
Carnegie Mellon University
Research Showcase

Parallel Data Laboratory Research Centers and Institutes

10-1-2003

A Framework for Building Unobtrusive Disk
Maintenance Applications (CMU-CS-03-192)
Eno Thereska
Carnegie Mellon University

Jiri Schindler
Carnegie Mellon University

John Bucy
Carnegie Mellon University

Brandon Salmon
Carnegie Mellon University

Christopher R. Lumb
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/pdl

This Technical Report is brought to you for free and open access by the Research Centers and Institutes at Research Showcase. It has been accepted for
inclusion in Parallel Data Laboratory by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Thereska, Eno; Schindler, Jiri; Bucy, John; Salmon, Brandon; Lumb, Christopher R.; and Ganger, Gregory R., "A Framework for
Building Unobtrusive Disk Maintenance Applications (CMU-CS-03-192)" (2003). Parallel Data Laboratory. Paper 89.
http://repository.cmu.edu/pdl/89

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpdl%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/research?utm_source=repository.cmu.edu%2Fpdl%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl/89?utm_source=repository.cmu.edu%2Fpdl%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu


Authors
Eno Thereska, Jiri Schindler, John Bucy, Brandon Salmon, Christopher R. Lumb, and Gregory R. Ganger

This technical report is available at Research Showcase: http://repository.cmu.edu/pdl/89

http://repository.cmu.edu/pdl/89?utm_source=repository.cmu.edu%2Fpdl%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages


Appears in Proceedings of the 3rd USENIX Conference on File and Storage Technologies (FAST’04).
San Francisco, CA. March 2004.

A framework for building unobtrusive disk maintenance applications

Eno Thereska, Jiri Schindler�, John Bucy, Brandon Salmon,
Christopher R. Lumb, Gregory R. Ganger

Carnegie Mellon University

Abstract

This paper describes a programming framework for
clean construction of disk maintenance applications.
They can use it to expose the disk activity to be done, and
then process completed requests as they are reported.
The system ensures that these applications make steady
forward progress without competing for disk access with
a system’s primary applications. It opportunistically
completes maintenance requests by using disk idle time
and freeblock scheduling. In this paper, three disk main-
tenance applications (backup, write-back cache destag-
ing, and disk layout reorganization) are adapted to the
system support and evaluated on a FreeBSD implemen-
tation. All are shown to successfully execute in busy
systems with minimal (e.g.,�2%) impact on foreground
disk performance. In fact, by modifying FreeBSD’s
cache to write dirty blocks for free, the average read
cache miss response time is decreased by 15–30%. For
non-volatile caches, the reduction is almost 50%.

1 Introduction
There are many disk maintenance activities that are

required for robust system operation and, yet, have loose
time constraints. Such “background” activities need to
complete within a reasonable amount of time, but are
generally intended to occur during otherwise idle time
so as to not interfere with higher-priority application
progress. Examples include write-back cache flushing,
defragmentation, backup, integrity checking, virus scan-
ning, report generation, tamper detection, and index gen-
eration.

Current systems use a variety of ad hoc approaches
for such activities. Most trickle small amounts of
work into the storage subsystem, either periodically or
when an idle period is detected. When sufficient idle
time is not available, these activities either compete
with foreground requests or are not completed. More
importantly, trickling work into a storage subsystem
wastes significant disk scheduling opportunities—it re-
stricts the scheduler to only considering a small subset of
externally-chosen requests at externally-chosen points in
time. Most background activities need to read or write
substantial portions of the disk, but do not have partic-

�Currently with EMC Corporation

ular ordering requirements. As a result, some imple-
mentors try hard to initiate the right requests at the right
times, introducing substantial complexity but, usually,
only minor improvement.

This paper describes an alternate approach, wherein
background activities are exposed to the storage sub-
system so that it can schedule associated disk accesses
opportunistically. With the storage subsystem explic-
itly supporting priorities, background applications can
safely expose work and trust that it will not interfere
with foreground activity. Doing so allows the sched-
uler to use freeblock scheduling and idle disk time to
complete background disk accesses in the most device-
efficient manner. Freeblock scheduling [21] predicts ro-
tational latency delays and tries to fill them with media
transfers for background tasks. As the set of desired disk
locations grows, so does the ability of a freeblock sched-
uler to utilize such latency delays. The same is true for
non-intrusive use of short periods of idle time. Combin-
ing rotational latency gaps with short and long periods
of idle time, programs designed to work with storage-
determined ordering can make consistent progress, with-
out affecting foreground access times, across a wide
range of workloads and levels of activity.

This paper describes a framework for background disk
activities, including application programming interfaces
(APIs) and support for them in FreeBSD. In-kernel and
system call APIs allow background applications to reg-
ister “freeblock tasks.” Our freeblock subsystem replaces
the generic SCSI driver’s disk scheduler, utilizing both
freeblock scheduling and any idle time to opportunis-
tically complete freeblock requests. The APIs are ex-
plicitly asynchronous, and they encourage implementors
to expose as much background work as possible. For
example, dynamic buffer management allows freeblock
tasks to register a desire to read more disk space than fits
in main memory. Just-in-time locking avoids excessive
holding of buffers, since freeblock writes may be pend-
ing for a long time. Rate control avoids memory exhaus-
tion and wasted disk scheduling efforts for applications
without sufficient CPU time or network bandwidth.

We describe the conversion of three disk maintenance
tasks to use this infrastructure: scanning of disk contents
for backup, flushing of write-back caches, and reorga-
nizing disk layouts. Well-managed systems perform pe-



riodic backups, preferably without interfering with fore-
ground activity. Backup is an excellent match for our
framework, often reading large fractions of the disk; a
“physical” backup does so without interpreting the file
system structures and can be made order-agnostic. We
implemented such a physical backup application that
uses the freeblock subsystem to read disk blocks. Phys-
ical backup of a snapshot that covers 70% of an always-
busy 18GB disk can be completed in a little over one
hour with less than 2% impact on a foreground work-
load.

Almost all file servers and disk array controllers use
write-back caching to achieve acceptable performance.
Once updates are decoupled from application progress,
they become a background activity appropriate for our
framework. In our evaluations, we find that approxi-
mately 80% of the cache flushes can usually be elimi-
nated, even when there is no idle time, reducing the av-
erage disk read response time by 12-25%. For low read-
write ratios (e.g., 1:3–1:1), only 30–55% of the flushes
are eliminated, but the read response time reductions
are still 15–30%. Interestingly, when emulating a non-
volatile cache, which eliminates FreeBSD’s 30-second
limit on time before write-back, almost all flushes can
be eliminated, improving read response times by almost
50%.

Over time, allocated storage space becomes frag-
mented, creating a desire for defragmentation. Also,
there have been many proposals for periodically reorga-
nizing disk layouts to reduce future access times. Both
require that disk blocks be shuffled to conform to a new,
preferred layout. Our evaluations show that, using our
framework, it is possible to reorganize layouts quickly
and with minimal impact on foreground workloads.

The remainder of this paper is organized as follows.
Section 2 discusses disk maintenance tasks, freeblock
scheduling, and related work. Section 3 describes in-
kernel and application-level APIs for background disk
tasks. Section 4 describes three disk maintenance appli-
cations and how they use the APIs. Section 5 briefly de-
scribes the freeblock subsystem and its integration into
FreeBSD. Section 6 evaluates how well the three appli-
cations work when using the framework.

2 Background and related work
There are many disk maintenance activities that need

to eventually complete, but that ideally progress without
affecting the performance of foreground activity. This
section describes how such activities are commonly im-
plemented, how a freeblock subsystem can help, and re-
lated work.

Characteristics and approaches: Disk maintenance
activities generally have long time horizons for comple-
tion, allowing them to have lower priority at any instant

than other applications running on a system. As a result,
one common approach is to simply postpone such activi-
ties until expected off hours; for example, desktop back-
ups are usually scheduled for late nights (or, early in the
morning for CS researchers). For less sporadically-used
systems, however, the lower priority must be handled in
another way.

