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Abstract

This paper develops a sequential learning estimator of production functions and productiv-
ity dynamics for unbalanced establishment panels. Extending an idea from the literature
on dynamic industry models, establishments are uncertain about their own idiosyncratic
productivities and update productivity beliefs using information revealed by their produc-
tion experience. The estimator relies on the structure of this iterative learning process and
thereby avoids placing any restriction on establishment strategic behavior. Consequently,
the estimator is suitable for comparative studies of the behavioral sources of technological
change across all types of industry. Estimation of productivity dynamics and of behavioral
decision rules are separated into recursive stages. Using sequential learning estimates of pro-
ductivity beliefs from the first stage, decision rules for exit, investment, and innovation effort
can be estimated in a second stage. A test application with four Chilean industries confirms
that the estimator produces plausible estimates with small standard errors. Decision rule
estimates show that productivity beliefs affect investment and exit hazards in the expected
direction.

JEL Classification: D24, L25, C23, D83, L60.
Keywords: microeconomic productivity dynamics, unbalanced panels, sequential learning,
exit hazard, investment rates, Chilean manufacturing.



Establishment productivity levels and dynamics, their causes, and their effects on behav-
ior are crucial in the analysis of many important economic phenomena. Microeconomic
productivity growth, entry and selective exit, and innovative activities motivated by pro-
ductivity improvement are the sources of aggregate technological change. Most explanations
of within-industry heterogeneity, turnover, and evolution of industrial structure rely upon
differences in capability and firm responses to those differences. How productive entrants are
in comparison with incumbents and how establishments’ productivity improves in response
to experience, R&D, and other forms of innovation effort are important issues in studies
of entrepreneurship and innovation. Many assessments of the benefits of policies in trade,
development, and regulation use estimates of firm or establishment productivity with and
without the policies.

Unfortunately, productivity1 is not directly observable and must be estimated before any
of these questions can be addressed empirically. From the very beginning, the literature on
estimating production functions and productivity has recognized the econometric difficulties
arising when firms’ knowledge of their own productivities influences input choices and when
only revenues and not physical outputs are observed (i. e. Marschak and Andrews [1944]).
Since panel datasets have become readily available, selective exit has also been recognized as
a potential source of bias. This paper develops and illustrates a new technique for addressing
both the endogenous input and selective exit sources of bias.

The main contribution is an estimator of production functions and productivity dynamics
based on sequential learning by firms. It begins with the observation that firms are uncertain
about their own idiosyncratic (establishment-specific) productivity. Consequently, they base
their decisions about entry/exit, investment, production inputs, and innovation effort on
imprecise beliefs about what their actual productivity will be in the present and future
periods. At the end of each period actual productivity can be computed from observed
inputs and production. The difference between actual and expected productivity is a forecast
error. Independence of the productivity forecast errors from predetermined input and other
decisions provides orthogonality conditions that can be used in estimation. Olley and Pakes
(1996) and Levinsohn and Petrin (2003) also use productivity forecast errors, but they infer
an establishment’s productivity expectations from investment or intermediate input decision
rules, respectively. Here the approach is to model the learning process that produces those
productivity beliefs. As an establishment observes its productivity forecast error at the end
of each period, it uses the new information contained in that error to update its expected
productivity in future periods. This is very close in spirit to Jovanovic’s (1982) seminal
dynamic industry model, which is driven by firm learning about an idiosyncratic cost factor.
However, this is the first time a model of learning has been used in an empirical study of
productivity.

Conditional on the values of production and productivity parameters, the sequential learn-

1Throughout this paper, productivity refers to the production function residual variously referred to as
(firm or establishment) total factor productivity, multi-factor productivity, or (in some papers concerned
with micro to macro aggregation) technology. As detailed below, this paper is focuses on the persistent,
establishment-specific portion of productivity.
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ing estimator reconstructs the iterative productivity learning process in order to recover the
forecast errors used in estimation. When output and inputs are observed and the assump-
tions described below, particularly regarding information and decision timing, are satisfied,
this model of learning about idiosyncratic productivity provides sufficient structure for iden-
tification of parameters.2 No use is made of first order conditions, or of dynamic industry
equilibria characterizations that limit the nature of potentially complex strategic interac-
tions. Furthermore, the form of productivity dynamics can be specified in very flexible ways,
including multi-dimension processes and effects of observable measures of innovation effort.

In contrast, many productivity estimators use characterizations of equilibrium firm behavior
in order to create identifying structure and to solve selection and endogeneity (Arellano
and Bond [1991], Arellano and Bover [1995],3 Olley and Pakes [1996], and Levinsohn and
Petrin [2003]). These characterizations are often introduced implicitly through first-order
conditions.4 Some other estimators dispose of selection and endogeneity issues by imposing
a specific form on the dynamics of idiosyncratic productivity (e. g. fixed effects and the
estimator proposed by Cornwell et al [1990]). Existing estimators that do not restrict firm
strategic behavior or limit productivity dynamics are either infeasible in the microeconomic
productivity applications considered here (e. g. traditional, strictly exogenous instruments
with panel level variation are almost impossible to find) or suffer from selection and/or
endogeneity biases (e. g. OLS, random effects, and Blundell and Bond’s [1998, 2000] proposed
extension of dynamic panel GMM estimators5).

With the sequential learning estimator, establishments’ strategic decision rules on exit, in-
vestment, innovation effort and other behaviors can be estimated in a separate second stage.
The sequential learning estimator not only avoids any restrictions on establishment behavior,
it also produces estimates of each firm’s belief about establishment productivity in addition
to estimates of productivity itself. Thus it enables recursive estimation of production func-
tions and productivity dynamics first, followed by empirical decision rules for any behavior,
including sources of technological change. Previously these had to be addressed as parts of
a single simultaneous dynamic system.6

2When revenues rather than outputs are observed, the sequential learning estimator still remains ap-
plicable for industries with uniform output prices. In other industries a revenue function interpretation can
be applied to the estimates, although the information assumptions become less plausible. Simultaneous
application of sequential learning and demand system estimation awaits further research.

3On their surface, dynamic panel GMM estimators as epitomized by Arellano and Bond and Arellano
and Bover do not appear to rely on characterizations of firm behavior. Nevertheless, their constructed
instruments — lagged levels of inputs instrumenting current input differences — only have identifying power
when firm input choices exhibit adjustment lags or some other form of momentum.

4As in for example, cost function and factor demand techniques such as Slade (1989), Nadiri and Prucha
(2001), and references therein; nonparametric extensions of the Solow residual reviewed in Hulten (2001);
and macroeconomic estimates of cyclical productivity, scale economies, and utilization rates including Hall
(1988), Basu (1996), Basu and Kimball (1997), and Basu and Fernald (2002).

5The instruments Blundell and Bond add to the dynamic panel estimator — lagged input differences
as instruments for levels — are not uncorrelated with the fixed effects portion of the error term when
endogeneity takes the complex strategic form with lags and leads described below.

6Such a simultaneous system approach has been adopted in a number of empirical implementations of
dynamic industry models. In the past these have been calibrations of strongly simplified (but still complex)
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The remainder of this introduction is a more detailed discussion of how the sequential learn-
ing estimator is implemented and resolves the issues of selection and endogeneity. Selection
and endogeneity are standard econometric challenges when estimating production functions
and productivity from unbalanced panels of establishments. Selection occurs because estab-
lishments are more likely to close when they believe their production capabilities are low.
Thus, small to mid-size establishments that do stay in the panel will have greater idiosyn-
cratic productivity on average than erstwhile establishments of the same size that exit the
panel.

Endogeneity issues are especially challenging in the context of a dynamic strategic equilib-
rium among firms in an industry. The idiosyncratic component of productivity is part of the
production function residual. At the same time, it is a state variable in the dynamic industry
game and can therefore be related to capital, which is also a state variable, in very complex
ways. Specifically, capital and any other quasi-fixed inputs may be correlated with idiosyn-
cratic productivity not just contemporaneously, but at any lag and across establishments.
Because investment is forward-looking, capital may also be related to the forecastable com-
ponent of future productivity at any lead. These relationships will generally be nonlinear
and may even be non-monotonic.7 I refer to this particularly challenging form of endogeneity
as strategic endogeneity because it emerges from strategic interactions among firms.

The sequential learning estimator addresses selection and strategic endogeneity by explicitly
modelling establishments’ productivity forecast errors. Collectively, the assumptions made
about how establishments form productivity beliefs imply that the econometrician can repro-
duce those beliefs conditional on parameter values. There are six major assumptions. The
first is an information assumption that firms update beliefs about their own productivity (as
if) using the same input and production data available to the econometrician. The second
is additive separability of the deterministic portion of the production function from the per-
sistent portion of productivity and from transient noise. This implies that learning about
an establishment’s own productivity is passive.8 The signal contained in a period’s forecast
error will be the same regardless of any other establishment’s actions and for any actions,
except entry and exit, taken by the establishment itself. The third is a timing assumption
that all production inputs for a period are predetermined before any information about that
period’s forecast error is revealed. Fourth, all of the random components of the model are
normally distributed. Normality will be used in formal justification of the estimator, but
its practical significance is modest. In the absence of normality the Kalman updating for-
mula used will still provide the best linear estimates of idiosyncratic productivity. Fifth,

versions (Hopenhayn and Rogerson [1993] and Jovanovic and MacDonald [1994a, 1994b]) or have faced
immense computational burdens (Ericson and Pakes [1995], Gowrisankaran and Town [1997], Pakes and
McGuire [2001], Doraszelski and Judd [2004], Pakes [2000] and references therein). The sequential learning
estimator is actually complementary with the more recent literature on two-step semiparametric estimation
of industry games (Berry and Pakes [2000], Pakes et al [2004], Bajari et al [2005], Ackerberg et al [2005])
because these rely upon observability of firm and industry states, including productivity or productivity
beliefs.

7For examples of specific dynamic equilibria that show non-monotonicity between an index of competitive
ability (e.g. productivity) and innovation effort see Budd et al (1993) and Ericson and Pakes (1995).

8This does not preclude active or strategic learning about other objects in the dynamic industry game.

3



in order to restrict the firms’ learning problem to the value of their establishments’ persis-
tent idiosyncratic productivity, they are assumed to know the true values of all parameters.
Knowledge of true parameters is a common assumption in dynamic industry models and in
structural estimation of industry games. The sixth is a rational expectations assumption
that entrants’ initial productivity beliefs have the same distribution as the data generating
process producing actual initial productivities for the entrants’ cohort. Several of these can
be relaxed.

The information and timing assumptions are strong, but have a testable implication that all
input decisions (investment, employment, etc.) will be independent of all information about
productivity revealed by data from after the decision is made. If not, the establishment is
somehow acquiring and using this information sooner than the sequential learning estimator
assumes.9 Tests of this implication can be implemented by estimating an establishment deci-
sion rule as a function of estimated productivity belief and control variables. The difference
between the best estimate of productivity using all available data and the estimated produc-
tivity belief should have no statistically significant effect when inserted into the estimated
decision rule.10 This provides a way to assess the validity of the assumptions above in any
specific application.

The sequential learning estimator is implemented by simulating establishments’ learning
process. An establishment’s input and output data enter beliefs11 via realizations of the
productivity forecast error. Specifically, at the start of each period an establishment has a
mean belief about what its idiosyncratic productivity will be. The establishment knows its
level of capital and selects variable input quantities. At this point the establishment can
forecast its output. Note that this forecast is conditional on all the factor inputs, however
chosen, as well as on any past information embodied in the belief. Once actual output is
observed, the difference between predicted and realized output is the forecast error, which the
establishment uses to update its belief about the persistent component of its productivity.
Then this updated belief is used to forecast productivity in the next period. To begin
simulation of the learning process, initial beliefs of entrants are parameterized by cohort.
These parameterized initial beliefs are identified from cross-sectional variation using the
rational expectations assumption.

This process of iteratively updated beliefs forms a Kalman filter, a widely studied type of
stochastic process. In the sequential learning estimator the Kalman filter plays a dual role.
First, it is a model of the establishments’ learning and productivity beliefs. In addition

9If not correctly specified, innovation effort or embodied technology can also break this independence. In
these cases the direction of causality is reversed — behavior to productivity.

10The Kalman filter provides a method, known as smoothing, for computing the best estimate of produc-
tivity using all available data. This will be described in the section on estimation.

11With the normality assumption (see footnote ??), means and variances are sufficient to characterize an
establishment’s uncertain belief about its productivity. Furthermore, from the establishment’s perspective
belief variances are independent of the data because they are determined by parameters assumed known to
the establishment (again, see footnote ??). Thus only belief means are computed directly from the data.
Variances enter indirectly through the belief updating process.
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to the important example of Jovanovic (1982), the Kalman filter has been used in several
other fields as a model of agents’ learning. Empirically, several recent papers on signaling
versus human capital in wage determination use a filter to represent firms’ learning about
employee ability (Farber and Gibbons [1996], Altonji and Pierret [2001], Lange [2003]), but
these papers do not actually compute the filter.12 Second, the sequential learning estimator
uses the Kalman filter to implement its econometrics. Kalman filters have often been used
to estimate latent variables, including at least one application (Slade [1989]) to aggregate
industry productivity. However, in these applications it is only the econometrician, and not
any modelled agent, who is learning about the latent variables.

The application of the Kalman filter in this paper has four unusual features. First, the
econometrician and the modelled establishments are both learning about unobserved true
productivity from the same data processed through the same filter. However, the econome-
trician has an additional layer of uncertainty because model parameters, which are known
to the establishments, must be estimated. Second, separate filters for each establishment in
the panel are pooled to estimate common parameters. Third, the distribution initializing
an entrant’s filter has a structural interpretation as the distribution of productivities in the
entrant’s cohort. This is identified from cross-sectional, within-cohort variation and need
not be related to an unconditional expectation of the stochastic process governing incum-
bents’ productivity dynamics. Finally, attributing the filter forecast errors to establishments’
productivity expectations provides a means of resolving selection and strategic endogeneity.

In the estimation algorithm, forecast errors from each establishment’s filter are joint functions
of the model parameters and its history of inputs and outputs through the current period.
The identifying condition is that these forecast errors are information shocks that must be
independent of all previous establishment decisions, including (lack of) exit and production
inputs from the same period. Orthogonality of forecast errors to inputs and exit is the
basis of the sequential learning estimator’s solution to strategic endogeneity and selection.
Assuming normality, this can be expressed as a likelihood in terms of successive forecast errors
and their variances. Since the Kalman filter repeatedly conditions on past information, as
embodied in productivity beliefs, estimation is implemented by inserting these likelihoods
into a prediction error decomposition maximum likelihood algorithm.

This approach to estimation gives the sequential learning estimator several major advan-
tages. First, equilibrium of the dynamic industry game does not have to be characterized
or restricted in any way. No use is made of equilibrium solutions, establishment Bellman
values, best-response policy functions, or establishment first-order conditions of any kind. In
fact, the estimator is robust to multiple equilibria, collusion, and out-of-equilibrium behavior
because the forecast errors are independent from inputs no matter how they are chosen. Sec-
ond, productivity dynamics can be specified in a wide variety of ways, including, if desired,
the effects of variables measuring innovation efforts. Third, the cohort structure preserves

12Sargent’s work on relaxing the assumption of rational expectations in estimation and simulation of macro-
economic equilibria (e. g. Sargent [1993], Sargent et al [2004]) is another notable example of an empirical
model with learning agents.
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more inter-establishment variation than alternative solutions to endogeneity do. Griliches
and Mairesse (1995) conclude that loss of valid variability is the main reason existing produc-
tion function estimation methods often produce unsatisfactory results. Finally, this method
produces predictions of both establishment beliefs and persistent components of productiv-
ity, which can be used in modelling of establishment strategic behavior or in decompositions
of aggregate industry productivity changes.

These advantages make the sequential learning estimator particularly well-suited to be the
first part of a multi-stage approach to empirical modelling of co-evolving industry structure
and technology. A second stage can model a firm’s chosen actions as functions of productivity
beliefs, the distribution of establishment productivities, industry characteristics, and infor-
mation about exogenous economic conditions (e. g. demand). In a general dynamic industry
game framework, actions include variable inputs, investment, entry/exit, and purposeful in-
novation and imitation (R&D, patents, entrepreneurship, business process redesign, etc.).
Second-stage estimates may be exploratory or impose/test restrictions implied by specific
equilibrium solutions or characterizations. In particular, comparative studies of strategic
behavior become feasible across industries with varying structures, or when conditions vary
over time within a given industry.

Application of the sequential learning estimator to panel data for four Chilean manufacturing
sectors — food products, apparel, paper products, and fabricated metals — confirms that
the estimator produces plausible parameter estimates with standard errors that compare
favorably to other estimators. The results section will also show that the estimated pro-
ductivity beliefs are indeed useful in exploratory second-stage estimation of decision rules
for entry/exit, investment, and labor inputs.13 The validity tests for the major assumptions
are passed in three out of the four industries. Finally, a condition closely related to Olley
and Pakes’ (1996) investment invertibility condition is frequently violated in all four indus-
tries when sequential learning is used to estimate productivity beliefs. This accentuates the
usefulness of a productivity estimator that does not rely on characterization of equilibrium
behavior.

The next section presents the model, focusing in particular on the Kalman filter represen-
tation of sequential learning by firms. Section 2 discusses implementation of the estimator.
The Chilean panel data is introduced in Section 3. Results in Section 4 include produc-
tion function and productivity dynamics estimates from the sequential learning estimator as
well as exploratory decision rule estimates for exit, investment, and labor. The conclusion
summarizes major results and discusses advantages of the sequential learning estimator.

