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ABSTHACT

This paper describes a portion of the register transfer |evel
conputer aided design (RT-CAD) research at Carnegie-Mellon University
This part of the research involves the design and inplementation of a
data-menory allocator, consisting of a set of algorithnms and data
structures which synthesize hardware at the |ogical |evel froman |SPL
| anguage description. Prelimnary results indicate the allocator's
performance conpares favorably with a human designer when designing an

el evator controller and a reduced PDP-8/E.

1.0 | NTRODUCTI ON

The notivation behind the research described in this paper is to
enhance the digital designer's capabilities by producing nore powerful
desi gn tools. Di gital logic design has progressed to the point that
the operation of the Iogic_can be functionally expressed by a variety
of hardware descriptive |anguages, ISP being one of the nore widely
used behavi or al | anguages. Functional simulators exist and are useful
for verifying systen1operation_and performance neasurenents (Barb77a).
Thus, the state of the art in digital design is such that the next
addition to design aids should be a synthesis program a program that

can design the STRUCTURE of a digital system given its FUNCTION or
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BEHAVIOR as input. Aong with automated synthesis of hardware cones
the problem of prodﬁcing optimal or near optimal designs to neet the
design constraints. The research reported on here is ained at
understanding the design or synthesis process so that it can be
automated. A mmjor goal of this project is to produce |ogic-Ieve
hardware designs from |SP descriptions in a non-optinmal fashion, to
better understand the automated design process. A parallel goal of
related research by the sane groﬂp is to develop discrete optinization
~algorithns and techniques to be applied in a nore conplex and powerful

synthesi s package

This paper describes the operation and performance of one of the
synthesis routines - termed an "allocator.™ This routine designs |ogic
inthe distributed design style from an |[SPL description. The
distributed design style is a may of designing digital logic
characterized by many storage locations and operators interconnected
in a non-regular manner, wth little sharing of hardware. The
distributed design style is often inplenmented with TTL circuits or on
a single IC. It is nost often used to produced designs where speed of
operation is a desirable goal._ The | SPL* |anguage used as ihput for
this allocator allows the designer to specify the behavior of digita

hardware, w thout describing the structure.

2.0 THE DESI GN AUTOVATI ON SYSTEM

*The al | ocat or described here used [SPL (Barb76) but has been
converted to ISPS (Barb 77b), a nore powerful, newer version of |SP.




In order to discuss the role of the allocator and results of the
synthesis effort, an overview of the RT-CAD (Register-Transfer |evel
Conput er - Ai ded- Desi gn) systemis presented here. This overview was

originally published in (Snow78a).

RT- CAD OVERVI EW

The wultimate lgoal of the RT-CAD préject Is to provide a
t echnol ogy-rel ati ve, structured-design aid to help the hardware
designer explore a larger number of possible design inplenentations.
Inbuts to the systemare a behavioral description of the systemto be
designed, an objective function which specifies the wuser's
optimzation criteria, and a library specifying the hardware
conponents available to the design system The conponents of the

RT-CAD systemare shown in Figure 2.1 and discussed bel ow

The RT-CAD systemdiffers from other design automation systens in.
that it operates froma behavioral specification. Such specification
provides a rmodel that, while accurately characterizing the
i nput-output behavior of a _piece of hardware, does not necessarily
reflect its internal structure. The design processlis one of binding
i mpl enentation decisions in a top-down manner as a design proceeds
through the RT-CAD system Mre and nore structural detail is frozen
at each level until a conplete hardware specification is obtained, the
most influential design paréneters being bound first in order to cut
down the design search space. The functions of the design system

conponents which bind these inplenentation decisions are described




bel ow.

"GLOBAL OPTIMZER.  The global optimzer applies high-Ilevel
transformations to a design's behavioral representation after
translating it fromISPS notation (Barb77b) to an abstract design
representation called the value trace (Snomﬁ8b).' The transformations
have a significant inpact on the cost, performance, and other

parameters of the designs to which they are appli ed.