Another common approach is to spread background
requests over time so as to reduce interference with fore-
ground work; for example, some caches flush a fraction
of the dirty blocks each second to reduce penalties as-
sociated with periodic full cache flushes [6]. More ag-
gressive implementations explicitly identify periods of
idle time and use them to service background work. Of
course, identifying idle times requires effort—the back-
ground activity must be invoked in the system’s criti-
cal path—and assumptions about any proactive storage-
internal functions. When using a detected idle period,
background activities usually provide only a few re-
quests at a time to the storage subsystem to avoid hav-
ing a lengthy queue when the next foreground request
arrives. This is necessary because current storage sys-
tems provide little-to-no support for request priorities or
abort.

By providing only a few requests at a time, these im-
plementations rob the disk scheduler of opportunities to
reduce positioning times. In fact, disk maintenance ap-
plications usually need to access many disk locations,
and many could be quite flexible in their operation or-
dering. Some implementors attempt to recapture at least
a portion of the lost efficiency by providing requests
expected to be fast; for example, a disk array recon-
struction task can, after a foreground request completes,
generate background requests for locations near the re-
cent foreground request rather than near the most re-
cent background request [15]. Such tricks can provide
marginal gains, but still lose out on much of the opportu-
nity and often increase complexity by breaking abstrac-
tion boundaries between the application and the disk.

Freeblock scheduling: Since disk platters rotate con-
tinuously, a given sector will reach the disk head at a
given time independent of what the disk head is doing
until that time. Freeblock scheduling [21] consists of
squeezing background media transfers into foreground
rotational latencies. A freeblock scheduler predicts how
much rotational latency would occur before the next
foreground media transfer and inserts additional media
transfers, while still leaving time for the disk head to
reach the destination track in time for the foreground
transfer. The additional media transfers may be on
the current or destination tracks, on another track near
the two, or anywhere between them. In the two latter
cases, additional seek overheads are incurred, reducing
the time available for the additional media transfers, but



not completely eliminating it.
Freeblock scheduling, as originally proposed, com-

bines nicely with idle time usage to provide disk band-
width to background tasks across a wide range of fore-
ground usage patterns. In addition to detecting and using
lengthy idle time periods, low-level scheduling can al-
low short, sporadic idle periods to be used with minimal
penalty. Throughout this paper, we use the term free-
block scheduling to refer to this more complete combi-
nation of the scheduler that works well when the system
is busy with the scheduler that utilizes idle time.

Freeblock scheduling is a good match for many disk
maintenance activities, which desire large numbers of
disk blocks without requiring a predetermined order of
access. Properly implemented, such activities can pro-
vide much freedom to a scheduler that opportunistically
matches rotational latency gaps and idle time bursts to
desired background transfers.

Related work: Lumb et al. [21] coined the term “free-
block scheduling” and evaluated the use of rotational
latency gaps for background work via simulation. The
simulations indicated that 20–50% of a never-idle disk’s
bandwidth could be provided to background applications
with no effect on foreground response times. This band-
width was shown to be more than enough for free seg-
ment cleaning in a log-structured file system or for free
disk scrubbing in a transaction processing system.

Later work by two groups [20, 33] demonstrated
that outside-the-disk freeblock scheduling works, 1 albeit
with more than 35% loss in efficiency when compared
to the hypothetical inside-the-disk implementation as-
sumed in Lumb et al.’s simulations. In both cases, the
freeblock scheduler was tailored to a particular applica-
tion, either background disk scans [20] or writes in ea-
ger writing disk arrays [33]. In both cases, evaluation
was based on I/O traces or synthetic workloads, because
system integration was secondary to the main contribu-
tion: demonstrating and evaluating the scheduler. This
paper builds on this prior work by describing a general
programming framework for background disk tasks and
evaluating several uses of it.

Several interfaces have been devised to allow ap-
plication writers to expose asynchronous and order-
independent access patterns to storage systems. Dy-
namic sets [28], disk-directed I/O [19], and River [2]
all provide such interfaces. We borrow from these, and
asynchronous networking interfaces like sockets, for the
APIs described in the next section.

There has been much research on priority-based
scheduling of system resources. Most focus on ensur-

1Freeblock scheduling can only be done at a place that sees the raw
disk. So, it could be done within a software logical volume manager
but not above a disk array controller. Inside the array controller would
work.

ing that higher priority tasks get the available resources.
Notably, MS Manners [9] provides a framework for reg-
ulating applications that compete for system resources.
Such system support is orthogonal to the framework de-
scribed here, which creates and maximizes opportunities
for progress on background disk accesses. More closely
related to freeblock scheduling are real-time disk sched-
ulers that use slack in deadlines to service non-real-time
requests [3, 23, 27]; the main difference is that fore-
ground requests have no deadlines other than “ASAP”,
so the “slack” exists only in rotational latency gaps or
idle time.

3 Background disk I/O interfaces

To work well with freeblock scheduling, applications
must be designed explicitly for asynchronous I/O and
minimal ordering requirements. An application should
describe to the freeblock subsystem sets of disk loca-
tions that they want to read or write. Internally, when
it can, the freeblock subsystem inserts requests into the
sequence sent to the disk. After each desired location
is accessed, in whatever order the freeblock subsystem
chooses, the application is informed and given any data
read.

This section describes two generic application APIs
for background activities. The first is an in-kernel API
intended to be the lowest interface before requests are
sent to the storage device. The second API specifies sys-
tem calls that allow user-level applications to tap into a
freeblock subsystem. These APIs provide a clean mech-
anism for registering background disk requests and pro-
cessing them as they complete. Applications written
to these interfaces work well across a range of fore-
ground usage patterns, from always-busy to frequently-
idle. Both APIs talk in terms of logical block num-
bers (LBNs) within a storage logical unit (LUN); con-
sequences of this choice are discussed in Section 3.4.

3.1 In-kernel API

Table 1 shows the in-kernel API calls for our free-
block scheduling subsystem. It includes calls for regis-
tering read and write freeblock tasks, for aborting and
promoting registered tasks, and for suspending and re-
suming registered tasks. As a part of the high-level de-
vice driver, there is one instance of the freeblock sched-
uler per device in the system; the standard driver call
switch mechanism disambiguates which device is in-
tended. This section explains important characteristics
of the API.

Applications begin an interaction with the freeblock
subsystem with fb open, which creates a freeblock ses-
sion. fb read and fb write are used to add freeblock
tasks, registering interest in reading or writing specific



Function Name Arguments Description

fb open priority, callback fn, getbuffer fn Open a freeblock session (ret: session id)
fb close session id Close a freeblock session
fb read session id, addr range, blksize, callback param Register a freeblock read task
fb write session id, addr range, blksize, callback param Register a freeblock write task
fb abort session id, addr range Abort parts of registered tasks
fb promote session id, addr range Promote parts of registered tasks
fb suspend session id Suspend scheduling of a session’s tasks
fb resume session id Resume scheduling of a session’s tasks
*(callback fn) session id, addr, buffer, flags, callback param Report that part of task completed
*(getbuffer fn) session id, addr, callback param Get memory address for selected write

Table 1: In-kernel interface to the freeblock subsystem. fb open and fb close open and close a freeblock session for an application. Tasks
can be added to a session until the application closes it. fb read and fb write register one or more freeblock tasks. fb abort and fb promote are
applied to previously registered tasks, to either cancel pending freeblock tasks or convert them to foreground requests. fb suspend and fb resume
disable and enable scheduling for all tasks of the specified session. *(callback fn) is called by the freeblock subsystem to report data availability
(or just completion) of a read (or write) task. When a write subtask is selected by the scheduler, *(getbuffer fn) is called to get the source memory
address.

disk locations, to an open session.2 Sessions allow ap-
plications to suspend, resume, and set priorities (values
between 1 and 100, with a default of 20) on collections
of tasks.

No call into the freeblock scheduling subsystem waits
for a disk access. Calls to register freeblock tasks return
after initializing data structures, and subsequent call-
backs report subtask completions. The freeblock sub-
system promises to read or write each identified disk
location once and to call callback fn when freeblock re-
quests complete. On the last callback for a given session,
the flags value is set to the value indicating completion.

