

DefAT: Dependable Connection Setup

for Network Capabilities

Soo Bum Lee, Virgil D. Gligor, Adrian Perrig

November 23, 2011

CMU-CyLab-11-018

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

DefAT: Dependable Connection Setup for Network
Capabilities

Soo Bum Lee Virgil D. Gligor Adrian Perrig
CyLab, Carnegie Mellon University

Email: {soobum, gligor, perrig}@cmu.edu

Abstract—Network-layer capabilities offer strong protection
against link flooding by authorizing individual flows with un-
forgeable credentials (i.e., capabilities). However, the capability-
setup channel is vulnerable to flooding attacks that prevent
legitimate clients from acquiring capabilities; i.e., in Denial of
Capability (DoC) attacks. Based on the observation that the
distribution of attack sources in the current Internet is highly
non-uniform, we provide a router-level scheme, named DefAT
(Defense via Aggregating Traffic), that confines the effects of
DoC attacks to specified locales or neighborhoods (e.g., one or
more administrative domains of the Internet). DefAT provides
precise access guarantees for capability schemes, even in the
face of flooding attacks. The effectiveness of DefAT is shown
in two ways. First, we illstrate the precise link-access guarantees
provided by DefAT via ns2 simulations. Second, we show the
effectiveness of DefAT in the current Internet via Interent-scale
simulations using real Internet topologies and attack distribution.

I. INTRODUCTION

Current service-flooding attacks rely on a large number
of compromised machines that are organized as a “bot”
network. Typical defense mechanisms that attempt to provide
service-access guarantees despite such attacks assume absence
of flooding in the underlying network links. Yet, a large-
scale attack (e.g., a “botnet” with millions of “bots”) can
flood any chosen link in the Internet. In particular, defense
mechanisms deployed at links near or at a network edge (e.g.,
Firewalls, IDSs) can be easily overwhelmed by such attacks.
Worse yet, legitimate-looking attack packets can evade most of
traditional techniques for handling address spoofing attacks at
the network layer (e.g., IP tracebacks [1], [2], ingress filtering
[3]).

Capability-based solutions, whereby distinct packet flows
are separately authorized through capabilities obtained before
flow initiation [4]–[6], provide congested routers with an
effective way to prioritize legitimate flows and filter out
unwanted traffic. Though promising, these solutions are still
vulnerable to flooding attacks targeting the capability-setup
channel, known as the Denial of Capability (DoC) attacks
[7]. These attacks are possible because the initial capability-
request packets are treated as best-effort packets, as opposed
to the subsequent high-priority packets that carry capabilities.
If DoC attacks cannot be countered, flow authorization via
network-layer capabilities becomes impossible, and all access
guarantees become meaningless at congested routers.

Previous solutions that attempt to protect capability requests

from flooding attacks (e.g., mechanisms based on aggregate
request rates [6] or on proof of work [8]), though useful, are
insufficient to provide dependable link-access guarantees for
legitimate capability requests. For example, a fair-queueing
mechanism, which fairly allocates buffer space to flow aggre-
gates based on a router’s confidence in precise identification
of traffic origin [6], fails to provide any guarantee of link-
access (viz., Section VII-A). Mechanisms based on proof of
work (e.g., Portcullis [8]) provide only weak access guarantees
during flooding attacks as they are (at best linearly) dependent
on the number of global attack sources; e.g., a large number
of bots could still flood a chosen link despite such guarantees.
These previous schemes achieve relatively weak guarantees
because they assume that attack sources are uniformly dis-
tributed in the network.

We observe, however, that malicious hosts, or bots are
clustered: some domains include sufficiently strong security
mechanisms that enable them to counter or deter contami-
nation; others are easily contaminated by bots. Non-uniform
distribution of attack sources is evident in a variety of worm
propagation models [9], [10], evolutionary features of pre-
vious worms such as CodeRed I/II, Nimda and Slammer,
and the disbribution of spam-bots [11] (viz., Section VIII-A).
This non-uniformity actually enables us to achieve stronger
guarantees. To be meaningful, these guarantees have to be
independent of the number of attack sources (i.e., the size of
a global botnet). In the worst case, they can only depend on
attack sources in defined locales or neighborhoods (e.g., an
administrative domain or a set of domains in the Internet).
As a consequence, competing requests for a capability to
a congested link that originate outside a contaminated lo-
cale should be unaffected, or only minimally affected, by a
flooding attack, and should receive strong access guarantees.
In contrast, initial capability requests originating from bot-
contaminated locales should receive weaker access guarantees,
namely guarantees that depend only on the number of bots in
the contaminated locale (but not on all bots of a multi-domain
attack network). In short, our notion of dependable access to a
flooded link provides differential guarantees for the capability
setup channel. Differential access guarantees are desirable
because they provide incentives for employing host security
measures within administrative domains that prevent botnet
(and other malware) contamination. In exchange, uncontami-
nated domains receive precise guarantees of link access for the
capability setup channel, which support meaningful network-

link and, ultimately, service-access guarantees.
Our scheme relies on three basic mechanisms. First, we

define a new path identification mechanism that provides
an unforgeable domain identifier to individual packets, and
enables remote routers to identify a packet’s domain of origin.
Second, we define a dynamic virtual queueing mechanism
that guarantees a minimum number of router buffer slots to
domains originating flows through a router, which in effect,
guarantees link access to those domains. Finally, we employ a
path aggregation mechanism that optimizes router bandwidth
allocation for legitimate capability requests based on domain
contamination.

II. BACKGROUND AND RELATED WORK

Lack of source address authenticity in the Internet Protocol
(IP) enables attackers to forge the source addresses, and
hence complicates/prevents address-based accounting during
link flooding attacks. As a way to add authenticity to individ-
ual packets, capability solutions [4]–[6] have been proposed.
Generally, a network-layer capability protocol requires a hand-
shake between a client and a server, and during that phase,
routers on the forwarding path collectively issue a connection
capability; i.e., a series of router capabilities on the path. A
router’s capability, which is generated by hashing the source
and destination IP address with the router’s secret key, is
cryptographically secure against forgeries since the router key
is unavailable to an adversary.

However, the capability request protocol is still vulnerable
to flooding (DoC) attacks [7]. That is, flooding with capability
requests, which cannot be prioritized, successfully denies a
legitimate access to a congested link. Portcullis [8] proposes
a puzzle-based mechanism that provides a guaranteed link
access during a flooding (DoC) attack. Though useful, the
guarantee is linearly dependent on the number of bots, which
can be substantial (e.g., the size of a botnet easily exceeds
1 million bots [12]). Alternatively, TVA’s implementation of
fair queueing on incoming traffic paths (i.e., hierarchical fair
queueing) [6], which equally assigns queues to directly con-
nected links and splits the queues recursively for distant links,
places legitimate accesses of remote domains at a significant
disadvantage since it provides fair service to the same level
of queues (i.e., sub-queues split from a queue). More so-
phisticated application-layer solutions (e.g., CAPTCHA [13])
that attempt to distinguish between human- and machine-
initiated traffic to prevent flooding attacks are impractical at
the network-link level.

Attempts to block suspicious traffic upstream of a congested
router by installing filters close to, or at, the domains originat-
ing attacks could protect legitimate flows that are independent
of attacks. To be effective, cooperative filtering would require
incentives that scale with the number of participating domains
– a tall order since it depends on the attack itself. Furthermore,
with only local information (the traffic rate of incoming links),
a router cannot easily identify the links (or upstream links)
that are responsible for the congestion; and even if such
information is available, an adversary can launch a timed

attack where different groups of zombies/bots issue targeted
requests by exploiting the time delay required for installing
and releasing filters at upstream routers (e.g., on-off and rolling
attacks).

III. DESIGN OVERVIEW

In this section, we present an overview of our defense
scheme by describing the basic mechanisms.

A. Threat

The main threat we deal with in this work is a link
flooding attack on the capability-setup channel, where attack
sources collaboratively exhaust the link bandwidth allocated
for connection establishment. We assume that both hosts and
routers can be compromised and send/forward attack traffic.
Compromised hosts are able to both flood a target link with
capability request packets and disturb the path identification
mechanism at a remote router by manipulating the header
reserved for that purpose (viz., Section IV-A). Compromised
routers can disturb path identification by either forwarding
packets that contain false path-markings or adding invalid
path-markings to the packets they forward.

B. Path Identification

In this work, we consider routers that mark packets with
path information. These path-markings create an unspoofable
origin identifier because they cannot be controlled by end-
hosts.1 In addition, path-markings enable remote routers to
construct a traffic tree. The domain connectivity revealed in
the traffic tree helps identify the distribution of attack sources
in specified locales to which bandwidth allocation will be
restricted (viz., Section VI).

