office typewriters. Other entrepreneurs developed the word-processing and

spreadsheet software that attracted business users and triggered rapid growth in the PC market. 

In general, technological learning occurs through three different but interrelated processes: 

• Learning that leads to improved products or processes through research, development, 

and design;

• Learning in production, leading to reductions in manufacturing costs and/or process

improvements; and

• Learning by users, which may be fed back into R&D and new or improved designs and/or

incorporated into users’ maintenance procedures and operating practices. 

The initial development of the microprocessor illustrates the first of these learning processes. 

An entirely new class of products emerged as Intel (and soon, other firms) designed successive families of

microprocessors. Their design required extensive feedback from users. At the time Intel began work on its

386 family, the lead technical and marketing specialist spent six months simply visiting customers to

understand the features they valued most highly. 

Reductions over many years in the cost of PV cells illustrate production-related learning. Such

cost reductions have many sources, including the accumulated experience of manufacturing workers,

engineers, and managers as they search for and find better methods of accomplishing production tasks.

Economists commonly term this “learning-by-doing” because many of the improvements result from

experiential learning on the factory floor. 

Users also contribute to technological learning when the knowledge they gain through operation

and maintenance helps manufacturers improve their products. Pratt & Whitney used such feedback to

improve components of one of its early jet engines, the JT4A, that airlines found to need frequent repair

or replacement. These modifications contributed to an increase in average time between overhauls, over a

period of about five years, from less than 1,000 hours to more than 6,000 hours, with dramatic

reductions in operating costs. 

9
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The Critical Importance of Adoption 

Gains from new technologies are realized only with widespread adoption.

Adoption, in turn, requires the existence or establishment of markets for a technology, and the diffusion

of information and knowledge concerning its technical characteristics and cost, processes that may

require many years. 

Rates of technology diffusion and adoption are themselves affected by the pace of incremental

improvement resulting from expanding applications. Early versions of new technologies, especially those

with unproven performance characteristics or high capital costs compared with older technologies, are

likely to face significant barriers to market entry, even though their longer-term benefits or life-cycle cost

may be more promising. But the close link between technology adoption and producer- and user-based

learning means that the adoption and improvement of new technologies are interdependent and mutually

reinforcing. In the jet engine case, for example, military R&D, procurement, and use made major contri-

butions to learning. In other cases, policies designed to facilitate learning may be necessary to achieve

societally desired outcomes. Agricultural and manufacturing extension programs, discussed in Section IV,

are examples of “learning-oriented” government programs. 

Uncertainties Abound

Pervasive uncertainty characterizes invention, innovation, and

technology adoption. The potential outcomes of basic research are difficult if not impossible

to anticipate, and the future applications of research results are even more uncertain. The long-term

impacts of a new technology cannot be predicted accurately, because operational characteristics and

functional performance change over time, and because the pace of adoption is subject to a wide array 

of economic and social influences that are difficult to foresee. Thus, no one anticipated the explosive

diffusion of the Internet during the 1990s, a process that combined continuous innovation 

and rapid adoption. 

By the same token, large uncertainties cloud the future of many advanced energy technologies.

Will PV systems produce carbon-free electricity for less than 5 cents per kilowatt-hour by 2030? 

Will hydrogen-powered fuel cells supplant internal combustion engines in passenger vehicles? 

Will CO2 capture and sequestration technologies allow fossil fuels to remain dominant in a carbon-

constrained world? Only time and experience can answer such questions definitively. 

U.S.  technology and innovation policies
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As later sections of this report emphasize, one of the historic strengths of U.S. science and tech-

nology policies has been their ability to accommodate uncertainty. Federal agencies have often supported

multiple, competing technology pathways. In contrast, where government has sought to define technical

attributes or design features and “pick winners” in the marketplace, failure has been a common outcome.

Section VI discusses some of these successes and failures.

B. Contrasting Patterns of Technological Innovation

Policy debates and policy design often focus on “upstream” support for

research (as suggested by the linear model), while overlooking “downstream”

processes that are major sources of technological improvements and accelerated

adoption. Brief case studies of three energy technologies illustrate the contributions of both upstream

support and downstream learning processes. 

Photovoltaics and Wind Power

For PV cells, learning through research and production has resulted in

sustained improvements in performance and reductions in manufacturing

cost; for wind turbines, learning-by-using has been most important. These two

renewable energy technologies exhibit strikingly different patterns of development, suggesting that no

single formula or path to innovation applies equally to all technologies or industries. 

For PV systems, advances in manufacturing processes reduced the cost per unit of cell area. At

the same time, basic and applied research in materials science and related disciplines led to efficiency

gains that raised the electrical energy output per unit of cell area. Early PV cells were very expensive and

converted less than 2 percent of the incident solar energy into electricity. After more than four decades

of steady development, the efficiency of volume-produced PV cells has risen to approximately 15 percent.

Higher efficiencies thus far have proven unattainable without prohibitive increases in costs. Although

current PV efficiencies remain well below those of other commercial power generation technologies, the

cost of PV systems has fallen dramatically. Figure 2 illustrates the reductions in capital cost that have

been achieved with increasing deployment. Additional reductions have been achieved in operating and

maintenance costs.14 Nonetheless, the current cost of electricity from PV systems remains well above 

that of electricity produced by competing technologies, and the need for storage or ancillary power at

night and during periods of low sunlight has restricted PV systems to niche markets. Such limitations 

11
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are characteristic of new technologies. As further capital cost reductions are realized, the fact that

renewable technologies like PV systems require no fuel input enhances their economic benefits by avoid-

ing the potential risks of fuel supply interruptions or price spikes.

By contrast, learning-by-using has been a major source of innovations in wind-powered turbines.

Analysis of performance shortfalls based on operating experience with wind turbines installed during the

1970s and 1980s led to design improvements in airfoils, overspeed control in high or gusting winds,

more durable hubs and blades, and standardized testing procedures.15 Perhaps the greatest single contri-

bution of learning-by-using has come through better siting of wind turbines, aided by data collection on

localized wind patterns. For example, system designers and planners have learned how the brow of a hill

will affect the wind (anyone who has flown a kite on a gusty day will appreciate the phenomenon), and
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Note: This figure does not include trends in utilization or in operating and maintenance costs. More recent data indicate that electricity generation
costs for wind turbines and PV systems have continued to decline as a result of further innovation and deployment (see, e.g., M.A. Green,
“Photovoltaics: technology overview,” Energy Policy, Vol. 28, 2000, pp. 989-998; and J.G. McGowan and S.R. Connors, “Windpower: A Turn of the
Century Review,” Annual Review of Energy and the Environment, Vol. 25, pp. 147-197).

Source: N. Nakicenovic, A. Grübler, and A. McDonald, eds., Global Energy Perspectives (Cambridge, UK: Cambridge University Press, 1998). 



+

+

+

where on the side of a hill to place successive rows of turbines in a “wind farm.” The result: more power,

on a time-averaged basis, at the same or lower cost. Wind-generated electricity is now marginally cost-

competitive in U.S. locations with sufficiently strong and reliable winds. 

For both PV cells and wind turbines, incremental innovation has extended over many years and

still continues. Many of these improvements have been individually small, yet their cumulative impacts

have been large. From a policy perspective, the federal government has done more than simply pay for

R&D. Federal policies also have supported adoption, including solar installations on government build-

ings, tax credits for households and businesses, and low-interest loans.16 In recent years state-level

Renewable Portfolio Standards, requiring that a certain percentage of electric power be generated from

renewable sources, also have fostered deployment, especially of wind systems. All of these policies have

accelerated technology adoption and thereby have facilitated learning-by-doing and learning-by-using.

Because renewable energy technologies such as wind and solar generate electricity without CO2 emis-

sions, policies that promote their adoption and improvement should be part of any response to global

climate change.

Gas Turbines

Innovations in gas turbines can be traced to many sources, with

military R&D and procurement among the most important. Today, turbines fueled by

natural gas are the leading technology for new electric power generation in the United States and many

other parts of the world. They are the cleanest of fossil fuel technologies, with far lower GHG emissions

per kilowatt-hour than coal-fired plants. 