DESI GN STYLE SELECTOR. By considering the various nodule sets
that can be used (e.g., TIL vs. a mcroprocessor), the design
constraints inposed (e.g., cost, speed), and fhe structure of the
algorithm to be designed (e.g., pipeline data flow), the design style
sel ector decides on the specific style of design to be enployed (e.g.,
bit-slice nicroprocessor, MOS microprocessor, SSI/MSl |ogic). Earlier
work (Thon¥7b) shows this to be an influential decision in terms of -
cost and speed tradeoffs. \Wen the style is selected, the design is
passed to an allocator specific to the design style. [Initial research
into the design style selection process has been conpleted (Thorn 77a)

and an automatic design style selector is currently being progranmed.

PARTI TIONER.  The partitioner groups operations fromthe abstract
design representation into control steps. This effectively binds the
control flow for the design. Tradeoffs between the data and control

parts are made at this |evel




DATA/ MEMORY (DM ALLOCATOR.  The function of the DM allocators is
to decide the nunber and type of data operators, nultipléxers, and
registers needed to inplement the data part of the design. They are
style specific in that they enbody ahalytic and heuristic know edge
about a style (e.g., the trade-offs involved in the design of a TTL
system, but they do not have access to the specific details of each
modul e set. The output of the allocator is a data path graph whose
nodes are elenents such as adders or registers. The edges represent

actual circuit interconnections.

CONTROL ALLOCATOR: The control allocator generates a sequential
state nachine to control the data paths produced by the DM al |l ocat or
The control allocator has the option of designing the control unit
around control philosophies such as mcroprogrammng, programed |ogic
arrays, randomlogic, etc. The output of the control allocator is a
control path graph whose -nodes represent control states, and whose

edges represent pernissible state transitions

MODULE BINDER ~ The rodul e binder selects physical nodules from
the nodule set library to inplement a design's data and control path
graphs. The'Iibrary contains descriptions of the conponents available
to the design system and may be freely updated so that it is kept
current with respect to advances in modul e technol ogy. This dynanic
aspect of the nodule set library provides for the technol ogy-relative

aspects of the RT-CAD system




PHYSI CAL LAYQUT PROCESSCR.  This conponent partitions the system'
into printed circuit boards or chips, decides the placenent of
conponents, routes interconnections, and prepares  engineering

document at i on.

Research is currently underway into the design of all of the
system conponents described above. In addition, the problem of

int egrating theminto a coherent design systemis being investigated.

Research described in this paper has focused on a synt heéis
routine - the data-nemory allocator. Although the control allocation
effort is just beginning, sone ideas as to the nature of the problens
to be solved have been posed. The generation of control hardware is
anal ogous to the probl em of generation of mcrocode, with its inherent
conputational conplexity, but there is one difference. Generation of
hardware introduces another set of variables into the optinization
routines. Not only are mcroinstructions generated, but the control

hardware itself nust be designed and optim zed.

Previous work on data-menory allocation techniques includes the
Macromodul e and  Regi ster Tran_sfer Mdul e al locators (Barb75) and the
allocation algorithm devel oped by Rege (Rege7*Q. In each of these,
however, a small, tightly constrained nodul e set was assumed available
for inplenenting the device description. Detailed know edge of the
physi cal structure of the nmodules was fixed in the allocation
algorithnms to take advantage of inplenmentation tricks peculiar to each
nodul e set. The all ocator described here uses nore abstract |ogical

nmodul es and al gorithms which are independent of detailed know edge of




the modules used to implement the physical hardware. This in turn
allows greater freedom in future attempts at optimization, due to the

richer physical module set which can be used.

3.0 OVERVIEW OF THE DATA-MEMORY ALLOCATOR

After the ISPL functional description of the system to be
.designed has been manipulated by the higher level design routines to
better achieve the price/performance objectives provided by the user,
it is. used as input to the allocation routines. The allocators fall
ihto two categories, data-memory and control. The data-memory
allocators basically perform a mapping function from the algorithmic
description to the data part of the hardware implementation. The data
éért consists of the data storage elements, data operators, and data
paths necessary‘ to 1implement the operations specified in the
algorithmic description.‘ It should be noted that due to the
characteristics of the ISPL language this mapping may be multi-valued
in either direction, rather than a simple one-to-one translation. The
control allocators perform a slightly different function, mapping the
timing, sequencing, and branching information implicit in the ISPL
description onto control states, control signals, and conditional
branching signals to control the data part. Again, the mapping is not

a simple one.