The basic concept of route construction is similar to that
of previous schemes [6], [14], yet we use a packet’s AS
(Autonomous System) path as a domain identifier for several
reasons. First, a packet’s AS-path, which is primarily deter-
mined by the number of AS hops (AS-path length) to the
destination in the inter-domain routing protocol (e.g., BGP-
4), is more stable than the routing path within an AS that
may frequently change during flooding attacks due to link
state changes (e.g., link failure). We use the AS-path of a
packet as a persistent domain identifier. Second, a packet’s
AS-path can be constructed by the egress router of the source
domain since the router contains the AS-path information
of destination addresses in its routing table. This source-
constructible domain identifier eliminates deployment issues
that plagued previous path-marking schemes especially in the
Internet core, and hence enables independent adoption of the
marking scheme at the Internet border (e.g., provider/stub
domains). We envision that prioritizing requests originating
from path-marking domains would encourage early adoption
of the marking scheme.

1IP source routing may allow a client to select a path to a destination.
However, strict and loose source routing are usually blocked at routers to
avoid the associated processing overhead.

2

R’4 S

Client

Server
R’3 R0

AS4 AS3 AS1

Si

R1

Cj

C

Packet Flow C → S

IP Header

AS4 AS3 AS2 AS1

C4

Payload

R3 R’2

AS2
R2

IP Header

AS4 AS3 AS2 AS1

C4 C3

Payload

IP Header

AS4 AS3 AS2 AS1

C4 C3 C2

Payload

IP Header

AS4 AS3 AS2 AS1

C4 C3 C2 C1

Payload

Fig. 1: Path Identifier. R′
4 is the egress router of AS4 and

R3, R2, R1 are the ingress routers of AS3, AS2, AS1 respec-
tively. R′

4 writes the path-identifier to the packet heading to
server S in AS1, and ingress routers on the path validate the
markings. Cj is the capability issued by Rj . Each ingress
router can validate the shaded part of the markings.

We define a packet’s AS-path to its destination as the path-
identifier of the packet, and present it in the order of markings:
from the origin to the destination. Thus, as illustrated in
Fig. 1, the path-identifier seen at a congested router in AS1

is {AS4, AS3, AS2, AS1}. We implement this path-identifier
in a shim header so that only upgraded routers interpret it.
Throughout this paper, we denote the path-identifier whose
markings start with ASi by Si and the BGP speaker of ASi by
Ri. In Section IV, we present a mechanism that protects path-
identifiers from potential attacks (e.g., spoofing and replay
attacks).

C. Link Access Guarantees

In defending against DoC attacks, our goal is to provide
precise guarantees of link access to capability requests, where
the guarantees are provided in a domain basis to confine the
effects of attacks within the domains originating attack traffic.
This goal is achieved by a new fair queueing mechanism that
allocates separate buffer slots to individual domains. And, the
guarantees provided by the queueing mechanism are optimized
to favor the requests from uncontaminated domains by bots,
using a path aggregation mechanism.

1) Fair Queueing Revisited: The use of a fair queueing
scheme for link-access guarantees is intended to maximize
service on the legitimate capability requests. Fair queueing
schemes, if they can assign separate queues to individual
path-identifiers, could provide fair bandwidth to the path-
identifiers without link under-utilization (which could occur
whenever strict bandwidth reservation is made to individual
path-identifiers). However, when the spatio-temporal dynamics
of domains contributing to congestion (e.g., time-varying pat-
terns of domain traffic) are considered, such queue assignment
in a limited buffer is a challenging problem. For example,
for a fixed buffer size, under-provisioning of the number of
queues in a specific time period may fail to provide link-
access guarantees to path-identifiers due to potential queue
collisions among different path-identifiers. In contrast, over-
provisioning of it would decrease the length of individual
queues, hence weaken the guarantees (viz., Section V). Thus,
we aim to design a fair queueing scheme that assigns a unique
queue to each path-identifier and adjusts the individual queue

lengths to fit the buffer size for link-access guarantees and
their enhancement – a desired goal.

While a variety of traditional fair queueing schemes focus
on the bandwidth fairness of flows in different queues that
contain various sizes of packets, the Stochastic Fair Queueing
(SFQ) scheme [15] offers queue length fairness via a buffer
stealing mechanism, whereby a packet that finds a full buffer
on its arrival would steal a buffer-slot from the longest queue.
We note that the fixed size capability request packet would
eliminate the intrinsic bandwidth unfairness of SFQ in the
presence of different packet sizes [16]. Based on the buffer-
stealing idea, we improve SFQ in two respects. First, we
avoid queue collisions among path-identifiers that are allowed
but fairly distributed via stochastic queue assignment in SFQ.
Second, we make queue management operations (e.g., queue
assignment and buffer-slot preemption) scalable and efficient
to easily adapt our scheme to diverse operating environments
(e.g., link capacity, the number of required queues). Those
improvements are made via a dynamic virtual queueing mech-
anism presented in Section V.

2) Path Aggregation: As more domains are contaminated
by attack sources, link-access guarantees provided by our
queueing scheme become weak as both available link band-
width and buffer-slots to each path-identifier decrease. This
undesirable dependency of guarantees on attack dispersion is
unavoidable as long as all path-identifiers are equally treated.
Protecting requests of uncontaminated domains essentially
needs a differential treatment of path-identifiers based on the
proportion of legitimate requests they deliver. Though the le-
gitimacy of individual capability requests cannot be validated,
the proportion of legitimate requests in a set of requests can be
estimated using a couple of flow conformance tests. These tests
consist of (1) a test on bandwidth conformance that represents
the aggressiveness of requests and (2) a test on protocol
conformance that indicates the legitimacy of authorized flows
in various respects (viz., Section VI-A).

Conformance tests performed on each path-identifier en-
ables differential assignment of bandwidth to path-identifiers
that maximizes service to legitimate requests at the flooded
link. Yet, in the presence of a large number of attack domains,
such assignment cannot easily be made, nor can it tolerate
imprecise measurement of domain contamination. Instead, we
aggregate the path-identifiers of a highly contaminated locale
and assign a new path-identifier to them. This, in effect,
limits both available bandwidth and buffer space for those
path-identifiers. We define this path aggregation problem as
a constrained optimization problem and provide an efficient
solution in Section VI-C.

IV. PATH IDENTIFICATION

In this section, we first describe the basic path identification
mechanism, and then enhance the mechanism with additional
security features.

The basic path identification mechanism works as follows.
When the egress router of a domain (i.e., the BGP speaker)
forwards a packet that originates from its domain, it writes

3

the path-identifier (i.e., the AS-path to the destination) in the
packet’s header. AS ingress routers of the packet forwarding
path validate the authenticity of a fraction of this path-
identifier starting with the upstream AS that forwarded the
packet and ending with the destination AS as shown in Fig.
1. Whenever AS ingress routers receive a non-marked packet,
they write their own path-markings: the AS-path from their
upstream AS to the destination AS.

As remote domains can validate only a part of path-
markings, attack sources in non-path-marking domains may
spoof path-identifiers unless the marking scheme (which
includes the verification function) is sufficiently deployed.
Even under wide deployment of the marking scheme, the
authenticity of path-identifiers verified at a domain cannot be
delegated to the downstream domains without a strong trust
relationship established between those domains. This makes
any manipulation of path-identifiers by compromised routers
undetectable at remote routers. To protect path-identifiers from
these attacks (i.e., spoofing and replay attacks), we present a
secure path identification mechanism below.

A. Unspoofable path-identifier

We first introduce potential attacks that disturb path-
identification at remote routers and present our defense mech-
anism against those attacks.

Let {ASn, . . . , AS2, AS1} be the path-identifier seen at the
congested router, and let ∗ and # be any valid and forged
sequence of markings respectively. If the domains up to ASi

are unprotected by our path identification (which includes
both path marking and verification) scheme, both compro-
mised sources in non-path-marking domains and compromised
routers in ASk can forge a path-identifier as {#, ASi, ∗, AS1}.

In principle, a router can authenticate its path-markings
to other routers by adding a digital signature to the path-
markings. However, adding a different digital signature to
every packet would impose significant computational overhead
for both its generation and verification. Moreover, a per-packet
signature, if employed, could be exploited by attackers to ex-
haust routers’ computational resource (e.g., by flooding small-
size packets). To reduce authentication overhead, we design an
efficient path-identifier authentication mechanism, where each
domain pre-distributes its domain-authenticator and uses it to
authenticate its path-markings. One fundamental assumption
for implementing this mechanism is that any protected AS
has a public-private key pair certified by a trusted certificate
authority (e.g., ICANN [17]).