13Unfortunately, the Chilean data set used as an example lacks information on innovation effort.
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1 The Sequential Learning Model

1.1 Production Function and Productivity Dynamics

Let i be an index of establishments and t indicate year. Establishments that began produc-
tion in the same year belong to the same cohort, c, labelled by their first year of production.
Let t = 1 be the first year in the panel data set, and let t = T be the last period in
the data. Define Ti = min[last year of establishment i’s operation, T ] as the last year of
observed data for establishment i. Abusing notation, partition the set of establishments
i ∈ {1, 2, . . . , I} into subsets of cohorts starting at or after c = 1, i. e. I1, I2, . . . , IT , plus
incumbent establishments already operating before the first period of data, I0 ≡ {i|c < 1}.

Each active establishment will produce output, qit, in year t using variable inputs, `it, such
as labor, and quasi-fixed inputs, kit, such as capital. Investment, iit, will change capital in
future periods and may incur adjustment costs. The input vector, xit, contains both `it and
kit. In general terms, specify the production function as

qit = F (xit; Γ
F
t ) + z′µit + ξit ξit ∼ NIID(0, σ2) (1)

F (.) is the deterministic portion of the production function and ΓF
t is a parameter vector that

may vary over time to reflect technological change. The total error, εit ≡ z′µit + ξit, includes
a persistent productivity component, z′µit, and a normal iid noise term, ξit. µit may be a
vector if idiosyncratic productivity has several components following separate dynamics. z
is an m×1 aggregation vector and will generally be a column of 1’s. Due to the dynamics of
the µit as described below, the total error, εit, will not be iid. In Kalman filter terminology
this is known as the measurement equation.

The µit’s are unobserved stochastic state variables. Each period the establishment chooses
a vector of innovation efforts, eit, such as R&D, to influence the future values of µi. µit

evolves according to the equation

µit = g(µit−1, eit−1, iit−1,xit−1, ηit)

≡ Rµit−1 + G(eit−1, iit−1,xit−1; Γ
G
t ) + Sηit for t > c (2)

ηit ∼ NIID(0, Q)

The stochastic productivity transition function g(.) has three components. R is an m ×m
transmission matrix that captures the period-to-period persistence of µ. The m × 1 vector
function G(.) describes how non-stochastic variables, including innovation effort, investment,
and production inputs, affect next period’s productivity.14 ηit is an n × 1 vector of shocks
to persistent productivity, and the m× n matrix S permits the shocks on elements of µit to
be correlated. The covariance matrix, Q (n× n), also permits correlated structural shocks.

14Including investment and production inputs as arguments of the productivity transition equation permits
a wider variety of productivity dynamics, such as capital-embodied technology or learning-by-doing.
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Together, Equations 1 and 2 constitute the state space form (SSF) representation of the
model.

Part of the power of an SSF representation is that alternative versions of the transition
equation can accommodate a wide variety of productivity dynamics without modifying the
econometric strategy. Furthermore, when variables such as R&D or production experience
are included in the transition equation the productivity consequences of innovation effort can
be incorporated directly into the specification. Appendix A provides a variety of examples.

Initial values of µic are assumed to come from a data generating process with distribution

µic ∼ N(wc + Gc(eic−1, s
e
ic−1; Γ

c), Wc) (3)

With wc (m×1) representing a cohort-specific mean of the entrants’ initial productivity and
Wc (m × m) representing the variance of initial productivities. Gc(.) captures any effects
on entrants’ expected initial productivity of pre-entry efforts, eic−1, such as preproduction
training, or of observable characteristics, se

ic−1, such as corporate ties or prior experience in
related industries. The random components ξit, ηit, and µic − Gc(.) are not only iid, they
are also assumed to be independent from each other.

1.2 Timing of the Dynamic Industry Game

Each establishment is participating in a dynamic industry game. Firms’ decisions about
entry/exit, variable inputs, investment, and innovation efforts to improve productivity or
product quality are motivated by expectations of future gain. These expectations, in turn,
depend on the firm’s perception of its current capabilities (including capital and belief about
own productivity), the industry’s current state (including distributions of capital and pro-
ductivity), competitors’ efforts, and the industry’s external environment (market, policy, and
technological). Dynamic industry equilibrium emerges as an internally consistent balance
among co-evolution of industry structure and productivity; firms’ incentive to enter, exit,
invest, and innovate; and the actions they select. There is an extensive theoretical literature
on dynamic industry games.15

Figure 1 describes the timing of events in a generic industry game among firms with het-
erogeneous capabilities. Three points about this game will be relevant for development of
the sequential learning estimator. The most important of these is the timing of firm deci-
sions and information revelation described below. Second, the nature of dynamic industry

15Jovanovic (1982) and Ericson and Pakes (1995) are especially notable. Also see Spence (1981), Lippman
and Rumelt (1982), Jovanovic and Rob (1987), Klepper and Graddy (1990), Lambson (1991, 1992), Beggs
and Klemperer (1992), Hopenhayn (1992), Hopenhayn and Rogerson (1993), Jovanovic and MacDonald
(1994a, 1994b), Pakes and McGuire (1994), Klepper (1996), Sutton (1998), Petrakis and Roy (1999), and
Asplund and Nocke (2002). Some papers on more specialized topics including dynamic duopolies (Budd
et al [1993] and Cabral and Riordan [1994]), repeated patent races (Reinganum [1985]), and innovation in
endogenous growth models (Grossman and Helpman [1991], Aghion and Howitt [1998], and Aghion et al
[2001]) can be interpreted as special cases.
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equilibrium provides guidance about which variables should enter firms’ decision functions
for entry, exit, investment, innovation, and variable inputs. Third, because the sequential
learning estimator does not rely on any description of strategic behavior the dynamic indus-
try equilibrium does not need to be solved or characterized. This means that details of the
industry game can remain unspecified and may be almost arbitrarily complex, facilitating
comparisons across industries with widely varying characteristics.

Let sit ∈ S be a vector state variable indexing establishment i’s competitive capabilities at
period t. The elements of sit include capital stock, kit, and persistent idiosyncratic produc-
tivity, µit. Any other persistent establishment characteristic affecting profitability, such as
product attributes, inventories, or owner’s characteristics, are also included. Variation in sit

is the source of all heterogeneity. Summarize the state of the entire industry with a measure
νt of all establishment capabilities over S, the set of all possible capability levels. The pro-
ductivity component of sit is not directly observable. Therefore, beliefs about the values of
sit and νt will replace the true values as the state variables on which strategic decisions will
be based.16 Unlike in many dynamic industry models, sit and specifically productivity are
of direct interest, rather than simply a means for explaining heterogeneity in establishment
behavior and characteristics.

The time-line in Figure 1 illustrates the assumed sequence of events during a single period.
First, outputs, qit and gross period payoffs, πit = π(`it, `−it, sit, νt,nt, ξit, ξ.t), are realized.
These payoffs are a function of actions with immediate consequences, `it and `−it, taken by
the establishment and its competitors, respectively. Such actions will include the level of
variable inputs, such as labor and materials, but may also include price-setting, advertising,
any effort-free variations in product mix, and so forth. Payoffs also depend on the (true)
state of the establishment and the industry. The vector nt indicates relevant aspects of
the industry’s environment, such as demand, input supplies, and government regulations.
Finally, ξit is the establishment’s own independent random shock from Equation 1 and ξ.t is
a vector of its competitors’ shocks.

Returning to the time-line, once payoffs are realized establishments update beliefs about the
components of sit and νt, such as productivity, that are not directly observable. The model
of how establishments update beliefs about the productivity component, µit, of their own
state, sit, is at the core of the sequential learning estimator. The next sub-section will provide
details. Immediately after productivity beliefs are updated any news in the information set,
Ωt, describing exogenous conditions is revealed. Beliefs about the environment, n, in future
periods are revised using Ωt. Ωt may or may not be larger than nt.

Next, establishments make simultaneous strategic decisions. The actions selected include the
`it+1’s that enter directly into next period’s payoff function, but they also include decisions
that affect future payoffs indirectly by changing the establishment and industry states. These

16Beliefs about νt need not be common in order to estimate productivity with the sequential learning
estimator or to fit empirical decision rules in a second stage. However, a common belief is the simplest
informational assumption permitting a policy function interpretation of estimated decision rules.
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include entry, exit (Xit = 1), investment in quasi-fixed capital, innovation effort, and any
other costly activity motivated by its likely effect on future profitability. Effort will have
a favorable impact on evolution of the establishment’s productivity via the productivity
transition function, g(.), defined in Equation 2.

Completing the time-line, at the end of period t transition of establishments’ states, si, in-
dustry state, ν, and industry environment n to their values in t + 1 occurs. The transition
of establishments’ states is defined by g(.) and the standard law-of-motion for capital. Ag-
gregating establishment transitions and adjusting for entry and exit produces the change in
industry state. Industry environment transitions are exogenous.

1.3 Establishment Learning with a Kalman Filter

The establishments will form beliefs about their ability through a learning process consisting
of iterative Bayes updating from production experience, beginning with a prior initial belief
held before production begins. Assume:

Knowledge of True Parameters: All establishments know the true values of the parameters
— ΓF

t for all t, ΓG, z, R, S, σ2, and Q.17

Passive Learning: The signal about own productivity received from a period’s production
experience will be the same regardless of any other establishment’s actions and for any
actions, except entry and exit, by the establishment itself. This is already implicit in
the additively separable way productivity enters the production function in Equation
1.

Information: All establishments update their productivity beliefs (as if) their information
is the same as that revealed in the data reported through t. This implies that the
econometrician can reproduce those beliefs conditional on parameter values.

Rational Expectations: All entrants in a cohort have a common prior for their first pe-
riod productivity consistent with the data generating process for that cohort’s µic’s.
Implicitly this extends knowledge of true parameters to Γc, wc, and Wc.

18

Two other assumptions have already been introduced:

Decision Timing: Establishments’ decisions on exit, investment, and innovation effort be-
tween t − 1 and t, and on all inputs during t, are taken before any information from
period t is revealed. In econometric terminology, these decisions are predetermined.

17This does not include the µit’s, which are not parameters.
18This assumption is common in dynamic industry models.
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Normality: Noise, productivity shocks, and the data generating process for entrants’ initial
productivities are each distributed iid normal.

With normal errors and the linear form assumed in Equations 1 and 2, each establishment’s
iterative productivity learning process is a univariate Kalman filter.19 The decision timing
and normality assumptions together with linearity are sufficient to endow the Kalman filter
with some very useful properties. In particular, Kalman productivity predictions will be
conditionally Gaussian and the minimum mean square estimator (MMSE) of µit. If the
normality assumption is dropped Kalman filter predictions are no longer MMSE, but they
are still the best (conditional) linear predictions of productivity. This is not quite enough to
formally justify the sequential learning estimator. There may be a better nonlinear estimator
of productivity, and decision rules for current period inputs are also nonlinear functions of
the information set. In principle these could be correlated, but there is no obvious reason
that their nonlinearities should be related. Therefore, in practice the consequences of non-
normality will usually be small.20

The remaining four assumptions — knowledge of true parameters, passive learning, infor-
mation, and rational expectations — allow the econometrician to reconstruct establishment
productivity beliefs conditional on parameter values. This reconstruction of establishment
beliefs is what gives the Kalman filter its dual nature in the sequential learning estimator.
It is both a model of establishments’ learning process and a means to compute their beliefs
as a function of the parameters to be estimated.

Knowledge of true parameters ensures that establishment learning about productivity is
not confounded by parameter uncertainty. Parameter uncertainty would make the learning
problem nonlinear and introduce issues about what additional information the establishment
uses to infer parameter values. Passive learning separates productivity learning from all
strategic considerations. However, this is stronger than what is actually required. The
key is that the information set an establishment uses to form productivity beliefs is well-
defined. Alternative assumptions about the information set could have been used.21 The
information assumption is crucial. It states that the information set each establishment uses
in forming productivity beliefs is observable. Rational expectations provides a means to
identify entrants’ initial productivity beliefs by connecting those beliefs to estimable features
of the productivity data generating process in Equation 3. This is the point at which having
a panel of establishments is extremely useful.

19Harvey [1989], especially Chapter 3, provides a detailed introduction to Kalman filters.
20When non-normality is a serious concern a GMM estimator could replace the MLE estimator developed

here. GMM would use orthogonality conditions between the productivity forecast error and predetermined
establishment decisions. Alternatively, the quasi-maximum likelihood estimator would remain equivalent to
weighted nonlinear least squares. Both versions of the sequential learning estimator embed the Kalman filter
representation of establishment learning.

21For example, correlated productivity shocks with a specified degree of observability of competitors’
experience, or active learning because productivity is not additively separable in the production function
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To apply the Kalman filter to an establishment’s productivity learning problem, define
Et[µit] ≡ uit and Et−1[µit] ≡ uit|t−1 where the subscript on the expectation operator in-
dicates conditioning on information available up to and including t or t − 1, respectively.
Also, let Pct and Pct|t−1 denote corresponding variances. All establishments in the same
cohort will have identical belief variances so the cohort index c replaces the i index. Refer
to the data with yit ≡ {qit,xit, eit−1, iit−1} and ỹit ≡ {xit, eit−1, iit−1} for establishment i in
period t. Define Yit ≡ {yic, yic+1, . . . , yit}, summarizing i’s data for all periods through t, and
Yt ≡ {Y1t, Y2t, . . . , YIt}, summarizing all data through t. Finally let Xit−1 = 0 indicate the
decision not to exit before t.

Because the entire Kalman filter is conditional on the establishment’s initial beliefs, identi-
fication of wc, Γc, and Wc is required. The rational expectations assumption provides the
necessary link between initial beliefs and observed data.

uic|c−1 = wc + Gc(eic−1, s
e
ic−1; Γ

c) Pcc|c−1 = Wc (4)

For establishments in I0 learning, as well as production, began before the observed data.
Thus for a cohort starting with a common initial belief at c < 1, each establishment will
have its own updated belief about its idiosyncratic ability, ui0, derived from experience be-
fore period 1. This problem is avoided here by dropping these old establishments from the
estimation. This is legitimate because sequential learning estimates are not biased by selec-
tion based on any predetermined or exogenous characteristic. A subsequent paper will deal
with the issues raised by including pre-existing establishments in the estimation procedure.22

Turning to the standard Kalman filter equations, each iteration from t − 1 to t, separately
for each establishment i, begins with prediction equations

uit|t−1 = Ruit−1 + G(eit−1, iit−1,xit−1; Γ
G
t ) (5)

With variance

var(µit − uit|t−1) ≡ Pct|t−1 = RPct−1R
′ + SQS ′ for i ∈ Ic (6)

Compare this to Equation 2. These are the best linear predictions and, with normal distur-
bances, also the MMSE’s. Therefore, conditional on the available information unobserved
productivity is distributed

(µit|Yit−1, Xit−1 = 0, ỹit) ∼ N(uit|t−1, Pct|t−1) (7)

Unlike the common data generating process in Equation 3 shared by all members of a
cohort, this distribution is unique to each establishment because learning based on random
realizations of the data has begun.

22The alternative approach is to treat the ui0’s and Pc0’s as estimable parameters. One serious drawback
to parameterizing beliefs of old establishments at t = 1 is that additional parameters must be estimated for
each establishment added to the sample.
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Once production experience in period t is observed, the establishment can compute its pre-
diction error

vit ≡ qit − Et−1[qit]

= [F (xit; Γ
F
t ) + z′µit + ξit)]− [F (xit; Γ

F
t ) + z′uit|t−1] (8)

= (z′µit − z′uit|t−1) + ξit

Viewed as a random variable, vit has a variance

fct = z′Pct|t−1z + σ2 = z′RPct−1R
′z + z′SQS ′z + σ2 (9)

Given the normality assumptions, vit ∼ N(0, fct). This result can be re-expressed in terms
of qit.

(qit|Yit−1, Xit−1 = 0, ỹit) ∼ N(F (xit; Γ
F
t ) + z′uit|t−1, fct) (10)

Finally, the prediction error is used to update beliefs about the current value of the produc-
tivity state variable

uit = uit|t−1 + (Pct|t−1z/fct)vit (11)

With new variance

Pct = Pct|t−1 − Pct|t−1zz
′Pct|t−1/fct (12)

Even though true productivity, µit, is unobserved Equation 11 is a linear projection from the
forecast error, vit, onto the productivity. fct is the forecast error variance and Pct|t−1z equals
the covariance between the error and productivity.23 Thus uit is a new predicted value for
µit computed in the same fashion as a linear regression predicted value. Equation 11 can
also be interpreted as apportioning the prediction error to each component of uit|t−1 and the
noise term ξit in proportion to their variances. To see this, compare the Pct|t−1z factor in the
second term to the formula for fct in Equation 9.24

Notice that the variances Pct|t−1, fct, and Pct are unconditional in the sense that they do not
depend on the data realizations. This justifies the lack of an i index. However, the entire
Kalman filter remains conditional on the parameter values, including σ2, Q, and Wc, that
are to be estimated as discussed in the next section.

The key to estimation will be that capital, kit, other inputs such as labor, `it, investment, iit,
innovation effort, eit, and exit decisions, Xit−1, are all uncorrelated with the forecast error,
vit. ξit is independent white noise, so this conclusion depends on absence of correlation
between the choice variables and (z′µit−z′uit|t−1). From the Kalman filter (z′µit−z′uit|t−1)
and uit|t−1 are uncorrelated (Lipster and Shiryaev [p. 74, 2001]). Likewise, any function

23Using Equation 8 and independence of vit from uit|t−1 and ξ.
24And recall that z is just an aggregation vector.

13



of the information, Yit−1, used in computing uit|t−1 is uncorrelated with (z′µit − z′uit|t−1),
because uit|t−1 is already the MMSE of µit conditional on Yit−1. Whatever form choice
variable decision rules take, they can only be functions of the available information, which
consists of Yt−1 and Ωt−1. Therefore they are uncorrelated with vit.

