
Experiments
29

variation between tasks starts will be presented in Section 3.3.5.) The dispatcher takes a full R4

frame or longer to execute in one-half of the time, clearly an implementation problem.

Demonstrating any possible affects of system workload, and to show the frame start

interrupt occurs at its set time, the experiment was repeated under the following conditions.

1. Decrease the work load to just the single application task being executed. The
results show the same pattern and spread as the other tests.

2. Extend the frame size from 40 milliseconds to 250 milliseconds. This allowed all
tasks to complete in a single R4 frame without slippage. Again the dispatcher
behaved in the similarly. It was also noted that the frame starts occurred at 250
msec, with no variat ion 1 5 (i.e. the interrupt mechanism works correctly).

3 .3 .2 I P C 'Kick' T i m e s

Timer Interrupt

First Triad

Second Triad

Third Triad

R4 Dispatcher

'C Kick Time

R4-1 Task

Measured Time

f 1 \ Dispatcher R4-2 Task

:C Kick Time Measured Time

T X f
Dispatcher R4-3 Task

Time

F i g u r e 3-8: IPC 'Kicks' Timing Diagram.

One function of the R4 dispatcher is to 'Kick', through an IPC (Inter-Process

Communication) interrupt, the start of the R4 frame in another triad. A timing diagram of this

process is given in Figure 3-8. Again the workload generator does not allow the measurements of

the time from the 'Kick' to the start of the application task; but the timing and behavior can be

There was variation between frame starts at the 40 millisecond size. This variation is caused by
frame slippage; the frame is extended 10 milliseconds past the last R4 task completion time. If the
dispatcher takes 45 milliseconds the next frame cannot be started at the 40 millisecond mark

Experiments

5 0 -

40 -

Percent Frequency 30
of Occurence

20

10

0

5 0 -

4 0 -

Percent Frequency 30
of Occurence

20

10

5 0 -

4 0 -

Percent Frequency 30
of Occurence

20

10 -J

-I 1 1—

First Triad to Second Triad IPC Kick
with Two Triads Running
3569 points total

-i 1 i

First Triad to Second Triad IPC Kick
with Three Triads Running
1788 points total

Second Triad to Third Triad IPC Kick
with Three Triads Running
2366 points total

-X- A r ~ i — I — i — i — i — i — i —
0 1 2 3 4 5 6 7 8 23 24 25 26 27 28 29

Execution Time (milliseconds)
(Note broken scale)

F i g u r e 3-9: Time and Variation Between the Starts of the Application Tasks on
Different Processor Triads. Emulating IPC Kick Times.

Experiments 31

approximated by measuring the difference between the starts of the application tasks. The

desired time to measure would be from the IPC kick of the first triad to the time when the R4

dispatcher begins execution, or from the frame start interrupt to the time when the second and

third triad start their R4 dispatcher. An approximation to this behavior is the time between

starts of the application task on different triads, labeled as "Measured Time" in the Figure 3-8

Histograms for the IPC 'Kicks' are given in Figure 3-9 with two triads executing, the times

are grouped around 1.5, 2.5 and 27 milliseconds. With three triads executing the first to second

triad "kick" is centered at 4.0 milliseconds with no outlayers beyond 5 milliseconds. However in

the second to third triad "kick" there was a large group, about 10% at 24.5 milliseconds. This

behavior is undesirable in real time systems. The long 'Kick' times allow the possibility of one

triad running its first task, finishing, and then running a second task while the second triad is

still idle. This behavior was mentioned in [Clune 84] and its cause should be investigated. Upon

inspection of the dispatcher code, a few possibilities for this unwanted behavior arise. These

possibilities include: a problem with the IPC 'Kick' mechanism, the possiblily of the dispatcher

'hanging' because of a lock or failed bus access, or an extended execution time during a system

reconfiguration. Note that the outlayers involve between 10 and 18 percent of the data or about

once per major frame.

3 .3 .3 In tra -Task G r o u p Swi tch ing

At the end of the application task, control is passed back to the dispatcher. The dispatcher

activates the next task in the queue (same rate group) or if all tasks have been dispatched, the

dispatcher returns control to the previously interrupted or pending task (R3 or R l dispatcher or

application tasks). This experiment measures the intra-task group switching times including R4

to R4, R3 to R3 and R l to R l shown in Figure 2-4.

This experiment was run using the synthetic workload as a tool, and the measurements were

taken for one, two, and three triads for all rate groups. The data is summarized in Figure 3-10.

