
Carnegie Mellon University
Research Showcase @ CMU
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

1979

Automated synthesis of digital hardware
Alice C. Parker
Carnegie Mellon University

Louis Hafer

Follow this and additional works at: http://repository.cmu.edu/ece

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has been
accepted for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase @ CMU. For
more information, please contact research-showcase@andrew.cmu.edu.

Recommended Citation
.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

AUTOMATED SYNTHESIS OF DIGITAL HARDWARE

by

Alice C. Parker and Louis Hafer

DRC-18-12-79

May 1979

Index Terms

logic design, automated synthesis, computer-aided design, design

automation, register-transfer level design, hardware specification,

ISP, hardware-descriptive language

6? o.oo y ^
0. 7 9 -C

ABSTHACT

This paper describes a portion of the register transfer level

computer aided design (RT-CAD) research at Carnegie-Mellon University.

This part of the research involves the design and implementation of a

data-memory allocator, consisting of a set of algorithms and data

structures which synthesize hardware at the logical level from an ISPL

language description. Preliminary results indicate the allocator's

performance compares favorably with a human designer when designing an

elevator controller and a reduced PDP-8/E.

1.0 INTRODUCTION

The motivation behind the research described in this paper is to

enhance the digital designer's capabilities by producing more powerful

design tools. Digital logic design has progressed to the point that

the operation of the logic can be functionally expressed by a variety

of hardware descriptive languages, ISP being one of the more widely

used behavioral languages. Functional simulators exist and are useful

for verifying system operation and performance measurements (Barb77a).

Thus, the state of the art in digital design is such that the next

addition to design aids should be a synthesis program; a program that

can design the STRUCTURE of a digital system, given its FUNCTION or

The research described in this paper was supported by the U.S.
Army Research Office under grant DAAG29-76-G-0224, and by a
fellowship from IBM Corporation. A. Parker is an Assistant Professor
of Electrical Engineering at Carnegie-Mellon University. L. Hafer is
a research assistant in the Department of Electrical Engineering at
Carnegie-Mellon University.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

BEHAVIOR as input. Along with automated synthesis of hardware comes

the problem of producing optimal or near optimal designs to meet the

design constraints. The research reported on here is aimed at

understanding the design or synthesis process so that it can be

automated. A major goal of this project is to produce logic-level

hardware designs from ISP descriptions in a non-optimal fashion, to

better understand the automated design process. A parallel goal of

related research by the same group is to develop discrete optimization

algorithms and techniques to be applied in a more complex and powerful

synthesis package.

This paper describes the operation and performance of one of the

synthesis routines - termed an "allocator.11 This routine designs logic

in the distributed design style from an ISPL description. The

distributed design style is a way of designing digital logic

characterized by many storage locations and operators interconnected

in a non-regular manner, with little sharing of hardware. The

distributed design style is often implemented with TTL circuits or on

a single IC. It is most often used to produced designs where speed of

operation is a desirable goal. The ISPL* language used as input for

this allocator allows the designer to specify the behavior of digital

hardware, without describing the structure.

2.0 THE DESIGN AUTOMATION SYSTEM

*The allocator described here used ISPL (Barb76) but has been
converted to ISPS (Barb 77b), a more powerful, newer version of ISP.

In order to discuss the role of the allocator and results of the

synthesis effort, an overview of the RT-CAD (Register-Transfer level

Computer-Aided-Design) system is presented here. This overview was

originally published in (Snow78a).

RT-CAD OVERVIEW

The ultimate goal of the RT-CAD project is to provide a

technology-relative, structured-design aid to help the hardware

designer explore a larger number of possible design implementations.

Inputs to the system are a behavioral description of the system to be

designed, an objective function which specifies the userfs

optimization criteria, and a library specifying the hardware

components available to the design system. The components of the

RT-CAD system are shown in Figure 2.1 and discussed below.

The RT-CAD system differs from other design automation systems in

that it operates from a behavioral specification. Such specification

provides a model that, while accurately characterizing the

input-output behavior of a piece of hardware, does not necessarily

reflect its internal structure. The design process is one of binding

implementation decisions in a top-down manner as a design proceeds

through the RT-CAD system. More and more structural detail is frozen

at each level until a complete hardware specification is obtained, the

most influential design parameters being bound first in order to cut

down the design search space. The functions of the design system

components which bind these implementation decisions are described

below.

GLOBAL OPTIMIZER. The global optimizer applies high-level

transformations to a design's behavioral representation after

translating it from ISPS notation (Barb77b) to an abstract design

representation called the value trace (Snow78b). The transformations

have a significant impact on the cost, performance, and other

parameters of the designs to which they are applied.

DESIGN STYLE SELECTOR. By considering the various module sets

that can be used (e.g., TTL vs. a microprocessor), the design

constraints imposed (e.g., cost, speed), and the structure of the

algorithm to be designed (e.g., pipeline data flow), the design style

selector decides on the specific style of design to be employed (e.g.,

bit-slice microprocessor, MOS microprocessor, SSI/MSI logic). Earlier

work (Thom77b) shows this to be an influential decision in terms of

cost and speed tradeoffs. When the style is selected, the design is

passed to an allocator specific to the design style. Initial research

into the design style selection process has been completed (Thorn 77a)

and an automatic design style selector is currently being programmed.

PARTITIONER. The partitioner groups operations from the abstract

design representation into control steps. This effectively binds the

control flow for the design. Tradeoffs between the data and control

parts are made at this level.

DATA/MEMORY (DM) ALLOCATOR. The function of the DM allocators is

to decide the number and type of data operators, multiplexers, and

registers needed to implement the data part of the design. They are

style specific in that they embody analytic and heuristic knowledge

about a style (e.g., the trade-offs involved in the design of a TTL

system), but they do not have access to the specific details of each

module set. The output of the allocator is a data path graph whose

nodes are elements such as adders or registers. The edges represent

actual circuit interconnections.

CONTROL ALLOCATOR. The control allocator generates a sequential

state machine to control the data paths produced by the DM allocator.

The control allocator has the option of designing the control unit

around control philosophies such as microprogramming, programmed logic

arrays, random logic, etc. The output of the control allocator is a

control path graph whose nodes represent control states, and whose

edges represent permissible state transitions.

MODULE BINDER. The module binder selects physical modules from

the module set library to implement a design's data and control path

graphs. The library contains descriptions of the components available

to the design system and may be freely updated so that it is kept

current with respect to advances in module technology. This dynamic

aspect of the module set library provides for the technology-relative

aspects of the RT-CAD system.

PHYSICAL LAYOUT PROCESSOR. This component partitions the system

into printed circuit boards or chips, decides the placement of

components, routes interconnections, and prepares engineering

documentation.

Research is currently underway into the design of all of the

system components described above. In addition, the problem of

integrating them into a coherent design system is being investigated.

Research described in this paper has focused on a synthesis

routine - the data-memory allocator. Although the control allocation

effort is just beginning, some ideas as to the nature of the problems

to be solved have been posed. The generation of control hardware is

analogous to the problem of generation of microcode, with its inherent

computational complexity, but there is one difference. Generation of

hardware introduces another set of variables into the optimization

routines. Not only are microinstructions generated, but the control

hardware itself must be designed and optimized.