25 No matter how inputs
are chosen and exit decisions made, vit will be distributed N(0, fct).

The MMSE conclusion is a standard result for a Kalman filter applied to Gaussian SSFs.
The SSF model here is only conditionally Gaussian because previous decisions, which are
functions of previous beliefs and therefore stochastic, are part of the information set used
to form the beliefs.26 This is a remanifestation of the endogeneity and selection issues in
slightly modified guise. However, the MMSE result for Kalman filters remains valid for such
conditionally Gaussian processes (Harvey [1989, pp156-160]; Lipster and Shiryaev [2001,
Chapter 13]). This is the econometric foundation of the sequential learning solution to
strategic endogeneity and selection.

The assumption that establishments learn from the same production experience that the
econometrician can observe is crucial to this line of reasoning. The expression Et−1 is short-
hand for conditioning on a given information set. If the econometrician cannot perform the
same conditioning that the establishment uses to learn, then the econometrician’s prediction
error ve

it = (z′µit−z′ue
it|t−1)+ξit may well not be independent of the establishment’s prediction

uit|t−1. Consequently, ve
it need not be independent of establishment behavior in period t based

on uit|t−1.

The top two panels of Figure 2 illustrate the productivity learning process using actual es-
timates for an establishment in the Chilean data used later in the paper. In the top panel
the black line tracks the total production residual, z′µit + ξit. The gray line tracks predicted
productivity, z′uit|t−1. In the first year, there is a large difference because predicted produc-
tivity starts at z′wc (which equals zero in this case because of identification restrictions).
After that, predicted productivity tracks the total residual fairly well. The total residual
moves around because of the productivity shocks and noise.

The middle panel focuses on updating of the productivity belief using the forecast error. The
forecast error is the black line and equals the difference between total residual and predicted
productivity from the first panel. The gray line shows the change in belief, z′uit − z′uit|t−1,
due to updating. The change in belief is always in the same direction as the error. The
absolute magnitude of the change in belief is always smaller than the error because some of
the error each period is attributed to noise. Changes in belief are more responsive to the
error in early years because the belief variance, Pct|t−1, is larger then.

25Conditional on parameter values known to the establishment, the model implies that vit is independent
of Ωt−1 and Yjt−1 for j 6= i.

26For the same reason the Kalman filter is only conditionally linear when applied to the model here.
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1.4 An Illustration with AR(1) Plus Establishment Effects

For simplicity, let the production function take a Cobb-Douglas form linear in logs.

qit = at + x′
itβ + µ1

it + µ2
i + ξit ξit ∼ NIID(0, σ2) (13)

The vector of inputs, xit, will contain logs of capital, labor, energy, and materials. Although
at is an index of productivity, it is not the average productivity because the µit’s will not
generally have zero mean. Instead, changes in at represent the portion of productivity growth
that is common, both permanent and transitory.

Persistent idiosyncratic productivity, µit, is assumed to have two components. The first is
a first order auto-regressive term and the second is an unchanging establishment effect.27

Therefore, R =
(

R11 0
0 1

)
, ηit and Q are scalars, and S ′ = (1, 0). Assuming the G(.) functions

are null, the resulting transition equation can be written in scalar form as

µ1
it = R11µ1

it−1 + ηit (14a)

µ2
it = µ2

it−1 ≡ µ2
i (14b)

For entrants’ data generating process, let w′
c = (w1

c , w
2
c ) and Wc =

(W 11
c 0

0 W 22
c

)
.

Appendix B provides scalar versions of the Kalman filter equations (5 – 12) that result from
this illustrative specification.

Three identifying restrictions will be required when this example is estimated. These apply
to mean entrant productivity for the first and last cohorts. The first restriction, w2

1 =
0, is the type of normalization always required when establishment effects are combined
with constants or a complete set of dummies. The second, w1

1 = 0, arises from the block
triangular cohort structure of the panel. This can be interpreted as filling in for the absence
of incumbent establishments with a mean productivity to define w1

1 as a deviation from. The
third, w1

T = 0, arises because no dynamics are observed in the last cohort to separate the
components of w1

T + w2
T .

2 Estimation

2.1 Prediction Error Decomposition

Label the set of parameters Γ ≡ { {(ΓF
t , ΓG

t )∀t ∈ [1, T ]}, Γc, R, S, σ2, Q, {(wt, Wt)∀t ∈
[1, T ]}}. The elements of the parameter set beginning with R are sometimes referred to

27These have often been referred to as fixed effects. The focus here on establishment beliefs and forecast
errors rather than structural shocks somewhat obscures the distinction between fixed and random effects.
However, the spirit of this specification is more consistent with random effects and correlated regressors.
Compare Hsaio’s (1986) discussion of Mundlak (1978).
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as hyperparameters because they describe the stochastic process. Conditional on the initial
belief and the sequential learning process up to and including time t−1, the exact conditional
log-likelihood for establishment i’s output in period t is

log[Pr(qit|Yit−1, ỹit; Γ)] = −(1/2) log 2π − (1/2) log fct − (1/2)(v2
it/fct) (15)

The likelihood of the establishment’s entire data process YiT i can be written as

L(YiTi
; Γ, ΓB) = Pr(yici

)

Ti∏
t=ci+1

Pr(yit|Yit−1)

=

(
Ti∏

t=ci+1

Pr(Xit−1 = 0|Yit−1, Xit−2 = 0)

)
×

(
Pr(ỹici

)

Ti∏
t=ci+1

Pr(ỹit|Yit−1, Xit−1 = 0)

)

×

(
Pr(qici

|ỹici
)

Ti∏
t=ci+1

Pr(qit|Yit−1, Xit−1 = 0, ỹit)

)
(16)

Where ci ≡ c|i ∈ Ic and ΓB contains parameters governing input, investment, innovation
effort, and exit decisions.

Equation 15 can be used to fill in the elements in the last part of this likelihood. A model
of establishment decision rules for input, investment, innovation effort, and exit would be
required to operationalize the remainder of the likelihood. However, the first two terms
provide no information about Γ and reintroduce all the complications of characterizing the
dynamic strategic equilibrium. So it is desirable to estimate Γ from only the third term.
Cox (1975) introduced terms of this form and named them partial likelihoods28

PL(YiTi
; Γ) ≡

(
Pr(qici

|ỹici
)

Ti∏
t=ci+1

Pr(qit|Yit−1, Xit−1 = 0, ỹit)

)
(17)

Furthermore, this partial likelihood is “dynamically complete” because each element is con-
structed from the density of qit conditional on all previous realizations of qis and ỹis (s < t)
(Wooldridge [2002, p.408]). Under standard regularity conditions, estimators derived from
maximizing dynamically complete partial likelihoods have the same asymptotic properties
as they would if the partial likelihood was a standard likelihood (Cox [1975], Wooldridge
[2002]).

In the Kalman filter literature, which generally abstracts from regressors such as ỹ, the
(partial) likelihood constructed by substituting the conditional densities of the prediction
errors from Equation 15 into 17 is known as a “prediction error decomposition” (Harvey
[1989, p.125]). This pools the Ti conditional log-likelihoods for establishment i. Therefore

log PL(Γ : YiTi
) = −1

2

Ti∑
t=ci

[
log 2π + log fct +

v2
it

fct

]
(18)

28Notice that even though the individual elements of PL(YiTi
; Γ) are conditional likelihoods, PL(YiTi

; Γ)
is not a conditional likelihood because the ỹit are functions of previous realizations of q, which affect the
establishment’s belief about its productivity.
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Because parameters in the likelihoods are common across establishments in the panel data
set, the log-likelihood for the entire data set can now be written as

log PL(Γ : Yt) = −1

2

I∑
i=1

Ti∑
t=ci

[
log 2π + log fct +

v2
it

fct

]
(19)

Where YT ≡ {Y1T1 , Y2T2 , . . . , YITI
} refers to the entire panel data set. The vit’s and fct’s are

computed as functions of the parameter values from the Kalman filter, Equations 5 – 12, with
initial beliefs, Equation 4. By pooling cross-sectionally, maximization of Equation 19 allows
identification of entrants initial beliefs when these are associated with the data generating
process that produces the actual µic’s. This is unusual for Kalman filter processes, which
are generally estimated in a strictly time series context. In that case the usual options are to
estimate conditional on a maintained prior, assume a concentrated prior (which may in some
cases be estimated), or assume a diffuse prior (de Jong [1988], Harvey [1989, pp. 121-122,
137-140]). The sequential learning estimator does not require an unconditional distribution
from a stationary stochastic process to initialize the Kalman filter.

2.2 Analytic Gradient and Hessian

Exact analytic gradients of the log-likelihood function can be computed for Kalman filters
(Harvey [1989, pp 140-143]). Letting γj label a parameter from the parameter set Γ, the
formula is

∂ log L(Γ : YT )

∂γj

= −1

2

I∑
i=1

Ti∑
t=ci

{[(
∂fct

∂γj

)
1

fct

] [
1− v2

it

fct

]
+ 2

(
∂vit

∂γj

)
vit

fct

}
(20)

The partial derivatives ∂fct/∂γj and ∂vit/∂γj are computed in the same iterative sequence
as the Kalman filter itself by differentiating Equations 4–12.

There is also an analytic formula for the empirical information matrix that takes advantage
of the Kalman filter’s iterative conditioning. Terms multiplied by second (and cross-) deriv-
atives of the prediction error and prediction error variance with respect to the parameters
are zero asymptotically.

IM e
jk =

I∑
i=1

Ti∑
t=ci

{(
∂fct

∂γj

)(
∂fct

∂γk

)
1

2f 2
ct

+

(
∂vit

∂γj

)(
∂vit

∂γk

)
1

fct

}
(21)

Where IM e divided by the number of observations is the empirical realization of the infor-
mation matrix with the asymptotic restrictions imposed.

The formula for IM e is used in two ways. As the best empirical approximation of the infor-
mation matrix, its inverse is used as the estimator of the asymptotic covariance matrix for
the maximum likelihood parameter estimates, V (Γ). As a computationally fast approxima-
tion to the exact (negative) Hessian it will also be used in place of the exact Hessian in the
nonlinear search algorithm maximizing the log-likelihood.

17



2.3 Algorithm and Implementation

Any standard nonlinear optimization algorithm may be used to maximize the likelihood in
Equation 19. A subroutine to compute the likelihood conditional on parameter values passed
from the optimizer must be programmed. To do this, the subroutine must compute separate
Kalman filters for each establishment based on the parameter values and the establishment’s
data. The process is much more efficient if the subroutine also computes analytic gradients
and Hessians from Equations 20 and 21. These also require computing the derivative of
each component of each establishment’s filter with respect to each parameter. Smoothing
requires one more pass of the subroutine, supplemented with the smoothing equations 22
and 23, after the parameters have been estimated. Appendix C describes the programming
of this procedure in more detail.

Maximizing the likelihood from the AR(1) plus establishment effect specification in Appendix
B poses two practical challenges. First, there is a plateau of undesirable local maxima when

the AR coefficient R̂11 ≈ 1. In this case for each cohort, c, mean initial values of the
productivity components, w1

c and w2
c , are not separately identified. They both contribute to

the initial value of a single random walk process. Consequently, the search algorithm will be

free to pick ŵ1
c ’s with no relation to the true w1

c . Once the search algorithm is at arbitrary

ŵ1
c ’s changing R̂11 is apt to decrease likelihood at a first step, trapping the search algorithm at

the local maximum. Fortunately, there are some diagnostics available to help avoid erroneous

R̂11 ≈ 1 estimates. The first is to estimate an AR(1) with noise specification without the
establishment effect. Since this is a nested specification, if its likelihood is greater than the

full model at R̂11 ≈ 1 then that cannot be the global maximum. Furthermore, estimates
from the nested AR(1) model can then be used as initial values in the full model in order to
avoid returning to the local maxima plateau. In Monte Carlo, initializing the search at the
true simulated parameters will work in a similar fashion.

Second, while maximizing Equation 19 guarantees that all forecast error variances, fct, are
positive, the estimated variance parameters, σ̂2, Q̂, and Ŵc for all c, could be negative unless
actively constrained. The fct’s are functions of all of these parameters, as well as R, S, and
z.29 Furthermore, the variance parameters play a second role in determining the allocation of
the forecast error to noise and the components of uit in forming updated beliefs. (Compare
Equations 6, 9, and 11.) Thus, in finite samples or misspecified models the likelihood may
increase if the updating allocation weight were decreased, or even negative, on noise (negative

σ̂2), on u1 or u2 in early periods (negative Ŵ 11
c or Ŵ 22

c , respectively), or on u2 in later periods
(negative Q̂). Finally, the usual downward bias of maximum likelihood variance estimators

plays a role, especially for the Ŵc’s, which are identified from variation in only one cohort.30

For the variance of entrants’ initial beliefs, the second problem is almost always solved by

29Recall that the Ŵc are not set equal to the unconditional variance of the stochastic process described
by Q, σ2, R, and S.

30And primarily from early years in that cohort if the eigenvalues of R are less than one.
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pooling the cohorts, i. e. imposing Wc = W ∀c. This increases the effective sample size.
Some guides to likelihood maximization (e. g. Gould et al [2003, p.56]) recommend directly
estimating a transformed version (e. g. square root or log) of variance parameters that can
range freely over the real line and transform back, via the delta method, to a non-negative
variance estimate. This solution is largely illusory. If the likelihood is decreasing in the
variance parameter (generically γv) in the neighborhood of zero, the optimizer will pick a
value for the transformed parameter at (or approaching) a point that will transform back
to a zero γv. At such a point, any of the standard transformations introduce a singularity31

that will produce an infinite variance and standard error. Using the delta method post-
estimation cannot undo this. With true γv > 0 this will not be an issue asymptotically. In
finite samples γv may be estimated at a binding constraint γ̂v = 0. In this case the gradient
component ∂ log(L)/∂γv 6= 0 and regardless of any transformation the standard proofs of
asymptotic normality and distributions of significance tests (in Cramer [1986] for example)
do not hold. The constrained estimate γ̂v = 0 may be reported without standard errors
and the remaining parameter estimates interpreted as conditional on the constraint.32 This
occurs occasionally in Monte Carlo simulations and once in the Chilean results described
below.

2.4 Decision Rules and Some Validity Tests

Using estimated beliefs computed from the sequential learning process, it is possible to
examine whether and how establishment productivity beliefs influence dynamic strategic
behaviors such as exit or investment. This amounts to second-stage estimation of behavior
decision rules Xit−1 = X(sit−1, νt−1, Ωt−1, ε

X
it−1) and iit−1 = i(sit−1, νt−1, Ωt−1, ε

i
it−1) implied

by optimization of the establishments’ continuation values as in Figure 1.33 Stage game be-
haviors, such as choice of variable inputs `it = `(sit−1, νt−1, Ωt−1, ε

k
it−1) can also be examined.

The error terms, εX
it−1, εX

it−1, and εk
it−1, can be attributed to additional private information

about the economic environment, random decision-making errors, or different beliefs about
the dynamic equilibrium. With common knowledge of a dynamic equilibrium and common
beliefs over industry state, these decision rules can be interpreted as best response policy
functions. Theory says little about the specific form of these relationships other than that
they may be nonlinear or even nonmonotonic in the case of investment or innovation effort.

The results section will describe empirical estimates of decision rule linear approximations
for exit hazard, investment rate (investment over current capital), and employment rate (la-

31For example, the square root transformation requires multiplying the variance parameter’s gradient term
by 2

√
γv and its second derivative in the diagonal of the Hessian by 4γv. Also notice that the transformed

Hessian element goes to zero an order of magnitude faster than the transformed gradient when approaching
the relevant point in parameter space.

32See Gill and King (2004) for some alternative Bayesian solutions to this issue.
33Recall that sit is vector of establishment i’s state variables including capital, kit, and, in this case,

productivity belief uit. νt is the industry state summarizing sjt for all active establishments and Ωt is the
environment information set.
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bor over capital). An establishment’s own capital, productivity belief (estimated in the first
stage), and other state variables, such as age, can be used directly as regressors. However,
industry state and the environment information set must be summarized somehow. Pursu-
ing this is an important avenue of research, but in this paper there would not be enough
variation to produce meaningful results even if measures of industry state and economic
environment were included. Since these are aggregate measures there would only be one set
of values for each year in the data. In order to account for variation in industry state and
economic environment year dummy variables will be included. Variation in the coefficients
of these dummies will be an indicator that variation in industry structure and/or economic
environment is affecting the establishment behavior represented in the decision rule.

Failure to find a significant relationship between behavior and estimated beliefs would not
automatically invalidate the proposed sequential learning estimator. The difficulties could
arise from small samples, incorrect functional forms, incorrect summary indices of industry
state or environment, or from the added complication that the estimated beliefs are generated
variables. However, repeated failure to find any relationship would raise questions about
the motivations for the proposed estimator. If establishment beliefs really have little or no
influence on behavior then there is little potential for selection or strategic endogeneity biases
in the first place. If no empirical strategic relationships can be established, robustness with
respect to industry structure has little value. Finally, the possibility that sequential learning
is an inadequate model of belief formation would arise.

As mentioned in the introduction, the information and decision timing assumptions taken
together imply that any decision by an establishment should be independent of productivity
information revealed in the data after the moment the decision is made. If this is not true,
either the establishment is using sources of information other than the reported production
data to learn its productivity more quickly, or it is modifying its decisions after some of
its production experience for the year has been revealed. In either case, the production
inputs are no longer predetermined and justification of the sequential learning estimator
would break down. Therefore, it is important to construct validity tests using this joint
implication.