As seen from the data the behavior is regular, with skewing as the number of executing

triads increase. This skewing is probably caused by bus access contention, measured in Section

3.2. The large spread of the data in the Rl task switching could be explained by the difference

in the experimental acquisition of the data. To measure the switching times, the tasks were

ordered by controlling the task lengths. To have one triad execute two tasks from the same rate

Experiments 32

One Tr iad Execut ing Two Tr iads Execu t ing Three Tr iads Execut ing

R4 to R4 Task
Switching. Pe rcen t

of Total
Dis t r ibu t ion

60 -
50 -
4 0 -
3 0 -
2 0 -
1 0 -

0 -

R 3 to R 3 Task
Switching. Pe rcen t

of Tota l
D is t r ibut ion

1306 data points

"1 1 1 1 r

3573 data points

H I I r

1211 data points

41
60

50

40

30

20

10

0

1493 data points 1592 data points

4 "1 1 1 T

R l to R l Task
Switching. P e r c e n t

of Tota l
Dis t r ibu t ion

120 data points

T

86 data points

HT"I

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

F i g u r e 3-10: Intra-Task Group Switching Times in Milliseconds,

group require the other triad(s) executing another task (usually an R 4 task since the R 4 frame

can be extended by lengthing an R4 task). This method works well for controlling R4 and R3

task orders, but the R l tasks were interrupted by the start of the next R4 frame. Hence the R4

and R 3 switching times were measured under easily repeatable conditions while R l switching

times the conditions were repeatable though to a lesser extent. In general the intratask group

switching times are predictable within a certain range. The time for task switching is large in

comparison with the desired frame size (40 milliseconds). If a triad needed to execute three R 4

tasks in a 40 millisecond frame, 8 milliseconds or 2 0 % would be spent switching between the

tasks. This will be summarized in Section 4.

1 6 I n the R3 and R l dispatcher there are about 20 bus transactions. Each transaction takes about .2
milliseconds. A delay caused by contention may cause the bus transaction to take two or more times the
uncontented t ime.

Experiments 33

3 .3 .4 In ter -Task G r o u p Swi tch ing

As previously discussed, when the dispatcher finds all the tasks in its rate group completed

or dispatched, it executes a 'resume' to restart the previously interrupted or pending task. Three

cases of this process were studied, see Figure 2-4

1. Time and behavior of an R4 task finish time to the start of the R3 task in the same
triad. (R4 to R3.)

2. Time and behavior of an R4 task finish time to the start of the R3 task in the R4
responsible triad. (R4 to R3.)

3. Time and behavior of the R3 task finish time to the start of the Rl task in the same
triad. (R3 to Rl .)

The behavior of these three processes are summarized in Figure 3-11. As is shown in the

figure the behavior of these interactions is predictable and well behaved. The variation in the

data is probably the result of bus contention and queue semaphores or the dispatcher executing

different sections of code or both. The large spread in the R3 to Rl switching is caused by the

same factors as for the spread in the intratask group switching. (See Section 3.3.3.) In summary,

the intertask group switching times are predictable over a range of 4.5 to 10.5 milliseconds. The

execution times of the dispatcher for the intertask group switching are large for the desired

frame iteration rate. The R4 frame is 40 milliseconds with task switching taking 7 milliseconds,

a significant percent of the useable time.

3 .3 .5 F r a m e Size and F r a m e Sl ippage

The last dispatcher experiment involves the actual task iteration rates for the two highest

task rate groups, R4 and R3. This experiment measured the difference between consecutive

starts of the first task in the rate groups. The results yield the nominal frame size and variation

of the frame sizes. The data for these experiments is presented in Figures 3-12 and 3-13.

Figure 3-12 shows the spread of data for the R4 frame size. The frame sizes show a similar

grouping for the one and two triad case, and for the three triad case a similar grouping but at

different locations. The pattern of the execution times for the R4 frame is 36, 42, 114, 92, ...

millisecond for one and two triads and 40, 65, 105, 40, ... milliseconds for three triads. The first

number is the start of the major frame. The R4 pattern determines the pattern for the R3

17
An R4 responsible triad is the last triad to complete its R4 task. This triad is responsible for the

start of the next R4 frame by arming its timer interrupt.

Experiments 34

One Triad Executing Two Triads Executing Three Triads Executing

R4 to R3 Task

7 0 -
6 0 -
50 -Switching. R4

Responsible Triad ^ ~~
Percent of Total 30 -

Distribution 20 —
1 0 -

0

R4 to R3 Task

70-4
60 -I
50 Switching. Non-R4

Responsible Triad 4 0 H
Percent of Total 30 - |

Distribution 20
10
0

R3 to R l Task
Switching.

Percent of Total
Distribution

580 data points

H 1 r

1250 data points

n I r

296 data points

Jl 1 1 r

Not Applicable

1467 data points

K - 4

593 data points

1—n 1 1 T

186 data points

f hTjjn r-| r-n-|

98 data points

9 10 6 7 8 9 10 8 9 10

F i g u r e 3 -11 : Inter-Task Group Switching Times in Milliseconds,

frame. R3 frames are started every second R4 frame, hence the sum of two consecutive R4 frame

sizes determine the size of the R3 frame. For the one and two triad case the R4 frame size

pattern is 36, 42, 114, 92, ... The first two frame sizes determine the R3 frame size about 78

milliseconds and the second pair determine the next R3 frame size about 205 milliseconds.