As already noted, gas turbines based on jet engines originally developed for military aircraft have

exhibited impressive performance improvements since the 1940s. By the 1970s, efficiency had increased to

the point that gas turbines became cost-effective for commercial power generation.17 The low capital cost

and high reliability of these new “aero-derivative” gas turbines led electric utilities to purchase them for

peak generation capacity. By the late 1980s, low-cost natural gas combined with further technical advances

and reductions in manufacturing costs (see Figure 2) made gas turbines the lowest-cost alternative for new

U.S. generating capacity, spurring widespread purchases including high-efficiency “combined cycle” plants.

Industrial firms also bought gas turbine units for cogeneration, in which the turbine exhaust provides

13
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process or space heat and thereby increases overall efficiency further. In the late 1990s, entrepreneurial

firms began developing small “microturbines” for standby power and off-grid installations. 

Many factors contributed to these six decades of innovation. Notwithstanding the basic simplicity

of the gas turbine itself, the underlying technology base is large and complex, ranging from design codes

that run for hours on the most powerful computers available to metalworking techniques for fabricating

turbine blades from single crystals of exotic heat-resisting alloys. Along with private-sector investments,

R&D funding by the Department of Defense (DoD) has made major contributions.18 Equally important,

DoD provided the initial markets for deployment, which accelerated learning-by-doing and learning-by-

using. Because DoD buys jet engines and gas turbines not only for aircraft but also for missiles, tanks,

and ships, military spending has fostered innovations in turbines of many types and sizes. Further

innovations in gas turbine technology will contribute to reduced GHG emissions through continued

improvements in power-generation efficiency. 

C. Summary 

The case studies above show that the process of innovation is complex,

highly interactive, and typically involves prolonged cycles of incremental

improvement before a new technology is adopted and spreads widely in the

marketplace. Incremental improvements come from multiple sources, many of which, such as

learning-by-doing and learning-by-using, do not depend on formal R&D. As adoption and diffusion

proceed, more people and organizations participate. Over time, costs decline and performance improves.

The close linkage between technological advance and marketplace adoption is a major force in sustaining

the overall dynamic of technological innovation. 

The paths of innovation are often predictable in a gross sense by extrapolating “learning curves,”

such as those in Figure 2. In any particular case, however, performance improvements or cost reductions

may deviate from past trends. In other words, uncertainty accompanies incremental innovation just as it

does invention and radical innovation. The lesson for climate change policies is that technological change

is complex and unpredictable. No single factor or influence drives the process. In some cases R&D funding

is most important; in other cases procurement or user feedback is critical. Successful innovation strategies

must support a diverse and interactive set of activities including invention, innovation, adoption, and subse-

quent learning. The next two sections discuss some of the policies that can help achieve these objectives.

U.S.  technology and innovation policies
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IV. A Review of Federal Technology Policies

Although the United States has never had a coherent set of innovation

policies, government actions have profoundly influenced the rate and direction

of technological change since the founding of the republic. Public policies affecting

technological change go back to the codification of the patent system in the Constitution. A federal grant

in 1844 underwrote the demonstration of the telegraph. Financial guarantees, grants, and loans supported

construction of a national rail network. Federal land grants underwrote the U.S. system of publicly financed

colleges and universities, which became major players in R&D and innovation. Federal legislation in the

19th century also created an elaborate system to support technology adoption and learning-by-using in

agriculture, spurring productivity growth and innovation in a vital sector of the economy. Government

procurement during World War I transformed an infant aircraft industry that had produced a cumulative

total of only a few hundred planes; by the war’s end, U.S. firms had manufactured some 14,000 planes,

with much concomitant learning. Government-spurred innovation accelerated in the post-World War II

period. Despite the heterogeneity in federal policies—or perhaps because of it, given the high levels of

uncertainty that characterize innovation—government actions have been remarkably effective. This section

of the report draws lessons from postwar experience with potential application to climate change. 

A. A Taxonomy of Technology Policy Tools

Although many types of policies affect innovation, no universally accepted

nomenclature or taxonomy summarizes or describes them. Economists often use the

term “technology policy” to describe the diverse collection of measures that in one way or another affect

technological development, and these are the focus of this report. Taxonomies of technology policy seldom

include regulatory policies, such as environmental regulations and antitrust enforcement, which have in the

past been a major stimulus to innovation and adoption. Section V discusses regulatory policies briefly and

Section VI includes examples of the impact of several other non-technology policies on innovation. 

Since World War II, national security and public health have been the primary motivations for

U.S. technology policies. In the 1980s, productivity growth and industrial competitiveness became more
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prominent. Table 1 lists fifteen common technology policy tools grouped into three broad categories, with

comments on the strengths and weaknesses of each. The first category is direct government funding for

research and development. The second category is a collection of policies that directly or indirectly

supports commercialization and adoption, or indirectly supports development. The final group includes

policies that foster technology diffusion through information and learning. The remainder of this section

discusses selected policies from Table 1, with examples of how they have been implemented and lessons

learned from that experience.

B. Government-Funded R&D

For many policy-makers and analysts inside and outside of government,

technology policy begins and ends with public funding of R&D. Studies of climate

change and energy policy are replete with calls for “more R&D.” 

Substantial public funding of R&D in the United States is largely a post-1940 phenomenon; 

prior to World War II, direct federal funding of R&D hardly existed outside of agriculture and a few

military-related technologies such as aviation. World War II and the Cold War transformed the nation’s

science and technology system. DoD provided large sums for R&D year after year and spent even greater

amounts on the procurement of high-technology military equipment. The network of federal laboratories

grew to more than 700. University science and engineering departments came to depend heavily on

federal research funds. 

Until the mid-1980s, the federal government supplied more than half of all U.S. R&D funding, a

share that has since declined considerably. Weapons development consumed the bulk of those funds, but

DoD and other federal agencies also paid for basic research in many fields. There was, however, nothing

resembling a government-wide R&D “strategy.” Agencies with particular missions supplied R&D dollars

with little or no coordination, review, or external oversight.

R&D investment alone is not sufficient to bring about innovation. Nonetheless, government-

supported R&D remains a vital element of any innovation policy portfolio. Since federal R&D outlays now

exceed $100 billion annually, this report can make no attempt to review the full array of programs. 

Two agency R&D programs are discussed below as examples. The first is widely viewed as a model for

stimulating innovation; the second is newer and more controversial. 
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The Defense Advanced Research Projects Agency: R&D for the Military 

The Defense Advanced Research Project Agency’s  (DARPA) sponsorship

of innovations, especially in information technology, was sufficiently

impressive that proposals for a “civilian DARPA” were widespread during the

industrial competitiveness debate of the 1980s. Many of those proposals, however,

revealed a lack of understanding of DARPA’s operations and the basis for its accomplishments. 

DoD established DARPA in 1958, in the wake of the Soviet Sputnik launches, to bring order to

the tangle of competing missile, space, and missile-defense programs run by the Army, Navy, and Air

Force. Most of this work soon migrated back to the services or to the National Aeronautics and Space

Administration (NASA), a civilian agency established by Congress in the same year for similar reasons.

Needing a new mission for their fledgling organization, DARPA’s managers turned to the support of R&D

to bridge “gaps” between basic research and the more applied work of weapons development. 

DARPA has filled this middle ground effectively, focusing on three main areas: computers and

information technologies, sensors and surveillance, and directed energy weapons.19 DARPA, with no R&D

facilities of its own, relies entirely on extramural R&D performers. Although most of its funds have gone

to military R&D conducted by defense firms, from the beginning the agency also has funded unclassified

academic research. 

DARPA has flourished for two reasons. First, it has a well-defined mission strongly supported by

Congress and civilian defense officials. Second, DARPA managers long ago learned to fulfill this mission

without aggravating high-ranking military officers, who (much like their counterparts in industry) generally

prefer to fund shorter-term R&D. DARPA has been able to accommodate their wishes without jeopardizing

its fundamental task of bridging the worlds of research and engineering development, even when the mili-

tary applications of the technologies supported have not been clear. Small size has helped the agency

avoid the careerism rampant elsewhere in government and the military. The agency has attracted visionary

technologists and managers, many on temporary assignment from industry and academia, who have built

strong ties between DARPA and evolving research programs outside of DoD, especially in “dual use” fields

such as computing. DARPA has had its share of failures, but these have not eroded its political support. 
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1. R&D contracts with
private firms. 