1) Authenticator Distribution: When a BGP speaker ad-
vertises an address prefix that belongs to its domain, the BGP
speaker adds an origin authentication number (OAN), which is
unique in its domain and is digitally signed with the domain’s
private-key, to its route advertisement. All BGP routers that
receive this route advertisement authenticate the OAN using
the origin AS’ public-key and hold the authenticated ASN
(AS Number)-OAN pair for later path-identifier authentication.

Legitimate
Path Identifier {AS4, OAN4

k, AS3, AS2, AS1}

�

√

Forged
Path Identifier
(AS3 is a non-marking domain)

{AS4, OAN#, #, AS3, AS2, AS1}

√1

3

AS4 AS3 AS2 AS1

Packet (C → S)

C
S

Client

Server

{AS3, AS2, OAN2
k, AS1}

Path Identifier
from an Unprotected Domain
(AS4, AS3 are non-marking domains)

√2

Fig. 2: Path-identifier Authentication. ¬ Path-identifier written
at the packet’s origin (AS4) can be validated at any domain
(AS2, AS1) in the presence of a non-marking domain(s) (AS3)
on the packet’s forwarding path. If the origin AS does not
participate in path-marking, the first participant (AS2) writes
its markings and adds the incoming AS number (AS3) to
distinguish the packets it forwards from the ones originating
from it. ® An invalid ASN-OAN pair (denoted by #) can be
detected and filtered.

Since the number of ASN-OAN pairs is at most 65,5352, the
space requirement for this validation is bounded, i.e., 262KB
for 4-Byte OANs.

2) Origin Authentication: The BGP speaker of a packet’s
domain of origin writes its ASN-OAN pair followed by the
AS-path to the destination in the path-identifier header. Fig.
2 illustrates the cases for origin authentication under different
deployment scenarios of the marking scheme. Whenever no
path-identifier is present in a packet, the ingress router of
a marking AS constructs path-markings with its own ASN-
OAN pair (viz., in Fig. 2). On receiving path-identifiers
constructed as such, the AS ingress routers on the later
path validate the origin’s OAN and the partial AS-path as
discussed above.3 In this way, the routers on the way to, or
at the destination AS can identify any forged path-markings
by adversaries even in the presence of consecutive non-path-
marking ASs on the path and filter packets carrying those
forged path-markings.

While a compromised router in ASi can still forge
two valid types of path-identifiers such as {ASi,OAN

k
i , ∗}

and {#, ASi,OAN
k
i , ∗}, their effects can be limited to at

most those of two path-identifiers by discarding the non-
authenticated prefixes of path-identifiers.

B. Preventing Replay Attacks

Under partial deployment of our path-marking scheme,
attack sources in non-path-marking domains may forge path-
identifiers ending with authenticated ASN-OAN pairs (since
ASN-OAN pairs are not confidential to end-hosts) and use
them in flooding a target link. Such replay attacks would

2As of 2010, the number of advertised ASNs is about 35,000 out of 65,535
(16-bit) possible ASNs [18]

3For path validation, routers need to keep AS-path information (from next
hop to the destination AS) in their forwarding table (i.e., FIB). However, this
would not require much space since the average number of ASs a packet
traverses from its origin to destination is four.

4

significantly affect the requests from path-marking domains
and hence prevent those domains from receiving incentive for
early adoption of the path-marking scheme.

Path-marking routers counter replay attacks via fast OAN
renewals, which are efficiently implemented using a reverse
hash chain [8]. Let OAN0

i be the initial OAN of ASi. ASi

constructs a hash chain of OANs by repeatedly hashing
OAN0

i with a cryptographic hash function (i.e., OANk
i =

Hash(OANk−1
i ||ASi||k − 1) for 1 ≤ k ≤ M), and distributes

OANM
i when advertising a route. We engage ASi and k − 1

in generating OAN to produce distinct OAN sequences for
different ASs and initial OANs respectively. A BGP speaker
uses OANk

i during a predefined interval; and changes it to
OANk−1

i in the next interval. Hence, without breaking the
hash function, an attacker cannot construct the valid sequence
of OANk

i s to be used. A (ingress) router can authenticate
OANk

i by computing Hash(OANk
i ||ASi||k) and comparing it

with OANk+1
i . This OAN authentication is performed only

once for every OAN renewal. Once OANk
i is used, OANk+1

i

is invalidated. Note that if the OAN renewal period is less than
the time required for replaying OANs, replay attacks will be
effectively prevented. The length of a OAN hash chain (M)
is determined in consideration of the OAN renewal period
to avoid frequent OAN distribution. For example, if a 20-bit
sequence number (M ≈ 1 million) and 500ms OAN renewal
period are used, a domain needs to advertise its OAN once in
every six days. We also note that routers in different domains
need not be time-synchronized as an OAN carries its sequence
number that is specific to the domain.

V. DYNAMIC VIRTUAL QUEUEING

In this section, we describe a dynamic virtual queue-
ing mechanism for link-access guarantees on path-identifiers.
Our dynamic virtual queueing mechanism is designed to
assign a separate queue to active path-identifiers and pro-
vide queue length fairness to the path-identifiers in a min-
max manner. For these purposes, a router manages virtual
queues rather than physically separate queues, that are dis-
tinguished by the path-identifier (Si), its count at time t
(NSi(t)) and packet location (memory address) (ASi) in
the buffer; i.e., (Si, NSi(t), ASi). Given these tuples and
the buffer size LQ, queue-length fairness on path-identifiers
(minmaxSi∈S NSi(t) for

∑
Si∈S NSi(t) = LQ) can be de-

scribed by the following buffer-slot preemption policy. If a
packet finds the buffer full on its arrival, it preempts a buffer-
slot from the longest virtual queue. If the arrived packet be-
longs to the longest virtual queue, or its preemption produces
another longest virtual queue, the packet would be dropped.
This preemption policy ensures guaranteed buffer-slots to
each path-identifier if the number of buffered path-identifiers
is bounded. We assume that the number of buffered path-
identifiers can be statistically or deterministically bounded at
a router (i.e., the minimum bandwidth to a legitimate path-
identifier can be determined).

A. Implementing Buffer-slot Preemption

For efficient and scalable accounting of virtual queue
lengths, we use a new Counting Bloom Filter (CBF) that holds
the number of buffer-slots occupied by path-identifiers and
provides lookup, add and remove operations in O(1) time (a
modified version of CBF [19]). CBF consists of m counter
arrays of size 2b (a1, a2, . . . , am) and m hash functions of b-
bit output (H1,H2, . . . ,Hm), where ai is associated with Hi.
For an input to CBF, each hash function maps its output to
the corresponding array position; e.g., ai[Hi(S1)] corresponds
to the input S1 for 1 ≤ i ≤ m.

Path-identifier accounting in CBF works as follows. All
array values are initialized to zero. When a packet is added
to the buffer, its path-identifier is fed into CBF. Then, CBF
locates m array positions for the path-identifier, and in-
creases the corresponding array values. The same applies
to a packet removal from the buffer, yet the counter val-
ues are decreased. In this scheme, the limited hash out-
put size (i.e., 2b) could cause hash-output collisions among
path-identifiers. Such collisions would make corresponding
array values increased by multiple path-identifiers, hence
corrupted. However, unless all of the array values associ-
ated with Si are corrupted, we can compute the count of
buffered Si’s by taking the minimum of the array values;
i.e., min{a1[H1(Si)], a2[H2(Si)], ..., am[Hm(Si)]}. Since the
probability that all m array values of a path-identifier are
corrupted is (1 − (1 − (1/2b))|S|)m for |S| buffered path-
identifiers [20], we can make the probability negligible by
increasing the array size (2b) or the number of arrays (m).

Path-identifiers that occupy more buffer slots than the guar-
anteed amount (i.e., ⌊LQ

|S| ⌋) should be kept track of for possible
preemption. To this end, a router maintains a table, named
Path-Identifier Record (PIR), that holds over-buffered path-
identifiers, their counts and corresponding packet locations.
In PIR, a path-identifier is stored as the concatenation of its
m hash outputs, defined as “path-signature.” This enables fast
buffer-slot preemption because the preempted packet’s path-
signature would directly locate array values that need to be
decreased in CBF.

B. Probabilistic Guarantees

If packet arrivals carrying path-identifier Si are modeled
as a Poisson process and k buffer-slots are allocated to Si,
the probabilistic lower bound of Si’s link access (denoted by
G(|S|, k, Si)) is provided as follows.