Similarly for the three triad case the R4 pattern is 40, 65, 105, 40, ... Thus the R3 pattern would

be 105, 145,... This pattern differs from the observed pattern, a constant 125 milliseconds, but

the difference could be explained by additional overheads occurring in dispatcher. The long

frames are in correlation with the long dispatcher times (Section 3.3.1, and Figure 3-7). The

dispatcher will not schedule the start of the next R4 frame until the present R4 frame is

complete and ten milliseconds is allowed for lower rate group tasks. The two triad case in

Experiments
35

15

12.5 -

10 -
R 4 F r a m e Size.

Pe rcen t of Total 7.5 -]
Dis t r ibu t ion

5 - 1

2.5 -J

One Tr iad Execut ing

568 data points

R 4 F r a m e Size.
P e r c e n t of Total

Dis t r ibu t ion

4 ^
R 4 F r a m e Size

Pe rcen t of Total 3 —|
Dis t r ibu t ion

F i g u r e 3-12:

T
60 70 80 90 100

Actua l F r a m e Size, mil l iseconds
A c t u a l F r a m e Size for R4 T a s k s .

110 120

Experiments

R3 Frame Size.
Percent of Total

Distribution

15

12.5 -

10 -

7.5

5 -

2 . 5 -

0

10

R3 Frame Size.
Percent of Total

Distribution

R3 Frame Size.
Percent of Total

Distribution

One Triad Executing

213 data points

JU
80 n — I — I — I — I — I — I — I I I I r r

90 100 110 120 130 140 150 160 170 180 190 200 210

8 -
7 -
6 -
5 -
4 -
3 -

Two Triads Executing

297 data points

X T T
H i l l , II I

10 80 90 100 110 120 130 140 150 160 170 180 190 200 210

9
8
7 -
6 -
5 -
4
3 -
2 -
1 -
0

Three Triads Executing

543 data points

1 I I I 1 r T
80 90 100 110 120 130 140 150 160 170 180 190 200 210

Actual Frame Size, milliseconds

F i g u r e 3-13: Actual Frame Size for R3 Tasks.

Experiments
37

18

18
T h e ^ a c t correlation between the data is not because of different experimental setup, the dispatcher

behavior, and the distribution of tasks between triads.

Figures 3-7 and 3-12 represent this behavior best: as shown in Figure 3-7 about one-quarter of

the execution times lie near 40 milliseconds, and another quarter around 65 milliseconds.

Similarly the R4 frame sizes are grouped at 90 and 115 milliseconds or 50 milliseconds greater

than the corresponding dispatcher times. From the frame size measurements, the dispatcher

time and kick time behavior one can see a problem with the FTMP scheduler meeting its real

time constraints.

3 .3 .6 D i spatcher -Scheduler Sof tware O v e r h e a d S u m m a r y

This section summarizes the Dispatcher-Scheduler software overhead. Table 3-2 gives a

summary of the dispatcher times. The first entry in each block is the average execution time, in

milliseconds, followed by the standard deviation of the data. The second entry is the range of

the data also in milliseconds, and the third entry is the data sample size.

As seen in the table, the dispatcher software overhead is predictable within a range of about

6 millisecond with a two exceptions. The two exceptions are:
• Frame start interrupt to the application task start, and

• IPC kicks to start other triads working on R4 tasks.

These two problems and the overall problem of long execution times of the dispatcher cause the

scheduling problem of late frame starts discussed in Section 3.3.5. An evaluation of possible

improvements to the dispatcher will be made in Section 4 specificly dealing with decreased

execution times of the system bus primitives, and their possible effect on the dispatcher. The

dispatcher should be further characterized.

3.4 Software Overhead for Fau l t Detec t ion and Isolation

The final experiment presented in this report measures the software overhead for fault

detection and isolation. The FTMP software tasks for these include READALL. READALL

incrementally reads system memory to assure all copies of the data in the memory elements is

the same. The second task is the System Configuration Controller, SCC described in Section

2.2.3. These tasks are specifically dedicated to fault detection and isolation, but they do not

include all the software overhead for fault tolerance. Some fault detection commands are done

Experiments 38

Dispatcher
Goal

Number of Triad(s) Running Dispatcher
Goal 1 2 3

Frame Interupt to

Task Start

40.3 ±. 25.62
13.75 -68 .5

(6400)

33.7 ± 20.8
13.0 - 67.75

(6400)

33.4 A 21.1
13.5 - 6 7 . 0

(6400)
IPC 'Kick' Time

Triad 1 to 2 -
6.79 ±. 9.70
1.25 -27.25

(3569)

2.80 ±. 0.49
1.25 -4 .25

(1788)
IPC 'Kick' Time

Triad 2 to 3 - -
5.10 ±. 7.55
1.25 - 25.0

(2366)
IPC 'Kick' Time

Triad 1 to 3 - -
7.83 A 7.45
3.75 - 27.75

(2447)
Intra-Task Group

Switching R4

3.10 dL 0.12
3 . 0 - 3 . 2 5

(1305)