Previous work on data-memory allocation techniques includes the

Macromodule and Register Transfer Module allocators (Barb75) and the

allocation algorithm developed by Rege (Rege7*O. In each of these,

however, a small, tightly constrained module set was assumed available

for implementing the device description. Detailed knowledge of the

physical structure of the modules was fixed in the allocation

algorithms to take advantage of implementation tricks peculiar to each

module set. The allocator described here uses more abstract logical

modules and algorithms which are independent of detailed knowledge of

the modules used to implement the physical hardware. This in turn

allows greater freedom in future attempts at optimization, due to the

richer physical module set which can be used.

3.0 OVERVIEW OF THE DATA-MEMORY ALLOCATOR

After the ISPL functional description of the system to be

designed has been manipulated by the higher level design routines to

better achieve the price/performance objectives provided by the user,

it is used as input to the allocation routines. The allocators fall

into two categories, data-memory and control. The data-memory

allocators basically perform a mapping function from the algorithmic

description to the data part of the hardware implementation. The data

part consists of the data storage elements, data operators, and data

paths necessary to implement the operations specified in the

algorithmic description. It should be noted that due to the

characteristics of the ISPL language this mapping may be multi-valued

in either direction, rather than a simple one-to-one translation. The

control allocators perform a slightly different function, mapping the

timing, sequencing, and branching information implicit in the ISPL

description onto control states, control signals, and conditional

branching signals to control the data part. Again, the mapping is not

a simple one.

The allocator described here is a data-memory allocator for the

distributed logic design style. As pointed out earlier, the allocator

itself is technology relative and the mapping onto specific integrated

circuit packages is performed by the data base module, which is

updated as new packages are added to the module sets. It should be

understood that the process referred to as allocation throughout the

remainder of this paper is a logical allocation in terms of data

storage elements, a set of operator primitives defined by the 1SPL

language, data paths, and multiplexers.

The first version of the allocator is experimental, and it

performs only minor optimizations on the allocated hardware. Rather,

it has been designed to investigate:

* the feasibility of performing the mapping from ISPL to

hardware

* the independence of the allocator from a specific technology

* information necessary to the design process which cannot be

expressed in ISPL

* the types of data structures needed for allocation

* bounds on the size of the ISPL description that can be

processed by the system

* exceptional constructs allowed in ISPL which may be difficult

or impossible to design or implement in hardware

* types of error checking that can be performed by the allocator

* areas where optimizations are possible in future, more

sophisticated allocators.

In addition, the allocator has been designed as a possible skeletal

structure for future allocators in order to standardize input/output

formats and data structures.

In the following description of allocator structure and function,

an attempt is made to extrapolate details learned through

implementation into a basic philosophy of allocator design. The

procedure used by the allocator might be compared to a two pass

compilation. The first pass may be considered a syntax or feasibility

check. The allocator inputs a parsed ISPL description, constructs

data structures analogous in function to symbol tables, and enforces

various constraints necessary to insure that the data storage

locations, logical mappings*, and input/output interface

characteristics specified in the description can be implemented in

hardware. If no errors are encountered, it proceeds to allocate the

basic data storage structures called for in the description, and any

additional data paths, storage, and operators necessary to implement

variable accessing schemes described by the logical mapping facility

of ISPL. The second pass may be considered the semantic phase with

the activity of code generation replaced by the allocation of data

paths, operators, and additional storage as needed to implement the

functions specified in the ISPL description. Parallelism analysis is

performed at several levels to warn the user of error conditions and

determine constraints relating to optimization of hardware. The

allocation is then completed by the addition of multiplexing where

required.

*The mapping capabilities in the ISPL language will be discussed
later in Appendix A.

It is important to realize, however, that allocation differs from

compilation in that in a compilation one is concerned with

implementing the specified data operations on a fixed data part whose

capabilities are known a priori. In allocation, the allocator must be

able to recall and utilize the capabilities of a data part which is

being dynamically created. The allocator thus works from the inside

out, first creating the data storage and access structures, and then

adding the necessary data paths and operators to perform the described

data operations. In addition, the output of the allocator is a

non-planar directed graph, rather than a linear list of compiled

instructions.

The detailed description of the allocator will focus on the

allocator inputs, data structures, algorithms, and outputs.

3.1 Basic Concepts in Allocation of Data Paths

Before proceeding to the detailed description of the allocator

two fundamental concepts should be defined. These are the process and

the operation path.

A process is defined as a sequence of actions occurring within a

control environment which is independent of and asynchronous with

respect to other control environments. No assumptions can be made

about the relative timing of events across process boundaries, and no

resources other than those explicitly specified by the input

functional description may be shared by multiple processes.

Complications introduced by allowing multi-process descriptions will

11

be explored in detail in later sections.

The operation path is defined, in the most general case, to

consist of two data sources, an operator, and the data paths leading

from each source to the operator. This is the basic conceptual unit

produced by the allocator to implement an action specified in the

functional description, although only those elements of the operation

path necessary to perform the particular action are actually

allocated. (An example would be a two's complement negation. Only

one source, the operator, and a connecting data path are necessary;

the other source and data path remain null.) Considerations motivating

the choice of this fundamental unit include:

* The compiled ISPL functional description used as input to the

allocator is expressed in the same form, using two sources and

an operation code

* The operation path is the minimal unit which-can be considered

when analyzing for possible parallel usage conflicts during

optimization to reduce the number of allocated operators.

No destination for the result value is included in the operation path

as the destination and the data path from the operator to the

destination are not subject to the same usage constraints as the

operation path. Throughout the following description of the

allocator, the term path will be used to refer to the operation path

as defined here. If the destination and the data path from the

operator to the destination are to be included, the combination will

be referred to as the extended path. The physical data path between a

source and a destination will be referred to as a link or data link.

3.2 Allocator Inputs

The primary input to the allocator is the compiled ISPL

functional description, in the form of a symbol table and a statement

table. A small portion of the ISPL description of an elevator

controller is shown in Fig. 3-1, along with relevant portions of the

symbol table and statement table. This description will be used as a

running example in describing the allocator. Detailed documentation

of the ISPL language and compiler may be found in (Barb76).

The compiler tables are augmented with information supplied by

the user in a "technical file." This file contains two types of

information:

* global information about the description which cannot be

specified in ISPL

* interface information to be passed to the module data base for

selection of specific ICfs. This information describes the

desired logical and electrical characteristics of the inputs

and outputs of the device being allocated.

Relevant portions of the technical file for the elevator controller

are shown in Fig. 3.2. The PROCESS specifications indicate there are

two processes in the complete description, LOOK.FOR.CALLS (the example

ISP of Fig. 3.1) and MAIN. The INPUT specifications describe the

desired electrical characteristics of the input lines, and the OUTPUT

specifications present the characteristics of the output lines.

3.3 Allocator Data Structures

13

The allocator builds seven major data structures for use during

the allocation of an ISPL description.