G(|S|, k, Si) = (V.1){ ∑k−1
j=0

(kρSi
)j

j!
e−kρSi ρSi

< 1

1
ρSi

(1− GL)(1−
∑∞

j=k

(kρSi
)j

j!
e−kρSi

(j
k−1

)
Gk−1
L) ρSi

≥ 1

where λSi is the request rate of Si, ρSi =
λSi

|S|
CR

is the

bandwidth utilization of Si, and GL =
∑k−1

j=0
(kρSi

)j

j! e−kρSi .
We justify the Poisson arrival model of capability requests

with two reasons: (1) during the short interval that the guar-
antees are defined (i.e., the maximum queueing delay of a

5

router ∆Q), the capability requests by different clients can be
assumed independent; and (2) a single capability can be used
for multiple correlated sessions that need to be established for
most Web applications (that is, multiple correlated capability
requests are unnecessary). Under this model, if ρSi < 1,
an arrival of Si is guaranteed to be serviced if less than k
arrivals of Si has occurred in ∆Q. If ρSi ≥ 1, an arrival
of Si is guaranteed to be serviced only if its queue length
is less than k. Thus, Eq. (V.1) can be easily proved. The
probabilistic guarantee of Si’s link-access is provided by
setting |S| = |S|max and k = ⌊ LQ

|S|max
⌋. We provide a full

proof in Appendix A.

C. Resource Requirements

1) Request Packet Buffer: A large buffer (LQ) for capability
request packets is preferable since it would not only improve
the guarantees (viz., Eq. (V.1)) but also handle the requests
from spontaneously created, short-lived paths. However, the
size of the buffer should be bounded in consideration of the
maximum allowed queueing delay to avoid unnecessary retries
from flow sources. For example, if we assume 0.25 second
maximum queueing delay and 128B4 request packet size, for
a 2.5 Gbps link 5, a router requires 4.0 MB buffer (when 5%
of link bandwidth is allocated for capability requests [6]), and
with which it can provide 8 guaranteed buffer slots up to 3.75K
path-identifiers.

2) Path-Identifier Accounting: The memory requirement
for CBF is determined by a target false-positive ratio. The false
positive ratio of a CBF is determined by

(
1− (1− 1

2b
)|S|)m ≈(

1− e−
|S|
2b

)m

=

(
1− e−

LQ

k·2b

)m

since LQ = k · |S|. Hence,

for a desired false positive ratio, the size of each counter array
in CBF, which is same as the size of hash output (2b), is
linear with the buffer size (i.e., Θ(LQ)). For example, a CBF
with 8 hash functions of 14-bit outputs would require 8 × 214

(hash outputs) ×28 (counter) = 131KB memory space while
producing a reasonably low false positive ratio (3.07×10−4%)
in the presence of 3.75K path-identifiers.

PIR holds the path-identifiers whose count exceeds ⌊LQ

|S| ⌋
for possible preemption. Hence, the memory requirement is
bounded by LQ/(k+1)× (16B (path-signature) + 4B (address
pointer)) (e.g., 60KB for the above example), since the number
of path-signatures in PIR has its maximum when all path-
identifiers have k+1 packets in the buffer. Hence, the memory
requirement for both CBF and PIR is Θ(LQ).

VI. PATH AGGREGATION

In this section, we first describe a mechanism for estimat-
ing the proportion of legitimate requests of individual path-
identifiers, and then, a path-identifier aggregation mechanism
that maximizes the goodput ratio, defined as the proportion
of legitimate requests in all serviced requests, at a congested
link. Aggregating path-identifiers produces an optimal traffic

4We reserve 88B shim header: 40B for path-identifiers (up to 10 AS
markings), 8B for an origin authenticator and 40B for 5 capabilities.

52.5Gbps (OC–48) links are widely used for ISP’s backbone links.

tree to which applying our queueing mechanism maximizes
goodput ratio at the congested link.

A. Goodput Estimation

In absence of any other useful information regarding the
origin of attack sources and the path-identifiers assigned to
them, the request rate of path-identifier Si (λSi) can be used
as a unique measure for estimating the goodput ratio of Si.
We define the bandwidth conformance of path-identifier Si

as min{1, CR

λSi
|S|max

} to represent how the request rate of Si

conforms to the assigned bandwidth to it, and denote it by
EB
Ri

, i.e., EB
Ri

= min{1, CR

λSi
|S|max

} (recall that Si is assigned
to all packets originating from Ri).

Additionally, we estimate domain contamination more ac-
curately by identifying the following attack flows.

Unauthorized flows: A capability issued by a router during
the connection establishment phase of a flow must be used
at least once for actual data transmission unless it is denied
afterward by application services, firewalls or IDSs. Thus, the
proportion of unused capabilities could effectively measure do-
main contamination as it reflects the strong flow authorization
results applied at the network ends.

High-rate flows: Flows that send high-rate traffic using
valid capabilities would exhibit high packet-drop rates as
indicated in [21]. Hence, if a router implements per-domain
bandwidth control,6 high-rate attack flows within a domain
can be identified by capability drop rates [22].

High-fanout sources: If sources are allowed to establish
an unlimited number of connections with other destinations
through the congested link, they can deplete link’s bandwidth
with a large number of legitimate-looking flows [23]. This
insidious attack will be prevented if a router limits the number
of per-source capabilities as follows.

Let Cfs,d be the capability for a flow fs,d between a source
s and a destination d. Cfs,d consists of two parts, namely
Cfs,d = C0

fs,d
||C1

fs,d
. Here, Ck

fs,d
is defined as:

C0
fs,d = Hash(IPs, IPd,K

1
R)

C1
fs,d = Hash(IPs, f(IPd),K

2
R)

where IPs and IPd are the source and destination IP addresses,
K0

R and K1
R are the router’s secret keys, and f(·) is a function

whose output is randomly uniform on [0, nmax-1].
C0

fs,d
provides identifier authenticity to flows [5], [6], and

C1
fs,d

restricts the number of per-source capabilities to nmax

by taking f(IPd) as a hash input. If C1
fs,d

is used for estimat-
ing flow bandwidth, flows of high-fanout sources would be
aggregated and turn into high-rate flows.

The above attack-flow identification measures help estimate
the proportion of legitimate flows in flows carrying Si, which
we define as the protocol conformance of Si and denote by
EP
Ri

.

6Flows in different domains could exhibit different drop rates due to
different RTTs.

6

Based on the bandwidth and protocol conformances, the
conformance estimate ERi of Si, representing the estimate of
Si’s goodput ratio, is defined as:

ERi = e
−

γ·λSi
|S|max

CR (EB
Ri

− EP
Ri
) + EP

Ri

ERi(tj) = (1− α)ERi + αERi(tj−1)

where γ and α are the weighting coefficients.
The conformance estimate of Si is the weighted average

of the bandwidth conformance and the protocol conformance,
where the weighting factor exponentially favors the protocol
conformance as sufficient requests have been made. In this
way, we prevent a domain’s conformance estimate from being
highly biased by its (low) request-rate; e.g., unexpected packet
drops of a low-rate path-identifier would produce a very
low protocol conformance for the corresponding domain. We
determine ERi at time tj by taking the moving average of
ERis, and update it once in every aggregation period (∆agg);
i.e., tj − tj−1 = ∆agg .

B. Aggregation Problem

For path aggregation, the congested router R0 builds the
traffic tree TR0 using the path identifiers carried in the active
flows and decomposes TR0 into a legitimate tree T L

R0
and

an attack tree T A
R0

. T L
R0

is constructed with legitimate path-
identifiers that have a higher conformance estimate than a
certain threshold (Eth), and T A

R0
is constructed with the other

(non-legitimate) path-identifiers. Then, the router constructs a
new traffic tree T ′

R0
by merging those two trees at the root

(i.e., the disjoint union of T L
R0

and T A
R0

). Path aggregation is
performed on this new traffic tree T ′

R0
, so that legitimate paths

would never be aggregated with attack paths.
The congested router starts path aggregation from neigh-

boring domains (i.e., domains with longest suffix-matching
path-identifiers) to localize attack effects, and proceeds with
aggregation until a desired number of path reductions are
made (viz., Eq. (VI.1)). Aggregation is performed with respect
to the conformance estimate of each path since link-access
guarantees should not be biased by the path’s request rate.
Hence, if the number of access-guaranteed path-identifiers
is |S|max, the path aggregation problem is to construct an
optimal tree which has |S|max distinct paths and to which
providing link-access guarantees maximizes goodput ratio at
the congested link. This can be defined as a constrained
optimization problem below.