3.34 A 0.38
3.0 - 4 . 5

(3573)

3.68 A 0.43
3 . 0 - 5 . 5

(1211)
Intra-Task Group

Switching R3

2.88 ±. 0.12
2.75 - 3 . 0

(356)

2.89 ±. 0.13
2.75 - 3 . 2 5

(1493)

3.20 A .57
2.75 - 4.25

(1592)
Intra-Task Group

Switching Rl

3.13 ± .77
2 . 5 - 4 . 5

(106)

4.26 ±. 1.67
2.5 -8 .25

(120)

3.74 dL 1.26
2.5 - 6 . 0

(86)
Inter-Task Group
Switching R4 - R3
(R4-responsible)

5.65 A 0.32
5.5 -7 .25

(580)

5.93 A 0.47
5*.0 - 7.5

(1250)

5.69 A 0.45
5 . 5 - 7 . 5

(296)
Inter-Task Group
Switching R4 - R3
(non-responsible)

-
5.78 A 0.89

5 .0 -7 .25
(1467)

5.28 A 0.64
5 . 0 - 7 . 0

(593)
Inter-Task Group

Switching R3 - Rl

5.59 A 1.18
4 . 7 5 - 8 . 5

(145)

6.54 ±- 1.13
5.0 - 10.5

(186)

6.81 A 1.24
4 . 7 5 - 9 . 5

(98)

T a b l e 3-2: Dispatcher Software Overhead Summary,

in the R4 dispatcher, these include, reading of the error latches into system memory, and the

reconfiguration and retire commands. This experiment will not take these overhead into

account.

The experiment was run using the synthetic workload. The workload allows the starting

and ending times of these tasks to be measured, hence determining the execution time. A

problem occurs in the measurement of the genuine task time due to interruption of the tasks for

higher rate group tasks. By extending the basic R4 frame size from 40 to 250 milliseconds, all

tasks including SCO and READALL could finish without interruption. The results for this

experiment are presented in Table 3-3.

Experiments
39

FTMP Fau
(Al

A Tolerant Software Overhead
I times in millisernnHsï

Task Execution Time Range

sec 43.4 dt 23.3 3.5 - 153.

R E A D ALL 3.1 i 0.9 1.25 - 6 . 2 5

T a b l e 3-3: Software Overhead for Fault Tolerance.

The variation in the READALL times are due to bus contention and different sections of

code being executed. Whereas the SCC times show the spread of data as SCC executes different

states. These states include fault isolation, shadow swapping, transient fault handling routines

and self tests. These software overheads are small in comparison to the real time scheduling

overheads for FTMP. Further comparisons will be presented in Section 4.

Performance Estimates

Performance Estimates
41

4 . Performance Est imates

This section estimates the useable throughput of the FTMP system from the dispatcher-

scheduler and fault tolerant overheads measured in the previous sections. Table 4-1 gives a break

down of the available throughput and overheads observed. In Table 4-1 a major frame is defined

as eight R4 frames or one R l frame.

F T M P Performance Estimates
= = = = — (Times are millisecond n*r msunr f r * m ^

A s Designed A s] Running A s CV»TT*»rr+j»r!

F T M P Overhead Time
(msec.)

Percent of
Total Time

Time
(msec.)

Percent of
Total Time

Time
(msec.)

Percent of
TotiA.1 TT imp

Useable Throughput
Three Triads. 960. 100. 1983 100 960. 100

R4 Dispatcher Time.
8 per Frame Triad. 384.0 40.0 801.6 40.4 272.6 28.4

Task Switching Times
3-R4, 3-R3 and 6-Rl 222.9 23.2 222.9 11.2 222.9 23.2
Tasks are Assumed.

8 R4 responsible.
16 Non responsible.
12 R3 to R l .
3 R l to R l .

(45.5)
(84.5)
(81.7)
(H .2)

(4.7)
(8.8)
(8.5)
(1.2)

(45.5)
(84.5)
(81.7)
(11.2Ì

(2.3)
(4.3)
(4.1)
(0.6Ì

(45.5)
(84.5)
(81.7)
(11.2Ì

(4.7)
(8.8)
(8.5)
(1 2)

Fault Tolerant Software
SCO time. 43.3
R E A D ALL time. 3.2

46.5 4.8 46.5 2.3
—v.

46.5

\ L ' * i

4.8

Total Useable Time
per Major Frame 306.6 31.9 912.0 45.9 418.0 43.5 J

T a b l e 4 -1 : Performance Estimates for FTMP.

