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Abstract

A parametric class of series generated by integration of com-
plete elliptic integrals
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is evaluated in closed form. Alternative proofs to results of
Ramanujan and others are given. A particular case of the Saals-
chutzian hypergeometric serigsz(1) is derived.
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A certain series associated with Catalan’ sconstant

0. Preamble

The subject of our interest is the hypergeometric series generated by elliptic integrals

=, (%)
S(r):Z(k+)l6k=%3F2(%,%,r;l,r+l; 1) (1)

This series has a long and interesting story. About a century ago Ramanujan [1, p. 351 and 2,
p. 39] in hisfirst letter to Hardy stated without proof a particular case of (1), when the parame-
terr = n is a positive integer, namely

1 (2k)2
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7rn2( 0 ) k=0

In 1927, when Ramanujan's collected papers were published and result (2) became publicly
known, it attracted a great deal of attention. Different proofs were given by Watson [3] and
Darling [4], later Bailey [5] and Hodgkinson [6] generalized (2) to
r(mT(@+b+n) ”i @)y ()

F -1 D=
sFo(@ b,c+n-1;c,a+b+n; 1) F@+nT(b+n) k! (C)
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k=0
which gives Ramanujan's result wheee b = % andc = 1. Ramanujan [7, pp. 237-239 and 2,
p. 45] also stated a complementary formula to (2), when the param:eterr% is a half

integer, namely
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HereG is Catalan's constant defined by

(o]
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andK is the complete elliptic integral of the first kind, given by
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z dt
K(k):f
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As mentioned in [2, p. 47], Ramanujan’ sproofs of formulas (2) and (4) most likely were based
on the recurrence equation

2
(r+1) S(r+1)—r28(r):i 5)

2 n
subject to initial conditions. This equation is derived from the fact that S(r) is generated by

integration of complete elliptic integrals as

1
S(r):%f Z'K@dz Rer)>0. (6)
0

In 1981, unawared of Ramanujan’ sequation (5), Dutka [8] employed by (6) rediscoverd formu-

las (2) and (4). In section 3 we outline the derivation of equation (5), as well as it's solution. In
view of (5), it's pretty straightforward to see that for any rationaln+ p, wheren is a
positve integer and @ p < 1, series (1) has a closed form representation

n-1
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Here (p),= p(p+1)...(p+n-1) is the Pochhammer symbol. There are only three known
cases when the functio® p) is expressible in terms other than hypergeometric functions,

namelyp=1, %, .
ob- il han gl ey
RV
)-onld b g2

wherel'(2) is the Euler gamma function. All these cases are due to Ramanujan. L.Glasser [9]

made a conjection that it is possible to exp@(sj‘%)for k > 3 in finite terms, however that is
remained to be seen.

It does not appear to have been previously studied the case when the paramgter
IS a negative integer (assuming that the teem-k is dropped from summation):
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A few particular cases of (8) appeared in the handbooks by E.P. Adams and R.L. Hippisley
[10] and by E.R. Hansen [11]:
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In the present paper, using contour integration technique, we will show that for negative inte-
gerr, sum (8) is solvable in closed form by

S = S(E—r) 1; ( _Zr) (H. —H_ o +log2), r=0,-1,-2, ... ©)

whereH, are the harmonic numbeg = > 11_; % .

As a consequence of this result, in section 2, we derive the new representation for
SaalschutziagF;(1) series with special set of the parameters

(n—%)4F3(1, 1,n+%, n+ 1;2,n+1,n+1; 1):

2
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1. Evaluation

We consider two cases, whan is positive and negative We deno®&(r) = Sr) for
Rer) > 0andS (r) = S(r) for Rer) < 0.

Letr be a positive integer. We transform series (1) to a definite integral involving complete
elliptic integrals. Multiplying the summand b and differentiating it with respect tq we
get

2k\2 X 2
o(r, x) = ”Z(k) T = XK, X <L (11)
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where K (x) isthe elliptic integral. Integrating both sides of (11), we arrive at

1 1
St :fg(r, x)dx:%f X TKxdx, Rer) > 0. (12)
0 0

In the next subsections we evaluate S*(r), by first developing a recurrent equation for S*(r),
and then solving it by iteration. The result depends on the disparity of r.

Now let us consider the second case when r is a negative integer. We split the series
S(r) into two sums as

- (2k)2 o . (2k)2
k k
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Leaving the first sum unchanged, and converting the second sum into an elliptic integral (by
applying the same reasoning as above), we obtain

N (Zkk)z to 2 T 2k\2 X
— r-11 2 _ -
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Re(r) < 0

In subsection 1.3, using the contour integration technique, we establish a functional relation
between S (r) into S*(r).