The process table contains one entry for each process specified

in the technical file. Each entry contains a listing of all variables

and called procedures used in the process. The called procedure table

contains one entry for each called procedure declared by the user in

the ISPL description. Data recorded in the table for each procedure

includes the number of locations where the procedure is called and an

indicator if it is shared by two or more processes. The allocator

symbol table contains one entry for each variable which will be

allocated a node in the path graph by the allocator. Each entry

records all physical information relevant to the entry type for use by

the allocator during logical allocation and by the module data base

during physical allocation. As in the called procedure table, an

indicator flags the entry if access to it is shared between processes.

These three tables, in conjunction with the compiler symbol table,

comprise the portion of the data structures which function as symbol

tables for the allocator.

The path graph contains the complete allocated or designed data

part of the device and is the major output of the allocator. As the

name implies, the form of this structure is a directed graph, with

nodes describing the variables, operators, switches, and data links,

and the actual data flow described by the directed edges. In the

general case, this graph may be non-planar, cyclic, and disconnected.

The basic path graph groups are described in Fig. 3.3. A complete

path graph for the example ISP description of Fig. 3-1 is shown in

Fig. 3.4.

The path table is the major working data structure of the

allocator. It is dynamically created and purged for each process that

is allocated, and contains all paths allocated for the process

organized in the form of a three-dimensional sparse matrix. Each

dimension is indexed by one of the defining nodes of the path, which

are the two sources and the operator. This allows the allocator to

access information about storage locations and operators without

exhaustive searching.

The path parallelism table, also created and cleared for each

process, contains the record of all concurrent uses of the paths

recorded in the path table, stored in the form of path pairs. It is

used to perform parallelism error checking at the variable level. The

operator table, although conceptually a symbol table, is used

primarily as a more convenient record of allocated operators than the

path graph. It is updated at the end of each process from the path

table before the path table is purged.

Although the internal implementation of the data structures is

not of interest here, certain overall characteristics should be

discussed. Due to the diversity and quantity of information required

by the allocator, and the need to access this information in a variety

of orderings with a variety of keys, the tables are heavily cross

referenced and contain varying amounts of redundant information. This

diversity of structure allows the allocator to efficiently locate

15

information and relate it to both the original 1SPL description and

the allocated data path. As an example, the path graph and the path

table are highly redundant. During the allocation of a process, both

contain complete information on the paths allocated to implement the

process actions. However, locating a particular path in the path

graph is a combinatorial search, involving the comparison of all

possible pairs of output links from each source to determine if data

links exist from each source to the same operator. The operator must

then be checked to determine if it can perform the desired function on

the data. Locating this same path in the path table is a linear

search, involving only the location of a particular element in the

three-dimensional matrix.

The dynamic nature of the path data structures allows the

allocator to handle ISPL descriptions of any size, providing they are

suitably divided into processes. This is because the total size of

the data structures is limited only by the amount of core memory

available to the allocator, and the purging of the path table and path

parallelism structures after each process allows a large percentage of

this space to be reused. Only the path graph and operator table

increase in size monotonically from process to process.

A rough measure of the size of the data structures can be

obtained in terms of the average number of 36 bit memory words

required for a variable or a statement table operation. Approximately

45 words of storage are used per variable, and 55 words per statement

table operation. Additional storage for parallelism information is

1U

allocated at the rate of roughly five words per pair of parallel

paths, with four words of overhead for each parallel level or branch.

3.4 Allocator Algorithms

3.4.1 Global perspective

The allocation of an ISPL description begins with the allocator

performing several checks and preparatory actions under the heading

preliminary processing. Implementation restrictions on mappings (see

Appendix A) are enforced, statistical measures are gathered, the

technical file is processed, and array memories (RAMS) are given a

uniform accessing structure. Next, a variable and procedure usage

analysis is performed to determine which processes use the variables

and procedures to be allocated. Synthesis begins with the

initialization of the path graph by allocating path graph nodes for

the declared variables and mappings. A universal variable access

mechanism is set up to access these nodes. All the above actions are

performed for the entire ISPL description, completing the "global*

phase of the allocation. The second phase of the allocation might be

termed the "process" phase, with the actions of extended jcaJJl

allocation, parallelism analysis, and optimization being performed

independently for each process. Path allocation and parallelism

analysis are performed for each statement table entry in the process,

while optimization is performed over the process as a whole. When

this process phase has been completed for all processes in the

description, some final processing of the path graph as a whole is

done to place multiplexers where needed.

17

3.^.2 Preliminary processing

The allocator begins the processing of the ISPL description by

enforcing the implementation restrictions on logical mappings. The

mapping capability of ISPL allows the writer to define a register or

memory, then to "map" another register or memory over the first. The

base memory can then be accessed either by its name or the mapped

memory name. The bit width and number of words in the base and mapped

memories need not be the same as long as the J^tal number of bits is

equivalent. The mapping capability and the constraints imposed by the

allocator are defined in Appendix A. The major objectives considered

in developing these constraints were:

* To be able to implement the addressing and access algorithms

implicitly defined by the mappings with a reasonable amount of

hardware, both in the data part and in the control' part.

* Since the addressing and access algorithms are implicitly

defined, rather than explicitly specified, to develop a

regular structure capable of implementing all mappings by

creating a well defined basic pattern.

* Since mapping definitions can be cascaded, to be able to

cascade the structure used to implement each mapping.

* To restrict the use of the mapping construct as little, as

possible.

Mappings satisfying the constraints defined in the appendix allow an

addressing and access structure compatible with the first three

objectives. Mappings not satisfying these constraints are revealed as

fatal errors detected during the mapping check, causing the allocator

18

to print an error message identifying the erroneous mappings and halt.

If no errors are detected, the allocator reads the PROCESS

section of the technical file to determine the identity and quantity

of the processes declared by the user. The INPUT and OUTPUT sections

of the technical file are now processed and the information obtained

stored in the allocator symbol table.

The final step in the preliminary processing is the assignment of

memory address (MAR) and data (MDR) registers to the declared array

(RAM) memories. The ISPL language does not require explicit

declaration of MARs and MDRs, whereas in a hardware implementation a

large amount of flexibility is gained in the design of the control

part by the presence of these registers. They are therefore

automatically assigned, using temporary registers generated by the

allocator. If they are later found redundant, they are removed.

3.4.3 Variable and procedure usage analysis

The allocator now analyses the statement table to determine the

variables and procedures used in each process. If no variables or

procedures could be shared between processes, the task of allocation

would be greatly simplified, as each process could be treated

essentially as a separate device description with a totally

independent data part. The existence of variables and procedures

shared between independent, asynchronous control environments

introduces several problems.

19

First, access to the resource (variable or procedure) must be

arbitrated in some manner to prevent two processes from attempting to

use the resource simultaneously. While the actual arbitration

structure will be created by the control allocator, information must

be left specifying the process that a data link is associated with.

This is necessary to allow the control allocator to create the proper

access arbitration structure for the resource- Identifying the links,

however, is the least of the problems to be dealt with.

The second difficulty is associated with variables shared between

processes. From a veiwpoint internal to a particular process, a

shared variable must be regarded as subject to random change by the

other processes sharing the variable and cannot be used by the

optimization routines inside a given process.

The third difficulty arises when shared procedures are present.