Each task has an associated blksize, which is the unit
of data (aligned relative to the first address requested)
to be returned in each callback fn call. This parameter
of task registration exists to ensure that reads and writes
are done in units useful to the application, such as file
system blocks or database pages. Having only a portion
of a database page, for example, may be insufficient to
process the records therein. The blksize value must be
a multiple of the LBN size (usually 512 bytes). In prac-
tice, high blksize values (e.g.,� 64KB for the disks used
in our work) reduce the scheduler’s effectiveness.

Calls to register freeblock tasks can specify memory
locations, in the addr range structure, but they are not
expected to do so. If they don’t, for reads, the free-
block scheduling subsystem passes back, as a parame-
ter to callback fn, pointers to buffers that are part of the
general memory pool; no memory copies are involved,
and the application releases them when appropriate. For
writes, the associated getbuffer fn is called when the
freeblock scheduler selects a part of a write task. The

2The term freeblock request is purposefully being avoided in the
API to avoid confusion with disk accesses scheduled inside the free-
block subsystem.

getbuffer fn either returns a pointer to the memory lo-
cations to be written or indicates that the write cannot
currently be performed.

The original reason for getbuffer fn was to avoid long-
held locks on buffers associated with registered free-
block write tasks. Commonly, file systems and database
systems lock cache blocks for which disk writes are
outstanding to prevent them from being updated while
being DMA’d to storage. With freeblock scheduling,
writes can be waiting to be scheduled for a long time;
such locks could easily be a system bottleneck. The get-
buffer fn callback allows the lock to be acquired at the
last moment and held only for the duration of the actual
disk write. For example, the free write-backs described
in Section 4.2 actually hurt performance when they do
not utilize this functionality. Since adding it to the API,
we have found that the getbuffer fn function cleanly sup-
ports other uses. For example, it enables a form of eager
writing [11, 31]: one can register freeblock write tasks
for a collection of unallocated disk locations and bind
unwritten new blocks to locations in getbuffer fn. The
disk write then occurs for free, and the relevant meta-
data can be updated with the resulting location.

The non-blocking and non-ordered nature of the in-
terface is tailored to match freeblock scheduling’s na-
ture. Other aspects of the interface help applications in-
crease the set of blocks asked for at once. Late-binding
of memory buffers allows registration of larger free-
block tasks than memory resources would otherwise al-
low. For example, disk scanning tasks can simply ask
for all blocks on the disk in one freeblock task. The
fb abort call allows task registration for more data than
are absolutely required (e.g., a search that only needs
one match). The fb promote call allows one to convert
freeblock tasks that may soon impact foreground appli-



cation performance (e.g., a space compression task that
has not made sufficient progress) to foreground requests.
The fb suspend and fb resume calls allow registration of
many tasks even when result processing sometimes re-
quires flow control on their completion rate.

3.2 Application-level API

The application-level API mirrors the in-kernel API,
with a system call for each fb xxx function call. The
main differences are in notification and memory man-
agement. Because the kernel must protect itself from
misbehaving applications, the simple callback mecha-
nisms of the low-level API are not feasible in most sys-
tems. Instead, a socket-like interface is used for both.

As with the in-kernel API, an application begins by
calling sys fb open to get a session id. It can then reg-
ister freeblock tasks within the session. For each block
read or written via these tasks, a completion record is in-
serted into buffers associated with the session. Applica-
tions get records from these buffers via the one new call:
sys fb getrecord (buffer); each call copies one record
into the specified application buffer. Each record con-
tains the session, addr and flags fields from callback fn
in the in-kernel API, as well as the data in the case of
freeblock reads. Note that a copy is required from the
in-kernel buffer to the application layer. An alternate in-
terface, such as that used by IO-lite [24], could eliminate
such copies. Like with sockets, the sys fb getrecord call
can be used for both blocking and polling programming
styles.3 A timeout parameter in the sys fb getrecord
function dictates how long the application will wait if
no completion record is currently available. A value of 0
will return immediately (polling), and a value of -1 will
wait indefinitely.

3.3 Consistency model

Freeblock tasks may have long durations; for exam-
ple, a background disk scan can take over an hour.
Therefore, a clear consistency model is needed for over-
lapping concurrent freeblock and foreground requests.

Like most low-level storage interfaces, our APIs opt
for maximum scheduling flexibility by enforcing a min-
imalistic semantic with three rules. First, no ordering
guarantees are enforced among pending tasks, whether
they overlap or not. As with traditional I/O interfaces,
applications must deal with ordering restrictions explic-
itly [12]. Second, data returned from a read should have

3Our experiences indicate that full integration with existing sys-
tem call mechanisms would be appropriate. Specifically, using the
standard file descriptor mechanism would allow integrated use of se-
lect() with sockets, from which this interface borrows many char-
acteristics. For example, given such integration, an application could
cleanly wait for any of a set of sockets and freeblock sessions to have
made progress.

been on the disk media at some point before being re-
turned. Third, a block write can be reported complete
when it is on disk or when a concurrent write to the same
disk location completes; the latter case is rationalized by
the fact that the non-written blocks could have been put
on the disk just before the ones actually put there.

Given these semantics, a freeblock scheduler can co-
alesce some overlapping tasks. Of course, data fetched
from media can be replicated in memory and passed to
all concurrent readers. In addition, completion of a write
task to location� allows completion of all pending reads
or writes to � because the newly written data will be the
current on-disk data once the write completes. As a re-
sult, a write is given preference when a set of overlap-
ping reads and writes are pending; a read could be done
before the write, but doing so is unnecessary given the
consistency model. Note that completing reads in this
way requires that applications not be allowed to update
the source RAM during the write, since it is impossi-
ble to know when the DMA happened in most systems.
Alternately, this enhancement could be disabled, as we
have observed little benefit from it in practice.

3.4 Consequences of LBN-based interfaces

The freeblock scheduling APIs described interact
with driver-level scheduling in terms of LBNs. This sim-
plifies implementation of the scheduler and of low-level
disk maintenance tasks, such as RAID scrubbing and
physical backup. But, many utilities that access struc-
tured storage (e.g., files or databases) must coordinate
in some way with the software components that provide
that structure. For example, consider a file-based backup
application. It could read a directory and register free-
block tasks to fetch the files in it, but it will not know
whether any given file is deleted and its inode reallocated
between the task being registered and the inode eventu-
ally being read from disk. If this happens, the applica-
tion will backup the new file under the old name. Worse
problems can arise when directory or indirect blocks are
reallocated for file data.

Three options exist for maintenance tasks that interact
with structured storage. First, the task could coordinate
explicitly with the file system or database system. Such
coordination can be straightforward for integrated activ-
ities, such as segment cleaning in a log-structured file
system, or index generation in a database system. The
write-back support in Section 4.2 is an example of this
approach. Second, the task could insist that the file sys-
tem or database system be temporarily halted, such as by
unmounting the file system. Although heavy-handed,
a system with many file systems could have individual
ones halted and processed one-by-one while the others
continue to operate on the storage devices. Third, the
task could take advantage of an increasingly common



mechanism in storage systems: the snapshot [14]. A
snapshot provides an instance of a dataset as it was at
a point in history, which is useful for backup [7] and
remote replication [25]. Since the contents of a snap-
shot remain static, update problems are not an issue
for tasks using the freeblock scheduling APIs. In ad-
dition to traditional backup tasks, snapshots offer a con-
venient loose coordination mechanism for disk mainte-
nance tasks like integrity checking, virus scanning, re-
port generation, tamper detection, and garbage collec-
tion. Section 4.1 describes an example of how a backup
application interacts with the snapshot system and the
freeblock subsystem.

The LBN-based interface also bypasses any file-level
protections. So, applications using it must have read-
only (for read-only activity) or read/write permissions
to the entire partition being accessed. Fortunately, most
disk maintenance applications satisfy this requirement.