2. R&D contracts and
grants with universities. 

3. Intramural R&D con-
ducted in government
laboratories. 

4. R&D contracts with
industry-led consortia 
or collaborations among
two or more of the
actors above. 

5. Patent protection. 

6. R&D tax credits. 

7. Tax credits or production
subsidies for firms
bringing new technolo-
gies to market. 

8. Tax credits or rebates 
for purchasers of new
technologies. 

Proven effectiveness in mission
agencies, especially defense. 

Many centers of research
excellence; strong competition
(for funds, faculty, graduate
students, etc.).

High levels of expertise and
excellent facilities in some
laboratories. 

Collaboration can help define
technical objectives and mini-
mize unnecessary duplication of
effort. 

Powerful incentive for innovation
in some industries and tech-
nologies. 

Popular, relatively uncontroversial.

Well-suited, at least in 
principle, to targeting of
particular technologies.

As above, but tend to pull
technologies into the market-
place rather than pushing from
the supply side. 

In the absence of a well-defined and
widely accepted mission, can be hard
to defend politically and to manage;
may attract pork-barrel spending. 

Applicable experience base is smaller
for applied R&D than for more basic
work. 

Generally poor track records in labo-
ratories that lack strong, stable sense
of mission and/or strong links with
civilian users. 

Pre-competitive consortia tend
toward lowest-common-denominator
R&D. Firms that compete with one
another may be reluctant to con-
tribute their best people and ideas.
Absorption of results by participants
may be difficult.

The stronger the protection, the
weaker the incentives for diffusion
through imitation or circumvention. 

Difficult to target toward particular
technologies. 

Subject to attack as corporate
welfare and susceptible to political
manipulation. 

As above, though less likely to attract
lobbying because benefits are harder
to channel to particular firms. 

Established mechanisms, ample
experience base for selection of
technical objectives and evaluation
of competing proposals. 

Well-established agency procedures.

Few laboratories deeply integrated
into national technological infra-
structure (which may, for example,
slow outward or inward technology
flows). 

Some duplication in R&D is 
often desirable. Recent vogue 
for “partnerships” may have
discouraged objective evaluations
of actual performance. 

Most effective in pharmaceuticals,
chemicals, and basic materials,
where “inventing around” patents
is difficult. 

Firms normally pursue R&D and
commercialization for business
reasons which tax credits affect
little if at all; credits likely to
subsidize work that would be
conducted anyway. 

The larger the credits or subsidies,
the more likely they will go to the
best lobbyists rather than the best
ideas. 
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Table 1

A Summary of   U.S. Technology Policy Tools

I. Direct Government Funding of R&D

Policy Strengths Weaknesses Other Comments

II. Direct or Indirect Support for Commercialization and Production; Indirect Support for Development

Policy Strengths Weaknesses Other Comments
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9. Government
procurement. 

10. Demonstration
projects. 

11. Education and
training. 

12. Codification and
diffusion of technical
knowledge. 

13. Technical standard-
setting. 

14. Industrial or technolo-
gy extension services. 

15. Publicity, persuasion,
and consumer
information. 

Powerful stimulus when government
is a major customer. 

Can validate technologies, explore
applications where market has yet
to develop. 

Powerful, pervasive mechanisms for
diffusion of knowledge. 

Expert consensus on best practices
reduces technical risks and
uncertainties. 

Potential for deep and lasting
impacts. 

Can directly address knowledge
gaps, misunderstandings. 

Possible to reach large numbers 
of people and organizations at
relatively low cost. 

In the absence of mission-imposed
discipline, political considerations
may dominate. 

Tainted by past undertakings widely
viewed as wasteful and ineffective,
including energy projects in the
1970s and 1980s. 

Many established channels act quite
slowly (e.g., university degree pro-
grams). Workforce training policies
fragmented and underdeveloped
compared with education.

Design of programs that are well
matched to varied institutional or
sectoral environments is difficult and
poorly understood. 

Consensus standards development
slow; often leads to compromise
among competing private interests
with limited public-interest input. 
May lock in inferior technologies. 

Labor-intensive; costly to reach large
numbers of firms or individuals. 

Unlikely to alter vested interests 
or have much effect on cost-based
decisions. 

Technical objectives may be
compromised by need to show
positive results in order to maintain
political support and funding. 

Quality, particularly in shorter educa-
tion/training courses, can be highly
variable. Formal education and train-
ing are best suited for transmission
of information and knowledge that is
already widely accepted as valid and
broadly useful. 

Many well-established mechanisms
(reference documents, consensus
best practices, computer-aided
engineering methods and
databases, technical review
articles, etc.) fall outside tradit-
ional government purview. 

Special interests have powerful
incentives to seek to dominate the
process. 

Long-term acceptance and viability
yet to be fully established, except
in agriculture. 

Competing interests may distort 
the message. Many Americans are
skeptical and/or cynical about
information from government. 

Source: J.A. Alic, “Policies for Innovation: Learning from the Past,” in V. Norberg-Bohm, ed., The Role of Government in Technology Innovation:
Insights for Government Policy in the Energy Sector (Belfer Center for Science and International Affairs, Harvard University, October 2002), 
Table 2, pp. 25-26.

III. Support of Learning and Diffusion of Knowledge and Technology

Policy Strengths Weaknesses Other Comments

Policy Strengths Weaknesses Other Comments
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“Cloning” DARPA—for example, to pursue a GHG-related R&D agenda—would require the

replication of its clearly defined, well-accepted mission, autonomy, flexibility, and links with the best 

non-government research groups. The first of these tasks poses the greatest difficulty, but none of them

are easily addressed in an arena as politically charged as U.S. energy and climate change policies. 

The Advanced Technology Program: “High Social Payoff” R&D 

The Advanced Technology Program (ATP) is unique in the United States

in providing R&D funds to private firms for goals that are not directly related

to government missions. Congress created the ATP in 1988 to support research that improves

“the competitive position of the United States and its businesses, gives preferences to discoveries and

technologies that have great economic potential, and avoids providing undue advantage to specific com-

panies.”20 Housed in the Department of Commerce, through fiscal year 2000 the ATP had made 526

awards (selected from over 3,000 proposals) totaling $1.65 billion. Throughout its brief life, however,

ATP has been politically controversial and subject to wide swings in appropriations. Moreover, the pro-

gram’s design and goals are so complex and contradictory that its operations may have been hampered.

The first issue that confronts any assessment of a program such as ATP is the relevant time

horizon of the evaluation. Inasmuch as the ATP seeks to support “pre-commercial” R&D, its economic

effects will be realized only after a considerable time lag—at least five years, perhaps much longer. These

lags, along with the difficulties inherent in retrospective evaluation of factors affecting the timing and

character of innovations, make it difficult if not impossible to attribute specific commercial advances to

funding awarded much earlier. For these reasons, few evaluations of the ATP attempt to quantify econom-

ic payoffs. A second, related issue concerns the possibility that ATP dollars are paying for work that would

have been performed anyway—that public dollars simply displace private dollars. Studies examining this

issue suggest a substantial displacement effect.21

The ATP illustrates the core dilemma faced by public funding for “high social payoff” R&D

conducted by private firms. ATP seeks to support pre-commercial R&D that has high social benefits; that

would not be carried out in the absence of government funds; and that promises eventual commercialization.

Taken together, these requirements constitute a nearly empty set. ATP lacks a close link to a specific federal
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agency mission and has yet to spawn much of a political constituency. The program has been vulnerable to

criticism as “corporate welfare” or as a case of government trying to outguess the market. 

The attacks on ATP are among the most recent manifestations of a 200-year-old political debate

over the appropriate role for the federal government in economic development. Similarly contentious

debates surrounded the “energy crisis” of the 1970s, and will undoubtedly pervade the design of

programs to address global climate change. 