Let R be the set of all nodes in T ′
R0

, and Ri be the set of
leaf nodes of a subtree rooted at Ri ∈ T ′

R0
(i.e., TRi

). Then,
the optimization problem is defined as:

max O(T ′
R0

) = max
∑

Ri∈R

1

|Ri|
∑

Rj∈Ri

ERj (VI.1)

subject to
∑

Ri∈R

IRi ≤ |S|max and
⊔

Ri∈R

Ri = R0

where IRi equals 1, if paths are aggregated at Ri, and 0,
otherwise. For a non-aggregated path, IRi is 1 at the leaf node.
Since

∑
Si∈S IRi is the number of path identifiers seen at R0,

it should be bounded by |S|max.
In the above equation, aggregation at Ri decreases the

total conformance estimate by |Ri|−1
|Ri|

∑
Rj∈Ri

ERj . We define
this value as the aggregation cost and denote it by CA(Ri);
i.e., CA(Ri) = |Ri|−1

|Ri|
∑

Rj∈Ri
ERj . Hence, a set of nodes

at which aggregating path-identifiers produces the minimum
(total) aggregation cost, would be a solution to the above
problem.

We note that, if the set of aggregating nodes (routers) are
fixed, the optimization problem of Eq. (VI.1) is the same as
the 0-1 knapsack problem7 which is known to be NP-complete.
In Eq. (VI.1), however, the set of aggregating nodes and the
relative aggregation cost of a leaf node (|Ri|−1

|Ri| ERj
, Rj ∈ Ri)

vary as aggregation proceeds to the root. This means the 0-
1 knapsack problem should be solved repeatedly as the set
of aggregating nodes is redefined. We present an efficient
algorithm for this problem below.

C. Aggregation Algorithm

Whenever aggregation is necessary (i.e., |S| > |S|max),
aggregation is performed as summarized in Algorithm 1. Let
O be the solution set and C be the candidate set. Initially, O is
empty and C has all intermediate (i.e., non-leaf) nodes in T ′

R0

as its elements. Then, the algorithm works in a greedy fashion:
for each iteration, the node that causes the lowest cost-decrease
to C is added to O, and this continues until the constraint on
the number of path identifiers in Eq. (VI.1) is satisfied. Though
Algorithm 1 is a greedy approximation algorithm, it ensures
that the total cost of the candidate set decreases minimally
at each iteration. As a consequence, its approximation error
from the optimal aggregation cost is bounded by the number
of incoming links of the last added node to O. We provide
the proof on the error bound in Appendix B.

Algorithm 1 Aggregation
1: Set O = ∅ and C = {Ri|Ri ∈ T ′

R0
−R0}.

2: Move the lowest aggregation cost node in C to O.
3: Ri ∈ C replaces the current solution set if it satisfies the

following replacement conditions:
• CA(Ri) <

∑
Rj∈O CA(Rj)

• CA(Ri) > maxRj∈O CA(Rj)

4: Repeat steps 2 and 3 until the constraint on the number of path-
identifiers (in Eq. (VI.1)) is satisfied.

VII. SIMULATION RESULTS

In this section, we present our ns2 simulation results for
various attack scenarios to evaluate our design. Network
topologies for simulations are configured to capture the worst
case effect of different attacks and to ascertain how well our

7 CA(Ri)
|Ri|

can be considered as the unit value of an element, |Ri| as the
size of an element, and |S|−|S|max as the knapsack size in the 0-1 knapsack
problem.

7

Balanced

Uncontaminated Domain

Contaminated Domain

Transit Domain

1

Unbalanced

2

9

10

d = 3

d = 3d = 3

h
=

 3

h = 9

Fig. 3: Topology used in simulation.
Legend: “d” is the number of sibling nodes and “h” is the tree
height.

design goals are satisfied. The balanced tree shown in Fig. 3
is used for simulations that evaluate the access guarantees and
the effectiveness of aggregation. The unbalanced tree is used to
show that our scheme effectively provides access guarantees to
domains independently of their location on a routing path. We
assign 5% of link capacity to the capability request channel as
in [6]. In most simulations, the total request rate of legitimate
sources is set close to the link capacity of request channel
(i.e., ρSi ≈ 1 for legitimate domains) to accurately capture
the effects of attacks. Requests are randomly placed during the
specified simulation interval to approximate Poisson arrivals.

We compare our simulation results with those of TVA [6],
which protects capability requests using a hierarchical fair-
queueing mechanism.

A. Link-Access Guarantees

To evaluate the local effect of flooding attacks in our
scheme, we use a 27-path balanced tree, where 30 legitimate
sources are attached to each leaf node, and attack sources
are increased at a leaf node. In this simulation, we set the
number of access-guaranteed paths (|S|max) to 27 and the
buffer size to that of 108 packets so that 4 buffer-slots are
guaranteed to each path. Each source randomly starts 100
different sessions (which is equivalent to 100 times more
sources) between 0 and 10 seconds. This source configuration
is used for entire simulations. We also run simulations with
a TVA [6] router configured to have 1000 queues of length 4
(as TVA requires distinct queues for individual sources in the
current implementation) for comparative evaluation.

As Fig. 4 shows, the request drop ratios of legitimate paths
are stable over the wide range of attack sizes with both our
scheme and TVA. That is, both schemes effectively localize
flooding attacks when compared with the no defense case.
Note that a per-client defense would have the same result as
that of no defense when bots are used to flood the link. Yet,
our scheme outperforms TVA with a much smaller buffer (108
vs. 4000 buffer-slots). This is because our scheme dynamically
adjusts virtual-queue lengths in a min-max manner, which in
effect allows more than the guaranteed buffer-slots to path-
identifiers unless their bursts are synchronized (in which case,
only the guaranteed buffer-slots hold).

To illustrate the robustness of the guarantees that our scheme

provides, we configure an extreme adversarial scenario where
60 paths of a 64-path balanced tree (i.e., h = 3 and d = 4
in Fig. 3) send a large number of requests, and observe the
service ratio of the remaining 4 paths. Fig. 5 shows the proba-
bilistic guarantee (G(|S|, k, Si), viz., Eq. (V.1)), the stationary
service probability (P (|S|, k, Si))8, and the simulation result
(Pr(|S|, k,SL)) for the set of legitimate path-identifiers SL,
under specified bandwidth utilizations – the ratio of request
rate to an allocated bandwidth. Even under this extreme attack
scenario, the service ratio of legitimate paths is close to the
theoretical stationary packet service probability, which is much
higher than the probabilistic guarantees, as illustrated in the
figure.

Next, we show that link-access guarantees provided by our
scheme are independent of attack location. For this simulation,
we use a 40-path unbalanced tree shown in Fig. 3. We
attach 30 legitimate sources to each leaf node, and 200 attack
sources to each of eight attack nodes; four of these nodes
are placed at different locations for each simulation and the
remaining four nodes are placed at the farthest location from
the flooded link. In this scenario, we simulate the queue
implementation for G(34, 8, Si), G(64, 4, Si) and G(64, 8, Si),
and those for the corresponding 4 and 8-slot queues in a
TVA router (i.e., 4000 and 8000 total buffer-slots respectively).
Fig. 6 shows the request drop ratios of legitimate paths, where
the horizontal axis represents the index of attack location (viz.,
unbalanced tree in Fig. 3). With our scheme, the request drop
ratios are uniform over different attack locations. This means
our scheme provides almost same protection against flooding
attacks regardless of the attackers’ location. In contrast, TVA’s
performance is highly dependent upon attackers’ location since
TVA assigns more buffer space to nearby domains (viz.,
Section II).

B. Differential Guarantees

Path-identifier aggregation, which optimizes domain band-
width allocation when attack sources are widely dispersed
across domains, occurs whenever the number of active paths
(|S|) becomes greater than the number of access-guaranteed
paths (|S|max). In Fig. 6, the result of the queue implementa-
tion for G(34, 8, Si) illustrates the effectiveness of aggregation.
As aggregation increases bandwidth allocation to legitimate
paths by a factor of |S|−|S|max

|S|max
(i.e., 6/34 ≈ 17.6% in that

simulation), the request drop ratio of those paths decreases
76.8% (from 6.43% to 1.49%) when compared with that of
the queue implementation for G(64, 4, Si) (under which no
path aggregation occurs). This is far below the stationary drop
probability of legitimate paths (i.e., 1−P (|S|, 8, Si) ≈ 5.32%)
which would result when physically separate queues are as-
signed to those paths.