4 Example applications
Many disk maintenance applications can be converted

to the programming model embodied in our APIs. This
section describes the conversion of three such applica-
tions and discusses insights gained from doing so. These
insights should help with designing other maintenance
applications to use the framework.

4.1 Snapshot-based backup
Most systems are periodically backed-up to ensure

that the data stored is not lost by user error or system
corruption. In general, it is accepted that either the sys-
tem will be otherwise idle during the backup time or
the backup will have significant performance impact on
foreground activity [10, 17].

Backup strategies fall into two categories: logical and
physical backup. Logical backup is a file-based strat-
egy. It first needs to interpret the file system’s meta-
data and find the files that need to be backed-up. The
files are then stored to the backup media in a canonical
representation that can be restored at a later time. The
advantages of logical backup include the ability to re-
store specific files and to backup only live data. Phys-
ical backup is a block-based strategy. Physical backup
does not interpret the file structure that it is backing up.
Uninterpreted raw blocks are copied from one media to
another. The main advantages of physical backup are its
simplicity and scalability. In particular, physical backup
can achieve much higher throughput while consuming
less CPU [17].

Physical backup fits well with our programming
model. No ordering among blocks is required. Instead,
blocks are copied from one device to another as they are
read. The blocks could be written to the backup me-
dia out of order (and reorganized during restore), or a

freeblock subsystem

snapshot subsystem (in FS)

backup application

sy
s_

fb
_r

ea
d(

)

sy
s_

fb
_g

et
re

co
rd

()

getblks()

Figure 1: Snapshot-based backup application. The backup ap-
plication interacts with the snapshot subsystem to learn which blocks
comprise the snapshot in question. It uses the freeblock subsystem to
read these blocks from disk.

staging device could be used to reorder before writing to
tape. Physical backup can also take advantage of snap-
shots, which allow consistent backup from an active on-
line system.

Our backup application uses FreeBSD 5.x’s snapshot
infrastructure [22] and our system call API. No changes
are required to the FreeBSD snapshot implementation.
After a snapshot is taken, the backup application inter-
acts with the snapshot subsystem as shown in Figure 1.
First, it gets the list of blocks that belong to the snapshot
file. Then, the backup application registers freeblock
tasks, via sys fb read, to read them. It interactively calls
sys fb getrecord to wait for reads to complete and get the
data. Each successfully read block is sent to the back-up
destination, together with its address. The backup appli-
cation can also be used to create a replica by writing each
block directly to the corresponding LBN on the destina-
tion LUN.

FreeBSD’s approach to handling modifications to
blocks “owned” by a snapshot creates an additional com-
plexity for the backup application. A snapshot imple-
mentation can do one of two things when a block is mod-
ified. In the first option (“application-copy-on-write”), a
new location is chosen for the updated blocks and the
snapshot map stays unchanged. Network Appliance’s
WAFL file system, for example, uses this method [17].
In the second option (“snapshot-copy-on-write”), the
original data is copied to a newly allocated block and
the snapshot map is modified. FreeBSD uses this second
option to avoid disrupting carefully chosen disk assign-
ments. In the evaluation section, we explore the effects
of both methods on the backup application.

To handle FreeBSD’s snapshot-copy-on-write, the
backup application needs to check with the snapshot sys-
tem whether each returned block still has the original
desired contents. If not, a new freeblock task to read
the relocated block is registered. This procedure contin-
ues until all original blocks have been read. Note that
we could have changed the snapshot subsystem to auto-
matically abort and re-register tasks for modified blocks,
but our intention is to show that the backup application



works well even with an unmodified snapshot system.

4.2 Buffer cache cleaner
Caches are part of all storage systems, and most are

write-back in nature. Data blocks written to the cache
are marked dirty and must eventually make their way to
the storage device. In most operating systems, including
FreeBSD, the cache manager promises applications that
data written to the cache will propagate to persistent stor-
age within a certain fixed window of time, often 30 sec-
onds. This persistence policy tries to bound the amount
of lost work in the face of a system crash. In many file
servers and disk array controllers, cache persistence is
not a concern because they utilize battery-backed RAM
or NVRAM. But, dirty buffers must still be written to
storage devices to make room in the cache for new data.
Although these systems do not necessarily need a persis-
tence policy, they still need a cache write-back replace-
ment policy.

Cache write-back is a good application for a freeblock
subsystem. In most cases, there are no ordering require-
ments and no immediate-term timeline requirements for
dirty blocks. Until a persistence policy or cache space
exhaustion is triggered, write-backs are background ac-
tivities that should not interfere with foreground disk ac-
cesses (e.g., cache misses).

We modified FreeBSD’s cache manager to utilize our
in-kernel API. It registers all dirty buffers to be writ-
ten for free through the use of the fb write call. Impor-
tantly, cache blocks are not locked when the writes are
registered; when its getbuffer fn is called by the free-
block subsystem, the cache manager returns NULL if
the lock is not free. When its callback fn is called, the
cache manager marks the associated block as clean. If
the freeblock subsystem still has not written a buffer for
free when the cache manager decides it must be written
(as a consequence of cache replacement or persistence
policies), then the cache manager converts the associ-
ated write to a foreground request via fb promote. If a
dirty buffer dies in cache, for example because it is part
of a deleted file, the task registered to flush it to disk is
aborted through fb abort.

4.3 Layout reorganizer
Disk access times are usually dominated by position-

ing times. Various layout reorganization heuristics have
been developed to reduce access times. For example,
blocks or files may be rearranged in an organ pipe fash-
ion, or replicated so each read can access the closest
replica [16, 32].

Layout reorganization is a background activity that
can be made to fit our programming model. But, doing
so requires that the implementer think differently about
the problem. In the traditional approach, most work fo-

1 2 3 4 5 6 71 2 3 4 5 6 7

1 2 34 6 51 2 34 6 5 7

new layout

original layout

1 2 3 4 6 7dependency
graph

Figure 2: Sample dependency graph for disk layout reorganiza-
tion. This diagram illustrates the dependency graph that results from
changing the disk layout. The gray boxes represent empty physical
locations. The white boxes present physical locations that have been
mapped to a particular block (identified by the number on the box).
Dashed arrows present dependencies whereas solid lines show move-
ments that do not have any dependencies.

reorganizer

freeblock subsystem

read-unwritable
session

read-writable
session

write 
session

unwritable blocks writable blocks

system call API

NVRAM staging area

Figure 3: Layout reorganizer architecture. This diagram illus-
trates the design of the layout reorganizer implemented using our
framework. The read-unwritable session manages blocks whose de-
pendencies have not yet been solved. The read-writable session man-
ages all blocks that can be read because their dependencies have been
solved. The write session manages all block writes. All data is tem-
porarily stored in the NVRAM staging area.

cuses on planning an optimal movement pattern. Be-
cause a freeblock subsystem is opportunistic, extensive
forward planning is not useful, since one cannot predict
which freeblock opportunities will be available when.

Planning disk reorganization is difficult because there
are dependencies between block movements. If a block
is to be moved to a location that currently contains live
data, the live data must first be read and either moved
or buffered. Although no block can directly depend on
more than one other block, dependency chains can be
arbitrarily deep or cyclic. Figure 2 illustrates an example
of these dependencies.

The reorganization module can break a dependency
by reading a block into an NVRAM4 staging area; once
the data has been read from a location, new data can
safely be written to that location. However, the reorga-

4Our experimental system does not actually have NVRAM. In-
stead, the layout reorganizer just allocates a block of memory and pre-
tends it is non-volatile. This emulates how the reorganizer might work
in many modern file servers and disk array controllers.



nizer can still deadlock if it fills the staging area with
blocks that cannot be written to disk because of unre-
solved dependencies. The goal of the reorganizer is to
allow the freeblock system maximum flexibility while
avoiding this deadlock case. To accomplish this objec-
tive, our reorganizer, illustrated in Figure 3, logically
partitions the staging area into two two parts: writable
and unwritable.

The reorganizer uses three freeblock sessions to move
blocks. The “read-unwritable” session registers read
tasks for all blocks that cannot yet be written, due to a
dependency. The “read-writable” session registers read
tasks for blocks that can either be immediately written
after they are read (i.e., they have no dependencies) or
that clear a dependency for a currently buffered block.