In Table 4-1 the second and third columns give the performance estimates assuming a 40

millisecond R4 frame (320 millisecond major frame with three triads executing), and the software

overhead times measured in this report. The R4 dispatcher execution time used was 16

milliseconds; the upper limit of acceptable times presented in Figure 3-7. This shows 63% of the

available throughput is spent in the dispatcher. Of interest is the software overhead of the fault

tolerance tasks, 4.8%. This is a small software price for fault tolerance. (Of course the large cost

for the fault tolerance lies in the hardware.) The fourth and fifth columns, of the table use the

actual frame sizes as measured, instead of the 40 millisecond R4 frame size assumption and the

true dispatcher times measured in this report. The overhead percents are lowered but the frames

Performance Estimates 42

are extended, showing the present behavior of the system, although the behavior is incorrect for

a real time system.

The FTMP Executive Summary, [Draper 82], noted the large bottleneck caused by the long

bus access times (Section 3.2). The authors state that one third of the R4 dispatcher time is

spent doing bus service routines and by microcoding some of the I/O functions the bus service

times could be lower to one-eighth of their current times. Using this estimate, one third of the

dispatcher time reduced 88%, will show the R4 dispatcher time lowered to 71% of its current

va lue . 1 9 The sixth and seventh column of Table 4-1 present these results. The performance

increase gained by microcoding some I/O functions was applied only to the R4 dispatcher, if this

increase was applied to all functions, a larger performance increase could be expected.

33% of the dispatcher is reduced 88% for a 29% reduction.

Future Work
43

5. Future Work

Although much work has been accomplished in refining the experimental methodology, by

applying it to FTMP, the methodology still needs to be further verified by additional

experiments on FTMP and by application to other systems, such as the Software Implemented

Fault Tolerant (SIFT) computer. SIFT [Wensley 78] was designed with similar design

specifications as FTMP and by applying the methodology to SIFT the robustness of the

methodology will be shown as well as a comparison the two systems.

In particular the following items are some areas in which further characterization of FTMP
may be needed.

• Further characterization of the dispatcher to determine the time consuming sections
and, if possible, correct this undesirable behavior. This may be done by
characterizing some of the executive primitives the dispatcher uses.

• Determine the overhead required for system reconfiguration. How much overhead is
required for the dynamic redundancy of FTMP ?

• Characterize the throughput vs. workload and task distribution. Will the system still
meet its deadlines under this increased load ?

• Further characterize the software overhead for both the faulty and fault free
situations. This includes the times to isolate faults, and reconfiguration overhead.

• Validate the system configuration controller. Does the controller handle faults
correctly? A log of failed units should be kept to determine faults within the units or
controller problems.

• Explore the fault coverage in the self test routines. How many faults can the self test
routines locate in the bus guardian unit, and system buses ?

• Explore the behavior of multiple faults. [Draper 83b] showed the fault tolerant
capabilities of the system by injecting pin level faults. How will the system behave if
two faults occur close together?

These experiments move the validation and performance measurements into the application level

of the performance evaluation matrix, along with exploring faulty behavior of the system.

Conclusions 44

Conclusions 45

6. Conclusions

This report outlined a validation methodology for ultrareliable multiprocessors and applied

the methodology to one system, FTMP. The methodology entails a building block approach,

starting with simple baseline experiments and building to more complex experiments. Previous

work has been done to measure the baseline performance, as well as characterization of most

hardware primitives [Clune 84, Feather 85]. This report presents a continuation of the baseline

experiments, and presents experiments at the executive, operating systems level. In particular

this report presented:

• High level language instruction execution times. The execution times measured were
consistent and predictable.

• System memory read and writes times and the variance of the times caused by bus
contention. The memory read/write times were a linear function of block size
(400 Kbytes/sec.) with an overhead of approximately 150/iseconds. Bus contention
showed a slight increase in average overhead.

• Dispatcher execution times and overhead. The dispatcher consumed approximately
60% of the system throughput in addition to failing to meet its real time constraints.

• Fault tolerant software overhead. Showed the software overhead involved in the
fault tolerant tasks consumed 5% of system throughput.

• Performance estimates of the system. Showed the available processor time and the
distribution of the time between the dispatcher, fault tolerant tasks, and application
tasks.

From these experiments and their results the following points can be inferred about the FTMP
system.

• In the present implementation of FTMP there is a large overhead consumed by the
real time dispatcher. About one-third of the dispatcher overhead is caused by the
large overhead involved in the system bus access which is an implementation problem
and not dependent upon the fault tolerant design of FTMP.

• A relatively small software overhead is involved with the system configuration
controller, fault detection and isolation, thus showing the advantage of hardware
voting over software voting to obtain system fault tolerance.

The goal of the validation methodology is to thoroughly test and characterize the

performance and behavior of an ultra-reliable computer system. The validation methodology

presented in Section 2.1.1 and applied throughout this report proved effective in the following

areas.
The methodology uncovered both system implementation dependencies with the
instruction executions times and behavioral oddities in the dispatcher-scheduler.

The methodology showed system validation can occur without using life testing
approaches.

Conclusions 46

• By applying a building block approach in a systematic manner the FTMP system was
broken down into manageable levels of experimentation thus concealing system
complexity from the experimenter.