The Kalman filter provides a way to compute the best estimate of an establishment’s pro-
ductivity using data from its entire history through Ti, including years after the decision
is made. These are known as smoothed estimates and will be labelled uit|Ti

. Smoothed
estimates contain more information about productivity than the forward-looking predicted
productivities, uit|t−1, computed from only the establishment’s previous history. The dif-
ference uit|Ti

− uit|t−1 summarizes information about current productivity revealed for the
first time by production experience in the current and future periods. Smoothing algorithms
are a standard augmentation of Kalman filters. When the underlying stochastic process is
Gaussian the resulting estimates are MMSE for the information in all the years used.

The algorithm to smooth for the entire period from ci to Ti is known as fixed-interval
smoothing. After the Kalman algorithm (Equations 5–12) has been run through Ti for each
establishment, the smoothed estimates, uit|Ti

, are calculated with a backwards recursion from
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Ti to ci (Harvey, 1989, pp.154-155). Starting with uiTi|Ti
= uiTi

and PiTi|Ti
= PcTi

for i ∈ Ic

uit|Ti
= uit + PctR

′(Pct+1|t)
−1(uit+1|Ti

−Ruit −G(eit, iit,xit; Γ
G
t ; ΓG)) (22)

Pit|Ti
= Pct + PctR

′(Pct+1|t)
−1(Pit+1|Ti

− Pct+1|t)(P
′
st+1|t)

−1RP ′
st (23)

Notice that unlike other variances, Pit|Ti
has an i subscript. Although it is not conditional

on the data, it is conditional on time of exit. This makes sense — fewer years of data to
form the estimate uit|Ti

implies a larger MSE.

Appendix B has scalar versions of Equations 22 and 23 for the AR(1) plus establishment
effect empirical example used later in the paper.

The third panel of Figure 2 compares updated productivity beliefs using production infor-
mation through the end of the period with the smoothed estimate using the complete data
history. The dark updated belief and gray smoothed estimate lines match at the last year.
During the rest of the interval covered by the graph, updated beliefs and smoothed estimates
follow similar courses. But the smoothed estimates are just that — smoother — because
they place equal weight on information from previous and future periods.

The validity tests can now be expressed in terms of a null hypothesis that uit|Ti
−uit|t−1 will

have a zero coefficient if inserted into any of the empirical decision rules described above.34

When this null is not rejected in any of the modified decision rules the sequential learning
estimator passes the validity test for that data set.

3 Chilean Manufacturing Panel Data

Many papers on the Chilean economy in general, and Chilean productivity trends in par-
ticular, have been published in recent years. There are two primary reasons for this. First,
beginning in the 1970s Chile has experienced extensive structural, trade, and macroeconomic
reforms.35 Second, Chile’s national statistical institute, Instituto Nacional de Estadisticas
(INE), has been conducting a high-quality annual manufacturing census, Encuesta Nacional
Industrial Anual (ENIA), of all establishments with at least 10 employees since 1979.

This Chilean manufacturing census data was compiled into a panel and documented for
English-language users as part of a World Bank multi-country study of productivity, de-
velopment, and trade (see especially the volume edited by Roberts and Tybout [1996] and
documentation in Liu [1991]). Since that time, many economists have used this panel and

34In practice exit cannot be used because exit happens at the beginning of Ti +1 and uiTi+1|Ti
= RuiTi

+
G(eit, iit,xit; ΓG) = RuiTi|Ti

+ G(eit, iit,xit; ΓG
t )

35See discussions in Tybout et al (1991); Liu (1993); Tybout (1996); Levinsohn (1999); Pavcnik (2002);
Bergoeing et al (2002); Hsieh and Parker (2002); Bergoeing, Hernando, and Repetto (2003); and Kandilov
(2005).
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its updates in their studies.36 The version of the Chilean panel used here covers the years
1979 through 1996. The census questionnaire includes employment by type; labor compen-
sation; consumption of electricity and fuels; costs of raw materials, intermediate inputs, and
purchased services; value of sales, intra-corporate shipments, and other sources of income;
inventories; capital investment and depreciation charges by type; and capital stocks for some
years. The only notable gap is the absence of any measure of innovation effort, such as
R&D expenditure. Appendix D has detailed documentation of sources and preparation of
the analysis variables.

Establishment entry and exit are deduced from the panel structure. Here the sequential
learning estimator is applied to subsets of the panel comprising cohorts with complete histo-
ries. That is, cohorts starting in 1980 or later. This avoids the difficulties created by having
to estimate initial beliefs of incumbents in the first year of data. The 10 employee threshold
raises a concern that entry and exit will sometimes be inferred erroneously.37 False entry is a
particular problem for the sequential learning algorithm because the establishment’s learning
process does not actually start in the year the model assumes. Therefore, selecting the most
useful sectors for demonstration involves a trade-off between full-history cohort sample sizes
on the one hand, and the risk of false entry on the other. An observable indicator of the
risk of false entry is the frequency of apparent entrant employment near the 10 employee
threshold.

Three large sectors — food products, apparel, and fabricated metals products — are selected
because of their size and diversity. However, establishments with initial employment less
than 15 are excluded to reduce the risk of false entry.38 In the fourth industry, pulp and
paper products, small entrants with employment between 10 and 15 are not excluded. Paper
products has comparatively few small entrants. Among industries with a 25th percentile of
entrant employment of at least 20, paper has far more full-history cohort observations (373
before scrubbing for reporting gaps and missing data) than any other. Fabricated metals
will be featured in the discussion of results below.

Table 1 provides establishment and observation counts for each of the four industries. The
top panel describes all observations in the ENIA source data and the bottom panel lists
the analysis data of full-history cohorts. The analysis data also excludes observations with
missing data, history gaps, and other assorted data problems. On all four dimensions (es-
tablishments or observations by source or analysis data) the sample size is largest for food
products, followed by fabricated metals, apparel, and paper products. For food, apparel, and
fabricated metals there are 17 usable cohorts. The final column of the second panel displays
the average number of entrants in a cohort of the analysis data. Cohort size is important
because it provides the variation for identification of initial productivity beliefs. The paper
industry is restricted to 13 cohorts because the 1981 and 1982 cohorts are empty, the 1980

36See the introduction of Appendix D for a list of some of the papers and a genealogy of the version of
the panel used here.

37Appendix D discusses this problem at greater length.
38This is legitimate with the sequential learning estimator, since initial employment is predetermined from

the perspective of any period that the establishment would have been in the data.
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cohort is short-lived, and the 1985 cohort is a short-lived singleton. Paper also has a much
smaller average cohort size.

The right-hand portion of the first panel in Table 1 provides information on establishment
turnover. Averaged over 17 years, annual entry rates (5.4% to 7.2%) and exit rates (5.0%
to 8.5%) are moderate. Other than paper’s low exit rate, industry rankings are the same by
entry and exit rates. Table 2 provides year by year detail on turnover in fabricated metal
products. The left side covers all observations in the source data and the right side includes
analysis data only. Starting from the total number of establishments in the previous year,
subtracting establishments exiting and switching sectors gives the number of observed incum-
bents. Adding entrants and inward sector switches39 gives the total observed establishments
in the current year. Both exit and entry vary considerably by year. In the analysis data,
the number of exits tends to rise because the number of establishments observed (therefore
at risk) increases over time.

Table 3 provides some detail on the cohorts in fabricated metals. The number of plants,
establishments that survive through 1996, and number of observations are listed for the entire
data set and the analysis data. The “0” cohort is an aggregate of all establishments present in
1979, whose true cohort cannot be identified. Four of the cohorts (1981, 1982, 1985, and 1990)
are quite small in the analysis data. Estimates of the distribution of initial productivities in
these cohorts especially benefit from pooling of the initial variance, Wc = W ∀c.

The analysis uses six variables: gross output, labor, capital services, energy inputs, material
inputs, and investment. Table 4A contains descriptive statistics for all of these variables
for fabricated metals. The variables are reported in levels and natural logarithms for both
the analysis data set and for entrants only. All variables except labor are measured in
1985 Chilean pesos. Labor is a compensation-weighted aggregate of white- and blue-collar
employees measured in blue-collar person-year equivalents. Both employment and capital
services are converted to annual equivalents by adjusting for days of operation. The capital
services variable is computed from three types of capital stock (buildings, machinery, and
vehicles). These capital stocks are perpetual inventories constructed from annual investment
and initial capital inferred from first-year depreciation (see Appendix D for details). Each
type of capital stock is multiplied by a type-specific implicit rental rate. Summing the
resulting implicit capital rents along with actual capital rents paid gives the capital services
aggregate. Energy includes purchased electricity and a variety of fuels. Materials include
both raw materials and intermediate inputs.

Gross output is a more natural concept than value added for production function and produc-
tivity studies at the establishment and industry levels. Demand and strategic interactions are
in terms of output and output prices. Therefore, energy and materials efficiency can be just
as important as labor or capital efficiency. Using output also avoids various measurement
problems specific to value added (see discussion in Appendix D).40

39Inward sector switches and establishments returning from a data history gap are always excluded from
the analysis data because their complete learning process cannot be modelled.

40The output variable used here is deflated nominal value of production, including changes in inventory and
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Returning to Table 4A, notice that entrants are smaller in every dimension (both means and
medians). Also the entrants’ variances are less than for all observations in the analysis data
set. This is a common finding and is a prediction of some dynamic industry model specifica-
tions.41 The positive skew of the variables measured in levels is also typical. There are many
small to medium-sized establishments and just a handful of large establishments. This also
explains means substantially greater than medians. However, after taking logarithms the
analysis variables are distributed almost symmetrically. Table 4B provides a more concise
summary of the analysis variables for food products, apparel, and paper products. Estab-
lishments in the paper industry are substantially larger than establishments in the other
three industries. Apparel and fabricated metals establishments are the smallest.

Table 5 has aggregate revenue and cost shares of expenditures on capital services, labor,
energy, materials, and miscellaneous services for each industry. Paper is by far the most
capital intensive and apparel is the most labor intensive. Energy is more important in food
and paper than in apparel and fabricated metals. Raw materials and intermediate inputs
account for over half of expenditures in all four industries. The total expenditure shares
of revenue should be viewed with some caution. Close examination of the data reveals a
tendency to under-report expenditures on energy, miscellaneous services, and rental pay-
ments.42 The intra-firm shipments component of materials is subject to the usual valuation
issues. Finally the capital services aggregate is constructed with a cost of capital based on
commercial bank lending rates averaged over the period.43 This may well overstate cost of
capital in establishments with access to international capital markets or internally generated
investment funds.44 On balance, it is plausible that total expenses are overstated in the pa-
per industry, which has the largest, most capital-intensive establishments, and under-stated
in the other three industries.

Table 6 has simple correlations among the analysis variables in logarithms. The correlations
are rather low for this type of data in fabricated metals, quite high in paper, and intermediate
in food and apparel. In all four industries the highest correlation is between output and
materials. The correlations among inputs imply enough variation in input ratios so that
separate identification of their output elasticities should not be a problem.

intracorporate shipments, rather than an index of physical production. Thus this variable actually includes
some residual cross-sectional variation in price, raising some complex issues regarding quality adjustment,
specification of demand systems, and revenue function interpretations of the empirical results below. These
will not be pursued in this paper.

41But see Pakes and Ericson (1998) for a counter-example.
42In particular, these items will sometimes be reported as zero (i. e. potentially missing) for observations

that are preceded and followed by non-zero entries and with no other indication of large discontinuities.
43The imputed rental rate on capital stocks has three components: the opportunity cost of capital, depre-

ciation, and expected capital gains. See Appendix D for details.
44Nevertheless, it is important to use the same implicit rental rates for all establishments. See discussion

in Appendix D.
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4 Results

The results in this section are primarily intended as a proof of concept. The following subsec-
tions show that the sequential learning estimator works, both as an estimator of production
functions and productivity dynamics and as a first stage in multistage empirical modelling
of industry strategic dynamics with endogenous productivity. The subsections are organized
by object of estimation. Production function parameters and productivity dynamics are
estimated with the sequential learning estimator itself in the first two subsections. The third
subsection discusses second stage estimation of decision rules for establishment behaviors
such as exit, investment, and employment. Estimates of productivity beliefs, generated by
the sequential learning estimator in the first stage, are used as regressors. The third sub-
section also presents the validity tests on the information and decision timing assumptions.
These tests use modifications of the decision rule specifications. The fourth subsection shows
that an investment behavior characterization related to the invertibility condition used in Ol-
ley and Pakes’ (1996) estimator is frequently incompatible with productivity belief estimates
from the sequential learning estimator.

Specific results support several themes that will span these subsections. Evidence of the qual-
ity and reliability of sequential learning estimates takes four general forms. First, estimates
of input elasticities, returns to scale, and productivity dynamics are plausible but differ in
nontrivial ways from results obtained using alternative estimators. Second, the standard
errors of production function parameter estimates are smaller than for previous estimators
that address endogeneity. Third, in second-stage decision rule estimates, productivity beliefs
almost always take the expected sign and are often statistically significant. Finally, there
is indirect evidence that establishments are in fact uncertain about their own productivities
and do update their beliefs using production experience.

Three additional themes are noteworthy. First, estimated productivity and decisions rules
confirm that selection and strategic endogeneity do occur in these four industries. Second,
there is evidence that certain alternative estimators would have been misspecified in these
industries. Most importantly, there are a variety of preliminary results that contribute
to the agenda of studying productivity dynamics and behavioral sources of technological
change. These include evidence of persistent productivity shocks, estimates of the impact of
productivity beliefs on strategic behavior, and preliminary indications that industry structure
and/or economic environment have estimable effects on establishment behaviors that change
aggregate industry productivity.

4.1 Production Function Estimates

Sequential learning estimates of Cobb-Douglas production function parameters and produc-
tivity dynamics parameters for fabricated metals are displayed in Table 7. The dependent
variable is the natural logarithm of output. The table lists four nested specifications of the
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dynamics of establishments’ idiosyncratic productivity. The left column, labelled DP for
double process, is the primary specification with an AR(1) process, establishment effects,
and noise. The second column, labelled SP for single process, keeps the AR(1) and noise
specifications but drops the establishment effects. RW indicates a random walk process and
can be considered a special case of SP in which the idiosyncratic productivity shocks are
permanent. In other words, the AR(1) coefficient is constrained R11 = 1. Imposing the ad-
ditional constraint that idiosyncratic productivity shocks are zero, Q = 0, makes the single
process an establishment effect (EE) drawn at entry.

Parameter estimates are divided into blocks. The first block has production function elas-
ticities. The second block has returns to scale, which is an ancillary parameter computed
as the sum of elasticities, and the AR(1) coefficient. The variance parameters describe the
variability of entrant’s initial idiosyncratic productivities (W11 for the AR(1) component
and W22 for the establishment effect component), the size of establishment-level produc-
tivity shocks (Q), and the noise (sigma2). The remainder of the first page of the table
has coefficients on year dummies, which can be interpreted as the common component of
productivity. The second page has estimates of mean initial idiosyncratic productivity (w1
for the AR(1) component and w2 for the establishment effect component) by cohort. By
the rational expectations assumption these can also be interpreted as the entrants’ expected
idiosyncratic productivity in their first year. Asymptotic standard errors are in parentheses.
Various significance tests are discussed below. Table 8 displays results of the double process
specification for the other three industries using the same format.

Focus first on the production function elasticity estimates. Materials has the largest elasticity
in every estimate reported on Tables 7 and 8. These are greater than 0.5 in every case except
apparel, where the estimated materials elasticity is nearly that large. At the other end,
energy elasticities are always the smallest. Estimated labor elasticities are always greater
than capital elasticities, even in the paper industry where capital has a larger expenditure
share than labor.45

These elasticity results are in rough conformity with the revenue and cost shares reported
in Table 5 above. If the establishments in an industry are static cost minimizers with no
quasi-fixed inputs and no strategic dynamics, then the ratio of an elasticity over the returns
to scale parameter would equal that input’s cost share. This equality is statistically rejected
at 5% except for materials and energy in paper and capital in fabricated metals and food
products. Nevertheless, the estimated ratio of elasticity over returns to scale is within 10%
of the cost share in 23 of 28 cases.46

Next consider returns to scale. Point estimates indicate slightly decreasing returns in fab-
ricated metals (all specifications) and food products. Apparel and paper show returns to

45Low capital elasticity estimates are a common result in microeconomic production function studies
(Griliches and Mairesse [1995]). In preliminary fixed effects estimates for the paper industry, the capital
services aggregate used here did produce greater capital elasticity estimates than capital stock aggregates.

46Exceptions are labor in the RW specification for fabricated metals, labor and materials in apparel, and
capital and labor in paper.

26



scale that are just barely increasing. Table 9 displays the results of Wald tests on the null
hypothesis of constant returns to scale (i. e. equal to 1) for all four industries and all four
specifications. For food, apparel, and paper the specification does not matter — in food
products constant returns is rejected at high levels of significance, but in apparel and paper
products it is accepted. In fabricated metals the result is less clear-cut, but under the most
general, double process, specification constant returns is rejected at the 5% level.

If the establishments in an industry are static profit maximizers with no quasi-fixed inputs
and no strategic dynamics, returns to scale will equal the mark-up (price over marginal cost)
times the revenue share of total input expenditures as in Table 5. Assuming static profit
maximization and taking the results in Tables 5, 7, and 8 at face value, the implied mark-ups
are 28.4% for fabricated metals, 13.3% for food products, 18.4% for apparel, and 1.4% for
paper products. These are likely to be modestly understated in paper and overstated for
the other industries.47 Nevertheless, the relative magnitudes are plausible. Paper products
are a major Chilean export and face highly elastic international demand. Fabricated metals
products are highly varied and thus almost certainly face more strongly differentiated demand
than the other industries. Notice that increasing returns, low mark-ups, and high demand
elasticities in the paper industry are consistent with the large size of its establishments.