When a read completes, it may eliminate the depen-
dency of another block. If a read-unwritable task is
scheduled for this dependent block, the read-unwritable
task is aborted (sys fb abort) and re-registered as a read-
writable task. If the dependent block is already in the
staging area, it will be changed from an unwritable block
to a writable block. A write is scheduled in the “write”
session for each writable block in the staging area. When
a write completes, its buffer can be released from the
staging area and reclaimed.

In order to avoid deadlocking, the reorganizer en-
sures that the number of unwritable blocks in the cache
never exceeds a threshold percentage of the cache. 5 If
the number of unwritable blocks reaches the thresh-
old, the reorganizer suspends (sys fb suspend) the read-
unwritable session. However, the read-writable session
cannot increase the number of unwritable blocks in the
staging area, and can be allowed to continue. When the
number of unwritable blocks falls below the threshold,
because of writes and/or cleared dependencies, the read-
unwritable session can be restarted via sys fb resume.

The reorganizer must suspend both read sessions
when the staging area is filled. However, it cannot
deadlock because the reorganizer limits the number of
unwritable blocks in the staging area, thus assuring
that some number of the blocks in the staging area are
writable. The reorganizer simply waits until enough of
these writable blocks are written out to disk before re-
suming the read sessions.

5 The freeblock subsystem

This section briefly describes the freeblock subsystem
implemented in FreeBSD to experiment with our back-
ground applications. This infrastructure supports all the
background disk I/O APIs described in Section 3. De-
tails and evaluation of this infrastructure are available
in [29].

5The threshold we use is 50%.

system call interface

 os

dispatch
queue

system call 
translator

 background
 scheduler

fs

foreground
  scheduler

background scheduler
in-kernel API

freeblock scheduler +
idle time detector

snapshots

device driver

disk
params

to storage device

Figure 4: Freeblock subsystem components.

5.1 Architecture and integration

Figure 4 shows the major components of our free-
block subsystem. The background scheduler exports
the in-kernel API, and a system call translator com-
ponent translates the application-level API calls to in-
kernel calls. This section describes these pieces and their
integration into FreeBSD.

Foreground and background schedulers: Our
scheduling infrastructure replaces FreeBSD’s C-LOOK
scheduler. The foreground scheduler uses Shortest-
Positioning-Time-First (SPTF), and the background
scheduler uses freeblock scheduling (rotational latency
gaps and any idle time). Both schedulers use common
library functions, based on Lumb et al.’s software-only
outside-the-disk SPTF models [20], for modeling the
disk to predict positioning times for requests.

Like the original scheduler, our foreground scheduler
is called from FreeBSD’s dastrategy() function. When
invoked, the foreground scheduler appends a request
onto the driver’s device queue, buf queue, which is the
dispatch queue in Figure 4. It then invokes the back-
ground scheduler, which may create and insert one or
more freeblock requests ahead of the new foreground re-
quest.

When a disk request completes at the disk, FreeBSD’s
dadone() function is called. Into this function, we in-
serted calls to the background and foreground sched-
ulers. The background scheduler code determines
whether the completed request satisfies any freeblock
tasks and performs associated processing and clean-up.
The foreground scheduler selects a new foreground re-
quest, if any are pending, adds it to the dispatch queue,
and invokes the background scheduler to possibly add
freeblock requests. Then, dadone() proceeds normally.

Freeblock system call translator: The system call
translator implements the application-level API. Doing



so consists of translating system calls to in-kernel calls
and managing the flow of data between the freeblock
subsystem and the user-level application. When a free-
block task completes, the translator’s callback fn ap-
pends a record to the associated session’s buffers and,
if the buffers were empty, awakens any waiting appli-
cation processes. When the freeblock subsystem reads
data faster than the application processes it, the buffers
associated with the session fill up and flow control is
needed. When this happens, the translator uses the
fb suspend call, suspending subsequent freeblock re-
quests for the tasks associated with the given session.
When the application fetches records and thereby clears
space, the translator uses fb resume to re-enable the as-
sociated freeblock tasks. When an application exits or
calls sys fb close, the translator clears all state main-
tained by the freeblock system on behalf of the appli-
cation’s session(s).

5.2 Background scheduler algorithms
The background scheduler includes algorithms for

utilizing otherwise wasted rotational latency gaps and
for detecting and using disk idle time.

Rotational latency usage: Recall that, during busy
disk periods, rotational latency gaps can be filled with
background media transfers. Our freeblock subsystem
uses algorithms similar to those described by Lumb et al.
[20, 21], modified to use less non-idle CPU time and to
support fairness and priorities among freeblock sessions.

The search for suitable background transfers proceeds
in two phases. The first phase checks only a few tracks
for potential background transfers adding an insignifi-
cant amount of computation (��8%) to a busy CPU.
The second phase only runs when the CPU is otherwise
in the idle loop. It searches all other options to refine the
best choice found until the request needs to be sent.

Prior algorithms greedily scheduled freeblock re-
quests, assuming all were equal. As shown in Sec-
tion 6.6, this can lead to poor behavior when freeblock
sessions are mixed. In particular, full disk scans can
starve other sessions. We introduce fairness, as well
as support for priorities, using a simple form of lottery
scheduling [30]. The initial tickets allocated to each ses-
sion are proportional to its assigned priority.

The lottery determines both which pending tasks are
considered, since there is limited CPU time for search-
ing, and which viable option found is selected. During
the first phase, which runs for a short quanta of time, as
described in [29], cylinders closest to the source and des-
tination cylinders with pending tasks from the winning
session are considered. Any option from the winning
session found will be selected. In addition, all pending
tasks on the destination cylinder and within one cylinder
of the source are considered; these are the most likely lo-

cations of viable options, reducing the odds that the rota-
tional latency gap goes unused. During a second phase,
all pending tasks from the winning session are consid-
ered and given strict priority over pending tasks from
other sessions.

Idle time detection and usage: Previous re-
search [13, 26] reports that most idle periods are a few
milliseconds in length and that long idle time periods
come in multi-second durations. Our freeblock subsys-
tem utilizes both. Borrowing from prior work [13], a
simple threshold (of 20ms) is used to identify likely idle
periods. During short idle times, the scheduler considers
pending freeblock reads on the same track. Such data
can be read and cached in the device driver with min-
imal impact on foreground access patterns, because no
mechanical delays are induced and no disk prefetching
is lost.

For each quanta of a long idle period, a session is
selected via the lottery. Pending tasks of the winning
session are scheduled, starting with the most difficult to
service using rotational latency gaps: those near the in-
nermost and outermost cylinders.

Algorithm summary: Our outside-the-disk freeblock
scheduler has the same “imperfect knowledge and con-
trol” limitations described by Lumb et al. [20], and
thereby loses about 35% of the potential free bandwidth.
An implementation embedded in a disk drive could be
expected to provide correspondingly higher free band-
width to applications. The introduction of conserva-
tive CPU usage further reduces free bandwidth utiliza-
tion by 5–10%. Our evaluations show that the remain-
ing free bandwidth is adequate for most background ap-
plications. Detailed description and evaluation of the
freeblock subsystem’s data structures and algorithms are
available in [29].

6 Evaluation
This section evaluates how effectively the framework

supports the three background applications.

6.1 Experimental setup
All experiments are run on a system with a dual 1GHz

Pentium III, 384MB of main memory, an Intel 440BX
chipset with a 33MHz, 32bit PCI bus, and an Adaptec
AHA-2940 Ultra2Wide SCSI controller. Unless other-
wise stated, the experiments use a Seagate Cheetah 36ES
disk drive with a capacity of 18GB and results are aver-
aged from at least five runs. Two implementations of the
freeblock subsystem are used: one in the FreeBSD de-
vice driver and one in user-level Linux. The user-level
Linux implementation can either do direct SCSI reads
and writes or communicate with a simulated storage de-
vice implemented by DiskSim [4]. All implementations
use the same scheduling core and conservatism factors



used in the FreeBSD implementation.