Again, from a viewpoint internal to a process, the hardware used to

implement the procedure will be subject to random unavailability due

to use by other processes. The allocator is capable of two actions in

this case. It can absorb the procedure into each process by the

creation of separate hardware implementations of the procedure

internal to each process, or it can treat the procedure as if it were

itself a separate process and allocate an independent hardware

incarnation whose use is arbitrated by the control allocator.

Information collected during the usage analysis is stored in the

appropriate symbol tables. In addition, statistics are collected on

the total number of operations specified in the statement table.

20

3.4.4 Allocation of declared variables and mappings

The path graph is now initialized by allocating the nodes

representing declared variables and mappings. All variables declared

by the user are allocated nodes in the graph, representing storage,

inputs or outputs. When the basic variables have been allocated, the

multiplexers, demultiplexers, operators, registers, and data links

needed to implement the addressing and access structures specified by

any logical mappings are determined and allocated.

In order that the nodes in the path graph can be easily related

to the variables specified in the ISPL statement table, and to

overcome several massive difficulties in the form of the tables, a

universal variable access pointer is created for each variable and

mapping declared by the user. These pointers contain all information

needed to create data paths to and from the variable in the path

graph, and also indicate any additional actions necessary to access

the value of the variable when it is implemented in hardware.

This completes the portion of the allocation referred to in the

global perspective as the global phase of the allocation.

Extended path allocation

The allocator now begins to allocate the extended paths necessary

to implement the actions specified in the functional description. For

each process specified by the user, there is an entry in the process

table. The allocator obtains the starting point of the process in the

ISPL statement table and begins a statement by statement allocation.

21

The first step in allocating the extended path is obtaining the

access pointers for the sources specified in the statement. Any

actions necessary to make the variable value physically accessible,

such as reading it from array memory, are allocated and recorded at

this time. If both sources must be obtained from arrays, a check is

made for accessing conflicts and, if necessary, temporary storage is

allocated to hold the first value while the second is accessed. The

access pointers are manipulated as required to reflect these actions.

The access pointers and the operation code specified in the

statement table entry are now used to access the path table to

determine if the desired path has already been created. If it has

not, an operator with the required size and operation is created and

entered in the path graph, along with data links from the sources to

the operator, and the path is entered in the path table. If the path

has already been allocated, the bit width of the operator is examined

and it is expanded if necessary.

To complete the allocation of the statement table entry, the

allocator obtains and examines the access pointer for the specified

destination. If the destination is a variable declared by the user,

completion of the extended path is straightforward. A data link is

created between the path output and the destination, if it is not

already present, and any operations necessary to physically store the

value, such as writing an array, are allocated and recorded. If the

destination specified is a temporary variable generated by the ISPL

compiler, a more complicated series of actions is initiated to

22

determine if a temporary is necessary, or if the value can be left at

the path output for direct input to the next path in sequence.

When the destination has been fixed and a data link created if

needed, the necessary hardware actions for the extended path are

recorded by adding information to the statement table specifying the

exact location in the path graph of the sources, operator,

destination, and data links used to implement the instructions. This

information is recorded as each extended path is allocated. The

number of extended paths used to implement an entry in the statement

table can vary from zero to seven, depending on the operation and the

types of variables used as the sources and destination.

3.4.5 Temporary allocation

Temporary variables are generated and used by the 1SPL compiler

using the criterion "if a temporary is available of the proper size

and not currently holding a value, reuse it; otherwise, create a new

one.w This criterion is unacceptable for hardware allocation, however,

due to the fact that it does not recognize if the temporary is in use

in a parallel sequence of operations. The allocator must decide

whether to remove the temporary, or replace it with a temporary

generated by the allocator in a manner compatible with physical

hardware. The allocator makes this decision based on an estimation of

the stability of the source variables for the operation.

23

A source is defined as unstable if the value it contains could

change before the result of the operation is used. Such a change

could cause the output of the path to be undefined or erroneous when

it is used in subsequent operations. Cases where this might occur

are:

* The source is shared between processes and therefore subject to

random change.

* The source resides in the MDR of an array memory. It is

impossible to determine in the general case if the value in

the MDR will change. A worst case example can plausibly be

developed here which would require N statement lookahead, a

value trace of the MAR, and could still not be resolved

because of possible parallel actions.

* The source is a previously allocated temporary register.

If either source variable satisfies one of the above criteria, a

temporary of the proper size is allocated to hold the result of the

operation, replacing the temporary generated by the ISPL compiler.

The variable access pointer of the allocator temporary is then bound

to the compiler temporary and used for subsequent accesses of the

result value. An example of this sequence is the implementation of

the operations described in statements 21 and 22 of the example

statement table shown in Fig. 3.He). The path graph for these

statements is the sequence on the left hand side of Fig. 3.4(b). The

temporary labeled TREG1 in the path graph was generated to replace the

compiler temporary JTFAAA used in the statement table. The reason for

the generation of the temporary is that the variable CAR.FLOOR is

24

shared with the other process, MAIN, in the full elevator controller

description.

If both sources are stable, however, the allocator simply removes

the compiler temporary and creates an access pointer specifying the

output of the path as the place to obtain the result value. This

provides the allocator with the capability to generate combinatorial

logic networks to implement complex actions in the functional

description. An example of this action is shown in Fig. 3.5 for a

complex combinational logic expression. The compiler has created the

temporaries JTRAAC and JTRAAD. These are removed and the resulting

path graph displays an OR-AND-OR combinatorial network.

3.^.6 Special cases

Several special cases are worth mentioning. Subfield accesses of

variables and logical negation, which are operations in the ISPL

statement table, are easily performed in hardware. These do not

require the full processing just described, but are handled by simple

manipulation of the access pointers. The ISPL control operations

using data values as conditionals require only the source processing,

so that access pointers may be created to allow the control allocator

to access the data value. Finally, operations commonly available as

register functions (INC/DEC, CLEAR, shift operations) are recognized

and the required function is added to the register characteristics in

the allocator symbol table.

3.4.7 Parallelism analysis

25

After each extended path has been allocated, a parallelism check

is performed, both at the variable level and at the path level. All

extended paths that are concurrently active with the extended path

just allocated are recorded in the path parallelism stack. The new

extended path is compared with the stack entries to determine path

pairs active in parallel and to check for variables potentially in use

at the same time by different actions in the ISP. Path pairs are

recorded in the path parallelism table for future use in optimization

routines.

Variable parallel usage errors are noted and a warning is issued

to the user. Conditions which generate a warning are:

* Destination - destination conflicts: attempts to write a

storage location concurrently using the results of different

paths.

* Source - destination ambiguities: use of the same variable as

a source and a destination in separate parallel actions. This

could produce differing results depending on the relative

order in which the parallel actions were executed.

* Array access conflicts:

* Attempts to read and write the same array memory

concurrently.

* Attempts to use the same address path in two separate

parallel actions.

No more than a warning can be generated, however, as the allocator

cannot detect synchronization mechanisms specified by the user in the

ISPL description which could resolve the ambiguity or conflict.