We also evaluate the effectiveness of the protocol con-
formance measure in aggregating attack paths. For this, we

8For k guaranteed buffer-slots, the stationary packet service probability of

Si is determined by P (|S|, k, Si) = 1−
ρkSi

(1−ρSi
)

1−ρk+1
Si

. This is derived from

the blocking probability of a M/M/1/k queueing system.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Le
gi

tim
at

e
R

eq
ue

st
 D

ro
p

R
at

io

of attackers

Our Scheme
TVA

No defense

Fig. 4: Request drop ratio of legitimate
paths. Error bars represent 95% confi-
dence intervals.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

P
ro

ba
bi

lit
y

of
 S

er
vi

ce

ρ = request rate / assinged capacity

Pr(64,1,SL)
Pr(64,2,SL)
Pr(64,4,SL)
P(64,k,Si)

Fig. 5: Request service probability of
legitimate paths with respect to band-
width utilization (ρ). The solid hori-
zontal lines inside bars represent the
probabilistic guarantees (G(|S|, k, Si)).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

R
eq

ue
st

 D
ro

p
R

at
io

 o
f L

eg
iti

m
at

e
P

at
hs

Attack Location (Node ID)

Pr(34,8,SL)
Pr(64,8,SL)
Pr(64,4,SL)

TVA(8)
TVA(4)

Fig. 6: Request drop ratio of legitimate
paths with respect to attack location in
the unbalanced tree. TVA(k) represents
the result of TVA with queue-length k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

S
er

vi
ce

 R
at

io
 o

f L
eg

iti
m

at
e

P
at

hs

% Attack Sources in Contaminated Domains

Fig. 7: Aggregation by protocol conformance: The request
service ratio of legitimate paths increases as the fraction of
bots becomes higher.

configure a 64-path balanced tree such that the same number
of nodes are attached to leaf nodes to make the request rates of
all paths identical. Then, we set |S|max to 34 (which limits the
number of attack path-identifiers by at most two) and increase
the fraction of attack sources whose capability requests are
denied at the destination host, from 10 to 100% in half of
the leaf nodes. Note that the bandwidth conformance measure
alone cannot distinguish attack paths from legitimate ones
when the same request rates occur in all paths.

As Fig. 7 shows, aggregation is more precisely performed on
attack paths (which leads to higher service ratios of legitimate
paths) as the fraction of attack sources in contaminated do-
mains grows. When domains are lightly contaminated (i.e., the
fraction of attack sources is less than 40% in this simulation),
legitimate paths can be aggregated. This is because aggregating
attack paths near the attack target (i.e., multi-level aggregation
of those attack paths) produces a higher aggregation cost than
aggregating legitimate paths near their origins. Relatively high
cost of multi-level aggregation also causes high service-ratio
variation to legitimate paths, as a result of imprecise distinction
between legitimate and attack paths.

C. Rolling Attacks

Another simulation we performed is that of the “rolling
attacks”, whereby attack sources change their location to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

G
oo

dp
ut

 R
at

io

Time (sec)

Fig. 8: Time variation of goodput ratio at the congested link.
Legend: Error bars represent the minimum and maximum of
goodput ratio.

exploit delays in the response time of any defense mechanism.
For this simulation, we attach 16 attack nodes at 4 different
locations in the unbalanced tree (i.e., at node 1,2,9 and 10) of
Fig. 3 and place 200 attack sources in each attack node. We
configure a rolling attack such that attack sources attached to
node 1 and 10 flood the target for 10 seconds and the other
attack sources for the next 10 seconds with a 20-second period.

In Fig. 8, we illustrate the time variation of goodput ratio
(viz., Section VI) at the congested link averaged over 10
runs. The goodput ratio is very low at the beginning of
the simulation, since attack requests go through the target
link before being preempted by legitimate ones. However,
as buffer-preemption occurs (as soon as the buffer is filled)
and aggregation starts (around t = 2), the goodput ratio rises
sharply. Changing attack location significantly decreases the
goodput ratio as the number of attack path-identifiers at the
congested router increases four times (i.e., from 2 aggregated
path-identifiers to 8 path-identifiers). However, these effects
disappear whenever a new aggregation decision is made on
the switched attack paths in ∆agg (which is set to 20·RTT ≈
2 seconds in this simulation).

VIII. INTERNET-SCALE SIMULATIONS

In this section, we present large-scale simulation results to
evaluate and compare the effectiveness of different defense

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of ASs

C
D

F
 o

f b
ot

s

Fig. 9: Bot distribution vs. the number of ASs.

mechanisms (i.e., DefAT, Portcullis and TVA) against DoC at-
tacks. For this purpose, we construct network topologies using
real packet-routes and bot distribution in the Internet. Then, we
compare the link-access times of legitimate capability-requests
under different defense mechanisms.

A. Datasets

For Internet-scale simulations, we use two real datasets:
CAIDA Skitter-Map [24] and Composite Blocking List
(CBL) [11]. A Skitter-Map contains the full routing-paths
measured from a root-DNS server to a large set of randomly-
chosen hosts (300 ∼ 400 thousand) in the Internet. A Skitter-
Map is used as a reference topology from which simulation
topologies are generated for given attack sizes. Among several
distinct maps (that are constructed at different locations), we
use widely different topologies for simulations, in order to
observe the dependence of defense mechanisms on network
topologies (more specifically the locales of legitimate and
attack sources) .

A CBL contains a list of the IP addresses of active spam-
bots. We first cluster the IP addresses in the CBL by their AS
using GeoLite ASN [25], and obtain a reference distribution
of bots (clustered by AS) as illustrated in Fig. 9. The figure
shows that 300 ASs are responsible for about 90 % of bots and
600 ASs are for over 95 %. When the number of active ASs
is considered (which is over 35,000), only a small fraction of
ASs host most bots. This evidences the highly non-uniform
distribution of bots in the Internet.

Based on this bot-distribution, if the size of simulated
attacks is determined, we harvest attack sources from the
same subnet as the one appears in the reference topology (i.e.,
Skitter-Map) and place these attack sources in the topology
such that they have the same bot-distribution as the reference
distribution. Then, we randomly choose legitimate sources
from the Skitter-Map and add them to the simulation topology.
Thus, the distribution of legitimate sources would be similar
with that of AS sizes (in terms of the allocated IP address
space).

B. Scenarios

Our simulator runs in a discrete-time fashion, where indi-
vidual packets advance a single router-hop in a time tick. If we
assume 5ms delay for a single link (i.e., a clock-tick is 5ms),

the end-to-end delay for a source located 30-hops from the
destination would be 150ms. Routers keep the packets arrived
during a tick and handle the packets according to its admission
policy. In simulations, the bottleneck-link capacity is set to
1000 requests per tick, which corresponds to 2.8Gbps (i.e.,
slightly higher capacity than OC-48) if 5ms clock-tick and
5 % bandwidth reservation for the capability-request channel
are assumed. In all simulations, we configure attack sources to
send 10 times more capability-request packets than legitimate
sources, hence the relative strength of attack at the target-link
would be 10 times the ratio of attack sources to legitimate
ones. Attack sources start sending packets from the beginning
of simulation and keep flooding the target during the entire
simulation interval. Meanwhile, legitimate sources start their
transmission after the target-link is fully congested to avoid the
case that packets from closely located sources to the target get
through the link (i.e., are serviced) before congestion occurs
and they finish their transmission. Since packet arrivals from
legitimate sources are delayed proportional to their distance
to the target-link, these packet arrivals would have the same
distribution as that of path length (viz., Section VIII-C). Before
presenting simulation results, we first briefly describe individ-
ual defense mechanisms (i.e., Portcullis, TVA, and DefAT)
used for comparison.

• Portcullis: A Portcullis client, once identifying its ca-
pability request being rejected (due to link congestion),
starts solving a computational puzzle that requires to
spend a certain amount of time (i.e., proves its com-
putational effort) and increases the puzzle level until it
receives a valid capability. In order to solve a higher level
puzzle, the client needs to spend twice the time spent for
the current level puzzle. Portcullis routers prioritize the
packets that carry higher-level puzzle solutions. Hence,
once a legitimate source solves a higher-level puzzle than
attack sources, its request is guaranteed to be serviced
at Portcullis routers. Portcullis provides the best per-
source link-access guarantee if attack sources cannot be
distinguished from legitimate sources and are uniformly
distributed over the Internet.

• TVA: TVA implements fair queueing on the incoming
domains (i.e., ASs) from which packets arrive. The
original scheme is improved later to handle remotely
originated packets, which, whether being legitimate or
not, become aggregated with others as they proceed to
the target. For this purpose, TVA adopts a hierarchical
fair queueing mechanism, where the TVA router allocates
a fair amount of queue space to immediate upstream
domains and these queues are split recursively for their
upstream domains to provide fairness. Hence, the queue
size for a source domain is determined by its distance (in
terms of AS hops) to the target domain and the number
of paths that are aggregated on its path to the destination.
In the simulator, fair queueing is implemented for all out-
standing requests arrived during a time tick via keeping
all requests during the interval and randomly choosing

10

excess requests that need to be dropped. We assume that
all capability-requests carry valid path-identifiers though
path-identifier authenticity is not considered in TVA.
Hence, our implementation approximates the best fairness
that TVA can achieve. In comparative simulations, we use
this advanced version of TVA.