C. Collaborative R&D 

Since the early 1980s, federal financial, legal, and administrative

support for collaborative R&D has become a politically popular tool for the

support of innovation. Such collaborations have assumed many different forms, but rigorous

evaluations of the results from such partnerships are rare. The popularity of joint R&D during the 1980s

stemmed from a widespread belief that cooperation had played a central role in the rise of Japanese 

high-technology industries, together with the perception that it lowers the costs and risks of R&D. 

Little hard evidence supports either belief. 

A general discussion of the economic benefits and risks of R&D collaboration is provided below

as background for more detailed discussions of two industry-led consortia and the policy of facilitating

joint R&D between federal laboratories and private firms. All of the examples have lessons relevant to the

development of GHG-related technologies.

The Benefits and Risks of R&D Collaboration 

Economic literature identifies three broad classes of benefits from R&D

collaboration among firms: (1) enabling participating firms to capture knowledge

spillovers that otherwise would be lost; (2) reducing duplication among member

firms’ R&D investments; and (3) exploitation of scale economies in R&D.

Recent policy discussions have added four additional benefits: (1) accelerated commercialization; 

(2) more effective transfers of research results from universities or government laboratories to industry;

(3) easier access for industrial firms to the R&D capabilities of federal laboratories; and (4) the creation

of a common technological “vision” to guide R&D within a particular industry. 
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The benefits of collaborative R&D cited by economists in theoretical work are difficult to measure

in practice. Furthermore, the design of collaborative undertakings may conflict with other goals of public

policy. For example, industry-led R&D consortia normally seek to protect jointly created intellectual

property (IP). This may limit the diffusion and exploitation of research results, and thereby reduce social

returns. Moreover, the (theoretical) ability of industry-led consortia to internalize spillovers among

participants suggests that such consortia should support research with longer time horizons than those of

individual firms. Yet most industry-led consortia have chosen to pursue applied R&D with relatively short

time horizons—e.g., three to five years, as noted below in the discussions of SEMATECH and the

Partnership for a New Generation of Vehicles.

The theoretical benefits of reducing the overlap among the R&D strategies of consortia members

also have been overstated to some degree. Participants in R&D consortia of all types, including industry-

university and industry-federal laboratory collaborations, report that similar or complementary internal R&D

is essential if the results of the joint undertaking are to be absorbed and applied. In other words, some level

of in-house duplication of R&D performed externally is necessary to realize returns. Furthermore, the

reduction of duplicative R&D among collaborating firms, and the development of a common industry-wide

technological vision or “roadmap,” implies a reduction in the diversity of scientific or technological avenues

explored. Since one of the hallmarks of innovation is pervasive uncertainty about future paths of develop-

ment, reduction in diversity introduces the risk of collective myopia. Section VI argues that the United

States spawned new technology-intensive industries so effectively precisely because its innovation system

supported many alternative pathways. Where federal policy failed to support multiple pathways, the results

have often been technological dead-ends and policy failures, as Section VI also illustrates.

Two Examples of Industry-Led Partnerships 

Two of the most visible R&D consortia of recent years, SEMATECH and

the Partnership for a New Generation of Vehicles (PNGV), illustrate different

approaches to pre-competitive research. Organized at a time when the U.S. semiconductor

industry was losing market share to Japanese firms, SEMATECH supported collaborative R&D on process

technologies to enable member firms to reduce costs and enhance product quality. By cooperating in

PNGV, the federal government and the U.S. auto industry, long at odds over emissions and fuel economy

regulations, sought a temporary rapprochement: political concerns helped shape the technical agenda.
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In 1987, Congress committed five years of support at $100 million annually for SEMATECH, and

construction began on a large-scale fabrication facility in Austin, Texas to serve as a site for the joint

development of advanced manufacturing processes. Member firms found it difficult to agree on a research

plan to exploit this facility, however, and in 1989 the consortium announced a new R&D direction:

SEMATECH would work to improve the technological capabilities of U.S. suppliers of semiconductor

processing equipment and strengthen “vertical” cooperation with those suppliers.22

The competitive revival of the U.S. semiconductor industry in the early 1990s led SEMATECH to

reconsider the need for federal funding, which ended in 1996. Nonetheless, it is difficult to sustain a

claim that SEMATECH was solely or even primarily responsible for the revival of the U.S. industry.

Because U.S.-based semiconductor firms retained significant technological and managerial advantages 

as well as financial resources, SEMATECH did not have to rebuild a crumbling technological foundation.

Its task, with a budget that was dwarfed by the members’ internal R&D spending, was to attack relatively

well-defined problems in supplier firms. 

The origins and objectives of PNGV were more diffuse. On the industry side, those origins lie in

the U.S. Council for Automotive Research (USCAR), an R&D consortium established in 1992 by the “Big

Three” U.S. automakers: General Motors, Ford, and Chrysler (now DaimlerChrysler). A year later, PNGV

was launched as a partnership between USCAR and five federal agencies.23 PNGV announced three

principal goals: (1) to improve U.S. competitiveness in auto manufacturing; (2) to develop technologies 

to increase passenger car fuel economy and reduce emissions; and (3) to develop and demonstrate by

2004 mid-sized “supercar” sedans (one from each of the Big Three) capable of 80 miles per gallon at

reasonable cost with acceptable levels of safety, performance, and amenities. 

SEMATECH had a centralized process for establishing priorities and funding and monitoring

projects, but PNGV, larger in scale and more heterogeneous by almost any measure, operated as a collec-

tion of loosely coordinated projects. Planning and oversight committees defined R&D activities targeted

on the competitiveness and fuel-economy goals; the automakers worked independently on their supercar

demonstrators. USCAR estimates that industry contributed roughly $1 billion annually to PNGV spending;

annual government contributions averaged $250 million, coming from the regular R&D budgets of the

participating agencies.24 PNGV’s limited public disclosure of its funding and structure prevents rigorous
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assessment of the program’s effects on R&D investment in key technical areas. Nor is it possible to

determine how PNGV affected the R&D agendas of participating firms and government agencies. The

consortium cites well over 100 examples of recently deployed automotive technologies that enhance fuel

efficiency or reduce emissions.25 But many of these are evolutionary improvements in ongoing streams of

development, and therefore cannot automatically be credited to PNGV.26

In early 2002, the Bush administration announced the end of federal participation in PNGV, two

years earlier than planned. In its place, the Department of Energy (DOE) launched a new R&D program,

called FreedomCAR, for research on fuel cells. In his 2003 State of the Union address, President Bush

announced a related initiative to study the supply and distribution infrastructure for hydrogen fuel. 

PNGV and SEMATECH exhibit strengths and weaknesses common to many industry-led consortia: 

• Industry cost-sharing requirements reduce the possibility that public funds will be directed

to R&D that ranks low in the priorities of participating firms, and increase the likelihood that

research results will be more widely adopted. The danger is that participating firms will be able

to agree only on “lowest common denominator” portfolios dominated by low-risk, short-term work. 

• “Vertical” collaborations between firms and their suppliers and/or customers, while often desir-

able, may reflect an inability by “horizontal” rivals to agree on other types of pre-competitive R&D. 

• Temporary assignment of personnel to the consortium helps transfer R&D to participating

firms, but the need for parallel in-house R&D means that smaller firms, which are less likely

to have the needed funds or expertise, may be unable to absorb the results. 

Most important, collaborative R&D aligned with existing business strategies may not address

public policy objectives. Fuel cell research, for example, had little prominence in PNGV, ostensibly

because it did not fit the near-term 2004 objectives noted earlier. At the same time, however, practical,

affordable fuel cells could prove enormously disruptive to the auto industry, its suppliers, and infrastruc-

ture, threatening established market positions, capital stocks, and organizational know-how. Such consid-

erations may have made some firms reluctant to entrust fuel cell R&D to a “pre-competitive” consortium.

Federal cost-sharing in industry-led consortia may extend the R&D time horizons of participants some-

what, but the two examples of industry-led consortia described here suggest that such programs may be
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better suited to the pursuit of incremental technological goals than to long-term, high-risk projects and

radical innovation. 