26

3.4.8 Optimization

After a process has been allocated as described above, the path

graph contains a worst case allocation of the process in terms of

operators and temporary storage. Optimization could be performed at

this time using the parallelism information in the path parallelism

table and the record of allocated paths in the path table. As an

example optimization to demonstrate the feasibility of .such

operations, reduction of temporary registers has been implemented

using the criterion "combine the temporaries if they are compatible in

size and no parallel or sequential usage conflicts exist.w

After the optimization routines, the path table and path

parallelism table are cleared and the allocator begins again with

extended path allocation for all remaining processes. After all have

been allocated, the second or process phase of the allocation is

complete.

3.4.9 Final processing

After the process allocation is completed, a final examination of

the path graph is made to place multiplexers where needed for

switching data links. When this activity is completed, the allocation

is complete.

3.5 Allocator Outputs

27

The primary allocator output is the path graph, which is used by

the data base module, in conjunction with the allocator symbol table

to map IC's onto the logical allocation. Because the succeeding

routines have not yet been written, the allocator also produces a

human readable version of the process table, the called procedure

table, the operator table, the allocator symbol table, and the path

graph.

4.0 Measuring Allocator Performance

The allocator described here is only beginning to be tested, so

the results presented here are preliminary. Also, in the future, the

actual hardware is to be allocated by the module data base, which is

currently being designed. However, by performing a hand allocation of

1C chips for path graph designs, we have obtained some preliminary

results. Two designs have been done by the allocator. The first is

part of an elevator controller and is described in Figs. 3.1f 3-2 and

3.4. The second is a reduced version (minus I/O) of the PDP-8/E. A

non-optimal hand mapping of integrated circuits onto the allocator

output logic diagram has been done, and estimates of chip count and

cost were made.

The elevator controller was part of the design style experiment

of (Thom77b), which provides a controlled measure of how well the

allocator performs in relationship to human designers. The results

are shown in Table 4.1. The cost figures for the allocator design

were derived using Thomas' cost estimate:

28

C = (total chip cost) + ($3 overhead/chip)

One can see that the cost of the automated design falls in the same

order of magnitude as the cost of the designs produced for the design

experiment, with no significant optimizations attempted by the

allocator.

It is difficult to compare the automated PDP-8/E data path design

with the original DEC (DEC72) design for three reasons. First, the

ISPL description input to the allocator declares as registers some

values the PDP-8/E uses but never stores explicitly in registers, such

as the effective address. These show up as registers in the

allocator's design. Also, the allocator designs distributed logic,

and the DEC design was done in the central-accumulator design style

(For a discussion of design styles, see (Thom77a)). Finally, the DEC

design fortunately has assumed a boundary between the control and

data-memory parts of the design, but the boundary is different from

that imposed on the allocator by the ISPL description. Thus some

tests, flags, and registers which must be declared explicitly in the

ISPL description are part of the control in the DEC design. In spite

of these differences, estimates of chip count indicate that the

allocator produces a path graph which could use 31—38% more integrated

circuit chips than the human designers used for the data paths and

registers. Of course, these estimates were made using the same 1970

technology chip set the DEC designers had to deal with. The 30J

excess hardware can be found in multiplexers which connect the

registers, the extra registers declared in the ISPL description, and

duplicated operators like increment and add. Much of this can be

29

attributed to the way in which the ISPL description had to be written,

and some of these constraints will not be present in future ISPS

descriptions. However, other chips can only be eliminated when

optimization algorithms operate at some stage of the design process.

It has not been shown whether this design operates at comparable

speeds to the DEC processor. The complete block diagram of the

allocator output can be found in Appendix B, along with the

implementation information used to make the chip count estimates, and

the PDP-8/E ISPL description.

One interesting point to be illustrated is the differences in the

design seen even from the block diagram level. This is shown in

Figure 4.1. There are two reasons for the differences. First, as

stated previously, the design styles are different. Second, the

multiplexing is used in different ways. In the DEC version, the

operators are shared, and are even used to provide no-op paths from

one register to another. In the CMU version, only registers are

shared and use multiplexed inputs. The ISPL language is partially the

source of this disparity. In ISPL, the user can repeatedly use

register A as a destination from various sources. However, the

expressions A+B and C+D do not imply (or discount) a single adder.

Other differences in the design include the use of multiplexers for

shifting in the DEC design, and use of true/complement 0/1 chips for

creating complements. "Oring" of the MQ and AC registers in the DEC

version is done within the multiplexing hardware. Constants are often

created in one place and gated over already existant data paths to the

registers. In the CMU version, these constants are multiplexed at the

30

register inputs. The lower (31J) figure of excess chips was obtained

by using the CLEAR input on registers instead of a leg of the

multiplexers to set some registers to zero.

One final difference is the treatment of the Link FF and

Accumulator register as a single register in the CMU version. This is

done because of the way the PDP-8/E ISPL description was written.

Further analysis of this design is in progress and includes a human

implementation of the control. Comparisons of the DEC and CMU

data-path speeds will then be possible.

One more comparison has been possible. The Design Style Selector

module is now running (Laws78) and makes cost and speed estimates for

the input ISPS descriptions. It produced a worst-case cost estimate

for the PDP-8/E data paths of $294.88, using a $3/chip cost estimate.

Usng the same cost estimate on the 64 chip DEC design produces a cost

of $192 and for the 84 chip CMU design $252. The cost differences

illustrate the degree of optimizations performed by human and machine.

5.0 Conclusions and Discussion

The results described in this paper lead to the following

conclusions:

* The basic experimental allocator will function successfully as

the base for an expanded allocator with optimization

capabilities.

* Specific module set information is not necessary to produce a

31

reasonable design.

* The size of the 1SPL description which can be handled is

limited only by the amount of core memory available to the

allocator.

* The allocator can detect user constructs in the ISPL

description which will produce complex hardware or unreliable

operation.

* The allocator will also be capable of significant optimization

within the framework of the data structures described in this

paper.

In addition, we have concluded that a large part of the complexity of

the allocator is due to:

* The ability to allocate multi-process ISPL descriptions.

* The lack of one-to-one correspondence between the compiled

statement table operations and the actions necessary to

implement the operations in hardware.

* The availability of the ISPL logical mapping facility.

* The production of temporaries by the ISPL compiler.

In addition, multi-process allocation would be considerably

easier from the control viewpoint if arbitration mechanisms for shared

variables and procedures were explicit in the ISPL descriptions.

Unfortunately, it is unreasonable to expect these good results to

hold for more complex designs, as the larger size allows greater

freedom to improve the design through optimization. Optimization

research is, therefore, a significant part of the design automation

32

effort.

The conversion to ISPS is expected to alleviate the

complex-mapping problems, the compiler temporaries will no longer

exist, and the technical file will not be needed.

6.0 References

(Barb75) Barbacci, M.R. and Siewiorek, D.P., "The CMU RT-CAD System:
An Innovative Approach to Computer Aided Design," AF1PS
Conference Proceedings, vol. 45, pp. 643-655, 1976.

(Barb76) Barbacci, M.R., "The Symbolic Manipulation of Computer
Descriptions: ISPL Compiler and Simulator," Technical
Report, Dept. of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 1976.

(Barb77a) Barbacci, M.R., et. al, "Architecture Research
Facility: ISP Descriptions, Simulation and Data
Collection," Proceedings, 1977 National Computer Conference,
Dallas, Texas, June 1977.

