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variation between tasks starts will be presented in Section 3.3.5.) The dispatcher takes a full R4 

frame or longer to execute in one-half of the time, clearly an implementation problem. 

Demonstrating any possible affects of system workload, and to show the frame start 

interrupt occurs at its set time, the experiment was repeated under the following conditions. 

1. Decrease the work load to just the single application task being executed. The 
results show the same pattern and spread as the other tests. 

2. Extend the frame size from 40 milliseconds to 250 milliseconds. This allowed all 
tasks to complete in a single R4 frame without slippage. Again the dispatcher 
behaved in the similarly. It was also noted that the frame starts occurred at 250 
msec, with no variat ion 1 5 (i.e. the interrupt mechanism works correctly). 

3 .3 .2 I P C 'Kick' T i m e s 

Timer Interrupt 

First Triad 

Second Triad 

Third Triad 

R4 Dispatcher 

'C Kick Time 

R4-1 Task 

Measured Time 

f 1 \ Dispatcher R4-2 Task 

:C Kick Time Measured Time 

T X f 
Dispatcher R4-3 Task 

Time 

F i g u r e 3-8: IPC 'Kicks' Timing Diagram. 

One function of the R4 dispatcher is to 'Kick', through an IPC (Inter-Process 

Communication) interrupt, the start of the R4 frame in another triad. A timing diagram of this 

process is given in Figure 3-8. Again the workload generator does not allow the measurements of 

the time from the 'Kick' to the start of the application task; but the timing and behavior can be 

There was variation between frame starts at the 40 millisecond size. This variation is caused by 
frame slippage; the frame is extended 10 milliseconds past the last R4 task completion time. If the 
dispatcher takes 45 milliseconds the next frame cannot be started at the 40 millisecond mark 
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F i g u r e 3-9: Time and Variation Between the Starts of the Application Tasks on 
Different Processor Triads. Emulating IPC Kick Times. 
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approximated by measuring the difference between the starts of the application tasks. The 

desired time to measure would be from the IPC kick of the first triad to the time when the R4 

dispatcher begins execution, or from the frame start interrupt to the time when the second and 

third triad start their R4 dispatcher. An approximation to this behavior is the time between 

starts of the application task on different triads, labeled as "Measured Time" in the Figure 3-8 

Histograms for the IPC 'Kicks' are given in Figure 3-9 with two triads executing, the times 

are grouped around 1.5, 2.5 and 27 milliseconds. With three triads executing the first to second 

triad "kick" is centered at 4.0 milliseconds with no outlayers beyond 5 milliseconds. However in 

the second to third triad "kick" there was a large group, about 10% at 24.5 milliseconds. This 

behavior is undesirable in real time systems. The long 'Kick' times allow the possibility of one 

triad running its first task, finishing, and then running a second task while the second triad is 

still idle. This behavior was mentioned in [Clune 84] and its cause should be investigated. Upon 

inspection of the dispatcher code, a few possibilities for this unwanted behavior arise. These 

possibilities include: a problem with the IPC 'Kick' mechanism, the possiblily of the dispatcher 

'hanging' because of a lock or failed bus access, or an extended execution time during a system 

reconfiguration. Note that the outlayers involve between 10 and 18 percent of the data or about 

once per major frame. 

3 .3 .3 In tra -Task G r o u p Swi tch ing 

At the end of the application task, control is passed back to the dispatcher. The dispatcher 

activates the next task in the queue (same rate group) or if all tasks have been dispatched, the 

dispatcher returns control to the previously interrupted or pending task (R3 or R l dispatcher or 

application tasks). This experiment measures the intra-task group switching times including R4 

to R4, R3 to R3 and R l to R l shown in Figure 2-4. 

This experiment was run using the synthetic workload as a tool, and the measurements were 

taken for one, two, and three triads for all rate groups. The data is summarized in Figure 3-10. 