Federal Laboratory Cooperative Research and Development 

By providing a vehicle for joint R&D between government laboratories

and private firms, Cooperative Research and Development Agreements

(CRADAs) seek to exploit the scientific and technological capabilities resident

in the large and costly federal laboratory system. DOE and other federal agencies have

devoted considerable resources to supporting CRADAs, but little is known about the effectiveness of these

undertakings. 

The Technology Transfer Act of 198627 created the CRADA mechanism, and amendments in

1989 extended it to government-owned, contractor-operated facilities, notably DOE’s laboratories. The law

assigns to the private-firm partner the rights to any IP resulting from joint work, with the government

retaining a nonexclusive license. 

With the end of the Cold War, federal laboratory managers were looking for new ways to justify

their budgets and Washington was looking for ways to increase the payoffs from a laboratory system that

by the late 1990s would absorb nearly two-fifths of federal R&D spending. CRADAs became hugely

popular. Federal agencies reported 460 active CRADAs in 1990, increasing to nearly 3,700 in 1996.28

DOE negotiated CRADAs aggressively in the mid-1990s. DOE CRADAs accounted for 45 percent of

the 1996 total, and the agency spent more than $1.4 billion on CRADAs during fiscal years 1993-99.29

Although this represents a small share of DOE’s overall R&D spending, the agency’s CRADA program is

among the larger initiatives dedicated to civilian pre-commercial technology development. During 1993-99,

DOE spent twice as much on CRADAs as it did on R&D for wind power and photovoltaics combined.30

An examination of a sample of CRADAs between a large DOE nuclear weapons laboratory and a

diverse group of industrial firms supports the following observations:31

• Access to unique laboratory facilities, equipment, and capabilities appeared to be the primary

motive for collaboration on the industry side. 

• Firms viewed laboratory personnel’s lack of familiarity with industrial practices as a significant

cause of unsuccessful outcomes. 
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• Negotiation of CRADAs often centered on IP rights, even when firms were not particularly

interested in seeking patents, complicating the discussions and contributing to delays. 

• As in other cases of collaborative R&D, successful transfers of results to participating firms

depended on parallel internal R&D investments and temporary assignment of industry personnel

to the research site. Even so, firms often found the transition from development to production

difficult in the absence of continuing support from laboratory personnel, which was barred under

the terms of many CRADAs. 

CRADAs have received considerable political attention, which, arguably, has not aided their

implementation. DOE laboratories, in particular, entered into collaborative undertakings with unrealistic

expectations and all too often failed to evaluate outcomes to improve their future use of these instru-

ments. Partly because of the political saliency of CRADAs, federal laboratories rarely have considered

alternative vehicles for collaboration, although many such alternatives exist. Nonetheless, CRADAs are

likely to be popular proposals for the support of R&D in response to climate change. 

D. Knowledge Diffusion and Technology Deployment Programs

Although R&D spending dominates most descriptive and analytic

accounts of federal technology policies, other policies to promote the adoption

and diffusion of technology have long been important in specific sectors.

The agricultural extension system, established in the late 19th century, was intended to diffuse “scientific

agriculture” in order to improve productivity and raise income levels among smaller farmers who lacked

access to the latest methods and the expertise to apply them.

In the late 1980s, Congress drew on agricultural extension for inspiration and justification in

creating the Manufacturing Extension Partnership (MEP)—a new program designed to speed applications of

productivity-enhancing technologies to small manufacturing firms (those with fewer than 500 employees).

Located within the Department of Commerce, the MEP now includes support centers in all 50 states that

are linked with state and local bodies that provide related services, and with regional academic, business,

and trade groups.
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Recently, MEP services have reached about 30,000 firms annually. Evaluations have been

generally positive.32 Such programs, of course, need more than positive technical evaluations to survive;

they must have a reliable political constituency similar to that built in agriculture decades ago. The MEP

appears to have developed such a domestic political base among small manufacturing firms, and, in

contrast to the ATP, has enjoyed bipartisan congressional support. 

A number of federal programs support the diffusion of energy-efficiency technologies, such as the

Environmental Protection Agency’s Green Lights and Energy Star programs.33 Many state-level programs

also offer businesses and homeowners grants and technical assistance for energy efficiency improve-

ments. To date, however, there has been insufficient political support to establish an “energy extension

service” akin to the extension programs in agriculture and manufacturing. Knowledge and technology

dissemination programs thus are a relatively small component in the current portfolio of government

policies to address climate change.

E. Protection of Intellectual Property 

To the extent that potential economic returns motivate individuals and

organizations to develop new technologies, policies to protect inventions,

know-how, and other intellectual property can be important components of an

overall innovation strategy. However, IP protection can also impede innovation and diffusion

of technology and know-how. Patents and other forms of IP protection have always been viewed as two-

edged swords: policy design has sought a balance between encouragement of invention and innovation,

and the diffusion of new knowledge. 

In the United States and elsewhere, patents have long been an established element of policy,

and now are widely employed (along with copyrights) to protect IP. A relatively recent initiative in U.S. IP

policy, the Bayh-Dole Patent and Trademark Amendments Act of 1980,34 permits universities and govern-

ment laboratories to file for patents on the results of federally funded research and to grant licenses to

patents awarded. The Bayh-Dole Act followed on the heels of a major U.S. Supreme Court decision in

1980 (Diamond  v. Chakrabarty, 447 U.S. 303) that opened the door to patents on living organisms,

molecules, and research techniques emerging from the rapidly growing fields of molecular biology and

biotechnology. Subsequent court decisions, moreover, have strengthened patent protection and IP rights
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more generally. These related shifts have spurred a steep rise in the total number of patents granted in

the United States (from 62,000 in 1980 to 150,000 annually by the late 1990s). 

Although it sought to speed commercialization of federally funded research, the overall impacts

of the Bayh-Dole Act are uncertain. Despite a rush by U.S. universities to patent research results in the

wake of Bayh-Dole, significant licensing revenues have accrued only to a small number of institutions and

a small number of highly profitable patents, mostly in the biological and biomedical sciences.35 Patenting

and licensing of university inventions are likely to be far less important for most GHG-related technolo-

gies, and efforts by universities to negotiate complex or restrictive licensing agreements as a condition

for collaboration with industry may in fact impede university-industry research collaboration.36 Academic

research in the United States has long flowed to industry through multiple channels, including publica-

tion in the open literature, faculty consulting, faculty-founded startup firms, and training—particularly of

graduate students. These channels supplement one another, but cannot substitute for one another. Thus a

heavy emphasis by universities on IP protection could restrict diffusion through other channels, limit the

scope for collaborative research with industry, and reduce social returns. 

F. Other Technology Policies

As Table 1 shows, policy-makers can choose from a broad array of

instruments in addition to R&D to promote innovation. Two examples are discussed below.

Tax credits have long been a politically popular mechanism to increase incentives for developing

or deploying new technologies. During the 1970s, homeowners and businesses received tax credits for

installing energy-efficient furnaces and other energy-conserving equipment. Tax credits were critical to

the growth of wind farms during the 1980s, especially in California, and also to the growth of markets

for PV systems. By speeding adoption, tax credits fostered learning that led to additional innovations

and cost reductions. 

Tax credits can have negative as well as positive impacts on efforts to reduce GHG emissions. 

For example, some tax credits and depletion allowances have encouraged the production and consumption 

of petroleum and other fossil fuels. Invariably, political interests spread government largesse in many

directions, not all of which are beneficial for the environment.
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Government procurement has often been a major stimulus for innovation, as illustrated by

the cases of jet engines, semiconductors, and computers. After commercializing the transistor, Texas

Instruments and another (then) small firm, Fairchild Semiconductor, developed a new invention—the

integrated circuit (IC), which combined several transistors (today millions) on a single chip. At first,

costs were high and defense and space systems comprised the entire market. As scale and learning

effects pushed IC prices down, commercial applications expanded. By the late 1960s, commercial

demand for ICs exceeded military demand.

In principle, federal procurement policies could play a major role in the development of

technologies to reduce GHG emissions. Federal, state, and local government could commit to purchase

only future-generation vehicles with fuel economy ratings set at some increment above existing Corporate

Average Fuel Economy (CAFE) standards. All government offices could require high-efficiency lighting,

low-energy computers, and high-efficiency heating and air conditioning systems (as, on a limited scale,

some do already). And what if all government purchases of electricity had to be “green,” as specified

by the supplier’s average CO2 emissions per kilowatt-hour—a requirement that might tighten over time?