Accurate estimates of returns to scale can be extremely important in analyses of the produc-
tivity implications of policies regarding competition, trade, and so forth. In a static snapshot
of establishments’ contribution to industry or macroeconomic productivity, misestimated re-
turns to scale will be compensated by shifts in attributed establishment productivities.48

Overestimated productivity of large establishments would accompany underestimated re-
turns to scale. But policy analysis involves counterfactuals. Are large establishments pro-
ductive (or not) because they are large, or large because they are productive? When a group
of small establishments appear to be unproductive, would they remain so if encouraged to
grow? If a policy change appears to improve productivity, is it because large incumbents,
which erroneously appear to be more productive, are favored? Or because establishment-
level productivity actually improves in response to the new policy?

One of the reasons many null hypotheses regarding production function parameters are re-
jected is the precision of the estimates. Asymptotic standard errors of the elasticity estimates
are 2.0% or less in fabricated metals and food, and only slightly larger for apparel and pa-
per, which have smaller sample sizes. Comparison with the alternative fabricated metals
production function estimates listed in Table 10 is instructive. The first panel lists results
from some popular, but inconsistent, estimators. The second panel has results from a se-
lection of estimators that are consistent in T or N . The sequential learning standard errors
are quite similar to standard errors of the random effects estimator. In contrast, standard
errors from the various consistent estimators are larger, sometimes considerably. Also notice
that compared to the sequential learning estimate of returns to scale, the OLS estimate is

47See the discussion of data quality with respect to Table 5.
48See Basu and Fernald [2002] for a thorough exposition of this type of aggregate productivity decompo-

sition.
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8% larger, most of the consistent estimates are considerably smaller, but the random effects
(and Levinsohn Petrin energy proxy) estimate is within 2%.

Similarity between the sequential learning and random effects estimates is not coincidental.
The consistent estimators solve the problem of endogeneity by removing variation, especially
between establishments, that could be correlated with the input variables. For example, the
fixed effects estimator is also known as the within estimator because identification comes
entirely from time series variation within establishments. As Griliches and Mairesse (1995)
argue, by removing so much of the variation reflecting production relations, these estimators
become more vulnerable to other types of undesirable variation such as measurement error.
This usually results in implausibly low estimates of capital elasticity and returns to scale.
In contrast, the random effects estimator retains both within- and between-establishment
variation at the price of susceptibility to endogeneity bias. The sequential learning estima-
tor’s cohort structure allows it to use a large portion of the between-establishment variation.
Among entrants in a cohort all between-establishment variation is part of the forecast error.
Since establishments learn about their idiosyncratic productivities over time, some portion
of between-establishment, within-cohort variation will also appear in forecast errors of sub-
sequent periods. However, unlike random effects, sequential learning explicitly controls the
forecastable portion of productivity variation that can cause endogeneity bias.

4.2 Productivity Dynamics

This paper’s opening paragraph posed questions about the sources of technological change
and incentives for establishment behaviors that create productivity growth. This subsection
will use the sequential learning estimator results in Tables 7 and 8 to examine the dynamics
of idiosyncratic and common productivity. The following subsections will estimate decision
rules for behaviors that affect aggregate industry productivity (e. g. exit and investment).49

First consider the form of idiosyncratic productivity’s dynamics. Since the four alterna-
tive specifications of productivity dynamics (DP, SP, RW, and EE) are nested, they can
be compared using likelihood ratio tests with the more restrictive specification as the null
hypothesis. Table 11 shows results for all four industries.50 The establishment effect only
(EE) specification is always strongly rejected. Incumbent establishments in these four indus-
tries definitely experience some kind of dynamics in their idiosyncratic productivities. The
random walk (RW) specification is also rejected, usually strongly as well. In one instance,
versus DP in apparel, the significance level is only 9.4%. This is unimportant since RW is
strongly rejected in a test against the more restrictive SP alternative. Comparison between

49If data on innovation effort had been available, the estimates in this subsection could have included the
effects of innovation effort on idiosyncratic productivity without any methodological changes. Likewise, the
following subsections could have estimated establishment decision rules for the level of innovation effort.

50In the paper industry tests involving the double process specification are not applicable because the
productivity shock variance parameter estimate (Q̂) is at a binding non-negativity constraint with non-zero
gradient, invalidating the test statistic.
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the double process (DP) with establishment effects and the single process (SP) without es-
tablishment effects depends upon the industry. In fabricated metals SP is rejected against
the DP alternative, but in food products and apparel SP is accepted. In food products and
apparel there may be no permanent establishment effects. Finally, the distinction among
the four specifications makes very little difference to the production function parameters, as
can be seen be comparing columns in the first block of Table 7.

Returning to Tables 7 and 8, estimates of the productivity shock variance, Q̂, and the AR(1)

coefficient, R̂11, for fabricated metals, food, and apparel also confirm that productivity
dynamics include shocks that are persistent, but not permanent. The constrained estimate
of Q̂ = 0 in the DP specification of the paper industry is not an indication of the absence
of productivity shocks, since the EE specification was rejected in contrast to SP or RW.
Instead it is symptomatic of difficulty separating the establishment effect component from the
AR(1) component, most probably because AR(1) is not the ideal specification of productivity
dynamics in the paper industry.

A number of comparisons can be made among variance components in an industry. In
fabricated metals temporary differences account for less variability in entrants’ persistent
productivity than permanent differences do (Ŵ11 = 0.035 versus Ŵ22 = 0.049). Similarly,
the persistent component of productivity shocks is somewhat less than half of the total shock
(Q̂ = 0.015 versus sigma2 = 0.022). Yearly shocks (Q+sigma2) have one third the variability
that occurs in entrants’ productivity (W11 + W22+sigma2). Similar comparisons can be
made for the other industries using Table 8. For example, in food products temporary
differences account for more variability than permanent differences in entrants’ persistent
productivity. In apparel transitory noise is smaller than persistent productivity shocks.

Comparisons of productivity dynamics parameters may also be made between industries.
Productivity shocks are more persistent in fabricated metals and food products (AR(1)
coefficients of 0.726 and 0.737, respectively) than in apparel and paper products (0.504 and
0.556). On the other hand, apparel has the largest persistent productivity shocks. Entrants’
persistent productivity is more variable (W11 + W22) in food products and apparel than in
fabricated metals and paper.

Taken together, these results constitute strong evidence for persistent establishment produc-
tivity shocks. Furthermore, these shocks to idiosyncratic productivity are not permanent.
These have several important implications. First, fixed and random effects estimators would
be misspecified in these industries. Second, since they are unpredictable, the presence of
persistent productivity shocks and noise supports the contention that establishments have
uncertainty about their productivities. Third, evidence of these shocks contributes to the
project of characterizing establishment-level productivity dynamics. Fourth, there are dif-
ferences among industries in the size of productivity shocks, their persistence, and the form
of establishment productivity dynamics. Explaining the causes of these differences is an
important topic for future exploration. One candidate hypothesis is that various sources of
idiosyncratic productivity — management, human capital, labor relations, equipment qual-
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ity — exhibit different degrees of variability and persistence and are more or less important
in different industries. For example, absence of permanent productivity advantages in the
food and apparel industries industries may due to easy imitation and less importance of
human capital. Finally, random initial productivity and subsequent idiosyncratic shocks are
the sources of heterogeneity in establishment productivity. This is a fundamental cause of
other types of heterogeneity (e. g. size or profitability) and therefore of industry structure.

Regarding the last point, previous research has shown that productivity varies by as much
as a factor of 2 or 3 across establishments within various industries.51 The productivity
distributions estimated here exhibit a slightly smaller, but similar range. Table 12 reports
the distribution of idiosyncratic persistent establishment productivities (the µ’s) using the
estimates from all available data (i. e. smoothed in Kalman terminology). Because common
productivity trends are captured separately in year dummies, these distributions represent
cross-sectional variation pooled over years in the panel. Recall the productivity estimates
are additive in logarithms. So a 0.01 difference represents approximately a one percent
change in productivity. The non-zero means reflect selection effects due to less productive
establishments’ tendency to exit. The table presents two measures of productivity variability,
standard deviations and differences between tenth and ninetieth percentiles. Expressed as a
ratio, establishments at the ninetieth productivity percentile are roughly twice as productive
as establishments at the tenth percentile. Comparing industries, the larger mean in apparel
suggests more rigorous selection. This is consistent with its higher average exit rate reported
in Table 1A. Nevertheless, productivity variability is quite similar across the four industries.

Remaining coefficients from the sequential learning estimates provide information on com-
mon and cohort-level productivity trends. Beginning with the year dummies, one might
ask whether they provide any evidence of common productivity growth.52 Table 13 shows
the results of Wald tests on three common-productivity null hypotheses for each industry.
The first null hypothesis, labelled H0a, is that all year dummies equal each other. This is
strongly rejected in all four industries, indicating that there is some year-to-year variation
in common productivity. The next two hypotheses assess whether there is a trend in the
year dummies that could be interpreted as productivity growth. H0b compares the last year
dummy (1996) to the first (1980, except for paper which is 1983). Equality is only rejected for
apparel. Returning to Table 8, this indicates a reduction of common productivity in apparel
and no significant change in other industries. Coefficients on first-year dummy variables
may be confounded by the identifying restrictions on the first cohort’s initial productivity.
Therefore, H0c uses fifth year common productivity as the basis of comparison to the final
year. With this comparison food and fabricated metals show modest, but not statistically
significant, productivity increases. In apparel the productivity reduction is still present, but
no longer significant. Apparel’s decreasing common productivity is an anomaly. Changes in
labor quality do not appear to be the explanation, because growth in real compensation per
employee over the period is almost exactly the same as for total manufacturing. Another

51Bartlesman and Doms [2000] review the findings of previous establishment panel productivity studies.
52Recall that the year dummies capture the elements of productivity change common to all establishments

in an industry. Also note that output and input data were deflated before estimation. Therefore, the
coefficient estimates do not conflate average price-level changes with productivity.
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candidate explanation is mismeasurement of the sector’s output or input deflators.

The last two panels of Tables 7 and 8 report components of entrants’ mean idiosyncratic
productivity by cohort. Recall that w1 describes the component of productivity subject to
AR(1) decay and w2 describes unchanging establishment effects.53 For the first cohort w1
and w2 are set to zero as identifying restrictions. In the DP specification w1 is also set to
zero for the last cohort. Table 14 reports two groups of hypothesis tests regarding these
coefficients. H0a through H0c are comparisons of cohorts’ initial productivities and the last
two tests concern learning from experience. H0a tests whether mean initial idiosyncratic
productivities are equal across all cohorts. This is strongly rejected in the food, apparel,
and paper industries but not even weakly in fabricated metals. H0b tests for a significant
difference between the second and final cohorts. The only significant result indicates better
productivity in the last cohort in the apparel industry. H0c, comparing the fifth cohort with
the last, produces quite different results. The test is highly significant (last cohort more
productive) in paper, marginally significant (last cohort less productive) in food products,
and now insignificant in apparel as well as fabricated metals. In light of the coefficient
estimates in Tables 7 and 8, the correct conclusion for all industries appears to be no distinct
trend in entrants’ initial productivities.

Previous studies (see Bartlesman and Doms [2000]) have found evidence that entrants have
systematically lower productivities than incumbents. In the four Chilean industries studied
here, this is due to the effect of selection on incumbents and not to learning from experience
in entrants’ early years. The hypotheses in the bottom half of Table 14 test whether the
decaying component (w1) of entrants’ initial productivities tends to be negative. H0d tests
if all all estimated w1 coefficients could equal zero. H0e is a similar test beginning with the
fifth cohort. These hypotheses are only rejected in the paper industry. Examination of tests
on individual coefficients shows that the significance is coming almost entirely from a single
year (1988).

4.3 Decision Rules and Validity Tests

Decision rules can be estimated and validity tests performed with predicted productivity
beliefs and smoothed productivity estimates derived from the sequential learning estimates
reported in the previous two subsections. The types of behavior modelled here are exit (as a
hazard rate), investment rates (in proportion to the current capital stock), and employment
rates (in proportion to the current capital services aggregate). The estimated decision rules
are exploratory in nature and specified in linear form. The objective is to establish whether
these behaviors are related to estimated productivity beliefs, not to determine the correct
functional form. Under appropriate conditions, primarily existence of a stationary industry
equilibrium generating the observed establishment behavior, these decision rules can be
interpreted as linear approximations of dynamic strategic policy functions.

53In the EE specification on Table 7, parameter restrictions convert w1 into an establishment effect.
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Table 15A provides the basic decision rule estimates for establishments in the fabricated
metals industry.54 The variable pred contains productivity predictions at the beginning of
each period (i. e. z′uit|t−1) from each establishment’s learning filter. Each 0.01 change in
pred represents approximately a one percent change in productivity. pred(t + 1) − pred(t)
measures the change in productivity belief going into the next period compared to the belief
at the start of the current period. These changes in belief are due to productivity dynamics
and information about idiosyncratic productivity revealed by production experience in the
current period. Age measured in years is inferred from the panel. The capital regressor is
the same capital services aggregate used as a production input above. Here it is expressed
in millions of 1985 pesos, which is roughly equal to $7,820 in U.S. dollars at 2004 prices (see
the introduction of Appendix D).

Exit Hazards

After excluding sector-switching and data gaps, the average exit rate for the fabricated metals
sample is 5.8%, the same as for all establishments in the industry (compare Tables 1A and
2). The exit decision is estimated as an exponential hazard rate equation with a linear index
function. Data from the last period of production is the only way to observe characteristics
of exiting establishments. Therefore, exit is treated as a forward-looking decision made using
all information available at the end of the current (observable) period. If the last observable
period is t, the last mean productivity belief before exit is pred(t + 1). This is decomposed
into pred(t+1)−pred(t) and pred(t) in order to assess the relative importance of productivity
belief shocks versus levels in exit decisions.

For interpretation, the reported exit coefficients are transformed into relative hazard rates
and affect the exit hazard multiplicatively.55 A regressor with no effect on exit would have a
relative hazard coefficient of 1 (rather than 0). For example, an increase in pred(t) reduces
the exit hazard because its relative hazard rate coefficient is less than 1. A one unit increase
in pred(t) (that is, an increase in productivity belief by a factor of e ≈ 2.718) decreases
the exit hazard by 82.8% (1-0.172) on average. A one percent increase of the productivity
belief in pred(t) reduces the exit hazard by 1.7% and a one percent increase represented in
pred(t + 1) − pred(t) reduces the hazard by 2.0%. These are both statistically significant
as verified by the tests on H0a and H0b reported in the bottom panel of Table 15A. In
fabricated metals, the null that the coefficients on pred(t) and pred(t+1)−pred(t) are equal
(H0c) cannot be rejected. So it appears that it is a low level of productivity belief, rather

54The standard errors in Tables 15A, 15B, and 16 are not corrected for the generated regressors pred(t) and
smooth(t). Nevertheless, the hypothesis tests on coefficients of expressions involving pred(t) and smooth(t)
are the correct size. Likewise the asymptotic standard errors do not require correction when the null hy-
potheses βpred(t) = 0, βpred(t+1)−pred(t) = 0, and βsmooth(t+1)−pred(t+1) = 0 hold (Newey and McFadden
[Theorem 6.2, 1994]). Furthermore, because pred(t), pred(t + 1)− pred(t), and smooth(t + 1)− pred(t + 1)
are orthogonal, a hypothesis test on the coefficient of any one is the correct size even if the true value of the
other coefficients is not 0 (Newey and McFadden [p. 2181, 1994])

55Standard errors are estimated for the linear indicator function and transformed into the relative hazard
metric using the delta method.
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than adverse shocks in the last year per se, that induces exit.

Continuing with the exit decision rule, even controlling for productivity beliefs and size as
measured by capital, age also reduces exit hazard. Each year an establishment ages reduces
the hazard by 10.8%, which is a statistically significant result. This is a typical finding
among panels of young establishments. One interesting aspect is that the result persists after
conditioning on learned productivity beliefs. This suggests there is an additional mechanism
at work beyond the response to learned belief offered by Jovanovic (1982) as an explanation
for higher exit rates of young establishments.

The effect of capital on exit (a 0.3% hazard reduction for a million peso increase in capital
service) appears small and is not statistically significant. However, measured in these units
there is considerable variability in capital (see Table 4A). A one standard deviation change
in capital (34.9 million 1985 pesos) would reduce the exit hazard by 9.6%.

In all of the estimated decision rules, coefficients on time dummies have substantive signif-
icance as representations of the variation in industry state and economic environment. For
exit hazard, 1980, 1984, and 1986 relative hazard coefficients are exactly zero because no
establishments exited the sample between these and the subsequent years (see Table 2).56

The null hypothesis of no year-to-year variation in hazard (H0d) is rejected at a very high
level of significance.

Table 15B summarizes results for the same three decision rules — exit hazard, investment
rate, and employment rate — for the food, apparel, and paper industries. The exit hazard
results for these three industries are generally similar to the fabricated metals results. In-
creases in productivity belief reduce exit hazards, although significantly only in apparel and
for pred(t + 1) − pred(t) in food. Age significantly reduces the exit hazard in food, but is
insignificant in paper and (insignificantly) increases the exit hazard in apparel. Temporal
variation in exit hazard is strongly significant in all three industries, as was the case for fab-
ricated metals. Finally, the results on capital are stronger in these industries. More capital
decreases the exit hazard, but here the result is significant for paper and at the 10% level
for food. Paper is much more capital intensive than the other three industries so it is not
surprising that capital has a clearer effect on survival in this industry than the others.