As seen from the data the behavior is regular, with skewing as the number of executing 

triads increase. This skewing is probably caused by bus access contention, measured in Section 

3.2. The large spread of the data in the Rl task switching could be explained by the difference 

in the experimental acquisition of the data. To measure the switching times, the tasks were 

ordered by controlling the task lengths. To have one triad execute two tasks from the same rate 
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F i g u r e 3-10: Intra-Task Group Switching Times in Milliseconds, 

group require the other triad(s) executing another task (usually an R 4 task since the R 4 frame 

can be extended by lengthing an R4 task). This method works well for controlling R4 and R3 

task orders, but the R l tasks were interrupted by the start of the next R4 frame. Hence the R4 

and R 3 switching times were measured under easily repeatable conditions while R l switching 

times the conditions were repeatable though to a lesser extent. In general the intratask group 

switching times are predictable within a certain range. The time for task switching is large in 

comparison with the desired frame size (40 milliseconds). If a triad needed to execute three R 4 

tasks in a 40 millisecond frame, 8 milliseconds or 2 0 % would be spent switching between the 

tasks. This will be summarized in Section 4. 

1 6 I n the R3 and R l dispatcher there are about 20 bus transactions. Each transaction takes about .2 
milliseconds. A delay caused by contention may cause the bus transaction to take two or more times the 
uncontented t ime. 
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3 .3 .4 In ter -Task G r o u p Swi tch ing 

As previously discussed, when the dispatcher finds all the tasks in its rate group completed 

or dispatched, it executes a 'resume' to restart the previously interrupted or pending task. Three 

cases of this process were studied, see Figure 2-4 

1. Time and behavior of an R4 task finish time to the start of the R3 task in the same 
triad. (R4 to R3.) 

2. Time and behavior of an R4 task finish time to the start of the R3 task in the R4 
responsible triad. (R4 to R3.) 

3. Time and behavior of the R3 task finish time to the start of the Rl task in the same 
triad. (R3 to Rl . ) 

The behavior of these three processes are summarized in Figure 3-11. As is shown in the 

figure the behavior of these interactions is predictable and well behaved. The variation in the 

data is probably the result of bus contention and queue semaphores or the dispatcher executing 

different sections of code or both. The large spread in the R3 to Rl switching is caused by the 

same factors as for the spread in the intratask group switching. (See Section 3.3.3.) In summary, 

the intertask group switching times are predictable over a range of 4.5 to 10.5 milliseconds. The 

execution times of the dispatcher for the intertask group switching are large for the desired 

frame iteration rate. The R4 frame is 40 milliseconds with task switching taking 7 milliseconds, 

a significant percent of the useable time. 

3 .3 .5 F r a m e Size and F r a m e Sl ippage 

The last dispatcher experiment involves the actual task iteration rates for the two highest 

task rate groups, R4 and R3. This experiment measured the difference between consecutive 

starts of the first task in the rate groups. The results yield the nominal frame size and variation 

of the frame sizes. The data for these experiments is presented in Figures 3-12 and 3-13. 

Figure 3-12 shows the spread of data for the R4 frame size. The frame sizes show a similar 

grouping for the one and two triad case, and for the three triad case a similar grouping but at 

different locations. The pattern of the execution times for the R4 frame is 36, 42, 114, 92, ... 

millisecond for one and two triads and 40, 65, 105, 40, ... milliseconds for three triads. The first 

number is the start of the major frame. The R4 pattern determines the pattern for the R3 

17 
An R4 responsible triad is the last triad to complete its R4 task. This triad is responsible for the 

start of the next R4 frame by arming its timer interrupt. 
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F i g u r e 3 -11 : Inter-Task Group Switching Times in Milliseconds, 

frame. R3 frames are started every second R4 frame, hence the sum of two consecutive R4 frame 

sizes determine the size of the R3 frame. For the one and two triad case the R4 frame size 

pattern is 36, 42, 114, 92, ... The first two frame sizes determine the R3 frame size about 78 

milliseconds and the second pair determine the next R3 frame size about 205 milliseconds. 

Similarly for the three triad case the R4 pattern is 40, 65, 105, 40, ... Thus the R3 pattern would 

be 105, 145,... This pattern differs from the observed pattern, a constant 125 milliseconds, but 

the difference could be explained by additional overheads occurring in dispatcher. The long 

frames are in correlation with the long dispatcher times (Section 3.3.1, and Figure 3-7). The 

dispatcher will not schedule the start of the next R4 frame until the present R4 frame is 

complete and ten milliseconds is allowed for lower rate group tasks. The two triad case in 



Experiments 
35 

15 

12.5 -

10 -
R 4 F r a m e Size. 

Pe rcen t of Total 7.5 - ] 
Dis t r ibu t ion 

5 - 1 

2.5 -J 

One Tr iad Execut ing 

568 data points 

R 4 F r a m e Size. 
P e r c e n t of Total 

Dis t r ibu t ion 

4 ^ 
R 4 F r a m e Size 

Pe rcen t of Total 3 —| 
Dis t r ibu t ion 

F i g u r e 3-12: 

T 
60 70 80 90 100 

Actua l F r a m e Size, mil l iseconds 
A c t u a l F r a m e Size for R4 T a s k s . 