Three benchmarks are used throughout the evaluation
section. The synthetic benchmark is a multi-threaded
program that continuously issues small (4KB-8KB) read
and write I/Os to disk, with a read-write ratio of 2:1,
keeping two requests at the disk queue at all times.

The TPC-C benchmark [8] simulates an on-line
transaction processing database workload, where each
transaction consists of a few read-modify-write opera-
tions to a small number of records. We ran TPC-C on
the Shore database storage manager [5]. We configured
Shore and TPC-C to use 8KB pages, a 32MB page buffer
pool, 50 warehouses (covering approximately 70% of
the Seagate disk’s capacity) and 10 clients per ware-
house. The Shore volume is a file stored in FreeBSD’s
FFS file system. Thus, an I/O generated by Shore goes
through the file system buffer cache. Performance of a
TPC-C benchmark is measured in TPC-C transactions
completed per minute (TpmC)

The Postmark benchmark [18] was designed to
measure the performance of a file system used for elec-
tronic mail, netnews and web-based services. It creates
a large number of small files and performs a specified
number of transactions on them. Each transaction con-
sists of two sub-transactions, with one being a create or
delete and the other being a read or append. The de-
fault configuration used for the experiments consists of
100,000 transactions on 800,000 files in 10,000 directo-
ries. File sizes range from 10KB to 20KB. The biases are
Postmark’s defaults: read/append=5, create/delete=5.

6.2 Freeblock subsystem effectiveness

This section briefly evaluates the freeblock subsys-
tem’s effectiveness. Figure 5 shows the efficiency of
the freeblock subsystem, as a function of disk utiliza-
tion, with the synthetic benchmark as the foreground ap-
plication. A background disk scan registers a freeblock
task to read every block of the disk. The callback fn
re-registers each block as it is read, thus maintaining a
constant number of blocks wanted. The synthetic bench-
mark is modified slightly so that the number of I/Os per
second can be varied; the request inter-arrival times are
exponentially distributed with uniform means.

The freeblock subsystem ensures that background ap-
plications make forward progress, irrespective of the
disk’s utilization. As expected, the progress is fastest
when the disk is mostly idle. The amount of free band-
width is lowest when the system is 40-60% utilized, be-
cause short idle times are less useful than either rota-
tional latency gaps or long idle times. Regardless of uti-
lization, foreground requests are affected by less than
2%. For a full evaluation of the freeblock infrastructure
and algorithms, please refer to [29].

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

Disk utilization (%)

fr
ee

 b
an

d
w

id
th

 (M
B

/s
)

from idle time from rotational gaps

Figure 5: Freeblock subsystem efficiency. This diagram illustrates
the instantaneous free bandwidth extracted for a background disk scan
as a function of the disk’s utilization. When the foreground workload
is light, idle time is the main source of free bandwidth. When the fore-
ground workload intensifies, the free bandwidth comes from rotational
latency gaps.

0
Idle system Synthetic TPC-C Postmark

wo/ backup

w/ backup

0 IOs/sec
0 IOs/sec

156 IOs/sec
152 IOs/sec

253 tpmC

250 tpmC

20 trans/sec

10

20

30

40

50

60

70

80

90

Ba
ck

up
 ti

m
e 

(m
in

s)

application-COW snapshot-COW 

20 trans/sec

Figure 6: Snapshot-based backup efficiency. This diagram illus-
trates the efficiency of the backup application when backing up 70% of
the Cheetah 36ES disk (18GB). The foreground workload is affected
less than 2% during the background backup as a result of access time
mispredictions that result from the outside-the-disk implementation of
freeblock scheduling.

6.3 Snapshot-based backup
This section evaluates the backup application de-

scribed in Section 4.1. We evaluate both the application-
copy-on-write (application-COW) and snapshot-copy-
on-write (snapshot-COW) strategies in the FreeBSD ker-
nel. When application-COW is used, all subsequent
modifications to a block that the snapshot claims are
sent to a new location. When snapshot-COW is used,
all subsequent modifications go to the original location
of the block, and the snapshot system makes a private
copy of the block for itself. The native snapshot im-
plementation in FreeBSD supports only snapshot-COW;
we instrumented the kernel so that we could evaluate
application-COW as well.

Figure 6 shows the performance of our backup ap-
plication when sharing the system with the three fore-
ground benchmarks. The table beneath the graph shows
that the impact of the concurrent backup on foreground



0

10

20

30

40

50

60

70

80

90

100

0 1:2 1:1 2:1 3:1 0 1:2 1:1 2:1 3:1 0 1:2 1:1 2:1 3:1 0 1:2 1:1 2:1 3:1

8 256 512 2048

Cache size (MB)

%
 b

uf
fe

rs
 c

le
an

ed
 fo

r 
fr

ee

read:write

(a) Cleaning efficiency (% cleaned for free)

0

5

10

15

20

25

30

35

40

45

0 1:2 1:1 2:1 3:1 0 1:2 1:1 2:1 3:1 0 1:2 1:1 2:1 3:1 0 1:2 1:1 2:1 3:1

8 256 512 2048

Cache size (MB)

%
 re

du
ct

io
n 

in
 a

vg
. r

es
p.

 ti
m

e

read:write

(b) Response time reduction from free write-backs

Figure 7: Free cache cleaning with LRU replacement and syncer daemon. These graphs illustrate the efficiency of freeblock scheduling and
the impact it makes on the average response time of reads given a LRU replacement policy and a syncer daemon that guarantees no dirty block will
stay dirty for longer than 30 seconds. The x-axis contains the cache size and the read-write ratio. A read-write ratio of 0 means that all requests
are writes.

performance is less than 2%. During the synthetic
benchmark, the backup is completed faster than dur-
ing Postmark or TPC-C. This is so because the syn-
thetic benchmark’s requests are uniformly distributed
around the disk, maximizing the scheduler’s opportu-
nities. The backup is slightly faster under TPC-C than
under Postmark for several reasons. First, Postmark is
single-threaded and has short disk idle periods, but that
are too short to be exploited. Thus, fewer freeblock op-
portunities arise during any given time period. Second,
the cache manager successfully coalesces many small
dirty buffers for Postmark and thus issues larger I/Os to
the device, which reduces the effectiveness of freeblock
scheduling further.

In the idle time case, the streaming bandwidth is about
35MB,6 and the backup completes in little over 8 min-
utes. The graph also shows that the application-COW
results in more efficient use of free bandwidth. This
is because, with snapshot-COW, the backup application
wastes some bandwidth reading blocks that have been
modified; it then needs to re-register reads for the new
locations of those blocks. The overall effect however,
is less then a 15% increase in the time to complete the
backup. Thus, a backup application based on our frame-
work can be effective with whichever implementation is
used by a particular system.

6.4 Buffer cache cleaner

We evaluate the efficiency of the buffer cache cleaner
designed using our framework with both controlled
experiments (using the Linux user-level implementa-
tion with a simulated cache and direct SCSI reads and

6The reported streaming bandwidth of the disk is 40MB/s. But, due
to head switch delays when changing tracks, the observed streaming
bandwidth is about 35MB/s.

writes on the Seagate disk) and the implementation in
FreeBSD. The controlled experiments are used to un-
derstand the relationship between the efficiency of the
cache cleaner and the size of the cache, the workload
presented, and the replacement and persistence policies.
The metrics of interest are the percentage of dirty blocks
cleaned for free and the reduction in average response
time of other requests. In all buffer cache experiments,
the idle-time detector does not detect enough idle time
to be helpful.

The controlled experiments use a version of the syn-
thetic benchmark. As indicated, we vary the read-write
ratio and the simulated cache size while keeping the size
of the requests the same (4KB-8KB).