(Barb77b) Barbacci, M.R., Barnes, G.E., Cattell, R.G. and Siewiorek,
D.P., "The ISPS Computer Description Language," technical
report, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, PA, 1977.

(DEC72) Digital Equipment Corporation, "PDP-8/E Maintenance Manual,
vol. 1, no. DEC-8E-HR1B-D, 1972.

(Hafe78) Hafer, L.J. and Parker, A.C., "Register-Transfer Level
Automatic Digital Design: The Allocation Process,"
Proceedings of the 15th Design Automation Conference, Las
Vegas, Nevada, June 1978.

(Laws78) Lawson, Gregory L., "Design Style Selector, an Automated
Computer Program Implementation," M.S. Project Report,
Electrical Engineering Department, Carnegie-Mellon
University, Pittsburgh, PA, August 1978.

(Leiv77) Leive, G., "The Binding of Modules to Abstract Digital
Hardware Descriptions," Thesis Proposal, Electrical
Engineering Department, Carnegie-Mellon University,
Pittsburgh, PA, 1977.

(Park78) Parker, A.C. and Hafer, L.J., "The Application of a

33

Hardware Descriptive Language for Design Automation,M

Proceedings of the Third Jerusalem Conference on Information
Technology, August 1978.

(Rege74) Rege, S.L., "Designing Variable Data Format Modules With
Cost-Performance Tradeoffs,1* Ph.D. Thesis, Electrical
Engineering Department, Carnegie-Mellon University,
Pittsburgh, PA, 1974.

(Snow78a) Snow, E.A., Siewiorek, D.P. and Thomas, D.E., "A
Technology-Relative Computer-Aided Design System: Abstract
Representations, Transformations and Design Tradeoffs,11

Proceedings of the 15th Design Automation Conference, Las
Vegas, Nevada, June 1978.

(Snow78b) Snow, E.A., "Automation
Register-Transfer Level
Electrical Engineering
University, Pittsburgh, PA,

of Module Set Independent
Design," Ph.D. dissertation,
Department, Carnegie-Mellon
1978.

(Thom77a) Thomas, D.E., "The Design and Analysis of an Automated
Design Style Selector," Ph.D. dissertation, Electrical
Engineering Department, Carnegie-Mellon University,
Pittsburgh, PA, 1977.

(Thom77b) Thomas, D.E* and Siewiorek, D.P., "Measuring Designer
Performance to Verify Design Automated Systems," Design
Automation Conference Proceedings, vol. 14, pp. 411-418,
1977.

34

Appendix A: Mappings

The ISPL language contains a generalized logical mapping facility

allowing the user to declare a logical component in terms of a previously

declared physical or logical component. The only restriction imposed by

the ISPL compiler is that the physical size (total bits) of each side of

the declaration be equivalent. For mappings where the mapped variable is

a register, this restriction is sufficient. When the mapped variable is

defined as an array structure (memory), however, additional restrictions

must be imposed to insure that a reasonable hardware implementation of the

mapping can be created. Consider the following example mapping, which will

be used to define the terms used in the equation defining the mapping constraints.

Al [0:1, 8:9, 14:15] <0:7 > ; 1 declaration of base memory

AA2 [5, 9, 12] <0:15> : = Al [0:1, 8:9, 14:15] <0:7 > ;

! mapping declaration

Define the following terms:

main declaration ::= declaration of Al

mapping primary ::= left half of the mapping declaration (AA2)

mapping secondary ::= . right half of the mapping declaration (Al)

(may in general be all of the main dec-

laration or a subset of the addressing

space defined by the main declaration)

bitcnt ::= bit size of primary word - 16 bits in this example

bitcnt ::= bit size of secondary word - 8 bits in this example

d ::= lg2 (bitcnt /bitcnt$) - 1 in this example

b0 ::= lowest address of primary - 5 in this example

35

b0 ::= lowest address of secondary - 0 in this example

adr ::= address from primary address space
P

adr ::= address from secondary address space

With these definitions, any mapping satisfying the equation

(adr + 5) +d = adr where 6 = (b 0 + - d) - b Q T = constant

and + is the logical shift operation

can be implemented with at most an addition and wired shift in the address

path , a multipiexor-demultiplexor pair to provide the necessary gating

in and out of the MDR of the main definition, and, for the case where

bitcnt > bitcnt , a MDR for the primary to assemble the primary word

while the necessary number of memory accesses are made in the main memory.

The path graph representation of the example mapping as allocated

by the data-memory allocator is attached as fig. A-l•

36

APPENDIX B

CMU PDP-8 Design

The next 4 pages contain the automated PDP-8 design. All connections

contain the number and position of bits specified. Output wires not

attached to any other blocks are used by the control to test for

certain conditions. MUX connections not specified indicate that

register bits in those positions are to remain unchanged.

Because DEC includes the LINK logic in the control module rather than

the data path module, we are able to reduce the complexity of the

accumulator input multiplexing. The link multiplexing belongs in the

control chip count.

Two chip counts have been done. The first was a "worst-case"

allocation, which was done by fitting chips to the path graph just as

it stands. This allocation used 90 chips. The only alteration was to

exclude the link logic. The second, or "intelligent" allocation also

removed some legs on muxes, assuming registers could clear themselves.

37

A. DESCRIPTION PROCESSING

B. DESIGN PROCESSING

C. MODULE DATA BASE SYSTEM

GLOBAL

Command
Language

•ml
Con«tr»mU

DATA BASE
J

PARSE TREE

ISP i
DESCRIPTION I

i , I

i
ISPS COMPILER

GLOBAL

OPTIMIZATION r
I

I
VALUE TRACE

GLOBAL

DATA BASE J
DESIGN STYLE

SELECTOR

DATA/MEMORY

ALLOCATOR

(DISTRIBUTED)
OOO

DATA/MEMORY

ALLOCATOR

(BUS)

PATH GRAPJK

Entry
Dialog

MODULE
BINDING

BOUND DATA ELEMENTS

CONTROL
ALLOCATOR

CONTROL GRAPH

MODULE
BINDING

BOUND CONTROL

ELEMENTS
PHYSICAL
LAYOUT

i 1
• ACCESS •

! SCHEMA r

i RUNTIME i
t DATA i
• BASE !

i COMPLETED i

| DESIGN J

FIG. RT-CAD SYSTEM OVERVIEW

38

! Declarations for Simple.elevator.control !

car. floor<2:B> ; ! floor car is on
car,caI I [15:Bio ; !8 floors, 1 bit each u/d

macro top.floor :- 71

! Declarations for Look.for.calIs !

scan.floor<2:0> ; !scan inputs from 8 floors
up.callo ; ! input used with scan
down.calI<> ; !input used with scan
buttono ; I input used with scan

I end declarations for Look.for.cat Is I

Look. for.•cal Is :-• {

!floorscan controls multiplexors uhose inputs

!are the call buttons. The outputs of the multiplexors
!are upcalt, douncall, and button

span, floor «- 8 next
Next.floor := (

lupcall at scanned floor ?
(IF up.cal I *> car.cal I Qescan. f loor] «- 1) next
!down call at scanned floor ?
(IF down.cal I -> car.cal I [Bescan. f loorl «- 1) next
!but ton in car pushed for floor ?
(IF button »> (