1.1 S*(r) for r a non-negative integer

Consider the system of indefinite integrals

ko(X) = | xPK(X)d X
{ 0= J (14)

ep(X) = f xPE(x)d x

where the parameter p is a positive integer or zero, and E(x) and K(x) are complete elliptic
integrals. Using integration by parts, the above integral system can be reduced to the system of
coupled recurrent equations

kp(X) = XP ko(X) — 2 p (Kp(X) — Kp-1(X) + €p-1(X))
ep(X¥) = XP (X) — 5 P(Ep-1(X) + €p(X) + Kp(X) — kp_1(X))
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with initial conditions

2ko(X) = E(X) + (x= 1) K(X)
2 &0 = (x+ D EX) + (x— D K(x)

Eliminating ep_1(X) from the first equation, and ky_1(x) and ky(x) from the second, the system
issimplified to
2XPEMX)+ 2 (2 p+1) (x=1) xP K(x)

{ 500 = v ko100 + 2pry
B 4 p? 2 (1-2 p+(2 p+1) X) XPE(X)+2 (x—1) xP K(X)
&) = Gpepr &1+ 2p+D) (2 p+3)

Now we compute the values of ky(X) and ep(X) at the limiting points x = 0 and x = 1. We get
two recurrent equations

4 p? 2
kp(l) = ————kp-1(H)+ —, p=1
D= e Pt e P
(15)
kp(O) = 0, p=0
ko(1) =
and
ey(1) = 4p2 ep-1(D) + >1
YT 2p+n@2p+3 Mt Cp+D@p+3 - (16)
€0 =0, p=0
Inview of formulas (12) and (15), we conclude that
2 2
S'(n = - (k-1(D) = k-1(0)) = - kr—1(1) (7)
where S*(r) satisfies the recurrence relation
12 1
( )S*(r+1)—r SSN=—,r=1
g (18)

sw=2

Equation (18) can be solved by iteration (see section 3 for details). We have proven
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Proposition 1.1 Let n be a positive even. Then S(n) defined by (1) evaluatesto

n-1

n 2
Sn) = —162n 7 Z (Zkk) 1—} (19)
wre ()

1.2 S*(r) for r a positive half-integer
Consider dlightly different (than (14)) system of indefinite integrals

{ Kp(X) = fxp‘% K(x)d x (20

ép(x) = fxp‘% E(X)d x

where the parameter p is a positive integer or zero, and E(x) and K(x) are complete elliptic
integrals. Using integration by parts, we transform (20) to the system of recurrent equations

(21)

2k = (p— 2) kps(0 + 2 xp-%(ax) +2p(x-1) K(x))
{ P(p+1)&(0) = (p— )7 8ps(x) +xP~3 ((p(x— 1)+ DEX + 5t K(x))

where
3 1113
ko9 =7 VX 3Fo( 5. 50 5L 5i%)

A 1 1 1 3
€X)=m X3F2(——2‘,—2‘,—2‘;1,—2‘;X)

and 3F»(x) is the hypergeometric function. By computing the limitsat x=0 and x= 1, sys
tem (21) yields (assuming> 0)

(p—3)°

A 1
kp(1) = > Kp-1(1) +55 P2l

. 22
kp(©) = 0, p=0 #2)

Ko(1) = 4G

where G is Catalan's constant. Therefore,

1, 2~
§(p+§) = —kp(D), p=0 (23)
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The sequence S*(r), wherer is a positive half integer, satisfies the same recurrence equation
(18) , but with adifferent initial condition:

2
(r+1) SH(r+1) —r2§(r):}—
2 T

8G
s(3)= =

Solving this recurrence by iteration (see section 3 for details), we have proven

(24)

Proposition 1.2 Let n be a positive integer. Then S(n + %) defined by (1) evaluatesto

1, 4 \n 16~
S(n+§):; 5 2G+Z v (25)

1.3 S(r), for r anegative integer

Recall formula (13). Observing that the finite sum inside of the integrand
—r
( 2k )2 XK
k /16
k=0

isthe Taylor expansion of % K(x) a x =0, we pull that sum out of integration, by understand-
ing integration in the Hadamard sené@i{e part). Computing limits at the end points and
obliterating logarithmic and polynomial order singularities, we get

2 1
S () = f. p.;fo x 1K) dx

Comparing this integral with formula (12) immediately implies that
S(r) =S'(r) + F(n)

whereF(r) is an unknown function. The necessityFobecomes obvious once we recall that
in the original series we skip the tek —r, whenr is a negative integer. In order to fifd
we derive a contour integral representation for the Sgimas

1 T rerd-s  ds
S 27 J TA-9TE +9 (-9

y—loo

S

(26)
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The contour (y —ico, y+ic0) isastraight line lying in the strip 0 < y = Re(s) < % . Integral
(26) evaluates to (1) by summing residues at single poless=0, -1, -2, ..., lying to the left of
the contour. However, if r is a negative integer, the integrand in (26) has a double pole at
s=r. According to the definition of S(r) we must skip this pole. Thus, we have
+i 00

st [ OTG-9 ds

2ri ) TA-9I(5+9 (-9

ree (27)
re (-5 1
res
st \T(1-9T(5+5 (-9

As a matter of fact, the contour integral herein can also be computed via residues at the poles
1 3

s=3, 5, .., lyingtotheright of the contour. Evaluating the integral via those poles allows
usto avoid thedouble poleat s=r. Thisyields
+i 00
1 T TrG-9  ds
2ni rl-9I(5+s -9

y—ico

(28)

o0

2k)1? 1
- =-S(= —r).
Zk!4(k—r+%)16" (2 r)