110 120 



Experiments 

R3 Frame Size. 
Percent of Total 

Distribution 

15 

12.5 -

10 -

7.5 

5 -

2 . 5 -

0 

10 

R3 Frame Size. 
Percent of Total 

Distribution 

R3 Frame Size. 
Percent of Total 

Distribution 

One Triad Executing 

213 data points 

JU 
80 n — I — I — I — I — I — I — I I I I r r 

90 100 110 120 130 140 150 160 170 180 190 200 210 

8 -
7 -
6 -
5 -
4 -
3 -

Two Triads Executing 

297 data points 

X T T 
H i l l , II I 

10 80 90 100 110 120 130 140 150 160 170 180 190 200 210 

9 
8 
7 -
6 -
5 -
4 
3 -
2 -
1 -
0 

Three Triads Executing 

543 data points 

1 I I I 1 r T 
80 90 100 110 120 130 140 150 160 170 180 190 200 210 

Actual Frame Size, milliseconds 
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18 

18 
T h e ^ a c t correlation between the data is not because of different experimental setup, the dispatcher 

behavior, and the distribution of tasks between triads. 

Figures 3-7 and 3-12 represent this behavior best: as shown in Figure 3-7 about one-quarter of 

the execution times lie near 40 milliseconds, and another quarter around 65 milliseconds. 

Similarly the R4 frame sizes are grouped at 90 and 115 milliseconds or 50 milliseconds greater 

than the corresponding dispatcher times. From the frame size measurements, the dispatcher 

time and kick time behavior one can see a problem with the FTMP scheduler meeting its real 

time constraints. 

3 .3 .6 D i spatcher -Scheduler Sof tware O v e r h e a d S u m m a r y 

This section summarizes the Dispatcher-Scheduler software overhead. Table 3-2 gives a 

summary of the dispatcher times. The first entry in each block is the average execution time, in 

milliseconds, followed by the standard deviation of the data. The second entry is the range of 

the data also in milliseconds, and the third entry is the data sample size. 

As seen in the table, the dispatcher software overhead is predictable within a range of about 

6 millisecond with a two exceptions. The two exceptions are: 
• Frame start interrupt to the application task start, and 

• IPC kicks to start other triads working on R4 tasks. 

These two problems and the overall problem of long execution times of the dispatcher cause the 

scheduling problem of late frame starts discussed in Section 3.3.5. An evaluation of possible 

improvements to the dispatcher will be made in Section 4 specificly dealing with decreased 

execution times of the system bus primitives, and their possible effect on the dispatcher. The 

dispatcher should be further characterized. 

3.4 Software Overhead for Fau l t Detec t ion and Isolation 

The final experiment presented in this report measures the software overhead for fault 

detection and isolation. The FTMP software tasks for these include READALL. READALL 

incrementally reads system memory to assure all copies of the data in the memory elements is 

the same. The second task is the System Configuration Controller, SCC described in Section 

2.2.3. These tasks are specifically dedicated to fault detection and isolation, but they do not 

include all the software overhead for fault tolerance. Some fault detection commands are done 



Experiments 38 

Dispatcher 
Goal 
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T a b l e 3-2: Dispatcher Software Overhead Summary, 

in the R4 dispatcher, these include, reading of the error latches into system memory, and the 

reconfiguration and retire commands. This experiment will not take these overhead into 

account. 

The experiment was run using the synthetic workload. The workload allows the starting 

and ending times of these tasks to be measured, hence determining the execution time. A 

problem occurs in the measurement of the genuine task time due to interruption of the tasks for 

higher rate group tasks. By extending the basic R4 frame size from 40 to 250 milliseconds, all 

tasks including SCO and READALL could finish without interruption. The results for this 

experiment are presented in Table 3-3. 
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FTMP Fau 
(Al 

A Tolerant Software Overhead 
I times in millisernnHsï 

Task Execution Time Range 

sec 43.4 dt 23.3 3.5 - 153. 

R E A D ALL 3.1 i 0.9 1.25 - 6 . 2 5 

T a b l e 3-3: Software Overhead for Fault Tolerance. 