The allocator described here is a data-memory allocator for the
distributed logic design style. As pointed out earlier, the allocator

itself is technology relative and the mapping onto specific integrated




circuit packages is performed by the data base nodule, which is
updat ed as new packages are added to the nodul e sets. It should be
understood that the process referred to as allocation throughout the
remai nder of.this paper is a logical allocation in terns of data
storage elenments, a set of operator primtives defined by the 1SPL

| anguage, data paths, and nultipl exers.

The first version of the allocator is experinental, and it
performs only minor optimzations on the allocated hardware. Rat her,
it has been designed to investigate:

* the feasibility of performing the nmapping from ISPL to

har dwar e

* the independence of the allocator from a specific t echnol ogy

* information necessary to the design process which cannot be

expressed in |SPL

* the types of data structures needed for allocation

* bounds on the size of the |1SPL description that can be

processed by the system

* exceptional constructs allowed in |ISPL which may be difficult

or inpossible to design or inplement in hardware |

* types of error checking that can be perfornmed by the all ocator

* areas _mhere optim zations are possible in future, nor e

sophi sticated allocators.
In addition, the allocator has been designed as a possible skeletal
structure for future allocators in order to standardi ze input/output

formats and data structures.




In the follow ng description of allocator structure and function
an attenpt is mde to extrapolate details learned through
i mpl enentation into a basic philosophy of allocator design. The
procedure used by the all ocat or mght be conpared to a two pass
conpi lation. The first pass may be considered a syntax or feasibility
check. The allocator inputs a parsed ISPL description, constructs
data structures anal ogous in function to synbol tables, and enforces
various constraints necessary to insure that the data storage
| ocati ons, | ogi cal mappi ngs*, and I nput / out put interface
characteristics specified in the description cén be inplenented in
hardﬁare. If no errors are encountered, it proceeds to allocate the
basic data storage structures called for in the description, and any
addi tional data paths, storage, and operators necessary to inplenent
variable accessing schemes described by the logical mapping facility
of 1SPL. The second pass may be considered the semantic phase wth
the activity of code generation replaced by the allocation of data
paths, operators, and additional storage as needed to inplenent the .
funciions specified in the ISPL description. Parallelismanalysis is
perforned at several levels to warn the user of error conditions and
determne constraints relating to optimzation of hardware. The
allocation is then conpleted by the addition of nmultiplexing where

required.

*The mapping capabilities in the ISPL |anguage will be discussed
later in Appendix A




It is inportant to realize, however, that allocation differs from
conpilation in that in a conpilation one is concerned with
inpl enenting the specified data operations on a fixed data part whose
capabilities are known a.pLLQLL. In alfocation, the allocator nust be
able to recall and utilize the capabilities of a data part which is
being dynamically created. The allocator thus works from the inside
out, first creating the data storage and access structures, and then
adding the necessary data paths and operators to perform the described
data operations. In addition, the output of the allocator is a
non-planar directed graph, rather than a linear list of conpiled

instructions.

The detailed description of the allocator will focus on the

al locator inputs, data structures, algorithms, and outputs.

3.1 Basic Concepts in Allocation of Data Paths

Before proceeding to the detailed description of the al | ocat or
two fundamental concepts should be defined. -These are the process and

the operation path.

A process is defined as a sequence of actions occurring within a
control environment which is independent of and asynchronous with
respect to other control environments. No assunptions can be made
about the relative timng of events across process boundaries, and no
resources other than those explicitly specified by the input
functi onal description my be shared by nmultiple processes

‘Conpl i cations introduced by allowing multi-process descriptions wll




be explored in detail in later sections.