These exit hazard results are important for three reasons. First, they confirm that estimated
productivity beliefs from the sequential learning estimator can indeed be related to estab-
lishment behavior in second stage estimates. Furthermore, the coefficients on productivity
belief all have the expected sign and are often statistically significant. Second, both produc-
tivity and capital reduce exit hazard, confirming the presence selection that will bias results
from estimators that do not take this into account. Third, the finding of significant variation
among the annual coefficients is consistent with industry state and economic environment
affecting exit behavior. This is especially noteworthy because it indicates that future work

56No estimate is reported for 1996 because there is no way of inferring whether any establishments operating
that year exited before 1997.
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to include explicit measures of industry structure and economic environment in estimated
decision rules has a chance of success.

Investment Rates

Results for the investment rate decision rule are in Table 15A’s second column. Investment is
also forward-looking, since it changes capital inputs in future periods. Consequently, pred(t)
and pred(t + 1) − pred(t) are again used as regressors along with age and year dummies.
Investment is divided by current capital stock to produce investment rates. The investment
rate is highly skewed with a median of 5.7% and a mean of 21.3%, and also highly variable
with a standard deviation of 56.6%.

As expected, the relation between productivity belief and investment rate is positive. For
pred(t) it is also statistically significant. The coefficients on pred(t) and pred(t+1)−pred(t)
are elasticities between productivity and capital stock. A one percent increase in the pro-
ductivity belief at the beginning of the current period increases investment before the next
period by an amount sufficient to increase capital by 0.21%. This suggests that capital stock
has not fully adjusted to the current productivity belief. Although the difference is not signif-
icant (see H0c), the smaller coefficient on the change in productivity belief is also consistent
with partial capital adjustment.57 On average, a one percent change in productivity belief
results in a 0.15% increase in next year’s capital stock. Together, these results confirm the
presence of strategic endogeneity between capital inputs and establishment productivity.

Age has a substantial and significant negative effect on investment rate. On average each year
of age reduces investment by 1.4% of capital stock (i. e. 25% of mean investment rate). This
is conditional on the level and current change in productivity belief, again indicating that
establishment age affects strategic behavior through some means independent of learning
about productivity. The large magnitude of age’s affect on investment rate is partly a
reflection of the youth of establishments in the analysis sample.

Unlike exit, investment rate behavior does not vary significantly across years in the sample
(H0d). This may well be due to large variation in investment rate rather than absence of
an underlying relationship with industry structure or economic environment. The estimated
coefficients vary widely, but the extreme values occur in the third and fourth years when
sample sizes are small.

For the other three industries in Table 15B, results on the investment rate decision rules
are not as clear-cut as they were for fabricated metals. None of the productivity belief
coefficients are significant. However, five of the six coefficients take the expected positive

57Evidence of partial capital adjustment suggests that the type of dynamic panel instruments proposed by
Arellano and Bond (1991) and Arellano and Bover (1995) — lagged levels instrumenting input differences —
would have some identifying power. However, inspection of Table 10 shows that this estimator still produces
an implausibly low estimate of returns to scale.
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sign. As before, age reduces investment rate, but none of the coefficients is significant for
these three industries. Neither are differences among coefficients on year dummies significant
in any of these industries.

Employment Rates

The third decision rule in Table 15A is for employment rate. This is a labor-capital ratio
measured as blue-collar equivalent person years per million 1985 pesos worth of capital ser-
vices.58 These are the same labor and capital variables used in estimation of the production
function above. The mean employment rate is 19.2, which works out to one blue-collar job-
year per 52,100 1985 pesos. In 2004 U.S. dollars this is roughly one employee per $407 in
capital services.

There is no strong a priori basis to expect any particular sign for the coefficients in the
employment rate decision rule. Productivity has been specified as Hicks neutral. Therefore
if all inputs were freely adjustable and establishments were static cost-minimizers there
would be no relation between the productivity and the labor-capital ratio in employment
rate. With capital quasi-fixed and not fully adjusted to productivity beliefs, there may be a
non-zero relationship between productivity and employment rate. With constant elasticity
residual demand and increasing short-run marginal cost this relationship will be positive —
increases in production outweighing substitution of productivity for labor.

Employment rate affects production inputs in the current period. Therefore, assumptions of
the sequential learning model imply that pred(t+1) should not be included as a regressor. For
fabricated metals, the sign on pred(t) is negative but not significant. Evaluated at the mean,
the implied elasticity of employment rate with respect to productivity is -0.36. Age also
has a negative but insignificant effect. The employment rate decision rule has statistically
significant variation from year to year (H0d).59 Since employment is a more variable input
than investment, this significant temporal variation is more likely a response to demand
conditions than to strategic considerations. Employment and other variable inputs can
respond to contemporaneous information about the economic environment without violating
any assumption of the sequential learning estimator.

The other three estimated employment rate decision rules present a mixed picture (Table
15B). The coefficient on productivity belief is positive, but not significant in the food and
apparel industries. In the paper industry the effect of productivity belief is negative and just
significant at the 5% threshold. Unlike the result in fabricated metals, year-to-year variation
is not significant in these three industries.

58See Appendix D for detailed discussion of construction of the labor and capital services variables.
59This result should be considered tentative. The extreme coefficient values in 1983 and 1984 are attribut-

able to extreme employment rate outliers in three observations from two establishments.
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Validity Tests

The investment rate and employment rate decision rules are augmented to perform validity
tests on the information and decision timing assumptions, as described in the estimation
section. Recall that smoothed productivity estimates are the Kalman filter estimates using
data from an establishment’s entire history. Because idiosyncratic productivity is persis-
tent, future observations are just as informative as past observations when inferring current
productivity. The information and decision timing assumptions imply that establishment
decisions should not be affected by this additional information revealed by subsequent pro-
duction experience. In other words, decision rules for current inputs, such as employment,
should be independent of smooth(t)−pred(t) and forward-looking decision rules, such as for
investment rate, should be independent of smooth(t + 1)− pred(t + 1).60

Table 16 presents validity test results for all four industries. The equations are specified
in exactly the same manner as the decision rule equations reported in Tables 15A and 15B
except that smooth(t+1)−pred(t+1) or smooth(t)−pred(t) are included. The validity test
is passed if the null hypothesis that the coefficient on these additional variables equals 0 is not
rejected. The sequential learning validity test is passed in seven out of eight cases, including
all of the forward-looking investment rate decision rules. The one instance of a significant
coefficient on smooth(t) − pred(t) is in the food industry employment rate decision rule.
Notice that coefficient estimates for the other variables are nearly unchanged from Tables
15A and 15B in all eight decision rules. This is indirect confirmation that smooth(t)−pred(t)
is orthogonal to pred(t) (as well as age), as it should be if the sequential learning model has
been correctly estimated.

In three out of four industries the data do not reject validity of the sequential learning
assumptions in tests using investment and employment behavior. The validity test based
on employment rate can be quite stringent since it is easier for establishments to adjust
employment in response to production experience during the period. Therefore, it is en-
couraging that the sequential learning estimator passed this test in three out of the four
industries. But it is also reassuring that the validity test has enough power to occasionally
reject appropriateness of the estimator for specific industries.

The main use here of the employment rate decision rule is as a potentially more stringent
validity test on the sequential learning estimator’s assumptions.

4.4 An Indirect Test of Olley and Pakes’ Invertibility Condition

Olley and Pakes’ (1996) semiparametric production function estimator relies upon strict
monotonicity of investment with respect to productivity belief, conditional on age, current

60Exit hazard does not provide a meaningful validity test because in the year before exit smooth(t + 1)−
pred(t + 1) = 0 by construction of smooth(t + 1).
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capital, and positive investment. They invert this relation to nonparametrically infer pro-
ductivity beliefs from investment. Pakes (1994) develops sufficient conditions for this strict
monotonicity condition to hold. He assumes productivity, µit, evolves according to an ex-
ogenous Markov process and gross current payoffs can be expressed as a reduced form of the
firm’s current capital and productivity, πit = π(µit, kit).

61 Then the firm’s dynamic problem
can be summarized in a Bellman value function

V (µit, kit) = max

{
Vx, max

iit

{
π(µit, kit)− c(iit, kit) + φEt[V (g(µit), kit(1− δ) + iit)]

}}
(24)

Where Vx is an exit scrap value, φ is the discount rate, δ is rate of depreciation, iit is invest-
ment, c(iit, kit) is the capital adjustment cost, g(µit) is the stochastic Markov productivity
transition function, and the expectation is over next period’s realization of µit+1 conditional
on µit. Then supermodularity of π(µit, kit), convexity of capital adjustment cost, supermod-
ularity of the negative of capital adjustment cost, and stochastic dominance and regularity
conditions on g(µit) are sufficient for investment to be strictly increasing in current produc-
tivity belief among firms with positive investment (Pakes [1994]).

Since sequential learning estimates of productivity beliefs are based on a different set of as-
sumptions, the compatibility of the Olley-Pakes invertibility condition with these estimates
can be assessed. In principle, the invertibility condition and the sequential learning assump-
tions could both hold. In that case apparent violations of invertibility should be entirely
due to random errors in the productivity belief estimates.62 If the frequency of apparent
violations of the invertibility condition are more frequent than can be accounted for by ran-
dom estimation error, this would be evidence that the invertibility condition, the sequential
learning assumptions, or both are not applicable in that industry. So this amounts to a joint
test of the simultaneous correctness of both models.

Because the invertibility is conditional on current capital and the chances of observing two
establishments with exactly equal capital are exceedingly small, a direct test is impractical.
However, Pakes’ sufficient conditions also imply a more readily observed capital dominance
persistence result.63

uit ≥ ujt and kit ≥ kjt ⇒ kit+1 ≥ kjt+1 (25)

Table 17 shows the results when this condition is checked using estimated productivity beliefs
from the sequential learning estimator. As an example consider fabricated metals in the last

61Absence of strategic interactions and full response of variable inputs to the current state permit this
simplification.

62Or mismeasurement of capital. But that would cause problems in both the sequential learning and
Olley-Pakes estimators.

63Let V T (µit, kit) denote the value function for a finite T period problem. Pakes shows that V T (.) is
supermodular. It follows from the stochastic dominance of g(µit) that E[V T−1|µit] is also supermodular
in µit and kit+1. Redefine the choice variable as kit+1 ≡ iit + (1 − δ)kit. Since kit+1 is monotonic in iit,
negative capital adjustment cost is also supermodular in kit+1 and kit. Therefore, the action-specific value
function V T (µit, kit, kit+1) is supermodular in kit+1 and sit ≡ (µit, kit). Thus µ′

it ≥ µ′′
it and k′

it ≥ k′′
it implies

k′
it+1 ≥ k′′

it+1. Taking limits as T goes to infinity completes the argument.
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column. Pooling years, there are 82,294 ordered establishment pairs or 41,147 distinct pairs
if order is ignored. The same pairs usually re-appear in several years and each occurrence
is counted because each is an opportunity for dominance. There were 22,984 instances of
dominance as defined in the first part of Equation 25. Of these, comparison in the subsequent
year could not be made in 2,495 cases because at least one establishment in the pair switched
sectors or had a gap in reported data. This leaves 20,489 cases to evaluate the implication in
Equation 25. The implication was violated 2,647 times because the dominated establishment
had more capital in the following year — a “capital reversal.” The implication was violated
an additional 819 times when the dominating establishment exited (i. e. capital=0) but
the dominated establishment continued in operation — an “exit reversal.” Combined, the
reversals account for 16.9% of instances of dominance that can be checked. Olley and Pakes
(1996) also condition on age in their nonparametric productivity inversion. The bottom
panel of Table 17 limits the analysis to pairs of establishments coming from the same age
cohort. This substantially reduces the number of observed instances of dominance, but has
only a small effect on the percentage of reversals.

Scanning across the four industries, the percentage of reversals ranges from 9.4% in the paper
industry when conditioning on age to 26.3% in apparel when considering all establishment
pairs. The lower rate of reversals in paper is not surprising since that industry is both more
capital intensive and has lower average mark-ups. The first increases the importance of
capital decisions while the second is generally an indicator of weaker product differentiation.
There are a number of reasons that the implication in Equation 25 may be violated so often.
Capital adjustment costs may be non-convex. Productivity transitions may not exhibit
first-order stochastic dominance. This may especially be true when embodied technology
implies that the act of investment itself changes productivity. Establishments may not be
dynamically optimizing. Firms may limit capacity as a collusive device. An important
candidate explanation is that establishments do not face uniform output or input prices.
This could be due to product differentiation and/or from pooling geographically distinct
markets.

It should be re-emphasized that this is an indirect test. First, although similar in spirit, the
condition in Equation 25 is not the invertibility condition itself. Rather, it can be derived
from a set of assumptions that are also sufficient for the invertibility condition. Second,
these dominance reversal results depend on productivity belief estimates produced by the
sequential learning estimator. Nevertheless, Table 17 is a strong reminder that there are in-
dustries, perhaps many, that do not conform to the various characterizations of establishment
behavior used by many estimators. This confirms the importance of having a productivity
estimator that does not rely on behavioral restrictions.
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5 Conclusion

The sequential learning estimator developed in this paper has several useful properties. It
replaces explicit or implicit assumptions about firm behavior and industry equilibrium with a
model of productivity beliefs formed through repeated learning from production experience.
Second, the form of productivity dynamics can be specified with a great deal of flexibility.
In particular, the estimator can accommodate effects of endogenous innovation effort on pro-
ductivity. Third, by simulating establishments’ productivity beliefs the sequential learning
estimator computes forecast errors that are independent of all predetermined input choices.
Consequently, it resolves the econometric issues of selection and strategic endogeneity that
arise because establishment productivity and capital are both state variables in the dynamic
industry game. Because of these features, the sequential learning estimator allows produc-
tivity dynamics to be studied in non-competitive industries where assumptions underlying
alternative estimators do not hold.

The sequential leaning estimator also offers advantages as a first stage in empirical modelling
of dynamic industry equilibria, especially when productivity and innovation effort are im-
portant contributors to the evolution of industry structure. Establishment behavior decision
rules can be estimated in a second stage after sequential learning generates productivity dy-
namics and productivity belief estimates in a first stage. Previously, establishment behavior
had to be estimated simultaneously with productivity. In principle, after introducing some
structure into the dynamic industry game one could take a third step and estimate value
functions and properties of the equilibrium. In this way the sequential learning estimator is
likely to prove complementary to the emerging literature on structural estimation of industry
games.

Another benefit of the sequential learning estimator is that it produces small standard errors
on production function parameter estimates. This is a consequence of using cohorts to model
entrants’ initial productivity beliefs. Some between-establishment within-cohort variation is
preserved in the forecast errors, especially in a cohort’s early years. This produces stan-
dard errors closer to the random effects estimator than to previous estimators that address
endogeneity. Preserving more inter-establishment variation also appears to push estimated
returns to scale closer to constant returns.

To produce all of these advantages the sequential learning estimator makes several assump-
tions about the process establishments use to form beliefs about their own productivities.
Establishment knowledge of true parameter values, entrants’ rational expectations about
their initial productivities, and passive learning about own productivity are each common
aspects of the literature on dynamic industry models. Normality of the entrant productivity
data generating process, productivity shocks, and noise is a strong assumption. But the
practical consequences of its violation will usually be small, since Kalman updating still
provides the best conditional linear estimate of productivity.

The two remaining assumptions are that establishments learn from the same information
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contained in the econometrician’s data and that all input decisions are predetermined at the
time the forecast error is revealed. These are strong and crucial to justification of the sequen-
tial learning estimator. Fortunately, they have a testable joint implication. Establishment
decision rules should be independent of information about productivity revealed after the
decisions are presumed to be taken. This additional information is summarized in the differ-
ence between estimated productivity belief and the Kalman filter’s smoothed productivity
estimate using an establishment’s entire history in the panel. In three out of four industries
this joint implication was not rejected in estimated decision rules for investment rate and
employment rate. In those industries the sequential learning assumptions pass this validity
test. The one instance (employment rates in the food industry) where the joint implication
was rejected demonstrates that the sequential learning estimator will not be valid in every
instance. However, it also demonstrates that these validity tests have power.

As a proof of concept, production functions, productivity dynamics, and decision rules were
estimated for four industries using a panel of Chilean manufacturing establishments. First
and foremost, this illustrates the feasibility of using the sequential learning estimator to
estimate productivity and then decision rules in separate stages.

Several additional results support the conclusion that sequential learning produces good
production function estimates. Estimated returns to scale are within 4% of constant in
each industry. Factor elasticity shares are usually close to cost shares. The ranking of
imputed mark-ups among the industries is plausible. Industry average establishment sizes
and capital intensities are consistent with estimated returns to scale, capital elasticity, and
imputed mark-up, especially in the paper industry.

There is indirect evidence that establishments are uncertain about their own productivity and
learn from production experience as assumed. For entrants average establishment size and
variability in size are less than for incumbents, which have had an opportunity to learn about
their productivities. Estimates of productivity dynamics strongly support the presence of
persistent productivity shocks, which contribute to uncertainty. Most importantly, estimated
productivity beliefs are indeed related to establishment behavior. In estimated decision rules
they almost always have the anticipated sign and are statistically significant in three out four
exit hazard equations and in one investment rate equation.

Furthermore, empirical results indicate that assumptions made by alternative estimators
are not satisfied for the four industries examined. In each industry a capital dominance
persistence property derived from the same sufficient conditions used to justify Olley and
Pakes’ (1996) investment invertibility is frequently incompatible with estimated productivity
beliefs. The restrictive productivity dynamics of fixed and random effects estimators are
strongly rejected.