The variation in the READALL times are due to bus contention and different sections of 

code being executed. Whereas the SCC times show the spread of data as SCC executes different 

states. These states include fault isolation, shadow swapping, transient fault handling routines 

and self tests. These software overheads are small in comparison to the real time scheduling 

overheads for FTMP. Further comparisons will be presented in Section 4. 
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4 . Performance Est imates 

This section estimates the useable throughput of the FTMP system from the dispatcher-

scheduler and fault tolerant overheads measured in the previous sections. Table 4-1 gives a break 

down of the available throughput and overheads observed. In Table 4-1 a major frame is defined 

as eight R4 frames or one R l frame. 

F T M P Performance Estimates 
= = = = — (Times are millisecond n*r msunr f r * m ^ 

A s Designed A s ] Running A s CV»TT*»rr+j»r! 

F T M P Overhead Time 
(msec.) 
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Total Time 

Time 
(msec.) 
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Fault Tolerant Software 
SCO time. 43.3 
R E A D ALL time. 3.2 

46.5 4.8 46.5 2.3 
—v. 
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\ L ' * i 

4.8 

Total Useable Time 
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T a b l e 4 -1 : Performance Estimates for FTMP. 

In Table 4-1 the second and third columns give the performance estimates assuming a 40 

millisecond R4 frame (320 millisecond major frame with three triads executing), and the software 

overhead times measured in this report. The R4 dispatcher execution time used was 16 

milliseconds; the upper limit of acceptable times presented in Figure 3-7. This shows 63% of the 

available throughput is spent in the dispatcher. Of interest is the software overhead of the fault 

tolerance tasks, 4.8%. This is a small software price for fault tolerance. (Of course the large cost 

for the fault tolerance lies in the hardware.) The fourth and fifth columns, of the table use the 

actual frame sizes as measured, instead of the 40 millisecond R4 frame size assumption and the 

true dispatcher times measured in this report. The overhead percents are lowered but the frames 
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are extended, showing the present behavior of the system, although the behavior is incorrect for 

a real time system. 

The FTMP Executive Summary, [Draper 82], noted the large bottleneck caused by the long 

bus access times (Section 3.2). The authors state that one third of the R4 dispatcher time is 

spent doing bus service routines and by microcoding some of the I/O functions the bus service 

times could be lower to one-eighth of their current times. Using this estimate, one third of the 

dispatcher time reduced 88%, will show the R4 dispatcher time lowered to 71% of its current 

va lue . 1 9 The sixth and seventh column of Table 4-1 present these results. The performance 

increase gained by microcoding some I/O functions was applied only to the R4 dispatcher, if this 

increase was applied to all functions, a larger performance increase could be expected. 

33% of the dispatcher is reduced 88% for a 29% reduction. 
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5. Future Work 

Although much work has been accomplished in refining the experimental methodology, by 

applying it to FTMP, the methodology still needs to be further verified by additional 

experiments on FTMP and by application to other systems, such as the Software Implemented 

Fault Tolerant (SIFT) computer. SIFT [Wensley 78] was designed with similar design 

specifications as FTMP and by applying the methodology to SIFT the robustness of the 

methodology will be shown as well as a comparison the two systems. 

In particular the following items are some areas in which further characterization of FTMP 
may be needed. 

• Further characterization of the dispatcher to determine the time consuming sections 
and, if possible, correct this undesirable behavior. This may be done by 
characterizing some of the executive primitives the dispatcher uses. 

• Determine the overhead required for system reconfiguration. How much overhead is 
required for the dynamic redundancy of FTMP ? 

• Characterize the throughput vs. workload and task distribution. Will the system still 
meet its deadlines under this increased load ? 

• Further characterize the software overhead for both the faulty and fault free 
situations. This includes the times to isolate faults, and reconfiguration overhead. 

• Validate the system configuration controller. Does the controller handle faults 
correctly? A log of failed units should be kept to determine faults within the units or 
controller problems. 

• Explore the fault coverage in the self test routines. How many faults can the self test 
routines locate in the bus guardian unit, and system buses ? 

• Explore the behavior of multiple faults. [Draper 83b] showed the fault tolerant 
capabilities of the system by injecting pin level faults. How will the system behave if 
two faults occur close together? 