The operation path is defined, in the most general case, to

consist of two data sources, an operator, and the data paths leading

from each séurce to the operator. This is the basic conceptual unit
produced by the allocator to implement an action specified in the
functional description, although only those elements of the operation
path necessary to perform the particular action are actually
éllocated. (An example would be a two's complement negation. Only
one source, the operator, and a connecting data path are necessary;
the other source and data path remain null.) Considerations motivating
the choice of this fundamental unit include:

#®# The compiled ISPL functional description used as input to the
allocator is expressed in the same form, using two sources and
an operation code

®* The operation path is the minimal unit which.can be considered
when analyzing for possible parallel usagé conflicts during
optimization to reduce the number of allqcated operators.

No desfination for the result value is included in the operation path
as the destination and the. data path from the operator to the
destination are not subject to the same usage constraints as the
operation path. Throughout the following descriptinn of the
allocator, the term pa&h,will be used to refer to the operation path
as defined here. If the destination and the data path from the
operator to the destination are to be included, the combination will
be referred to as the extended path. The physical data path between a

source and a destination will be referred to as a link or data link.
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3.2 Allocator Inputs

The primary input to the allocator is the conpiled [ISPL
functional description, in the formof a synbol table and a statement
table. A small portion of the ISPL description of an elevator
controller is shown in Fig. 3-1, along with relevant portions of the
synbol table. and statement table. This description will be used as a
running exanple in describing the allocator. Detailed docunentation

of the ISPL |anguage and conpiler may be found in (Barb76).

The conpiler tables are augmented with information suppiied by
the user in a "technical fiIe.". This file contains two types of
I nformation: |

* global information about the description which cannot be

specified in I SPL

* interface information to be passed to the nodule data base for

selection of specific IC's. Thié information describes the
desired logical and electrical characteristics of the inputs
and outputs of the device being allocated.
Rel evant portions of the technical file for the elevator controller
are shown in Fig. 3.2. The PROCESS specifications indicate there are
two processes in the conplete description, LOOK FOR CALLS (tHe exanpl e
ISP of Fig. 3.1) and MAIN. The INPUT specifications describe the
desired electrical characteristics of the input Iines, and the OUTPUT

specifications present the characteristics of the output |ines.

3.3 All'ocator Data Structures




The allocator builds sevén nmajor data structures for use during

the allocation of an |ISPL description.

. The process table contains one entry for each process specified
inthe technical file. Each entry contains a listing of all variables
and cal l ed procedures used in the process. The called procedure table
contains one entry for- each called procedure declared by the user in
the ISPL description. Data recorded in the table for each pfocedure
includes the nunber of |ocations where the procedure is called and an
indicator if it is shared by two or nore processes. The allocator
synbol table contains one entry for each variable which will be
allocated a node in the path graph by the allocator. Each entry
records all physical information relevant to the entry type for use by
the allocator during logical allocation and by the nodule data base
during physical allocation. As in the called procedure table, an
indicator flags the entry if access to it is shared between processes.
These three tables, in conjunction with the conpiler synbol table,
conprise the portion of the data structures which function as synbol

tables for the allocator.

The path graph contains the conplete allocated or designed data
part of the device and is the major output of the allocator. As the
name inplies, the formof this structure is a directed graph, wth
nodes describing the variables, operators, switches, and data Iinks,
and the actual data flow described by the directed edges. In the
general case, this graph may be non-plaﬁar, cyclic, and-disconnected

The basic path graph groups are described in Fig. 3.3. A conplete
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path graph for the exanple ISP description of Fig. 3-1 is shown in
Fig. 3.4

The path table is the mjor working data structure of- the
allocator. It is dynamcally created and purged for each process that
is allocated, and contains all paths allocated for the process
organized in the form of a three-dimensional éparse matrix. Each
dinension is indexed by one of the defining nodes of the path, which
are the two sources and the operator. This allows the allocator to
access information about storage |locations and operators wthout

exhaustive searching

The path parallelismtable, also created and cleared for each
process, contains the -record of all concurrent uses of the paths
recordéd inthe path table, stored in the formof path paiks. It is
used to perform parallelismerror checking at the variable level. The
operator table, aItHough conceptually a synbol table, is used
primarily as a nmore convenient record of allocated operators than the
pat h gfaph.- It is updated at the end of each process from the path

table before the path table is purged.