• Finally most of the experiments were run at the system level, demonstrating system
validation can be independent of the implementation (LSI or VLSI.)

The enumerated items demonstrate the feasibility of the validation methodology by addressing

the problems encountered with the validation of ultrareliable systems. Tests upon other systems

such as SIFT will demonstrate the robustness of the methodology as well as provide comparisons

of the two systems.

Appendix
47

I. Instruction Execution Times

This appendix contains the tabulate result of the execution times of all the instructions

measured. The predicted execution times are from [CAPS Instruction Set 79].

Instruction Execution Times Summary, 16
(All t imes in miVro-secnnHs [R a n ^ e is QK<%

Bit Integer Operators
Y) Confidence In terval)

HLL
Instruction

Description Execution time
Der one Iood Instruction

Time
Predicted

Time
Precent

O iFferer»/»**
20.2 A .30 4.0 A .22 2.7 48.1
22.2 ±. .31 6.0 ±. .22 3.6 66.7
22.7 ±. .30 6.5 A .22 4.1 58.5
22.4 j£. .30 6.2 A .22 4.1 51.2
23.2 A .29 5.5 A .21 4.1 34.1
30.2 ±. .31 12.5 ±. .22 5.4 131.
30.7 ± .31 7.0 A .22 6.3 11.1
33.7 A .30 10.0 ±. .22 7.7 30.0
46.4 A .29 20.2 A .21 12.8 57.8
37.9 ±. .30 21.7 A .22 13.1 65.6
29.7 A .31 6.0 A .22 5.3 13.2
31.2 A .30 15.0 A .22 7.8 92.3
32.7 A .31 15.0 ±. .22 7.8 92.3
31.2 ± .30 15.0 ±. .22 7.8 92.3
33.7 A .29 16.0 A .21 _ _

32.4 A .30 16.2 ±. .22
39.4 A .30 23.2 ±. .22 14.2 63.3
38.7 A .30 21.0 A .22 11.9 76.4
37.4 dh. .30 21.2 A .22 12.1 75.2
41.2 db. .30 23.5 A .22 14.4 1 63.2

B = 1
B = 17
B = 257
J= 1
D = B
B = J

D = - B
D = B + C

I D = B * C
D = B / C
D = .N. B
D = B .A. C

I D = B .V. C
D = B .X. C
D = B .RS. C
D = B .RS. C

I A3 » B EQL C
A3 = B NEQ C
A3 - B LES C
A3 = BGEO C

Integer assign 4 bits
Integer assign 8 bits
Integer assign 16 bits
Integer assign
extended reference
Integer variable assign
Variable assign
extended reference
Integer negate
Integer addition
Integer multiply
Integer division
Bit wise negate
Bit wise and
Bit wise or
Bit wise exclusive or
Right shift (1 bit)
Right shift (2 bits)
Integer compare = =
Integer compare ! =
Integer compare <
Integer compare > =

T a b l e 1-1: Instruction Executions Time: Integer

Appendix

Instruction Execution Times Summary 16 bit Fixed Point Operators
(All times in micro-seconds, Range is 95% Confidence Interval) ,

HLL Description Execution time Instruction Predicted Precent
Instruction

Description
per one loop Time Time Difference

B = .1 Real assign 24.4 ±. .29 6.7 db .21 4.1 63.4
B - C Real variable assign 23.3 ± .29 5.5 ± . .21 4.1 34.1
A = - B Real negate 32.2 ±. .31 8.5 -b .22 6.3 34.9
A - B + C Real addition 33.7 db .29

10.0 ìl .21
7.7 30.0

D - B * C Real multiply 38.2 ± . .30 20.5 ±. .22 12.6 62.7
A = B / C Real division 42.2 ±. .29 24.5 ±. .21 13.3 84.2
A3 = B EQL C Real compare = = 40.9 ±. .29 23.2 db .21 14.2 63.3
A3 - B N E Q C Real compare ! = 38.7 ±. .30 21.0 ±. .22 11.9 76.4
A3 = B LES C Real compare < 38.9 ±. .30 21.2 ± .22 12.1 75.2
A3 « B G E O C Real compare >=* 41.2 db .29 23.5 db .21 14.4 63.2

Table 1-2: Instruction Executions Time: Real

Instruction Execution Times Summary Long, 32 bit Integers
(All times in micro-seconds. Range is 95<% Confidence Interval!