These experiments move the validation and performance measurements into the application level 

of the performance evaluation matrix, along with exploring faulty behavior of the system. 
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6. Conclusions 

This report outlined a validation methodology for ultrareliable multiprocessors and applied 

the methodology to one system, FTMP. The methodology entails a building block approach, 

starting with simple baseline experiments and building to more complex experiments. Previous 

work has been done to measure the baseline performance, as well as characterization of most 

hardware primitives [Clune 84, Feather 85]. This report presents a continuation of the baseline 

experiments, and presents experiments at the executive, operating systems level. In particular 

this report presented: 

• High level language instruction execution times. The execution times measured were 
consistent and predictable. 

• System memory read and writes times and the variance of the times caused by bus 
contention. The memory read/write times were a linear function of block size 
(400 Kbytes/sec.) with an overhead of approximately 150/iseconds. Bus contention 
showed a slight increase in average overhead. 

• Dispatcher execution times and overhead. The dispatcher consumed approximately 
60% of the system throughput in addition to failing to meet its real time constraints. 

• Fault tolerant software overhead. Showed the software overhead involved in the 
fault tolerant tasks consumed 5% of system throughput. 

• Performance estimates of the system. Showed the available processor time and the 
distribution of the time between the dispatcher, fault tolerant tasks, and application 
tasks. 

From these experiments and their results the following points can be inferred about the FTMP 
system. 

• In the present implementation of FTMP there is a large overhead consumed by the 
real time dispatcher. About one-third of the dispatcher overhead is caused by the 
large overhead involved in the system bus access which is an implementation problem 
and not dependent upon the fault tolerant design of FTMP. 

• A relatively small software overhead is involved with the system configuration 
controller, fault detection and isolation, thus showing the advantage of hardware 
voting over software voting to obtain system fault tolerance. 

The goal of the validation methodology is to thoroughly test and characterize the 

performance and behavior of an ultra-reliable computer system. The validation methodology 

presented in Section 2.1.1 and applied throughout this report proved effective in the following 

areas. 
The methodology uncovered both system implementation dependencies with the 
instruction executions times and behavioral oddities in the dispatcher-scheduler. 

The methodology showed system validation can occur without using life testing 
approaches. 
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• By applying a building block approach in a systematic manner the FTMP system was 
broken down into manageable levels of experimentation thus concealing system 
complexity from the experimenter. 

• Finally most of the experiments were run at the system level, demonstrating system 
validation can be independent of the implementation (LSI or VLSI.) 

The enumerated items demonstrate the feasibility of the validation methodology by addressing 

the problems encountered with the validation of ultrareliable systems. Tests upon other systems 

such as SIFT will demonstrate the robustness of the methodology as well as provide comparisons 

of the two systems. 
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I. Instruction Execution Times 

This appendix contains the tabulate result of the execution times of all the instructions 

measured. The predicted execution times are from [CAPS Instruction Set 79]. 

Instruction Execution Times Summary, 16 
(All t imes in miVro-secnnHs [ R a n ^ e is QK<% 

Bit Integer Operators 
Y) Confidence In terval ) 

HLL 
Instruction 
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Time 
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O iFferer»/»** 
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41.2 db. .30 23.5 A .22 14.4 1 63.2 

B = 1 
B = 17 
B = 257 
J= 1 
D = B 
B = J 

D = - B 
D = B + C 

I D = B * C 
D = B / C 
D = .N. B 
D = B .A. C 

I D = B .V. C 
D = B .X. C 
D = B .RS. C 
D = B .RS. C 

I A3 » B EQL C 
A3 = B NEQ C 
A3 - B LES C 
A3 = BGEO C 

Integer assign 4 bits 
Integer assign 8 bits 
Integer assign 16 bits 
Integer assign 
extended reference 
Integer variable assign 
Variable assign 
extended reference 
Integer negate 
Integer addition 
Integer multiply 
Integer division 
Bit wise negate 
Bit wise and 
Bit wise or 
Bit wise exclusive or 
Right shift (1 bit) 
Right shift (2 bits) 
Integer compare = = 
Integer compare ! = 
Integer compare < 
Integer compare > = 

T a b l e 1-1: Instruction Executions Time: Integer 
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Instruction Execution Times Summary 16 bit Fixed Point Operators 
(All times in micro-seconds, Range is 95% Confidence Interval) , 

HLL Description Execution time Instruction Predicted Precent 
Instruction 

Description 
per one loop Time Time Difference 

B = .1 Real assign 24.4 ±. .29 6.7 db .21 4.1 63.4 
B - C Real variable assign 23.3 ± .29 5.5 ± . .21 4.1 34.1 
A = - B Real negate 32.2 ±. .31 8.5 -b .22 6.3 34.9 
A - B + C Real addition 33.7 db .29 