Future applications of the sequential learning estimator have the potential to address many
questions about microeconomic productivity dynamics and its behavioral sources. The re-
sults here provide preliminary evidence that variations in industry state and economic en-
vironment do affect establishment behavior. These unmeasured variations are captured

40



by annual dummy variables, which differ significantly in several of the estimated decision
rules, especially for exit hazard. Identifying which changes in industry characteristics and
economic condition affect establishment behaviors, explaining how these changes modify
establishments’ incentives for such behaviors, and deriving consequences for the course of
industry-level productivity and technology are important directions for additional research.
The sequential learning estimator will be a useful tool to explore these questions in a wide
variety of industries by allowing estimation of productivity separately from description of
establishment behavior and dynamic industry equilibrium.
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Industry (ISIC) Establishments Total Per Year Total Per Year Total Per Year Entry Rate Exit Rate
Food (311) 2,860 24,495 1,360.8 1,323 73.5 1,412 78.4 5.4% 5.8%
Apparel (322) 864 5,886 327.0 422 23.4 503 27.9 7.2% 8.5%
Paper (341) 145 1,194 66.3 75 4.2 60 3.3 6.3% 5.0%
Fabricated Metal (381) 921 7,105 394.7 462 25.7 414 23.0 6.5% 5.8%

Average
Industry (ISIC) Establishments Total Per Year Cohorts Cohort Size
Food (311) 831 3,740 220.0 1980-1996 48.9
Apparel (322) 297 1,141 67.1 1980-1996 17.5
Paper (341) 68 297 21.2 1983, 1984, 1986-1996 4.9
Fabricated Metal (381) 325 1,157 68.1 1980-1996 19.1

Observations

Table 1A
Establishments in Source Data (ENIA 1979-1996)

Table 1B
Establishments in Analysis Data

ExitsEntrantsObservations



Outward Sector Inward Sector Outward Sector
Year Exit Switch or Incumbent Entrant Switch or Total Exit Switch or Incumbent Entrant Total

Data Gap Data Gap Data Gap
1979 459
1980 42 58 359 16 72 447 7 7
1981 36 42 369 10 34 413 0 1 6 2 8
1982 48 39 326 7 32 365 1 1 6 2 8
1983 50 37 278 9 35 322 3 0 5 5 10
1984 24 18 280 48 30 358 3 0 7 30 37
1985 6 18 334 7 10 351 0 1 36 2 38
1986 23 9 319 18 10 347 4 0 34 13 47
1987 14 46 287 41 28 356 0 6 41 30 71
1988 15 34 307 12 29 348 4 9 58 12 70
1989 15 54 279 21 60 360 5 13 52 18 70
1990 16 24 320 4 27 351 4 6 60 3 63
1991 12 16 323 33 18 374 2 5 56 22 78
1992 15 19 340 29 36 405 5 5 68 18 86
1993 18 41 346 44 30 420 6 8 72 35 107
1994 20 21 379 36 29 444 5 5 97 23 120
1995 25 38 381 51 38 470 9 10 101 42 143
1996 35 2 433 76 6 515 8 2 133 61 194

Total Industry Analysis Data

Table 2
Establishment Counts by Year and Status

(Fabricated Metal Products ISIC 381)



Total Industry Analysis Data
Cohort Plants 1996 Survivors Observations Plants 1996 Survivors Observations

0 459 204 4,966
1980 16 3 106 7 2 47
1981 10 3 54 2 0 6
1982 7 3 68 2 0 3
1983 9 4 89 5 2 43
1984 48 24 434 30 12 232
1985 7 4 56 2 1 20
1986 18 9 133 13 3 69
1987 41 22 297 30 9 152
1988 12 4 53 12 2 33
1989 21 14 134 18 7 85
1990 4 2 21 3 0 10
1991 33 26 175 22 11 88
1992 29 22 118 18 10 63
1993 44 29 146 35 23 113
1994 36 21 83 23 14 53
1995 51 45 96 42 37 79
1996 76 76 76 61 61 61

Table 3
Cohorts

(Fabricated Metal Products ISIC 381)



Mean Median Variance Skewness
Output All 232.9 99.2 2.20E+05 6.53

Entrant 155.1 75.5 1.07E+05 8.57
Log Output All 11.6 11.5 1.18 0.53

Entrant 11.3 11.2 0.95 0.67
Labor All 55.8 34.3 4.37E+03 4.39

Entrant 43.8 29.0 2.40E+03 4.40
Log Labor All 3.7 3.5 3.67 0.77

Entrant 3.5 3.4 0.49 0.81
Capital Service All 15.3 5.0 1.22E+03 5.92

Entrant 11.5 4.3 6.56E+02 6.56
Log Capital Service All 8.5 8.5 2.14 0.04

Entrant 8.3 8.4 2.11 -0.20
Energy All 4.0 1.6 7.57E+01 8.19

Entrant 3.0 1.1 7.34E+01 9.81
Log Energy All 7.4 7.4 1.90 -0.09

Entrant 7.0 7.0 1.83 -0.03
Materials All 113.7 42.1 7.98E+04 8.14

Entrant 72.4 31.3 2.59E+04 7.14
Log Materials All 10.8 10.6 1.41 0.51

Entrant 10.4 10.4 1.20 0.54
Investment All 0.1 0.0 2.91E-01 9.01

Entrant 0.1 0.0 2.88E-01 4.04
Log Investment All 3.6 3.7 3.26 -0.11

Entrant 3.6 3.7 2.88 -0.27

Notes: Analysis data (full cohort histories) only.
Labor in blue-collar equivalent person years.
All other levels in millions 1985 Chilean pesos.
All other logarithms of thousands of 1985 Chilean pesos.

Table 4A
Descriptive Statistics

(Fabricated Metal Products ISIC 381)



Mean Median Variance
Food: Output 397.6 84.4 6.59E+05

Labor 94.7 45.3 2.06E+04
Capital Service 33.5 4.2 8.40E+03
Energy 19.2 3.1 2.48E+03
Materials 234.0 49.5 2.22E+05
Investment 0.3 0.0 2.47E+00

Apparel: Output 137.3 52.1 6.88E+04
Labor 58.1 30.4 6.91E+03
Capital Service 8.9 2.8 3.38E+02
Energy 1.6 0.5 1.62E+01
Materials 72.7 28.5 1.85E+04
Investment 0.0 0.0 5.62E-02

Paper: Output 1,918.0 177.6 1.23E+07
Labor 185.0 52.4 7.34E+04
Capital Service 555.7 20.9 5.25E+06
Energy 108.9 4.7 8.52E+04
Materials 1,020.1 91.0 3.40E+06
Investment 5.7 0.0 2.92E+03

Notes: Analysis data (full cohort histories) only.
Labor in blue-collar equivalent person years.
All other levels in millions 1985 Chilean pesos.
All other logarithms of thousands of 1985 Chilean pesos.

Table 4B
Descriptive Statistics



Fabricated
Food Apparel Paper Metals

Revenue Shares:
Capital 8.4% 6.5% 29.0% 6.6%
Labor 8.7% 15.9% 6.9% 12.8%
Energy 4.8% 1.2% 5.7% 1.7%
Materials 58.8% 53.0% 53.2% 48.8%
Misc. Services 5.2% 9.0% 5.5% 5.0%
Total 86.0% 85.5% 100.2% 74.9%
Imputed Profit Share 14.0% 14.5% -0.2% 25.1%

Cost Shares:
Capital 9.8% 7.6% 28.9% 8.8%
Labor 10.1% 18.6% 6.8% 17.1%
Energy 5.6% 1.4% 5.7% 2.3%
Materials 68.4% 61.9% 53.1% 65.2%
Misc. Services 6.1% 10.5% 5.5% 6.6%

Note: Based on analysis data.

Table 5
Aggregate Revenue and Cost Shares



Food Apparel
Output Capital Labor Energy Materials Output Capital Labor Energy Materials

Output 1.00 Output 1.00
Capital 0.80 1.00 Capital 0.74 1.00
Labor 0.77 0.71 1.00 Labor 0.83 0.74 1.00
Energy 0.79 0.74 0.68 1.00 Energy 0.69 0.66 0.71 1.00
Materials 0.95 0.73 0.71 0.72 1.00 Materials 0.91 0.64 0.70 0.57 1.00

Paper Fabricated Metal
Output Capital Labor Energy Materials Output Capital Labor Energy Materials

Output 1.00 Output 1.00
Capital 0.88 1.00 Capital 0.72 1.00
Labor 0.92 0.83 1.00 Labor 0.76 0.59 1.00
Energy 0.84 0.84 0.83 1.00 Energy 0.68 0.58 0.63 1.00
Materials 0.97 0.85 0.87 0.80 1.00 Materials 0.92 0.60 0.65 0.58 1.00

Table 6
Simple Correlations Among Analysis Variables

(In Natural Logaritms)



DP SP RW EE
Production Function:
Capital 0.100 0.103 0.097 0.084

(0.011) (0.011) (0.011) (0.010)
Labor 0.256 0.265 0.262 0.271

(0.020) (0.020) (0.020) (0.020)
Energy 0.049 0.049 0.050 0.056

(0.010) (0.010) (0.010) (0.010)
Materials 0.557 0.558 0.555 0.570

(0.014) (0.013) (0.014) (0.014)
Returns to Scale 0.962 0.975 0.964 0.980

(0.018) (0.018) (0.018) (0.017)
R11 (AR(1) coefficient) 0.726 0.914 1.000 1.000

(0.120) (0.029) . .
Variances:
W11 (entrants' AR(1) component) 0.035 0.079 0.072 0.067

(0.012) (0.008) (0.007) (0.007)
W22 (unchanging establishment effect) 0.049

(0.012)
Q (persistent AR(1) shock) 0.015 0.011 0.007 0.000

(0.005) (0.003) (0.001)
sigma2 (noise) 0.022 0.027 0.030 0.040

(0.004) (0.003) (0.002) (0.002)
Year Dummies:
yr80 3.392 3.327 3.417 3.287

(0.179) (0.179) (0.179) (0.177)
yr81 3.472 3.419 3.517 3.378

(0.184) (0.183) (0.187) (0.181)
yr82 3.354 3.319 3.422 3.306

(0.183) (0.181) (0.187) (0.179)
yr83 3.504 3.249 3.322 3.179

(0.194) (0.183) (0.193) (0.177)
yr84 3.379 3.154 3.187 2.992

(0.197) (0.186) (0.200) (0.174)
yr85 3.333 3.191 3.223 3.023

(0.193) (0.180) (0.201) (0.175)
yr86 3.351 3.282 3.311 3.112

(0.195) (0.175) (0.203) (0.176)
yr87 3.304 3.268 3.287 3.084

(0.195) (0.170) (0.204) (0.176)
yr88 3.427 3.426 3.444 3.244

(0.198) (0.167) (0.205) (0.177)
yr89 3.320 3.350 3.372 3.170

(0.200) (0.165) (0.207) (0.178)
yr90 3.356 3.399 3.426 3.225

(0.200) (0.161) (0.208) (0.179)
yr91 3.323 3.369 3.399 3.199

(0.201) (0.158) (0.208) (0.179)
yr92 3.380 3.421 3.452 3.250

(0.202) (0.156) (0.209) (0.179)
yr93 3.499 3.542 3.574 3.372

(0.204) (0.154) (0.210) (0.179)
yr94 3.464 3.504 3.536 3.337

(0.204) (0.152) (0.210) (0.179)
yr95 3.491 3.544 3.579 3.379

(0.205) (0.150) (0.211) (0.180)
yr96 3.501 3.583 3.618 3.419

(0.206) (0.148) (0.211) (0.180)
Initial Productivity continued…

Notes: Asymptotic standard errors in parentheses. See text for explanation.
Variance estimates transformed from square roots with delta method.
DP: Double process - AR(1) and establishment effect.
SP: Single process - AR(1).
RW: Random walk.
EE: Establishment effect.

Table 7
Sequential Learning Estimator
(Fabricated Metal Products ISIC 381)



DP SP RW EE
Initial Productivity: w1
  (AR(1) component)
cohort81 0.507 -0.234 -0.249 -0.237

(0.457) (0.254) (0.247) (0.238)
cohort82 2.927 -0.134 -0.165 -0.147

(1.603) (0.257) (0.255) (0.251)
cohort83 -0.306 0.124 0.159 0.203

(0.225) (0.192) (0.194) (0.171)
cohort84 -0.358 -0.011 0.049 0.127

(0.171) (0.145) (0.158) (0.130)
cohort85 -0.371 -0.022 0.069 0.172

(0.258) (0.250) (0.254) (0.224)
cohort86 -0.064 0.017 0.071 0.130

(0.155) (0.144) (0.172) (0.144)
cohort87 -0.192 -0.079 -0.002 0.084

(0.136) (0.122) (0.161) (0.131)
cohort88 -0.045 -0.034 0.042 0.102

(0.191) (0.136) (0.176) (0.149)
cohort89 0.055 -0.090 -0.024 0.040

(0.119) (0.119) (0.168) (0.138)
cohort90 0.425 -0.078 -0.041 0.026

(0.333) (0.199) (0.230) (0.204)
cohort91 0.038 -0.003 0.059 0.129

(0.114) (0.105) (0.166) (0.135)
cohort92 -0.079 -0.096 -0.030 0.049

(0.137) (0.106) (0.170) (0.138)
cohort93 -0.061 -0.083 -0.017 0.068

(0.117) (0.089) (0.163) (0.130)
cohort94 -0.424 0.008 0.073 0.163

(0.240) (0.094) (0.168) (0.136)
cohort95 -0.260 0.022 0.081 0.161

(0.221) (0.079) (0.163) (0.130)
cohort96 -0.028 0.028 0.107

(0.072) (0.162) (0.129)
Initial Productivity: w2
  (establishment effect component)
cohort81 -0.673

(0.435)
cohort82 -2.913

(1.577)
cohort83 0.207

(0.209)
cohort84 0.180

(0.171)
cohort85 0.281

(0.260)
cohort86 0.088

(0.189)
cohort87 0.133

(0.177)
cohort88 0.080

(0.226)
cohort89 -0.027

(0.182)
cohort90 -0.324

(0.349)
cohort91 0.075

(0.183)
cohort92 0.090

(0.197)
cohort93 0.086

(0.187)
cohort94 0.496

(0.282)
cohort95 0.387

(0.267)
cohort96 0.123

(0.164)

Table 7 continued
Sequential Learning Estimator
(Fabricated Metal Products ISIC 381)



Food Apparel Paper
Production Function:
Capital 0.104 0.105 0.094

(0.007) (0.014) (0.022)
Labor 0.161 0.366 0.315

(0.011) (0.024) (0.042)
Energy 0.090 0.069 0.030

(0.006) (0.012) (0.017)
Materials 0.620 0.473 0.577

(0.007) (0.013) (0.026)
Returns to Scale 0.975 1.013 1.016

(0.009) (0.019) (0.027)
R11 (AR(1) coefficient) 0.737 0.504 0.556

(0.062) (0.143) (0.132)
Variances:
W11 (entrants' AR(1) component) 0.068 0.045 0.029

(0.010) (0.013) (0.018)
W22 (unchanging establishment effect) 0.034 0.056 0.045

(0.009) (0.009) (0.014)
Q (persistent AR(1) shock) 0.022 0.037 0

(0.004) (0.012)
sigma2 (noise) 0.038 0.017 0.034

(0.003) (0.010) (0.003)
Year Dummies:
yr80 2.452 4.077

(0.095) (0.193)
yr81 2.392 3.824

(0.097) (0.217)
yr82 2.334 3.390

(0.092) (0.205)
yr83 2.344 2.827 3.032

(0.090) (0.212) (0.318)
yr84 2.331 2.879 3.022

(0.088) (0.226) (0.298)
yr85 2.327 2.924 2.891

(0.087) (0.241) (0.278)
yr86 2.369 2.988 3.156

(0.087) (0.254) (0.272)
yr87 2.351 3.006 2.889

(0.088) (0.262) (0.277)
yr88 2.354 3.021 2.898

(0.088) (0.265) (0.276)
yr89 2.344 3.026 2.945

(0.090) (0.268) (0.280)
yr90 2.353 3.057 2.991

(0.090) (0.270) (0.280)
yr91 2.396 3.082 3.089

(0.092) (0.272) (0.281)
yr92 2.440 3.161 3.108

(0.093) (0.273) (0.282)
yr93 2.452 3.067 3.072

(0.094) (0.273) (0.282)
yr94 2.484 2.965 2.959

(0.094) (0.274) (0.281)
yr95 2.447 2.969 2.949

(0.095) (0.275) (0.281)
yr96 2.418 2.778 2.849

(0.096) (0.275) (0.280)
Initial Productivity continued…

Notes: Asymptotic standard errors in parentheses. See text for explanation.
Variance estimates transformed from square roots with delta method.
Paper industry estimated Q at binding constraint. Remaining
   estimates are conditional.