Effect of cache size and read-write ratio: Figure 7
shows the efficiency of the cleaner and its impact on the
overall response time as a function of the workload’s
read-write ratio and the cache size. The replacement
policy is least-recently used (LRU), and the persistence
policy guarantees that no dirty buffer will stay dirty for
longer than 30 seconds. High and low water-marks are
used to address space exhaustion: whenever the number
of dirty buffers in the cache hits the high water-mark,
the cache manager cleans up as many buffers as needed
until the low water-mark is reached. Mimicking the no-
tation used by FreeBSD’s cache manager, a syncer dae-
mon implements the persistence policy, and a buffer dae-
mon implements the logic that checks the high and low
water-marks.

Several observations can be made from Figure 7.
First, as the read-write ratio increases, a larger percent-
age of the dirty buffers can be cleaned for free, be-
cause more and more freeblock opportunities are cre-
ated. Writes do not go to disk immediately because of
write-back caching. Instead, they go to disk as a re-



sult of the syncer’s work or buffer daemon’s work. In
both cases, they go to disk in large bursts. Hence, the
foreground scheduler (using SPTF) does a good job in
scheduling, reducing the freeblock scheduler’s chances
of finding rotational gaps to use.

Second, as the read-write ratio increases (beyond 1:2),
the impact of free cleaning on the average response time
decreases. This is a direct consequence of the decreas-
ing number of writes (and, hence, dirty buffers) in the
system. Third, the efficiency of the freeblock subsys-
tem slightly decreases with increasing cache size. The
reason is that every time the syncer or buffer daemons
wake up, they have a larger number of dirty buffers to
flush. Again, the foreground scheduler reduces the free-
block scheduler’s chances of finding rotational gaps to
use. However, we observed that the opposite happens,
i.e. the efficiency of the scheduler increases, when no
persistence policy is used.

Effect of replacement and persistence policies: Fig-
ure 8 examines the efficiency of the cache cleaner and
its impact on the average response time under different
replacement and persistence policies. The cache size
is kept fixed (512MB) and the read-write ratio is 1:1.
In addition to LRU, two other replacement policies are
evaluated. The SPTF-Evict policy is similar to LRU,
but instead of replacing dirty entries in an LRU fashion,
the entries closest to the disk head position are replaced
first. The FREE-CLEAN (FC) policy chooses to replace
a clean entry that has been recently cleaned for free (if
none exists, it reverts to LRU). By replacing a clean en-
try from the cache, FREE-CLEAN attempts to let the
remaining dirty buffers stay a little longer in the system
so that they may be written out for free.

All three replacement policies are evaluated with, and
without, a syncer daemon. A syncer daemon places a
hard limit (30 seconds in our case) on the time the free-
block subsystem has to clean any dirty buffers for free.
Hence, fewer buffers are cleaned for free under this pol-
icy, irrespective of the replacement policy used. A cache
comprised of non-volatile RAM, on the other hand, does
not need such a persistence policy.

The SPTF-Evict policy reduces the effectiveness of
the freeblock subsystem most, thereby reducing its ben-
efit to the average response time. This is because no
write task can be satisfied during write I/Os that hap-
pen as a result of the buffer daemon (because the dirty
buffer closest to the disk head is written first, there are
no other dirty buffers freeblock scheduling can squeeze
in between foreground requests). Write tasks can still
be satisfied during write I/Os that happen because of the
syncer daemon. In the case when no syncer daemon is
used, all writes happen due to the buffer daemon, hence
dirty buffers can be cleaned for free only during fore-
ground read requests.

0

10

20

30

40

50

60

70

80

90

100

LRU SPTF-Evict FC LRU SPTF-Evict FC 

%
 d

ir
ty

 b
u

ff
er

s 
cl

ea
n

ed
 fo

r 
fr

ee

avg. resp. time
reduction 17% 14% 19% 45% 25% 49%

with 30-secs syncer daemon

without persistence policy

Figure 8: Comparison of replacement and persistence policies.
These graphs illustrate the efficiency of the cache cleaner on a system
under different replacement and persistence policies

0

5

10

15

20

25

30

35

40

45

50

%
 b

uf
fe

rs
 c

le
an

ed
 fo

r f
re

e

w/ cleaner

wo/ cleaner

Synthetic TPC-C Postmark

156 IOs/sec

188 IOs/sec 22 trans/sec

20 trans/sec

292 tpmC

253 tpmC

Figure 9: Cache cleaner efficiency in FreeBSD. The throughput
metrics below each bar show overall performance with and without
free write-backs.

FC is the best policy as far as the cache cleaner is
concerned. By leaving the dirty buffers in the cache a
little longer, it can clean more of them for free. But,
there could be a detrimental effect on cache hit rate, and
the cache cleaning benefit observed is quite small.

Cache cleaning in FreeBSD: Figure 9 illustrates the
efficiency of the real cache cleaner, implemented as part
of FreeBSD’s cache manager. At most, 3/4 of the sys-
tem’s 384MB of RAM are devoted to the I/O buffering
subsystem. The read-write ratio of the synthetic bench-
mark is 1:1, the observed read-write ratio of TPC-C is
approximately 1:1, and the observed read-write ratio of
Postmark is approximately 1:3. In all three cases, a size-
able percentage of the dirty buffers are cleaned for free.
Postmark benefits less than the other benchmarks for the
same reasons it lagged in the backup evaluation: write-
back clustering and unusable short idle periods.

6.5 Layout reorganizer

To evaluate the effectiveness of our reorganizer, we
performed a variety of controlled experiments. The
foreground workload is the synthetic benchmark, which
keeps the disk 100% utilized. To avoid corruption of the



0

100

200

300

400

500

600

1 10 20 1 10 20

8 64

Re
or

ga
ni

za
ti

on
 ti

m
e 

(m
in

s)

% reorganized

buffer size (MB)

random circular track shuffling

Figure 10: Layout reorganizer efficiency. Each bar cluster shows
the time required for the three reorganization actions for a different
staging buffer capacity the percentage of the disk space being reorga-
nized.

FFS file system in FreeBSD, the experiments are run in
the user-level Linux environment. In all experiments, the
base unit the reorganizer is interested in moving at any
time is 8KB (specified by the blksize parameter). Three
different reorganization actions are explored.

Random reorganization: Random 8KB blocks on
the disk are moved to other random locations. Few
blocks have dependencies using this method.

Circular random reorganization: A list of unique
random 8KB blocks is created, and each block is moved
to the location of the next block in the list. This creates
the longest dependency chain possible: one including
every block to be reorganized.

Track shuffling: Similar to the random block reor-
ganization action above, but whole tracks are shuffled
instead of blocks.

We evaluated each action reorganizing from 1% to
20% of the disk. Research on reorganization techniques
indicates that this range is generally the most effective
amount of the disk to reorganize [1, 16]. The results are
shown in Figure 10. Tests with more dependencies, like
circular, take longer than those with few dependencies.
They also benefit more from an increase in buffer size.

The results are encouraging, showing that up to 20%
of the disk can be reorganized in a few hours on a fully
busy disk.

6.6 Application fairness and priorities
This section briefly evaluates the fairness of the

scheduling algorithms. Two applications compete for
the free bandwidth: a simple disk scrubber and the cache
cleaner evaluated above. The disk scrubber simply tries
to read all blocks of the disk once, without worrying
about consistency issues (hence it doesn’t use the snap-
shot system). The experiment is run until the disk scrub-
ber has read all blocks of the 18GB Seagate disk.

The bandwidths dedicated to the scrubber and cache
cleaner applications are measured. In the original

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

% disk scrubbed

Fr
ee

 b
an

d
w

id
th

 (M
B

/s
)

scrubbing bw  cleaner bw scrubbing bw (w/ fairness) cleaner bw (w/ fairness)

Figure 11: Disk scrubbing and cache cleaning. This figure shows
two concurrent background applications, disk scrubbing and cache
cleaning, in a system with and without fairness.

case, the freeblock scheduler’s fairness mechanisms are
disabled and the scheduling algorithms lean toward a
greedy approach. In the fair system, lottery schedul-
ing makes sure that both applications are treated fairly.
Both applications are assigned the default priority. The
cache size is fixed at 512MB, the replacement policy is
LRU, and the persistence policy is implemented using
the 30-sec syncer daemon. The read-write ratio of the
foreground workload is 1:1.