!decide wether up or down call
DECODE car.floor GTR scan.floor ->
car.cal I Qdscan.f loor] «• 1;
car. cal I [Osscan. floor] f- 1
)} next

scan, floor «- scan, floor + 1 next
(IF scan.floor LEQ top.floor •> next.floor))
'leave if all floors scanned; otherwise look at next floor
next look.for.calIs

Fig. 3.1(a) ISPL Source Code for LOOK.FOR.CALLS

39

EX
3
5
6
15
22
30
33
37
41
42
44
47
52

TYPE
2
1
2
2
4
4
2
2
3
3
3
18
7

FLAGS
18888888
18888888
18888888
18888888
18881188
18888188
18888888
18888888
18888881
18B88B81
18888881
18888881
18888881

DEF
8
8
8
8
8
8
8
8
B
8
8
8
8

BLK
8
8
8
8
8
8
8
8
8
8
8
8
8

LBL
8
8
8
8
3
6
8
8
8
8
8
8
8

BCNT
1
1
3
1
8
8
3
1
1
1
3
1
4

UCNT
1

28
1
1
8
8
1
1
8
8
8
8
8

PNAtiE UOROSjBITStW
•BUTTON'
•CAR.CA*C8<17):17(8)]
•CAR.FL'<B(2):2(B)>
'OOUN.C*
•LOOK.F*
•NEXT.F'
'SCAN.F'<8(2):2(8)>
•UP.CAL'

B
1
7

'XTFAAA*
•XTRAAC

Fig. 3.Kb) ISPL Compiler Symbol Table for LOOK.FOR.CALLS

40

INDEX LABEL FLAG 0PC00E DEST . S0URCE1 S0URCE2 MERGE PATHS

5 0 'CLEAR "SCAN.F*
(33)

6 'NEXT.F' 1 'SMERGE*
(3B)

7 8 ' ISP ' 4
10 0 ' I F 'UP.CAL* 13 13,11

(37)
11 0 'CONC "XTRAAC l'SCAN.F'

(52)(42)(33)
12 0 'WRITE " CAR. CA" XTRAAC 1

(5) (52) (42)
13 8 'SMERGE'
14 0 'IF ' 'DOUN.C 17 17,15

(15)
15 0 'CONC "XTRAAC 0'SCAN.F'

(52) (41) < 33)
16 8 'WRITE "CAR.CA"XTRAAC 1

(5) (52) (42)
17 0 'ST1ERGE'
20 0 ' I F 'BUTTON' 31 31,21

(3)
21 0 'GTR "XTFAAA"CAR.FL"SCAN.F'

(47)(G)(33)
22 0 'BRANCH* 'XTFAAA' 30 23,2G

(47)
23 0 'CONC "XTRAAC l'SCAN.F'

(52)(42)(33)
24 ' 0 'WRITE "CAR.CA"XTRAAC 1

(5)(52)(42)
25 0 'JOIN ' 30
26 0 'CONC "XTRAAC 0'SCAN.F'

(52)(41)(33)
27 0 'WRITE "CAR.CA"XTRAAC 1

(5) (52) (42)
30 0 'StiERGE'
31 0 'SMERGE'
32 0 'INCR " SCAN. F" SCAN. F'

(33) (33)
33 0 'LEO. "XTFAAA"SCAN,Ff 7

{ 47)(33) (44)
34 0 'IF 'XTFAAA' 36 36,35

(47)
35 4 'JOIN ' 'NEXT.F* 6

(30)
.36 8 'SMERGE'
37 0 'NOOP ' 'NEXT.F' 6

(30)

Fig. 3.He) ISPL Compiler Statement Table for LOOK.FOR.CALLS

41

! technica l f i l e for elevator control

PROCESS t MAIN , LOOK.FOR.CALLS ;

INPUT :

! inputs for LOOK.FOR.CALLS

up.call - level down / elec ttl ,
down.call • level down / elec ttl ,
button • level down / elec ttl ;

Fig. 3.2 Technical File for LOOK.FOR.CALLS

42

VARIABLE
NODE

unitructurtd input «*r|«

D M M and lirvclurt

MAR<0:3> < • - - - - vtriabto noda body

unstructured output divert*

LINK NODE LINK

input bit connections
connect ions are writton aa <(of t bit>,»<rtf hi bit>
tho lof tmoat bit of a variabio it bit 0

0M7 TPI<- - - - - - - - input connection flat
tho flat1 doacrte tho connection lofkal choractoriatics

1< procoaa id

0n7 TPO*- - - - - - - - output connection flat

s . - . - • - - - • output bit connectiona

OPERATOR
NODE

operator mputa (may bo any numbor)

input bitwidth

operation

output bitwidth

operator output (may alao be any number)

MULTIPLEXOR/
DEMULTIPLEXOR

NODE

CONSTANT
NODE

< « - - - - - - - - unstructured input marto

/ - - - - muttipJex/demuHiplex data path chotcee

MUX 2X<8>
A tV

< path aelect control input

data path bitwidth

OUT ^ < unatructurod output dtverte

. - - - - mux/domux kienttf icatton

- - - - constant value

CONST, 6<O:3>

s - - - - - - - constant structure

< unstructured output diver to

FIG. 3.3(a) BASIC PATH GRAPH GROUPS

43

CONCATENATION
NODE

CONC

1.2 CPO

HALF LINK
NODE

[HUNK 1
uaad lo apoctfy on* aida of a connection
f or laiar v*9 by tha control allocator
codaa ara idafttical to full Knka

CONNECTION FLAG CODE

C : complamantad

T: truo

P: paraflal

S - aarial

I : input

0 ' output

FIG. 3.3(b) BASIC PATH GRAPH GROUPS

44

to fie a4(b)
CONST. 0<>

C OUT "}

rowo

LINK fnd

oHo

TPO

)C

P
TPI

0*0 TPI

f n
r
d ° p

C

0*0 TPO

CAR.CALL[15K)]o

IN >-

0.0 TPI

OWO TPO

LINK

,OWO TPO

0
OnO TPI

*(IN

C0NC

LINK

r 0 w 3

f

TPO

0

TPI

roiin

LINK

t 0 H 3 TPO

proc
mdp

0w3 TPI

MAR<0:3>

L I N K Pnd°pC

0*3 TPl

PATH GRAPH FOR LOOK.FOR.CALLS

A 5

fro« fit a4<.) from fit a4(t)

(2)

v < U TPO

CONST. 7<O2>

LINK

TREGlo

o n o TPO

I HLINK 01

00WN.CAU.O

TPO

I HLINK 0|

[

UP.CAU.O

coin

HLINK
r0w° TPO

•1

OW2 TPI

TPO

LINK

0*2 TPI

<3> <3>

LEQ

four}

< rOwO TPO

I HLINK

BLHTONo

[.
TPO

HLINK

3.4(b) PATH GRAPH FOR L00K.F0RCALL5

46

big.reg<0:63> ; ! big register
Iittle.reg<0:15> :« big.reg<Si23> ; ! tittle register
a<7:0> ; ! extra registers
b<7:8> 5

blah :- (a «- b AND NQT(b OR a) OR N0T(big.reg<lB$25> OR little.reg))