HLL Description Execution time Instruction Predicted Precent
Instruction per one loop Time Time Difference

B = 1 Long assign 29.7 db .28 12.0 dt .21 5.7 110.5
B = 17 Long assign (8 bits) 31.9 ± .29 14.2 db .21 6.6 115.2
B = ?57 Long assign (16 bits) 32.4 ± .30 14.7 ± . .21 7.1 107.0
B = 65537 Long assign (4 bits) 29.7 ± . .30 12.0 ±. .22 5.7 110.5
J = 1 Extended variable 30.4 d=. .30 12.7 i .22 7.1 78.9

reference assign
B = C Long variable assign 32.2 ± .29

14.5 ìl .21
7.8 85.9

B = J Extended variable 33.2 ±. .30 17.0 ± .22 9.3 82.8
reference

A - - B Long negate 42.2 db .30 18.5 ± .22 15.3 20.9
A - B + C Long addition 48.7 ±. .30 32.5 di .22 17.9 81.5
D - B * C Long multiply 64.9 ±. .29 48.7 ±. .22 31.7 53.6
A - B / C Long division 87.4 db .31 71.2 dt .22 45.4 56.8
A3 = B E Q L C Long compare = = 56.4 db. .29 38.7 ± .21 17.8 117.4
A3 = B N E Q C Long compare ! = 54.2 d=. .30 36.5 ±. .22 15.5 135.5
A3 = B LES C Long compare < 54.2 ±. .28 36.5 db .21 15.7 132.5
A3 - B G E O C Lonfc compare > = 56.4 db .30 38.7 ±. .22 18.0 115.0

Table 1-3: Instruction Executions Time: Long Integers

Appendix 49

Instruction Execution Times Summary Boolean Operators
(All times in micro-seconds r R a n ? e is Q5<% C o n f i d e n t In terval)

HLL
Instruction

Description Execution time
per one loop

Instruction
Time

Predicted
Time

Precent
O i f f eren*»e

21.7 ± . .31 4.0 d t .22 2.7
-L*r 111 \s XX V» C

48.1
23.2 d t .26 5.5 ± .20 4.1 34.1
34.6 d t .30 10.9 ± .22 7.9 38.0
39.2 dt .28 21.5 d t .22 13.1 64.1

36.9 d t .30 20.7 ± . .22 10.2 102.9

41.4 d t .30 23.7 ± .22 15.4 53.9

41.4 db. .31 25.2 d t .22 15.4 63.6

32.7 d t .30 15.0 d t .22 7.9 89.9

39.2 d t .30 23.0 ± .22 13.1 75.5

A = TRUE
A = B

N O T B
B O R C

A
A

A

A

A

A

A

B OR C

B OR C

B A N D C

B A N D C

B A N D C

Boolean assign
Boolean variable assign
Boolean negate
Boolean OR = F
2 tests required

Boolean OR = T
on 1st condition

Boolean OR = T
on 2nd condition

Boolean A N D = T
2 tests required

Boolean A N D = F
on 1st condition

Boolean A N D = F
on 2nd condition

T a b l e 1-4: Instruction Executions Time: Boolean

Instruction Execution Times Summary Miscellaneous Operators
f All t imes in micro-seconds Range is Q5% Confidence Interval^

HLL
Instruction

Description Execution time Instruction Predicted Precent HLL
Instruction per one loop Time Time ÏJ iff eren ci* NULL

NULL
Test0()
Test l (B)
Test2(B,C)
Test3(B,C,D)
Test4(B,C,D,E)
If A 3 then B = 1
If A 3 then B = 1
If A3 then B = 1

Else C = 1

Null loopl (for)
Null loop2 (loopf)
Procedure call
Procedure call
Procedure call
Procedure call
Procedure call
Conditional, True
Conditional, False
Conditional, True

17.7 d t .29
23.7 d t .30
57.2 d t .31
67.9 d t .29
73.7 d t .31
79.4 d t .32
85.2 d t .32
32.7 d t .31
29.2 d t .31
36.9 d t .31

37.0 d t .22
51.7 d t .21
57.5 d t .22
63.2 d t .22
69.0 d t .22

9.0 d t .22
5.5 dt .22

13.2 d t .22

15.7+
17.6+
35.8
38.0
40.2
42.4
44.6

7.9
5.2

10.1

*S 111C1C XL V/ C

54.
36.0
43.0
49.0
54.7
13.9

5.8
30.7

If A3 then B = 1
Else C = 1

Conditional, False

_ 11 T mm T
33.2 d t .32 9.5 dt .22 7.9 20.3

T a b l e 1-5: Instruction Executions Time: Miscellaneous Operators

Appendix 50

Appendix

II. Block Transfer Execution Times

This appendix contains tabulated results of the block transfer experiment, Section 3.2.