Widespread adoption of such policies would be strongly resisted by some interests, at least in the near

future. Still, the market power of government purchases on even a limited scale could provide a powerful

incentive for innovation.

Table 1 lists other technology policies that might play a role in efforts to mitigate GHG

emissions. Each of these must be evaluated in the context of a policy package and overall policy goals.

The comments in Table 1 indicate some of the strengths and weaknesses of each option based on past

experience. A key message of this table is that government support for R&D is but one of many choices

available to promote innovation. 

G. Summary 

A diverse collection of U.S. technology policies contributed to a

remarkable burst of technological innovation, with accompanying economic

growth, during the post-World War II period. Many of the programs discussed in this

section were grafted onto existing institutions to address particular problems deemed urgent at the time.

Thus, DARPA was created in the early days of the “space race” to improve the management of missile

and space programs. When DARPA lost that mission, it picked up another: high technologies for which
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military applications had not yet been clearly identified. Extension programs in manufacturing and

agriculture were put in place to speed adoption and utilization of innovations, with the larger goal of

supporting income levels in threatened manufacturing firms and among small farmers. And when public

concerns emerged about the short-term orientation of American business investments, Congress created

the ATP to foster long-term industrial research.

Shifting political currents in Congress and the executive branch affect the directions and funding

levels of R&D programs, especially for pre-commercial R&D of a sort that will be needed to reduce GHG

emissions. The rhetoric of “government-industry partnerships” has sometimes helped to overcome the

objections of those who view public funds for private R&D as an inappropriate subsidy to business. But a

lack of detailed data and evaluations prevents a comprehensive assessment of the effectiveness of these

policies and programs. Nor is there much empirical evidence to support the assumption underlying the

Bayh-Dole Act, i.e., that strong IP protection will encourage and accelerate utilization of federally funded

research results. In devising technology policies for climate change, policy-makers will need to take into

account both the positive and negative features of particular policy tools, seeking balance in the portfolio

as a whole.

U.S.  technology and innovation policies
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V. Regulatory Policies and Technological Innovation

In addition to the technology policies discussed in Section IV, environ-

mental and other regulatory policies can strongly influence technological

innovation. While such measures are not the primary focus of this report, they are likely to be

significant factors in climate change policy and are discussed here briefly in terms of their influence on

innovation and technology adoption.

A. Environmental Policy

Regulation of environmental pollutants has influenced the development

and deployment of many technologies over the past 30-plus years. Innovations in auto-

mobile engines and electric power plants, for example, have contributed to widespread improvements in air

quality. Regulatory policies will likewise be required to stabilize the atmospheric concentrations of GHGs. 

Environmental policies respond to market failures that leave economic actors with little incentive

to reduce activities with adverse effects on society as a whole, such as releasing harmful substances to

the atmosphere or into wastewater streams. Past government policies to redress such problems relied

heavily on “command-and-control” regulations that compel polluters to reduce their emissions to

specified levels. The more recent turn toward “market-based” approaches gives firms greater flexibility,

permitting compliance with emissions standards at lower cost. 

Both types of policies influence innovation by establishing markets for control technologies and

providing “carrots and sticks” to accelerate adoption. The case of sulfur dioxide (SO2) emissions from

electric power plants illustrates the influence of regulatory policies on technological innovation and

adoption in a similar area. Just as combustion of fossil fuels produces CO2, burning sulfur-bearing fuels

like coal produces SO2, which is harmful to human health and causes acid rain. 

Since 1970, federal and state laws have required coal-burning power plants, the primary sources

of SO2, to reduce their emissions by switching to low-sulfur fuels or by installing “scrubbers” to capture
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and remove SO2. Since 1978, scrubbers have been mandatory for new coal-fired plants. Figure 3 shows

the sharp rise in the number of U.S. patents filed in the general area of SO2 controls over the past

century. A closer examination of these patents reveals that much of the dramatic increase in “inventive

activity” seen since 1970 was in scrubber-related technologies, and was a direct result of the emission

regulations stemming from the Clean Air Act Amendments of 1970 and 1977. With wider adoption (from

less than 5,000 megawatts [MW] of plant capacity in 1976 to over 90,000 MW today), the capital costs

of scrubbers fell by more than half. Operating costs also declined, while performance improved. Two

decades ago, scrubbers typically captured less than 90 percent of SO2 emissions; today, the best systems

are up to 99 percent effective.37 If CO2 capture and sequestration technologies are to become a cost-

effective option for GHG reductions, similarly sustained cost and performance improvements will be needed.

The environmental economics literature includes many other studies of regulation-induced inno-

vation and adoption, such as the development of automotive emission controls in response to the Clean

Air Act of 1970. Some of these studies indicate that environmental standards may inhibit innovation,

such as by directing resources to “end-of-pipe” controls rather than technologies that are inherently less

polluting. Although both economic theory and recent U.S. experience suggest that market-based policies
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should have a major place in an overall strategy for dealing with climate change, it is not the purpose of

this report to discuss the merits of alternative environmental policies, a topic widely discussed

elsewhere.38 Rather, the simple but important message of this section is that technology policies will be

insufficient for stabilizing GHG levels without complementary environmental policies.39

B. Energy Policy 

Just as environmental policies have affected innovation and adoption of

technology, U.S. energy policy also has influenced innovation and adoption.

For example, after Congress mandated CAFE standards for new passenger cars sold in the United States, 

a lengthy series of incremental innovations followed, affecting nearly all aspects of passenger car design.

In little more than a decade, the average fuel efficiency of new cars nearly doubled, to 27.5 miles per

gallon (the current CAFE requirement). Since 1988, efficiency standards have reduced the average energy

consumption of numerous household appliances such as refrigerators, dishwashers, and air conditioners.40

U.S. energy policy has also incorporated familiar tools of technology policy, such as tax credits for

adoption of renewable energy technologies. Although the United States has long avoided energy pricing

policies and fuel taxes to encourage energy efficiency, there is every reason to believe that a substantial

boost in gasoline taxes would be a powerful stimulus for innovation in automotive technologies. Because

the goals of U.S. energy policy and the most effective methods to achieve them remain politically contro-

versial, future choices—e.g., to encourage conservation or encourage fossil fuel production—could either

support or undermine the goal of GHG reductions. 

C. Summary

This section has described some of the influences on innovation of

policies other than those normally considered to be technology policies. Energy

and environmental policies have played major roles in the recent evolution of automotive and electric

power technologies that are major sources of GHGs, and they will continue to play an important role in

affecting innovation. Other non-technology policies, such as antitrust enforcement, often have had a

significant if indirect influence on innovation as well, as illustrated in the next section.

33
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VI. Learning from Success and Failure in High-Technology Industries

The economic history of the United States is characterized by innovation

and growth in both new and established high-technology industries that bene-

fited from a complex web of federal “technology” and “non-technology” policies.

This section briefly traces these influences in commercial aircraft and electronics, two industries where

U.S. firms have long been international leaders. It also includes a brief treatment of the failures of policy

and innovation in civilian nuclear power. The approach here differs from that of the previous sections, as it

is organized by industries and technologies rather than by policies and programs. The discussion is intended

to be illustrative rather than exhaustive, and accordingly devotes little attention to the activities of private

firms, in which much of the innovation took place, in order to highlight the role of government policy. 

A. Commercial Aircraft 

The success of the U.S. aircraft industry, particularly in the early years,

was due in large part to sustained federal support for technology development

and deployment. Non-technology policies also played an important role. Not all policies have been

successful, however, as illustrated by the U.S. supersonic transport (SST) program.

The Role of Federal R&D and Regulation 

From the earliest days of aviation, the aircraft industry benefited from

government research with direct relevance to commercial products, while

federal regulation of air transportation also had a significant if unintended

influence on the adoption of new technologies. Originally created to prepare for U.S.

entry into World War I, the National Advisory Committee for Aeronautics (NACA) extended its research

beyond military aviation during the 1920s and 1930s, studying problems of aerodynamics and propulsion

common to both military and commercial sectors. NACA (later absorbed by NASA) conducted applied

R&D, such as wind tunnel tests of airfoil cross-sections, in its own laboratories. Although NACA made

design-related information available to all aircraft firms, smaller manufacturers claimed the government’s
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research unfairly subsidized their larger rivals, which were better able to absorb and apply the results.