Fig* 3.5(a) ISPL Source Text

EX
1
2
3
4
5
12
48
43
44

TYPE
2
2
2
2
4
2
5
7
7

FLAGS
1BBB88BB
18888888
18888B88
18100000
10001108
18B188BB
100008B1
18888881
18888881

DEF
8
B
8
3
8
4
0
0
0

BLK
0
0
0
8
8
B
0
8
B

LBL
B
8
B
8
44
0
0
0

e

BCNT
10
10
100
20
0
20
28
10
20

WCNT
1
1
1
1
0
1
0
0
0

PNAME WORDS; BITS: NAME (POSIT 101
•A '<B(7):7(B>>
•B '<B(7):7(B)>
•BIG.RE'<77(77):8(8)>
*BIG.REt<27(17):18(8)>
•BLAH '
•LITTLE'<17(17):0<8)>
65,,46

•XTRAAC*
•XTRAAO'

Fig. 3.5(b) ISPL Compiler Symbol Table for BLAH

44

45
46

47

58

51

52

53

54

55

'BLAH '
(5)

1

8
B

8

8

0

8

B

0

8

'SMERGE'

•ISP '
•OR

•NOT '

•ANO '

•RBYTE '

'OR

•NOT '

•OR

•RETURN'

'XTRAAC
{ 43)
•XTRAAC
(43)
•XTRAAC
(43)
•XTRAAO'
(44)
•XTRAAO'
(44)
•XTRAAD*
(44)
•A
(1)

•B
(2)
•XTRAAC
(43)
•B
(2)
•BIG.RE'
(3)
•XTRAAO'
(44)
•XTRAAD'
(44)
•XTRAAC
(43)
'BLAH '
(5)

'A
(1)

•XTRAAC
(43)
65,,46

(48)
'LITTLE'
(12)

'XTRAAO'
(44)

18

44

Fig. 3.5(c) ISPL Compiler Statement Table for BLAH

47

MUX 3X<8>

>,OW7TPO

LINK 0

0,7 TPI

r

A<7K)>

r0n7TP0

LINK 0

rO.7TP0

LINK 0

PATH GRAPH FOR BLAH
FIG. 3.5(d)

BlG.REG<0:63>

10H2STP0

LINK

, 0»7 TPO

0

8»15 TP!

LINK

>

r0w15CP0

0

0w15 TPI

48

Coat for data part of process LOOK.FOR.CALLS as
implemented for Thomas9 design experiment:

Designer 18 : 132.49
Designer 5 : 171.45

Cost for data part of process LOOK.FOR.CALLS as
implemented from al locator path graph * t

147.63

* The same subset of the TTL chip family used in the
design experiment was used to implement the allocator
path graph

Table 4.1

49

L&AC<0:12>

r

1
EADO<O:ll>

LAST.P<O:11>

I

MAR<O:11>

SWITCHES

MEMORY

L

1
MOR<O:11>

TEMP<0:12>

FIG. 4.1 BLOCK DIAGRAM OF CMU PDP8/E DESIGN

50

DATA OUT
FOR AA2

Ow l5 TPO

MUX 2 X <8>

ADDRESS IN FOR AA2

0w2 TPI

CONST. 6<0:3>

Q OUT ^

LINK

, 0 , 3 TPO

proc
map

DATA IN FOR Al

0w7 TPI

0 w 1 5 TPI

LINK
"0..15 TPO

AA2MDR<0:I5>

/7

0^,3 TPI

DATA OUT
FOR AI

0H7 TPO
LINK

,On7 TPO

proc
map

C7 TPI

0M7 TPI

1 IMW P r 0 C

LINK fndp
0..7 TPO

DATA IN
FOR AA2

0 w i5 TPI
DEMUX 2 X <8>

L I N K Pn
r
d°p

C

> r 0 H 7 TPO

L I N K fn
r
d°p

C

TPO

0n0 TPI

L I N K Pn
r

d°p
C

TPO

MAR<0:3>

J 0n3 TPI

noia : This repreaenta tha fraph imnradiaialy
af iar craaiion by tha mamory mapping
routine a.

FIG. A l PATH GRAPH FOR MEMORY MAPPING EXAMPLE

51

CMU - PDP-8 Chip Count
Intelligent Allocation

The following chip count was taken from the part of the automated design

corresponding to the DEC PDP-8 M8300 "major resistors.11 The chips were allo-

cated by hand using an intelligent allocation. For example, if the allocator

specified a 7 to 1 13 bit MUX, and the MUX could be decomposed into a simpler

structure, it was*

Part #

74153
8271
7474 (%)
7402
7404
74153
8271
8271
7483
7404
7420
7430
7483
7400
7404
74153
8271
74153
8271
74153
8271
7483
8271
8266
7404
7400
7430

(TI TTL Equiv.)

74194

74194
74194

74194

74194

74194

74194
74157

Quantity

6
3
1

1}
7 *
3
3
3
2 /
1
1)
4

6
3
6
3
6
3
3
3
3
2)
1
1)

Part of Path Graph
Implemented

MUX 4 x <12>*
AC<0:ll>
TREG3 <0>

0R<12>

MUX 3 x <13>
TREG3 <1:12>
LAST.P<0:ll>
INCR<13>

EQL<12>

ADD<14>

AND<12>

MUX 4 x <12>
TREG1 < 0 : l l >
MUX 3 x <12>
PC<0:ll>
MUX 3 x <12>
TREG2 < 0 : l l >
INCR<13>
EADD<0:ll>
MUX 2 x <12>**

EQL<9 >

Total 84

**

Reduced from a 7 x <13>MUX due to exclusion of link logic and allowing
AC to be able to clear itself.

Reduced from a 3 x <12>MUX due to clear on register eliminating (j> leg
of this MUX.

52

DEC - PDP-8/E Chip Count

The following chip count was taken from M8300 "major r e g i s t e r s . "

Part #

7400

7402

74H04

7420

7430

74H87

7483

84151

74153

8271

8266

8235

8881

/TI
^TTL equiv.

74194

74157

74H87

7401

\
/ Quantity

3

1

2

1

1

3

3

12

6

15

8

3

6

Total 64 ii

Function

Quad 2 input NAND

Quad 2 input NOR

Hex inverter

Dual 4 input NAND

8 input NAND

4 bit true/complement

4 bit binary full adders

1 of 8 MUX

dual 4 to 1 MUX

4 bit universal shift reg.

Quad 2 to 1 MUX

4 bit true/complement

Quad 2 input NAND

iteerated circuit chips

Figure Bl(a) The Allocated PDP8.
ALLOCATOR VER. 1,0
PDP8.ISP (ISPL)
PDP82.OUT 7/30/78

SHEET 1 OF

Figure Bl(b) The Allocated PDP8.
ALLOCATOR VER. l.C
PDP8.ISP (ISPL)
PDP82.OUT 7/30/78

MDR

SHEET 2 OF 2

	Carnegie Mellon University
	Research Showcase @ CMU
	1979

	Automated synthesis of digital hardware
	Alice C. Parker
	Louis Hafer
	Recommended Citation