10.0 ìl .21 
7.7 30.0 

D - B * C Real multiply 38.2 ± . .30 20.5 ±. .22 12.6 62.7 
A = B / C Real division 42.2 ±. .29 24.5 ±. .21 13.3 84.2 
A3 = B EQL C Real compare = = 40.9 ±. .29 23.2 db .21 14.2 63.3 
A3 - B N E Q C Real compare ! = 38.7 ±. .30 21.0 ±. .22 11.9 76.4 
A3 = B LES C Real compare < 38.9 ±. .30 21.2 ± .22 12.1 75.2 
A3 « B G E O C Real compare >=* 41.2 db .29 23.5 db .21 14.4 63.2 

Table 1-2: Instruction Executions Time: Real 

Instruction Execution Times Summary Long, 32 bit Integers 
(All times in micro-seconds. Range is 95<% Confidence Interval! 

HLL Description Execution time Instruction Predicted Precent 
Instruction per one loop Time Time Difference 

B = 1 Long assign 29.7 db .28 12.0 dt .21 5.7 110.5 
B = 17 Long assign (8 bits) 31.9 ± .29 14.2 db .21 6.6 115.2 
B = ?57 Long assign (16 bits) 32.4 ± .30 14.7 ± . .21 7.1 107.0 
B = 65537 Long assign (4 bits) 29.7 ± . .30 12.0 ±. .22 5.7 110.5 
J = 1 Extended variable 30.4 d=. .30 12.7 i .22 7.1 78.9 

reference assign 
B = C Long variable assign 32.2 ± .29 

14.5 ìl .21 
7.8 85.9 

B = J Extended variable 33.2 ±. .30 17.0 ± .22 9.3 82.8 
reference 

A - - B Long negate 42.2 db .30 18.5 ± .22 15.3 20.9 
A - B + C Long addition 48.7 ±. .30 32.5 di .22 17.9 81.5 
D - B * C Long multiply 64.9 ±. .29 48.7 ±. .22 31.7 53.6 
A - B / C Long division 87.4 db .31 71.2 dt .22 45.4 56.8 
A3 = B E Q L C Long compare = = 56.4 db. .29 38.7 ± .21 17.8 117.4 
A3 = B N E Q C Long compare ! = 54.2 d=. .30 36.5 ±. .22 15.5 135.5 
A3 = B LES C Long compare < 54.2 ±. .28 36.5 db .21 15.7 132.5 
A3 - B G E O C Lonfc compare > = 56.4 db .30 38.7 ±. .22 18.0 115.0 

Table 1-3: Instruction Executions Time: Long Integers 
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Instruction Execution Times Summary Boolean Operators 
(All times in micro-seconds r R a n ? e is Q5<% C o n f i d e n t In terval ) 

HLL 
Instruction 

Description Execution time 
per one loop 

Instruction 
Time 

Predicted 
Time 

Precent 
O i f f eren*»e 

21.7 ± . .31 4.0 d t .22 2.7 
-L*r 111 \s XX V» C 

48.1 
23.2 d t .26 5.5 ± .20 4.1 34.1 
34.6 d t .30 10.9 ± .22 7.9 38.0 
39.2 dt .28 21.5 d t .22 13.1 64.1 

36.9 d t .30 20.7 ± . .22 10.2 102.9 

41.4 d t .30 23.7 ± .22 15.4 53.9 

41.4 db. .31 25.2 d t .22 15.4 63.6 

32.7 d t .30 15.0 d t .22 7.9 89.9 

39.2 d t .30 23.0 ± .22 13.1 75.5 

A = TRUE 
A = B 

N O T B 
B O R C 

A 
A 

A 

A 

A 

A 

A 

B OR C 

B OR C 

B A N D C 

B A N D C 

B A N D C 

Boolean assign 
Boolean variable assign 
Boolean negate 
Boolean OR = F 
2 tests required 

Boolean OR = T 
on 1st condition 

Boolean OR = T 
on 2nd condition 

Boolean A N D = T 
2 tests required 

Boolean A N D = F 
on 1st condition 

Boolean A N D = F 
on 2nd condition 

T a b l e 1-4: Instruction Executions Time: Boolean 

Instruction Execution Times Summary Miscellaneous Operators 
f All t imes in micro-seconds Range is Q5% Confidence Interval^ 