• DefAT: A DefAT router provides link-access guarantees
to source ASs as explained throughout this paper. How-
ever, for fair comparative simulations, path-aggregation
is disabled at DefAT routers because it can significantly
favors the results of DefAT depending on how we set the
number of access-guaranteed paths. Though the number
of access-guaranteed paths can be optimized to maximize
goodput, we leave it as a configurable parameter as
discussed before. We assume that path-identifiers cannot
be spoofed or replayed using the security protection
mechanisms provided in Section IV.

C. Topology

We choose three Skitter-Maps constructed at different loca-
tions (i.e., f-root, h-root, and apan-jp) and generate simulation
topologies with two parameters: the number of legitimate
sources and the number of attack sources. In topology gen-
eration, we set the number of legitimate sources to 10K and
change the attack size from 50K to 300K. Fig. 10 shows
the topology statistics (i.e., AS-path length from source to
destination and average degree of ASs located at the same
distance from the target) for 300K attack sources. The length
of AS-path, which is the number of ASs on a path including
the source AS, spans from 1 to 10, yet is mostly concentrated
between 3 and 5 in all three topologies. The average AS-
degree (i.e., the number of immediate upstream ASs that
send/forward traffic) is widely different in the topologies,
hence it would better characterize topologies. Note that the
number of paths (left vertical-axis) and AS-degree (right
vertical-axis) are shown in a normal scale and a log scale
respectively. For example, f-root is constructed at an AS that
has a very low degree yet whose provider-ASs have a very
high degree. On the other hand, h-root is constructed at a high-
degree AS whose 1-hop and 2-hop neighboring ASs have high
AS-degrees as well. Finally, apan-jp topology has mid-degrees
both at the target (where the topology is constructed) and its
provider. Simulations using these topologies would produce
different results when a router’s defense scheme prioritize traf-
fic based on its confidence on traffic source (e.g., more buffer
allocation to closer domains in TVA). We note that for different
attack strengths, topologies do not change significantly mainly
because attack sources are highly clustered by their locale. We
summarize the more statistical data on the above topologies
in Table I.
Legend: lavg : average path length, lmax : longest path length,
lAS
avg : average AS-path length, lAS

max : longest AS-path length,
Nr : number of routers.

TABLE I: Topology statistics.

lavg lmax lAS
avg lAS

max Nr

f-root 14.99 29 5.44 10 48,624
h-root 13.55 31 4.84 10 42,679

apan-jp 17.15 33 4.80 9 36,621

D. Comparative Simulations

We compare the link-access times of legitimate capability-
requests with different defense mechanisms employed at the
target link. In f-root topology, DefAT provides earlier link ac-
cess to over 90 % of legitimate requests than other mechanisms
in the presence of 100K attack sources, and 80 % of those
requests are almost unaffected by the attack when compared
with the reference access time curve; i.e., that of no attack
(viz., Fig. 11(a)). With Portcullis, all legitimate requests get a
link access when legitimate sources start solving a higher level
puzzle than attack sources. The figure shows that about a half
of requests are serviced at around 150 tick, yet the remaining
requests are serviced at 300 tick as they had to spend twice
the time (i.e., 300 ticks) to solve the next level puzzle. As a
consequence, the link access time curve of Portcullis has two
sharp increases like a step function; i.e., the link access-times
show bimodal distribution. TVA favors only a small fraction
of legitimate requests (about 45 % of legitimate requests in f-
root topology) because requests from close ASs (to the target)
have higher buffer allocation than those of remote ASs.

In h-root topology, slightly faster link-access times are
observed with DefAT. This is because the path-diversity in
this topology is higher than f-root as can be seen in Fig. 10.
Higher path-diversity of legitimate requests enables those
requests to get more buffer allocation in a DefAT router as
DefAT provides guarantees to individual source ASs (this
would further reduce the buffer allocation to highly clustered
attack requests). Portcullis provides almost identical link-
access times for legitimate requests despite topology changes
since its request admission is primarily determined by clients’
computational effort (the level of puzzle that clients solved)
rather than simulation topologies. With TVA, a significantly
different result is observed: only 22 % of legitimate requests
have an earlier link access than no defense, yet service to
remaining 78 % of them are more delayed than in f-root
topology. This explains that the effectiveness of TVA is
highly dependent on the network topology. These results are
consistent under different attack sizes (i.e., topologies with
100K, 200K, and 300K attack sources) as Fig. 11, 12 and 13
show.

Now, we observe how the link-access times of legitimate
requests are affected by the attack size by increasing the
attack size from 50K to 300K. With DefAT, about 80 % of
legitimate requests are unaffected regardless of the attack size,
yet the remaining 20 % of requests (which originate from
attack domains) take longer time to get through the congested
link as the attack size grows. This is an expected result since
we do not attempt to distinguish legitimate requests from

11

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Distance (# of Hops)

of

 P
at

hs

0

50

100

150

200

250

300

A
S

 d
eg

re
e

of Attack Paths
of All Paths
AS degree

(a) f-root

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Distance (# of Hops)

of

 P
at

hs

0

50

100

150

200

250

300

A
S

 d
eg

re
e

of Attack Paths
of All Paths
AS degree

(b) h-root

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Distance (# of Hops)

of

 P
at

hs

0

50

100

150

200

250

300

A
S

 d
eg

re
e

of Attack Paths
of All Paths
AS degree

(c) apan-jp

Fig. 10: Simulation topology with 300K attack sources.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(a) f-root

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(b) h-root

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(c) apan-jp

Fig. 11: Link-access time for legitimate capability-requests under 100K attack sources.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(a) f-root

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(b) h-root

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(c) apan-jp

Fig. 12: Link-access time for legitimate capability-requests under 200K attack sources.

attack requests if they originate from the same domain. In
all three topologies, the link-access times show a consistent
result: the link-access times of 20 % of legitimate requests
become longer as the attack size grows though they are slightly
differ in different topologies. With Portcullis, the link-access
times are doubled if the attack size reaches at a certain
threshold. However, the threshold is not proportional to the
number of attack sources because attack sources, in order to
congest a link with a higher level of puzzles (attack sources
solve a computational puzzle as well), should double their
size. Otherwise, they cannot fully congest the link. Thus,
with Portcullis, link-access times are highly dependent on the

attack size even though they are not on network topologies. In
contrast, TVA’s performance is highly dependent on network
topologies as illustrated in Fig. 14(c), 15(c) and 16(c). This
phenomenon can be explained as: despite the high AS-degree
of the congested domain (viz., Fig. 10(b)), most of legitimate
requests are aggregated with attack requests if they originate
remotely (note that in a limited size buffer, queue cannot split
indefinitely). TVA works well only if the high-degree AS is
directly connected with or closely located at the target ASs.
This is why TVA shows relatively better performance in apan-
jp topology. However, TVA’s advantage to legitimate sources
is marginal as TVA allocates more buffer-space to closely

12

located ASs regardless whether they originate legitimate or
attack requests. In Fig. 15(c) and 16(c), several leaps in the
CDF (e.g., between 1000 and 1500 ticks in Fig. 15(c)) indicate
more queue-space becomes available to legitimate requests in
a short time interval. This happens when some legitimate paths
disappear after finishing transmission and eventually enable a
TVA queue to be split into multiple separate queues for other
remaining paths. Note that a TVA queue splits recursively
(towards the source ASs in the traffic tree) unless the number
of distinct incoming-paths (i.e., immediate children) to the
queue (i.e., intermediate node in the traffic tree) exceeds the
available queue size.

IX. CONCLUSIONS

In this paper, we present a defense scheme against link
flooding attacks targeting connection setups in capability sys-
tems. Our design of a new authenticated path-identification
mechanism provides individual packets with unforgeable do-
main identifiers to which link-access guarantees are provided
at remote routers. Guarantees of link access, defined as the
probabilistic lower bounds of link access, are provided in a
domain basis and they are provided differentially based on
domain contaminations. We show the effectiveness of our
design in two ways. First, NS2 simulations support our ana-
lytical results: (1) link-access guarantees that are independent
of global attack sources and their location, and (2) resilience
against attack dispersion via differential guarantees. Second,
Internet-scale simulations, using the real network topologies
and bot distributions, provide strong evidences on the non-
uniform distribution of bots and how DefAT localizes their
effects on legitimate capability-requests. More specifically,
the simulation results show that over 80 % of legitimate
requests are unaffected or minimally affected by large-scale
attacks, which could not be achieve with previous per-source
or per-aggregate defense mechanisms. We note that differential
link-access guarantees would provide positive incentives to
administrative domains that employ strong security measures
against malware contamination.