Table 8
Sequential Learning Estimator

(Double Process - AR(1) plus Establishment Effect)



Food Apparel Paper
Initial Productivity: w1
  (AR(1) component)
cohort81 0.124 -0.354

(0.141) (0.317)
cohort82 0.067 -0.441

(0.136) (0.287)
cohort83 0.146 0.061

(0.110) (0.205)
cohort84 0.130 0.185 0.140

(0.092) (0.142) (0.221)
cohort85 0.104 -0.406

(0.100) (0.432)
cohort86 -0.013 0.011 -0.245

(0.089) (0.117) (0.161)
cohort87 -0.056 -0.062 0.116

(0.071) (0.087) (0.127)
cohort88 -0.005 0.010 -0.893

(0.077) (0.130) (0.238)
cohort89 0.208 -0.156 -0.239

(0.097) (0.115) (0.133)
cohort90 0.061 -0.107 0.532

(0.088) (0.104) (0.435)
cohort91 -0.136 -0.022 -0.230

(0.092) (0.079) (0.147)
cohort92 0.128 -0.128 -0.165

(0.086) (0.097) (0.213)
cohort93 -0.228 -0.076 0.121

(0.123) (0.167) (0.198)
cohort94 -0.157 0.055 -0.507

(0.159) (0.132) (0.236)
cohort95 0.217 0.153 0.243

(0.187) (0.172) (0.369)
Initial Productivity: w2
  (establishment effect component)
cohort81 0.054 0.076

(0.105) (0.293)
cohort82 0.120 0.642

(0.109) (0.298)
cohort83 0.067 0.622

(0.095) (0.263)
cohort84 0.051 0.485 0.183

(0.088) (0.256) (0.206)
cohort85 0.104 0.884

(0.099) (0.487)
cohort86 0.069 0.558 0.036

(0.094) (0.269) (0.214)
cohort87 0.078 0.455 0.143

(0.085) (0.261) (0.201)
cohort88 0.068 0.524 0.225

(0.090) (0.279) (0.276)
cohort89 0.116 0.687 0.441

(0.107) (0.276) (0.204)
cohort90 0.081 0.433 -0.412

(0.101) (0.272) (0.411)
cohort91 0.145 0.629 0.322

(0.103) (0.264) (0.214)
cohort92 0.121 0.536 0.446

(0.105) (0.273) (0.252)
cohort93 0.309 0.596 0.257

(0.124) (0.301) (0.245)
cohort94 0.193 0.466 0.520

(0.155) (0.282) (0.267)
cohort95 -0.013 0.633 -0.019

(0.191) (0.298) (0.373)
cohort96 0.052 0.589 0.115

(0.082) (0.262) (0.218)

Table 8 continued
Sequential Learning Estimator

(Double Process - AR(1) plus Establishment Effect)



Fabricated
Food Apparel Paper Metals

DP chi2 7.81 0.46 0.35 4.43
df 1 1 1 1
prob 0.005 0.497 0.552 0.035

SP chi2 6.37 0.62 0.73 1.97
df 1 1 1 1
prob 0.012 0.430 0.393 0.160

RW chi2 18.14 0.54 0.07 3.96
df 1 1 1 1
prob 0.000 0.461 0.796 0.047

EE chi2 6.92 1.26 0.02 1.32
df 1 1 1 1
prob 0.009 0.262 0.880 0.251

Notes: DP: Double process - AR(1) and establishment effect.
SP: Single process - AR(1).
RW: Random walk.
EE: Establishment effect.

Table 9
Wald Tests of Constant Returns to Scale

(Sequential Learning Estimator)



Inconsistent Estimators:
Random Panel AR(1)

OLS Effects Random Effects
Capital 0.107 0.084 0.098

(0.009) (0.010) (0.010)
Labor 0.261 0.269 0.263

(0.017) (0.020) (0.020)
Energy 0.067 0.056 0.055

(0.009) (0.010) (0.010)
Materials 0.608 0.571 0.570

(0.011) (0.014) (0.013)
Returns to Scale 1.043 0.980 0.987

(0.012) (0.017) (0.016)
AR(1) 0.246

Estimators Consistent in T or N:
Fixed Panel AR(1) Between Arellano Levinsohn Petrin Levinsohn Petrin

Effects Fixed Effects Differences Bond Energy Proxy Materials Proxy
Capital 0.056 0.048 0.110 0.052 0.082 0.071

(0.012) (0.017) (0.031) (0.019) (0.044) (0.048)
Labor 0.253 0.171 0.299 0.146 0.251 0.240

(0.024) (0.029) (0.046) (0.033) (0.029) (0.025)
Energy 0.039 0.041 -0.045 0.028 0.029 0.078

(0.012) (0.013) (0.024) (0.015) (0.029) (0.017)
Materials 0.517 0.492 0.509 0.497 0.588 0.485

(0.018) (0.022) (0.033) (0.024) (0.016) (0.138)
Returns to Scale 0.865 0.752 0.873 0.723 0.950 0.874

(0.025) (0.032) (0.052) (0.037) (0.073) (0.153)
AR(1) 0.246

Notes: All regressions run on full history cohort analysis data n=1,157.
All regressions include year dummies.
Standard errors in parentheses.
Between differences is standard between estimator run on first differences as recommended
   by Griliches and Mairesse (1995).
Panel AR(1) estimator is from Baltagi and Wu (1999).

Table 10
Comparison Estimators

(Fabricated Metal Products ISIC 381)



Fabricated
Food Apparel Paper Metals

SP vs DP chi2 12.86 14.08 NA 27.92
df 16 16 16
prob 0.683 0.593 0.032

RW vs DP chi2 105.93 25.02 NA 39.46
df 17 17 17
prob 0.000 0.094 0.002

EE vs DP chi2 214.75 65.04 NA 76.99
df 18 18 18
prob 0.000 0.000 0.000

RW vs SP chi2 93.06 10.93 8.09 11.54
df 1 1 1 1
prob 0.000 0.001 0.004 0.001

EE vs SP chi2 201.89 50.96 13.18 49.07
df 2 2 2 2
prob 0.000 0.000 0.001 0.000

EE vsRW chi2 108.83 40.03 5.09 37.53
df 1 1 1 1
prob 0.000 0.000 0.024 0.000

Notes: DP: Double process - AR(1) and establishment effect.
SP: Single process - AR(1).
RW: Random walk.
EE: Establishment effect.
Tests are not valid for paper industry DP specification due to
     binding parameter constraint.

Table 11
LR Tests of Nested Specifications

(Sequential Learning Estimator)



Fabricated
Food Apparel Paper Metals

Mean 0.114 0.529 0.207 0.074
Standard Deviation 0.271 0.317 0.264 0.260
Percentiles 10th -0.173 0.132 -0.116 -0.242

90th 0.451 0.908 0.504 0.413
Difference 0.624 0.776 0.620 0.655
As Ratio 1.87 2.17 1.86 1.93

Table 12
Distributions of Persistent Idiosyncratic

Establishment Productivities
(Smoothed Estimates)



Fabricated
Food Apparel Paper Metals

H0a chi2 34.46 125.24 40.50 45.61
df 16 16 13 16
prob 0.005 0.000 0.000 0.000

H0b chi2 0.14 24.77 0.75 0.45
df 1 1 1 1
prob 0.704 0.000 0.386 0.501

H0c chi2 2.29 2.10 0.38 1.78
df 1 1 1 1
prob 0.130 0.148 0.538 0.182

Notes: Double process  specification - AR(1) and establishment effect.
Wald tests.
H0a: B_yr80=B_yr81=…=B_yr96, except paper - B_yr83=…=B_yr96.
H0b: B_yr80=B_yr96, except paper - B_yr83=B_yr96.
H0c: B_yr85=B_yr96, except paper - B_yr88=B_yr96.

Fabricated
Food Apparel Paper Metals

Cohort Comparisons:
H0a chi2 42.80 34.57 28.90 7.28

df 15 15 11 15
prob 0.000 0.003 0.002 0.949

H0b chi2 0.82 6.37 0.66 1.03
df 1 1 1 1
prob 0.366 0.012 0.415 0.310

H0c chi2 3.07 0.24 11.43 0.66
df 1 1 1 1
prob 0.080 0.626 0.001 0.416

Learning from Experience:
H0d chi2 17.25 12.93 26.68 11.61

df 15 15 11 15
prob 0.304 0.608 0.005 0.709

H0e chi2 15.08 5.94 21.00 7.11
df 11 11 8 11
prob 0.179 0.878 0.007 0.790

Notes: Double process  specification - AR(1) and establishment effect.
Wald tests.
H0a: (B_[w1]cohort81+B_[w2]cohort81)=(B_[w1]cohort82+B_[w2]cohort82)=…
     =(B_[w1]cohort96+B_[w2]cohort96),  paper excludes 1980-1982 and 1985.
H0b: (B_[w1]cohort81+B_[w2]cohort81)=(B_[w1]cohort96+B_[w2]cohort96), 
     paper (B_[w1]cohort84+B_[w2]cohort84)=(B_[w1]cohort96+B_[w2]cohort96)
H0c: (B_[w1]cohort85+B_[w2]cohort85)=(B_[w1]cohort96+B_[w2]cohort96), 
     paper (B_[w1]cohort88+B_[w2]cohort88)=(B_[w1]cohort96+B_[w2]cohort96)
H0d: B_[w1]cohort81=0, B_[w1]cohort82=0, … B_[w1]cohort95=0.
     paper excludes 1981, 1982 and 1985.
H0e: B_[w1]cohort85=0, B_[w1]cohort86=0, … B_[w1]cohort95=0.
     paper excludes 1985-1987.

Initial Productivities:
(Cohort Comparisons and Learning from Experience)

Table 13
Common Technological Progress

(Sequential Learning Estimator)

Table 14



Exit Hazard Investment Rate Employment Rate
pred(t) 0.172 0.205 -7.034

(0.129) (0.092) (12.064)
pred(t+1)-pred(t) 0.134 0.153

(0.099) (0.110)
age 0.892 -0.014 -0.323

(0.049) (0.005) (0.712)
capital 0.997

(0.005)
Year Dummies
yr80 0.000 0.234 12.902

(0.000) (0.213) (27.871)
yr81 0.110 0.273 8.827

(0.106) (0.199) (26.123)
yr82 0.192 -0.023 6.023

(0.162) (0.201) (26.117)
yr83 0.217 0.622 157.998

(0.127) (0.179) (23.405)
yr84 0.000 0.301 83.684

(0.000) (0.094) (12.303)
yr85 0.131 0.203 35.552

(0.061) (0.093) (12.117)
yr86 0.000 0.238 24.045

(0.000) (0.084) (10.914)
yr87 0.077 0.394 23.538

(0.039) (0.068) (8.932)
yr88 0.112 0.402 20.515

(0.051) (0.070) (9.105)
yr89 0.092 0.210 17.267

(0.048) (0.071) (9.187)
yr90 0.057 0.234 19.237

(0.043) (0.075) (9.847)
yr91 0.110 0.179 18.150

(0.051) (0.068) (8.921)
yr92 0.121 0.254 17.774

(0.050) (0.066) (8.602)
yr93 0.075 0.262 16.362

(0.031) (0.059) (7.747)
yr94 0.136 0.233 15.824

(0.056) (0.058) (7.470)
yr95 0.110 0.235 13.390

(0.430) (0.054) (7.001)
yr96 0.196 14.626

(0.048) (6.170)
Prob Values:
H0a 0.019 0.026 0.560
H0b 0.007 0.166
H0c 0.813 0.702
H0d 0.000 0.231 0.000

Notes: Exit hazard coefficients are exponentiated hazard ratios.
Investment rate is linear regression on investment/capital stock.
Employment rate is linear regression on employment/capital service
      - blue collar-equivalent person-years per million 1985 pesos.
Pred is establishment's prediction of idiosyncratic productivity. 
Capital is service aggregate including rental payments in millions
     1985 pesos.
Standard errors in parentheses. Not corrected for generated 
     regressors - see text.
H0a: B_pred(t)=0 for investment rate and employment rate. B_pred(t)=1
     for exit hazard.
H0b: B_{pred(t+1)-pred(t)]=0 for investment rate and employment rate.
     B_[pred(t+1)-pred(t)]=1 for exit hazard.
H0c: B_pred(t)=B_[pred(t+1)-pred(t)].
H0d: B_yr80=B_yr81=…B_yr96.

Table 15A
Decision Rules: Linear Approximation

(Fabricated Metal Products ISIC 381)



Exit Hazard Investment Rate Employment Rate
Food:
Coefficients:
pred(t) 0.643 0.064 50.207

(0.226) (0.126) (42.717)
pred(t+1)-pred(t) 0.278 -0.189

(0.145) (0.169)
age 0.936 -0.010 -4.660

(0.021) (0.008) (2.679)
capital 0.998

(0.001)
Prob Values:
H0a 0.209 0.613 0.240
H0b 0.014 0.264
H0c 0.129 0.185
H0d 0.000 0.248 0.406
Apparel:
Coefficients:
pred(t) 0.342 0.394 10.625

(0.160) (1.800) (37.629)
pred(t+1)-pred(t) 0.297 0.628

(0.140) (2.293)
age 1.011 -0.033 -3.785

(0.040) (0.147) (3.124)
capital 0.989

(0.007)
Prob Values:
H0a 0.021 0.827 0.778
H0b 0.010 0.784
H0c 0.823 0.931
H0d 0.000 0.174 0.990
Paper:
Coefficients:
pred(t) 0.342 0.151 -5.020

(0.641) (0.124) (2.549)
pred(t+1)-pred(t) 0.844 0.181

(2.060) (0.236)
age 0.981 -0.013 0.028

(0.096) (0.009) (0.207)
capital 0.991

(0.004)
Prob Values:
H0a 0.567 0.223 0.050
H0b 0.945 0.443
H0c 0.740 0.906
H0d 0.000 0.293 0.745

Notes: Exit hazard coefficients are exponentiated hazard ratios.
Investment rate is linear regression on investment/capital stock.
Employment rate is linear regression on employment/capital service
      - blue collar-equivalent person-years per million 1985 pesos.
Pred is establishment's prediction of idiosyncratic productivity. 
Capital is service aggregate including rental payments in millions
     1985 pesos.
Standard errors in parentheses. Not corrected for generated 
     regressors - see text.
Models also include time dummies.
H0a: B_pred(t)=0 for investment rate and employment rate. B_pred(t)=1
     for exit hazard.
H0b: B_[pred(t+1)-pred(t)]=0 for investment rate and employment rate.
     B_[pred(t+1)-pred(t)]=1 for exit hazard.
H0c: B_pred(t)=B_[pred(t+1)-pred(t)].
H0d: B_yr80=B_yr81=…B_yr96.

Table 15B
Decision Rules: Linear Approximation

(Key Results for Other Industries)



Fabricated
Food Apparel Paper Metals

Investment Rate:
Coefficients:
smooth(t+1)-pred(t+1) -0.218 0.992 -0.307 0.088

(0.187) (2.246) (0.380) (0.153)
pred(t) 0.063 0.390 0.147 0.207

(0.126) (1.801) (0.124) (0.092)
pred(t+1)-pred(t) -0.188 0.634 0.160 0.153

(0.169) (2.294) (0.237) (0.110)
age -0.010 -0.033 -0.013 -0.014

(0.008) (0.147) (0.009) (0.005)
Prob Values:
H0 0.244 0.659 0.420 0.566
Employment Rate:
Coefficients:
smooth(t)-pred(t) 179.719 50.166 -2.673 9.807

(45.119) (34.530) (4.137) (12.231)
pred(t) 50.686 10.339 -5.065 -6.893

(42.632) (37.611) (2.552) (12.068)
age -4.648 -3.783 0.028 -0.326

(2.674) (3.12) (0.21) (0.71)
Prob Values:
H0 0.000 0.147 0.519 0.423

Notes: Investment rate is linear regression on investment/capital stock.
Employment rate is linear regression on employment/capital service -
    blue collar-equivalent person-years per million 1985 pesos.
Pred is establishment's prediction of idiosyncratic productivity. 
Smooth is best idiosyncratic productivity estimate using complete
     establishment history.
Standard errors in parentheses. Not corrected for generated 
     regressors - see text.
Models also include time dummies.
Sequential learning information and decision timing assumptions imply H0.
H0: B_(smooth(t)-pred(t))=0.

Table 16
Decision Rule Validity Tests 

(of Sequential Learning)



Fabricated
Food Apparel Paper Metals

All Plants
Frequency of: Establishment Pairs 866,848 82,668 6,092 82,924

Dominance:
    Total 248,871 20,501 1,804 22,984
    With Data in t+1 238,134 19,027 1,558 20,489
Capital Reversals 30,014 3,794 166 2,647
Exit Reversals 15,251 1,216 42 819

Percentage Reversals: Capital Only 12.6% 19.9% 10.7% 12.9%
Capital and Exit 19.0% 26.3% 13.4% 16.9%

Conditional on Age
Frequency of: Establishment Pairs 108,130 15,560 966 15,616

Dominance:
    Total 21,718 2,977 191 2,737
    With Data in t+1 20,624 2,763 159 2,426
Capital Reversals 2,592 513 13 293
Exit Reversals 1,195 152 2 102

Percentage Reversals: Capital Only 12.6% 18.6% 8.2% 12.1%
Capital and Exit 18.4% 24.1% 9.4% 16.3%

Notes: Dominance: Capital and productivity belief greater for one establishment than the other.
Capital Reversal: Capital in the subsequent period is greater for the dominated establishment.
Exit Reversal: The dominated establishment survives in the next period but the
     dominating establishment exits.
With Data in t+1 excludes establishments departing the panel in the next period for 
     sector switches or data problems.
Capital based on capital services aggregate.

Table 17
Frequency of Capital Rank Reversals



Building Machinery, etc Vehicles
Mean Reported 148,182 402,467 23,101
Correlation 0.60 0.84 0.09

Regression: Constant 11,002 103,606 20,914
(24,861) (46,842) (4,623)

Coefficient 1.310 0.929 0.131
(0.038) (0.013) (0.031)

Notes: In thousands of nominal Chilean pesos.
Based on entrants in all manufacturing sectors 1992-1996 n=2118.
See Appendix D text for computation of inferred capital.

Type of Fixed Asset

Table D1
Inferred versus Reported Capital for Entrants



Figure 1 
Time-Line for Dynamic Industry Game During Period t 
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Figure 2
An Illustration of Productivity Belief Dynamics
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Figure C-1 
Sequential Learning Algorithm 
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