HLL 
Instruction 

Description Execution time Instruction Predicted Precent HLL 
Instruction per one loop Time Time ÏJ iff eren ci* NULL 

NULL 
Test0() 
Test l (B) 
Test2(B,C) 
Test3(B,C,D) 
Test4(B,C,D,E) 
If A 3 then B = 1 
If A 3 then B = 1 
If A3 then B = 1 

Else C = 1 

Null loopl (for) 
Null loop2 (loopf) 
Procedure call 
Procedure call 
Procedure call 
Procedure call 
Procedure call 
Conditional, True 
Conditional, False 
Conditional, True 

17.7 d t .29 
23.7 d t .30 
57.2 d t .31 
67.9 d t .29 
73.7 d t .31 
79.4 d t .32 
85.2 d t .32 
32.7 d t .31 
29.2 d t .31 
36.9 d t .31 

37.0 d t .22 
51.7 d t .21 
57.5 d t .22 
63.2 d t .22 
69.0 d t .22 

9.0 d t .22 
5.5 dt .22 

13.2 d t .22 

15.7+ 
17.6+ 
35.8 
38.0 
40.2 
42.4 
44.6 

7.9 
5.2 

10.1 

*S 111C1C XL V/ C 

54. 
36.0 
43.0 
49.0 
54.7 
13.9 

5.8 
30.7 

If A3 then B = 1 
Else C = 1 

Conditional, False 

_ 11 T mm T 
33.2 d t .32 9.5 dt .22 7.9 20.3 

T a b l e 1-5: Instruction Executions Time: Miscellaneous Operators 
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II. Block Transfer Execution Times 

This appendix contains tabulated results of the block transfer experiment, Section 3.2. 

Block Transfer Times: Read from System to Local Memory 
(Times ffiven in mirro-se<;onHsr Ranges aro 9 5 % C o n f i d e n t Interval il Block Size 
(words = 16 bits) 

Block Transfer Time with 
1 Triad 

1 162.7 ± . 1.54 
2 165.7 ± . 1.06 
3 168.6 dt 1.38 
4 171.6 dt 1.45 
5 174.7 dt 0.74 

10 189.6 ± 0.82 
15 204.7 ± . 0.71 
20 224.7 ± . 0.76 
25 235.7 dt 1.08 
50 310.8 ± 1.13 

100 460.7 dt 1.11 
125 535.6 ± . 1.02 
150 610.7 dt 1.10 
175 685.6 dt 1.02 
200 1 760.8 ¿-.1.13 

ible n-1: Block Transfer Times, Read 

2 Triads 
170.7 ± . 4.02 
172.9 ± 4.60 
176.3 ± . 5.94 
176.3 dt 4.33 
180.3 dt 3.86 
193.3 i 4.31 
208.6 dt 3.71 
230.9 dt 3.99 
239.3 dt 3.86 
316.0 dt 6.12 
465.3 dt 6.23 
541.0 dt 6.63 
621.3 dt 10.3 
692.0 dt 8.48 
765.1 dt 6.56 , 

from System to Local Memory 

Hock Transfer Times: Write from Local to System Memory 
(Times given in micro-seconds. Ran*** *T» qz°Z n ™ f ; ^ ^ — 

Block Size 
(words = 16 bits) 

Block Transfer Time with Block Size 
(words = 16 bits) 1 Triad 2 Triads 

1 158.0 dt 1.35 170.4 dt 4.03 
2 163.7 dt 1.35 170.6 dt 3.77 

CO
 

*168.6 dt 1.38 178.5 dt 6.22 
4 173.7 dt 1.34 178.9 dt 3.81 
5 178.7 dt 1.35 186.2 dt 4.45 

10 203.6 dt 1.38 207.8 dt 2.76 
15 228.6 dt 1.38 233.7 dt 3.90 
20 258.7 dt 1.36 263.1 dt 3.56 
25 283.7 dt 1.35 290.0 dt 5.81 
50 408.6 dt 1.38 413.7 dt 4.23 

100 658.6 dt 1.38 663.6 dt 5.00 
125 783.7 dt 1.36 790.8 dt 7.63 
150 908.8 dt 1.33 919.9 dt 10.1 
175 1033.8 dt 1.31 1039.8 dt 6.04 
200 1158.7 dt 1.35 1164.2 dt 6.18 

T a b l e 11-2: Block Transfer Times, Write Irom Local to System M< 
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