Figure 11 shows the distribution of bandwidth with
and without fairness. The bandwidth given to the cache
cleaner increases from almost nothing to about 0.3MB/s
when priorities are used. This bandwidth is very close
to 0.34MB/s, which is the bandwidth the cache cleaner
would get if it were the only background application in
the system. The bandwidth of the scrubber, on the other
hand, falls by a little more than the gained bandwidth of
the cache cleaner. This 2-5% loss in efficiency can be
attributed to the scheduler’s decision to treat the cache
cleaner in a fair manner, thereby spending an equal time
searching for opportunities that satisfy tasks of that ap-
plication. These opportunities are smaller when com-
pared to the opportunities of the scrubber.

7 Summary
This paper describes a programming framework for

developing background disk maintenance applications.
With several case studies, we show that such applica-
tions can be adapted to this framework effectively. A
freeblock subsystem can provide disk access to these
applications, using freeblock scheduling and idle time,
with minimal impact on the foreground workload.

Acknowledgements
We thank Vinod Das Krishnan, Steve Muckle and Brian
Railing for assisting with porting of freeblock schedul-
ing code into FreeBSD. Special thanks to Chet Juszczak
(our shepherd) and to all anonymous reviewers who



provided much constructive feedback. We also thank
the members and companies of the PDL Consortium
(including EMC, Hewlett-Packard, Hitachi, IBM, In-
tel, LSI Logic, Microsoft, Network Appliance, Oracle,
Panasas, Seagate, Sun, and Veritas) for their interest, in-
sights, feedback, and support. This work is funded in
part by NSF grants CCR-0113660 and CCR-0205544.

References
[1] S. Akyurek and K. Salem. Adaptive block rearrangement. CS–

TR–2854. University of Maryland, February 1992.
[2] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler,

J. M. Hellerstein, D. Patterson, and K. Yelick. Cluster I/O with
River: making the fast case common. Workshop on Input/Output
in Parallel and Distributed Systems, pages 10–22. ACM Press,
1999.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees. IEEE
International Conference on Multimedia Computing and Sys-
tems, pages 400–405. IEEE, 1999.

[4] J. S. Bucy and G. R. Ganger. The DiskSim simulation environ-
ment version 3.0 reference manual. Technical Report CMU–
CS–03–102. Department of Computer Science Carnegie-Mellon
University, Pittsburgh, PA, January 2003.

[5] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.
McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K.
Tan, O. G. Tsatalos, S. J. White, and M. J. Zwilling. Shoring
up persistent applications. ACM SIGMOD International Confer-
ence on Management of Data. Published as SIGMOD Record,
23(2):383–394, 1994.

[6] S. C. Carson and S. Setia. Analysis of the periodic update write
policy for disk cache. IEEE Transactions on Software Engineer-
ing, 18(1):44–54, January 1992.

[7] A. L. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file
systems: a survey of backup techniques. Joint NASA and IEEE
Mass Storage Conference, 1998.

[8] T. P. P. Council. TPC Benchmark C. Number Revision 5.1.0,
2002.

[9] J. R. Douceur and W. J. Bolosky. Progress-based regulation
of low-importance processes. ACM Symposium on Operat-
ing System Principles. Published as Operating System Review,
33(5):247–260, December 1999.

[10] B. Duhl, S. Halladay, and P. Mankekar. Disk backup perfor-
mance considerations. International Conference on Management
and Performance Evaluation of Computer Systems, pages 646–
663, 1984.

[11] R. M. English and A. A. Stepanov. Loge: a self-organizing disk
controller. Winter USENIX Technical Conference, pages 237–
251. Usenix, 20–24 January 1992.

[12] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt.
Soft updates: a solution to the metadata update problem in file
systems. ACM Transactions on Computer Systems, 18(2):127–
153. ACM Press, May 2000.

[13] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idle-
ness is not sloth. Winter USENIX Technical Conference, pages
201–212. USENIX Association, 1995.

[14] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS
file server appliance. Winter USENIX Technical Conference,
pages 235–246. USENIX Association, 1994.

[15] R. Y. Hou, J. Menon, and Y. N. Patt. Balancing I/O response time
and disk rebuild time in a RAID5 disk array. Hawaii International
Conference on Systems Sciences, January 1993.

[16] W. Hsu. Dynamic Locality Improvement Techniques for Increas-
ing Effective Storage Performance. PhD thesis, published as

UCB/CSD–03–1223. University of California at Berkeley, Jan-
uary 2003.

[17] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz,
S. Kleiman, and S. O’Malley. Logical vs. physical file system
backup. Symposium on Operating Systems Design and Imple-
mentation, pages 239–249. ACM, Winter 1998.

[18] J. Katcher. PostMark: a new file system benchmark. Technical
report TR3022. Network Appliance, October 1997.

[19] D. Kotz. Disk-directed I/O for MIMD multiprocessors. Sympo-
sium on Operating Systems Design and Implementation, pages
61–74. USENIX Association, 14–17 November 1994.

[20] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock schedul-
ing outside of disk firmware. Conference on File and Storage
Technologies, pages 275–288. USENIX Association, 2002.

[21] C. R. Lumb, J. Schindler, G. R. Ganger, D. F. Nagle, and
E. Riedel. Towards higher disk head utilization: extracting free
bandwidth from busy disk drives. Symposium on Operating Sys-
tems Design and Implementation, pages 87–102. USENIX As-
sociation, 2000.

[22] M. K. McKusick. Running ’fsck’ in the background. BSDCon
Conference, 2002.

[23] A. Molano, K. Juvva, and R. Rajkumar. Real-time filesystems.
Guaranteeing timing constraints for disk accesses in RT-Mach.
Proceedings Real-Time Systems Symposium, pages 155–165.
IEEE Comp. Soc., 1997.

[24] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified
I/O buffering and caching system. Symposium on Operating
Systems Design and Implementation. Published as Operating
System Review, pages 15–28. ACM, 1998.

[25] H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman,
and S. Owara. SnapMirror: file system based asynchronous mir-
roring for disaster recovery. Conference on File and Storage
Technologies, pages 117–129. USENIX Association, 2002.

[26] C. Ruemmler and J. Wilkes. UNIX disk access patterns. Winter
USENIX Technical Conference, pages 405–420, 1993.

[27] P. J. Shenoy and H. M. Vin. Cello: a disk scheduling framework
for next generation operating systems. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Sys-
tems. Published as Performance Evaluation Review, 26(1):44–
55, 1998.

[28] D. C. Steere. Exploiting the non-determinism and asynchrony of
set iterators to reduce aggreggate file I/O latency. ACM Sympo-
sium on Operating System Principles. Published as Operating
Systems Review, 31(5):252–263. ACM, 1997.

[29] E. Thereska, J. Schindler, C. R. Lumb, J. Bucy, B. Salmon, and
G. R. Ganger. Design and implementation of a freeblock subsys-
tem. Technical report CMU-PDL-03-107. December 2003.

[30] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: flexible
proportional-share resource management. Symposium on Oper-
ating Systems Design and Implementation, pages 1–11. Usenix
Association, 14–17 November 1994.

[31] R. Y. Wang, D. A. Patterson, and T. E. Anderson. Virtual log
based file systems for a programmable disk. Symposium on
Operating Systems Design and Implementation, pages 29–43.
ACM, 1999.

[32] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy,
and T. E. Anderson. Trading capacity for performance in a disk
array. Symposium on Operating Systems Design and Implemen-
tation, pages 243–258. USENIX Association, 2000.

[33] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang. Configur-
ing and scheduling an eager-writing disk array for a transaction
processing workload. Conference on File and Storage Technolo-
gies, pages 289–304. USENIX Association, 2002.


	Carnegie Mellon University
	Research Showcase
	10-1-2003

	A Framework for Building Unobtrusive Disk Maintenance Applications (CMU-CS-03-192)
	Eno Thereska
	Jiri Schindler
	John Bucy
	Brandon Salmon
	Christopher R. Lumb
	See next page for additional authors
	Recommended Citation
	Authors