Thus, NACA found itself under frequent political attack.41

During and after World War II, support for aviation technologies shifted decisively to the armed

forces. Section III highlighted the resulting advances in jet engines and gas turbines. Technology

spillovers from military to civilian applications also occurred in airframe technology. Boeing, for example,

used knowledge gained in building bombers and tankers for the U.S. Air Force in its commercial designs

and tooling for the 707. Other innovations came from non-military government programs. For instance,

“fly-by-wire” technology, in which computers take over some tasks from the pilot, originated in the

civilian space program, with many subsequent contributions by the military. 

From 1938 until 1978, the Civil Aeronautics Board and (after 1958) the Federal Aviation Agency

(FAA) regulated air transportation, effectively controlling pricing and entry. By barring price competition

on most routes, federal policy encouraged airlines to compete on quality of service. Carriers hoped to

attract more passengers by being first with the newest planes. They backed up their orders with advance

payments to aircraft manufacturers, providing cash to finance R&D and early production. NACA and later

NASA also aided the diffusion of technology by sponsoring a liberal system of patent cross-licensing

within the U.S. aircraft industry. That system fostered a widely shared technology base before it was

finally disbanded because of objections from the Department of Justice (DOJ).42

Federal regulation encouraged innovation and adoption, but imposed high fares on consumers for

a limited selection of routes. Deregulation of domestic air travel in 1978 meant that price competition

replaced service-quality competition. With reduced incentives to order new planes unless they promised

significant reductions in seat-mile operating costs, airlines grew reluctant to commit funds for advance

orders. Cost-based competition since deregulation has, however, encouraged the development of fuel-

conserving technologies.

Today, the electric power industry is experiencing deregulation and increased price competition,

reducing revenues available for R&D and investment in new technology—this in a sector that accounts for

over 40 percent of U.S. GHG emissions and historically has spent little on R&D.43 The U.S. experience in

commercial aviation suggests that innovations to reduce GHG emissions will require either increased

government support for technology development, a set of regulations to induce innovation, or both. 
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Policy Myopia: The Supersonic Transport

During the 1960s, the FAA oversaw an abortive program aimed at main-

taining U.S. leadership in civil aviation through the design of a supersonic

transport. The planned rival to the Anglo-French Concorde foundered when technological and market

uncertainties persuaded Congress to cut off funding after nearly $1 billion had been spent. 

The SST program departed sharply from past U.S. policies in aerospace R&D. It was intended

to produce two prototype aircraft rather than the generic technical knowledge that NACA historically had

produced. The program was administered by the FAA, which was empowered to extend government financ-

ing or loan guarantees for the start-up costs of commercial production. With design requirements set by

the government, rather than emerging from discussions between aircraft manufacturers and airlines, the

FAA attempted to apply the military acquisition model to a commercial venture. DoD historically has

employed this approach because it is the final customer. In the case of the SST, however, the government

did not intend to purchase or operate the technology it was subsidizing. 

The SST illustrates the risks of federal technology programs that promote a particular commercial

technology or otherwise constrain choice among alternatives. Market uncertainties, after all, frequently

defeat private-sector innovators. There is no reason to expect public-sector decision-makers to do better—

and many reasons to expect them to do worse. A far less risky and more defensible use of public funds

would have supported a broad portfolio of pre-commercial R&D, beginning with mitigation of sonic booms

and the environmental damage associated with stratospheric flight. 

B. The Electronics Industries 

Digital electronics technologies emerged in the United States after World

War II, supported by an R&D infrastructure created largely through federal

spending. National security motivated most of the government’s investments. The decentralized 

nature of U.S. policies allowed innovators to search for support in many different agencies and programs,

even within DoD, helping domestic firms stay ahead of their rivals in other countries and leading to a

competitive and rigorous “selection environment” that ruthlessly weeded out less effective firms and

technical solutions. Three related technologies—semiconductors, computers, and the Internet—illustrate
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the ways in which U.S. technology and non-technology policies shaped innovations in the modern U.S.

electronics industry.

Innovation in Semiconductors 

The U.S. government spurred diffusion of know-how in microelectronics

through policies including antitrust and defense procurement. Commercial exploita-

tion of the transistor arguably benefited from the federal government’s antitrust suit against AT&T that

was filed in 1949. In response, AT&T released information on the technical characteristics of its new

invention, licensed the relevant patents at nominal rates to all comers, and refrained from producing

transistors for outside sale. After Texas Instruments introduced the first commercially successful transistor

based on the original AT&T invention (see Section III), DoD and its contractors began to design the new

devices into radar, sonar, missile guidance, and communications systems, stimulating further learning and

cost reductions. 

DoD procurement policies also had considerable influence on industry structure. Contracts

stipulating that chips be available from at least two suppliers led to the sharing of design and process

know-how, which encouraged new entries and accelerated interfirm technology flows. Together, the

policies of DoD and DOJ expanded the number and diversity of alternatives explored during a period of

significant technological uncertainty. They also fostered the intense competition and high labor mobility

among engineers, scientists, and managers for which Silicon Valley would later be celebrated. 

Innovation in Electronic Computers 

Although the military funded early digital computers to meet specialized

needs in the defense sector, a general-purpose technology with broad applica-

tions soon emerged. The first electronic digital computers were designed and constructed on

university campuses by faculty and graduate students working under government contracts. Pentagon

managers understood that a substantial research and industrial infrastructure would be needed to exploit

the new technology. From the earliest days, DoD took steps to ensure that technical information on

computers reached the widest possible audience. This policy reinforced the openness of the academic

environment that nurtured early developments in computing, and contributed to a relatively weak 

IP regime.44
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As in the semiconductor industry, antitrust policy contributed to technological diversity and

innovation in the computer industry. In a 1956 settlement of a federal antitrust lawsuit, IBM agreed to

unrestricted licensing of its computer-related patents. In the 1960s, a new industry made up of independ-

ent software vendors emerged after IBM, once more under threat of antitrust proceedings, unbundled its

software products, pricing and marketing them separately.45 This gave independent software suppliers new

opportunities to sell products and services to businesses that earlier depended almost exclusively on IBM. 

Creation of the Internet 

As a collection of independent but interconnected networks built and

managed by a variety of organizations, the Internet owes its success to

institutional as well as technological innovations. The Internet has stimulated a

communications revolution with implications that continue to unfold.46 Both the Internet’s technologies

and many of the formal and informal governance mechanisms that evolved to coordinate its standards 

and infrastructure sprang from DoD-sponsored networking research and trials. 

By the late 1960s, theoretical work and early experiments in computer-networking technology

sponsored by DoD had advanced to the point that DARPA funded a prototype network, the ARPANET, fore-

runner of the Internet. Computers attached to the ARPANET “backbone” communicated on the basis of a

shared set of protocols, another outcome of DARPA research. Later policy decisions by the National

Science Foundation (NSF) and other federal agencies that shared responsibility for the backbone encour-

aged standardization of Internet infrastructure. These agencies also promoted expansion of the Internet

beyond the science and engineering communities. In 1990, DoD relinquished control over the Internet

infrastructure to NSF, and five years later NSF transferred responsibility for the core network to the

private sector. 

Software protocols and architectural elements critical to the Internet had been placed in the

public domain from the beginning. Open standards encouraged expansion by making available the details

of core innovations and lowering entry barriers for firms that supplied hardware, software, and networking

services. Open standards also encouraged other countries to link the networks they were building with the

U.S. infrastructure. 
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State and federal regulation of telecommunications aided the domestic diffusion of the Internet

by maintaining low, time-insensitive rates. The 1982 settlement of the federal government’s antitrust suit

against AT&T restructured the U.S. telecommunications industry and encouraged entry by new service

providers, spawning further innovation. In the 1990s, the development of the browser caused the Internet

to burst out of the world of technology and science to become a global social and economic phenomenon,

the World-Wide Web. 