ACKNOWLEDGMENT

This research was supported in part by US Army Research
Laboratory and the UK Ministry of Defence under Agreement
Number W911NF-06-3-0001 and by the US Army Research
Office under Contract W911NF-07-1-0287 at the University
of Maryland. The work on Internet simulations was supported
by Northrop Grumman Cyber Research Consortium under
Contract NGIT2009100109 at CyLab, Carnegie Mellon Uni-
versity. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the US Army Research Laboratory, US Army Research
Office, the U.S. Government, the UK Ministry of Defense,
the UK Government, or Northrop Grumman.

REFERENCES

[1] D. X. Song and A. Perrig, “Advanced and Authenticated Marking
Schemes for IP Traceback,” in INFOCOM, 2001.

[2] S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson, “Practical
network support for IP traceback,” in SIGCOMM, 2000.

[3] P. Ferguson, “Network Ingress Filtering:Defeating Denial of Service
Attacks which employ IP Source Address Spoofing,” RFC 2827, 2000.

[4] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet denial-
of-service with capabilities,” in Hotnets-II, 2003.

[5] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks,” in Proceedings of the IEEE
Security and Privacy Symposium, 2004.

[6] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network ar-
chitecture,” in IEEE/ACM TRANSACTIONS ON NETWORKING, 2008.

[7] K. Argyraki and D. R. Cheriton, “Network Capabilities: The Good, the
Bad and the Ugly,” HotNets IV, 2005.

[8] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu,
“Portcullis : Protecting Connection Setup from Denial-of-Capability
Attacks,” in SIGCOMM, 2007.

[9] S. Staniford, V. Paxson, and N. Weaver, “How to Own the Internet
in Your Spare Time,” in Proceedings of the 11th USENIX Security
Symposium, 2002.

[10] D. Dagon, C. Zou, and W. Lee, “Modeling Botnet Propagation Using
Time Zone,” Network and Distributed System Security Symposium, 2006.

[11] “http://cbl.abuseat.org/.”
[12] “http://www.computerworld.com/s/article/9076278/.”
[13] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA: Using

hard AI problems for security,” in Proceedings of Eurocrypt, 2003.
[14] A. Yaar, A. Perrig, and D. Song, “Pi: A Path Identification Mechanism

to Defend against DDoS Attacks,” in In IEEE Symposium on Security
and Privacy, 2003.

[15] P. E. McKenney, “Stochastic fairness queueing,” in INFOCOM, 1990.
[16] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit

round robin,” in SIGCOMM ’95, 1995, pp. 231–242.
[17] “http://www.icann.org.”
[18] “http://www.potaroo.net/tools/asn32/.”
[19] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-

able wide-area web cache sharing protocol,” in IEEE/ACM Transactions
on Networking, 1998.

[20] W. C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Stochastic
Fair Blue: A Queue Management Algorithm for Enforcing Fairness,”
in INFOCOM, 2001, pp. 1520–1529.

[21] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-bandwidth
flows at the congested router,” in ICNP ’01, 2001.

[22] S. B. Lee and V. D. Gligor, “Floc : Dependable link access for legitimate
traffic in flooding attacks,” in International Conference on Distributed
Computing Systems, 2010, pp. 327–338.

[23] A. Studer and A. Perrig, “The coremelt attack,” in ESORICS, Saint Malo,
France, September 2009.

[24] “http://www.caida.org/.”
[25] “http://www.maxmind.com/app/asnum.”

APPENDIX

A. Proof of Probabilistic Guarantees

If ρSi ≤ 1, a packet carrying Si is guaranteed to be serviced
if less than k arrivals of Si have occurred in ∆Q before its
arrival. Let NSi(∆Q) be the # of requests in ∆Q. Then, the
probability of service guarantee on Si is given as follows.

Pr(NSi(∆Q) < k) =

k−1∑
j=0

(λSi∆Q)
j

j!
e−λSi

∆Q

≥
k−1∑
j=0

(k · ρSi)
j

j!
e−k·ρSi (A-1)

In contrast, for ρSi > 1, a per-packet guarantee cannot be
provided, since at least ρSi

−1

ρSi
of requests must be dropped

regardless of the buffer size. In this case, only a fraction
of its requests can be guaranteed to be serviced (i.e., 1

ρSi
),

hence the probabilistic lower bound of link access is defined

13

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(a) f-root

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(b) h-root

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
DefAT
Portcullis
TVA
No Defense

(c) apan-jp

Fig. 13: Link-access time for legitimate capability-requests under 300K attack sources.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
50K
100K
150K
200K
250K
300K

(a) DefAT

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
50K
100K
150K
200K
250K
300K

(b) Portcullis

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
50K
100K
150K
200K
250K
300K

(c) TVA

Fig. 14: Link-access time for legitimate capability-requests under the f-root topology and different botnet sizes.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No attack
50K
100K
150K
200K
250K
300K

(a) DefAT

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No attack
50K
100K
150K
200K
250K
300K

(b) Portcullis

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No attack
50K
100K
150K
200K
250K
300K

(c) TVA

Fig. 15: Link-access time for legitimate capability-requests under the h-root topology and different botnet sizes.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
50K
100K
150K
200K
250K
300K

(a) DefAT

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
50K
100K
150K
200K
250K
300K

(b) Portcullis

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Request Wait Time [in clock ticks]

%
 o

f L
eg

iti
m

at
e

R
eq

ue
st

s
S

er
vi

ce
d

C
D

F

No Attack
50K
100K
150K
200K
250K
300K

(c) TVA

Fig. 16: Link-access time for legitimate capability-requests under the apan-jp topology and different botnet sizes.

14

as the product of 1
ρSi

and the probability that the allocated
bandwidth is fully utilized. Let Pf (Si) be the probability that
a packet arrival of Si finds k buffered Sis. The probability
of full bandwidth utilization is greater than Pf (Si). Let
GL =

∑k−1
j=0

(k·ρSi
)j

j! e−k·ρSi . Then,

Pf (Si) = 1− Pr(# of Si’s in the buffer < k)

≥ 1−

GL +

∞∑
j=k

(k · ρSi)
j

j!
e−k·ρSi

(
j

j − k + 1

)
(1− GL)

j−k+1Gk−1
L

≥ 1−

GL +

∞∑
j=k

(k · ρSi)
j

j!
e−k·ρSi

(
j

j − k + 1

)
(1− GL)Gk−1

L

= (1− GL)

1−
∞∑
j=k

(k · ρSi)
j

j!
e−k·ρSi

(
j

k − 1

)
Gk−1
L

 . (A-2)

By Eqs. (A-1) and (A-2), the Eq. (V.1) follows.

B. Proof of Error Bound

We first define two types of aggregating node. In T ′
R0

, the
node whose all children nodes are leaf nodes is defined as the
“leaf aggregator” and the any other non-leaf node is defined
as “intermediate aggregator.” The last added node to the
solution set can be either a leaf aggregator or an intermediate
aggregator.

If the last added node Ri to the optimal set (O) is a leaf
aggregator, the error from the optimal solution is bounded
by

∑
Rj∈Ri

ERj ≤ |Ri| · Eth, where |Ri| is the number of
incoming links of Ri.

If the last added node to O is an intermediate aggregator,
we can consider two different cases. Let Ri be an intermediate
aggregator, and Ri1, . . . , Rin be the one-hop children of Ri.
By the definition of aggregation cost, the following inequality
can be shown.

CA(Ri) =
|Ri| − 1

|Ri|
∑

Rj∈Ri

ERj ≥
n∑

j=1

CA(Rij) (B-1)

The above inequality means that the last node added to O is
either (a) the node whose all immediate children aggregators
are already aggregated, or (b) the node whose aggregation cost
is less than the total aggregation cost of the current solution
set.

case (a):

CA(Ri)−
n∑

j=1

CA(Rij)

≤ 1

|Ri1|
∑

Rj∈Ri1

ERj + · · ·+ 1

|Rin|
∑

Rj∈Rin

ERj

≤ n · Eth

Like the leaf aggregator, if aggregation is performed at
an intermediate aggregator Ri, the sum of aggregation costs
of Ri’s children are deducted from the total cost. Therefore,

the maximum increase of aggregation cost at an intermediate
aggregator is bounded by n.

case (b):
By (B-1), aggregation can occur at a node if either all its

children nodes are in the solution set, or CA(Ri) <
∑

Roi∈O
CA(Roi), where O = {Ro1, Ro2, . . . Ron} is the optimal
solution set and Ron is the last node added to the current
solution set.

CA(Ri) <
∑

Roi∈O
CA(Roi)

⇔ CA(Ri) <

n−1∑
j=1

CA(Roj) + CA(Ron)

⇔ CA(Ri)−
n−1∑
j=1

CA(Roj) < CA(Ron)

Hence, the increase of aggregation cost cannot be greater
than the product of Eth and the incoming-link degree of the
last added node to the solution set.

15