Finally, computing the residue

e rz-s 1 4 (=21
= H_ r_H_r_l 2
gS‘?[I“(l—s)l“(—;—+s) (r—s)) 167" ( —r ) ( 2 o9 )

we establish

Proposition 1.3 Let r be a negative integer or zero. Then

S(r):—SF(E—r)

4 -2
2 -

2
-3 (" ) [H_r—H_2r+ IogZ) (29)

where S*(% —r) isdefined in Proposition 1.2.

1.4 S (r) for r anegative half integer

This case immediately follows from the previous subsection, taking into consideration that the
integrand in (26) hasonly asinglepoleat s=r.
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Proposition 1.4 Let n be a positive integer. Then

S(—n+ —) = -S(n). (30)

2. Special cases of hypergeometric functions

In this section we derive a particular case of the Saalschutzian hypergeometric series 4F3 (1).
We begin by recalling that the hypergeometric series . 1Fp(ay ..., ap.1; b1 ..., by 1) is called
Saalschutzian if parameters g; and b; satisfy the relation

l+ag+ay+..+ap 1 =bi+...+ by

Proposition 2.1 Let n be a positive integer. Then

2n-—1)>? 1 1
(TST) 4F3(1, 1,n+ X n+ 5; 2,n+1,n+1; 1) =
4G 2 16¢ (31)
—-— +Hp1+log4d - — 5
8 S (2k+1)2(2k)
- k
where G is Catalan’ sconstant, and H,, are harmonic numbers.
Proof.
Inview of formula (29) withr =—-n, n = 0, 1, 2, ..., wehave
S“(—n)——S*(n+1)—i(2n)2 H,—-Hon+ log2 32
- 2) 16"\ n ) | Man 100 (32)

where S*(n+ %) is defined in (25). On the other hand, if we evaluate the original sum (8) by
means of the hypergeometric function, we obtain

. (2k)2

K
S(=n) = - -
=N Z (k—n)16"+

- (33)
2n+2,2
( nn++1 )

3 3
5+ 4F3(1, 1, n+ X n+—:2,n+2,n+2; 1).

2
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The finite sum in the right-hand side of (33) can be evaluated in terms of harmonic numbers
(see Proposition 3.2) as

. (Zk)2

k 2n2 & 1 2n 2
16nZ m:4( nn) £ 2k+1 :2( nn) (ZHZ”‘l_H”‘l) &9

Combining formulas (32) and (33), and replacingn by n— 1, we arrive at (31).

Remark. By using different ideas, formula (31) was first proved in [13].

3. Addendum
In this section we provide a solution to equations (18) and (24)

Proposition 3.1 The solutions to the recurrence relation

2N+ 1) Xq41 — (2N)% X, = &,

35
% = b (35)
is
2
1 (Zk)
Xn = 16° b+ aZ a 36
- 2n,2 16¢ (36)
4n2( ) k=1
n
Proof.
We solve recurrence (35) by iteration. Iterating it n — 1 times, we get
T @n-2j?
n-1 n-1 n-
2n-2jy =0 J
-0 V' = en+1-2j)7?

j=0
In pretty straightforward manner the finite products herein can be converted to the binomial
coefficients by using Euler’ sproduct representation for the Gamma function. We obtain

[N

n—

1—1 2n-2) 4+
2n-2j+1) 2n+2
0 2(n+1)( n+1)

j=
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and

k-1 2
1 [](2n-2 )2 Zk)

n
=0 ~ 16™! Z ( k
K 2n+2\2 16¢

P J_r=10(2n—21+1)2 4+ 17 1 =
Substituting them into (37) yieldsthe desired result.
Proposition 3.2 Let n be a positive integer. Then
16" i (Zk) =1 =8)
2 16K (n— 1Y '
4(2nn) — 165 (n - k) k02

Pr oof.

We rearrange the terms in the sum in the left-hand side of (38), by summing them in the
opposite order from
n-1to0. Weget

o1 (2k)2 2I‘l—2k)2

n
Dot o)
(n—k) 16 k 16"
k=0

Since the summand evaluates to zero for k > n, we extend the range of summation to infinity.
Using the definition of the hypergeometric series, we rewrite that sum in terms of 4F3 as

2n—2k)2 .

16" ( n-k 3 |
4(2n)22 K 16" X :(2n—1)24F3(1’1’1_n’1_n’2’E_n'E—n,l)

The latter further simplifies to polygammafunctions by formula 7.5.3.43 from [12] as

n-1

Acknowledgments. | would like to thank S. Finch, L. Glasser and R. Richberg for duscus-
sions and help regarding references.
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