Block Transfer Times: Read from System to Local Memory
(Times ffiven in mirro-se<;onHsr Ranges aro 9 5 % C o n f i d e n t Interval il Block Size
(words = 16 bits)

Block Transfer Time with
1 Triad

1 162.7 ± . 1.54
2 165.7 ± . 1.06
3 168.6 dt 1.38
4 171.6 dt 1.45
5 174.7 dt 0.74

10 189.6 ± 0.82
15 204.7 ± . 0.71
20 224.7 ± . 0.76
25 235.7 dt 1.08
50 310.8 ± 1.13

100 460.7 dt 1.11
125 535.6 ± . 1.02
150 610.7 dt 1.10
175 685.6 dt 1.02
200 1 760.8 ¿-.1.13

ible n-1: Block Transfer Times, Read

2 Triads
170.7 ± . 4.02
172.9 ± 4.60
176.3 ± . 5.94
176.3 dt 4.33
180.3 dt 3.86
193.3 i 4.31
208.6 dt 3.71
230.9 dt 3.99
239.3 dt 3.86
316.0 dt 6.12
465.3 dt 6.23
541.0 dt 6.63
621.3 dt 10.3
692.0 dt 8.48
765.1 dt 6.56 ,

from System to Local Memory

Hock Transfer Times: Write from Local to System Memory
(Times given in micro-seconds. Ran*** *T» qz°Z n ™ f ; ^ ^ —

Block Size
(words = 16 bits)

Block Transfer Time with Block Size
(words = 16 bits) 1 Triad 2 Triads

1 158.0 dt 1.35 170.4 dt 4.03
2 163.7 dt 1.35 170.6 dt 3.77

CO

*168.6 dt 1.38 178.5 dt 6.22
4 173.7 dt 1.34 178.9 dt 3.81
5 178.7 dt 1.35 186.2 dt 4.45

10 203.6 dt 1.38 207.8 dt 2.76
15 228.6 dt 1.38 233.7 dt 3.90
20 258.7 dt 1.36 263.1 dt 3.56
25 283.7 dt 1.35 290.0 dt 5.81
50 408.6 dt 1.38 413.7 dt 4.23

100 658.6 dt 1.38 663.6 dt 5.00
125 783.7 dt 1.36 790.8 dt 7.63
150 908.8 dt 1.33 919.9 dt 10.1
175 1033.8 dt 1.31 1039.8 dt 6.04
200 1158.7 dt 1.35 1164.2 dt 6.18

T a b l e 11-2: Block Transfer Times, Write Irom Local to System M<

52

References

[CAPS Instruction Set 79]
CAPS Instruction Set Description
Rockwell Collins, 1979.

Ed Clune.
Analysis of the Fault Free Behavior of the FTMP Multiprocessor System.
Master's thesis, Carnegie - Mellon University, 1984.

Development and Evaluation of a FTMP Computer, Vol TV, FTMP Executive
Summary
Charles Stark Draper Laboratories, 1982.

Development and Evaluation of a FTMP Computer, Vol II, FTMP Software
Charles Stark Draper Laboratories, 1983.
CR166072.

Development and Evaluation of a FTMP Computer, Vol III, FTMP Test and
Evaluation
Charles Stark Draper Laboratories, 1983.
CR166073.

Development and Evaluation of a Fault-Tolerant Multiprocessor (FTMP)
Computer, Vol I, FTMP Principles of Operations
Charles Stark Draper Laboratories, 1983.
Contract Report (CR) 166071.

Frank E. Feather.
Validation of a Fault-Tolerant Multiprocessor: Baseline Experiments and

Workload Implementation.
Master's thesis, Carnegie - Mellon University, 1985.

Domenico Ferrari.
Computer Systems Performance Evaluation.
Prentice-Hall, 1978.

[Hopkins 78] Hopkins, A.L., etal.
FTMP - A Highly Reliable Multiprocessor.
IEEE Trans, on Computers :1221-1237, October, 1978.

[Lala, P.K. 85] Lala, Parag K.
Fault Tolerant & Fault Testable Hardware Design.
Prentice Hall International, 1985.

(NASA 79a) NASA-Langley Research Center.
Validation Methods for Fault-Tolerant Avionics and Control Systems -

Working Group Meeting I, NASA-Langley Research Center, 1979.
NASA Conference Publication 2114.

[Clune 84]

[Draper 82]

[Draper 83a]

[Draper 83b]

[Draper 83c]

[Feather 85]

[Ferrari 78]

(NASA 79b) Research Triangle Institute.
Validation Methods for Fault-Tolerant Avionics and Control Systems

Working Group Meeting II, NASA-Langley Research Center, 1979.
NASA Conference Publication 2130.

[Siewiorek and Swarz 82]
Siewiorek, Daniel P., Swarz, Robert S.
The Theory and Practice of Reliable System Design.
Digital Press, 1982.

[Siewiorek, Bell, and Newell 82]
Siewiorek, Daniel P.,Bell, C. Gordon, and Newell, Allen.
Computer Structures: Principles and Examples.
McGraw-Hill Book Company, 1982.

[Toy 78] W.N. Toy.
Fault-Tolerant Design of Local ESS Processors.
IEEE Trans on Computers .1726-1745, October, 1978.

[Walpole and Myers 82]
Ronald E. Walpole, and Raymond H. Myers.
Probability and Statistics for Engineers and Scientists.
The Macmillan Company, 1982.

[Wensley 78] Wensley, J.H., etal.
SIFT: A Computer for Aircraft Control.
IEEE Trans, on Computers :1240-1255, October, 1978.

54