C. Nuclear Power

Federal R&D policies that limited diversity, and the misguided

assignment of the roles of both promoter and regulator to a single agency,

led to the premature convergence on a single technology that contributed to

the subsequent stagnation of the civilian nuclear power industry. The contrast

between nuclear power and electronics is especially instructive, as both industries received their early

impetus from defense-related applications: the 100-plus nuclear power plants that today supply 20

percent of U.S. electricity descend from light-water reactors first developed for Navy submarines after

World War II. 

From the early stages of the Cold War, the Atomic Energy Commission (AEC), created primarily

to oversee the development of nuclear weapons, also promoted civilian nuclear power. By exploiting the

“peaceful atom,” Washington hoped to demonstrate U.S. technological prowess and perhaps regain a 

bit of moral high ground after the devastation of Hiroshima and Nagasaki. In the early years, the AEC

supported a diversified R&D portfolio intended to explore a range of power reactor configurations—work

that might have opened attractive alternatives to prevailing light-water designs. But the focus on weapons

during the early 1950s left the AEC’s non-defense R&D disorganized and starved for funds. Government

failed to address the many practical issues and uncertainties of commercial reactor design that would

later emerge as paramount for electric power generation. 

Enthusiasm for commercial nuclear power surged following completion of a civilian demonstra-

tion plant at Shippingport, Pennsylvania in 1957. With the federal government offering large direct and
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indirect subsidies, utilities rushed to embrace the new technology.47 There were no ready alternatives to

the light-water reactors that had already been proven in naval service. Yet civilian power plants were

much larger than any constructed for the Navy, and utilities ordered bigger and bigger plants before

accumulating adequate construction and operating experience.48 Schedules slipped, costs rose, and the

expected scale economies proved elusive. Disillusionment set in well before the 1979 accident at Three

Mile Island. All post-1974 orders for nuclear power plants were subsequently canceled, and no new

orders have been placed since 1978. 

Only the federal government, with its monopoly on nuclear information, could have supported the

R&D infrastructure for civilian nuclear power. The knowledge base needed to be sufficiently broad and

deep to enable utilities, which lacked strong in-house R&D capabilities, to reach reasoned judgments on

technical and economic prospects. The AEC failed to develop the needed infrastructure, and then com-

pounded the error by subsidizing technology adoption when only one alternative, the light-water reactor,

was available. 

Conflicting mandates also shackled the AEC. When Congress created the Commission in haste in

1946 to affirm civilian control over the awesome power of nuclear weapons, it assigned the agency a set of

incompatible tasks: weapons development, civilian applications, and safety regulation. Although regulation

was split off in 1975 to the Nuclear Regulatory Commission, the AEC’s other descendent, DOE, remains to

this day hobbled by organizational and managerial problems traceable to the original AEC structure.49

Figure 1 shows that if nuclear power were to replace all the electrical power now supplied from

fossil fuels, U.S. GHG emissions would drop by over 40 percent. Yet any revival of nuclear power would

have to overcome deep-seated resistance among large segments of the public, including concerns over

proliferation of weapons-grade material and radioactive waste disposal.50 Nuclear power’s track record

might look better, more work might have been done earlier on passively safe reactors, and the American

public might today be more open to considering nuclear electricity as a means of offsetting global

warming, had the federal government supported a broad portfolio of technological alternatives in the 

early years of its R&D programs. 
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D. Summary 

The case studies above suggest that the success of federal innovation

policies in the postwar period owes much to support for multiple alternatives

and potentially diverging evolutionary paths. This is especially evident in electronics,

where R&D funding flowed through multiple and often-competing bureaucracies, enabling entrepreneurs

in academia and industry to pursue a broad range of competing technologies. Where a diversified portfolio

was lacking, as in civilian nuclear power and the SST, federal policy led to costly failures. 

Policies other than R&D had powerful impacts on innovation in commercial aircraft and electronics.

Both the regulation of commercial air transport and the deregulation of telecommunications encouraged

private-sector investments in new technology. Military procurement fostered innovation in electronics and

aerospace. Microelectronics firms might not have banded together in SEMATECH without a permissive

antitrust policy, while strict antitrust enforcement under quite different circumstances encouraged

technology-based startup firms to enter other sectors of electronics. 

Although these policies were not coordinated, and sometimes worked at cross-purposes, they 

supported both the supply of formal knowledge and informal know-how. Government stimulated the

demand for new technologies and contributed to the supply of people with the skills to develop these

technologies. Defense agencies and their contractors were major customers for aircraft and digital

electronics. DoD and NASA procurement contracts enabled small firms to expand production of semi-

conductors and reduce costs through production-related learning-by-doing. Learning-by-using also was

critically important for progressive advances in semiconductors (e.g., in improving reliability through

analysis of in-service failures), gas turbines (e.g., through design modifications that reduced labor

requirements for maintenance and repair), and computers (e.g., through diffusion of effective software

design and programming practices). Incremental innovations contributed to expanding applications,

further innovation, and growth in user communities. These self-reinforcing dynamics opened new

segments of market demand, creating further opportunities for entry by startups. The lessons apply

equally to many of the technological alternatives for reducing GHG emissions. 
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VII. Conclusions

Greenhouse gas emission reductions will require a broad portfolio of

policies to foster technology development and adoption by actors ranging

from households to multinational corporations. The policy portfolio should combine

technology policies as discussed in this report with other policies to induce innovation and deployment. 

A climate change policy package must account for uncertainties in the pace and cost of innova-

tion. Technological evolution is always accompanied by unknowns concerning the levels of performance

that can ultimately be achieved, the technological attributes that will prove most attractive to adopters,

and the costs of these technologies. Technical design and development are fluid, open-ended activities

with multiple choices and tradeoffs and often-ambiguous selection or evaluative criteria. Uncertainties,

part and parcel of innovation, can be resolved only through learning processes. These processes are often

slow and piecemeal, studded with lessons from both successes and failures. Technology-oriented policies

and non-technology policies alike must function in such settings. 

Further lessons for climate change policy include the following: 

• Because the benefits of technological innovation come only with widespread adoption, and

because adoption and learning are mutually reinforcing processes, the policy portfolio should

support diffusion of knowledge and deployment of new technologies as well as research and

discovery. In short, R&D alone is not enough. 

• Because private investments respond primarily to near-term market incentives, public invest-

ments are necessary to build a technological infrastructure able to support innovation over the

long term. A key ingredient of such infrastructures is a vibrant community of technologists and

entrepreneurs working in settings in which knowledge and information flow freely. Government

financial support for education and training, as well as for research, enhances such infrastruc-

tures. Excessively strong intellectual property rights may weaken such infrastructures. 
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• Competition among firms contributes to effective selection of innovations, and competition

among academic research groups contributes to discovery. Similarly, competition among

government agencies and government laboratories contributes to policy success. Competition

exposes ineffectual bureaucracies, out-of-touch government laboratories, poor policy choices,

and project-level mistakes. It encourages diversity by opening alternatives for exploration 

by technology creators and technology users alike. For these reasons, policy-makers should 

channel new funds for R&D through multiple agencies and allocate funds to industry and other

researchers on a competitive basis. 

• Because there can be no learning without some failures, policy-makers cannot expect every

government investment to pay off. They must be prepared to tolerate mistakes, and to learn from

them, just as entrepreneurs in the private sector do. Needless to say, tolerance for error is no

excuse for sloppy management or ill-conceived policies and programs. 

To encourage innovation in response to climate change, the federal government should support

the development of an environment that nourishes creativity and learning in science, technology, and

commercial applications. Well-designed technology policies support the free flow of information, which

promotes the evaluation of new ideas and the acceptance and diffusion of the best new technologies.

Much innovation will be needed if GHG emissions are to be reduced to the levels needed to stabilize

atmospheric concentrations of heat-trapping gases. Government policies will set the underlying conditions

for (and constraints on) innovation. The effectiveness of climate change policies will be judged by the

innovation that follows. Well-crafted policies can help nourish an energy technology revolution over the

next half century as astonishing as the information technology revolution of the last half century.
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