Al though the i nter nal inplementation of the data structures is

'not of interest here, <certain overall characteristics should bhe

discussed. Due to the diversity and quantity of information required

by the allocator, and the need to access this information in a variety
of orderings with a variety of keys, the tables are heavily cross
referenced and contain varying anounts of redundant information. This

diversity of structure allows the allocator to efficiently locate

5




information and relate it to both the original 1SPL description and
the allocated data path. As an exanple, the path graph and the path
table are highly redundant. During the allocation of a process, both
contain conplete information on the patHs allocated to inplement the
process actions. However, locating a particular path in the path
graph is a conbinatorial search, involving the conparison of all
possible pairs of output Iinks fromeach source to determne if data
l'inks exist fromeach source to the same operator. The operator nust
then be checked to determne if it can performthe desired function on
the data. Locating this same path in the path table is a linear
search, involving only -the location of a particular elenent in the

t hree-di nensional nmatrix.

The dynamic nature of the path data structures allows the
allocator to handle ISPL descriptions of any size, providing they are
suitably divided into processes. This is because the total size of
the data structures is limted only by the anount of core nenory
available to the allocator, and the purging of the path table and path
paral lelism structures after each process allows a |arge percentage of
this space to be reused. Cnly_ the path graph and operator table

increase in size nonotonically from process to process.

A rough measure of the size of the data structures can be
obtained in terms of _the average nunber of 36 bit menory words
required for a variable or a statement table operation. Approximately
45 words of stofage are used per variable, and 55 words per statenent

table operation. Additional storage for parallelism information is




allocated at the rate of roughly five words per pair of parallel

paths, with four words of overhead for each parallel level or branch.
3.4 Allocator A gorithns
3.4.1 G obal perspective

‘The allocation of an |SPL descfiption begins with the allocator
performng several checks and preparatory actions under the heading
prelimnary processing. Inplenentation restrictions on mappings (see

Appendix A) are enforced, statistical mneasures are gathered, the

technical file is processed, and array nemories (RAVS) are given a

uni form accessing structure. Next, a variable and procedure usage
analysis is performed to determne which processes use the variables
and procedures to be allocated. Synthesis begins with the

initialization of the path graph by allocating path graph nodes for

" the declared variables and mappings. A universal variabl e access

mechanismis set up to access these nodes. Al the above actions are
performed for the entire |1SPL description, conpleting the "global*
phase of the allocation. The second phase of the allocation mght be
termed the "process" phase, wth the actions of gxtepded .jcalll
al l ocation, paralleiisn1ana|ysis, and optimzation being performed
independently for each process. Path allocation and parallelism
analysis are performed for each statenent table entry in the process,
while optimzation is performed over the process as a whole. \Wen
this process phase has been conpleted for all processes in the
description, some final processing of the path graph as a whole is

done to place nultiplexers where needed.




3.4.2 Preliminary processing

The allocator begins the processing of the ISPL description by
enforcing the implementation restrictions on logical mappings. The
mapping capability of ISPL allows the writer to define a register or
memory, then to "map" another register or memory over the first. The
base memory can then be accessed either by its name or the mapped
memory name. The bit width and number of words in the base and mapped
memories need not be the same as long as the total number of bits is
equivalent. The mapping capability and the constraints imposed by the
a;locator are defined in Appendix A. The major objectives considered
in developing these constraints were:

# To be able to implement the addressing and access algorithms
implicitly defined by the mappings with a reasonable amount of
hardware, both in the data part and in the control’ part.

® Since the addressing and access algorithms are implicitly
defined, rather than explicitly specified, Ato develop a
regular structure capable of implement;ng all mappings by
creating a well defined basic pattern.

* Since mappipg definitions can be cascaded, to be able to
cascade the structure used to implement each mapping.

® To restrict the use of the mapping construct as 1little as
possible.

Mappings satisfying the constraints defined in the appendix allow an
addressing and access structure compatible with the first three
objectives. Mappings not satisfying these constraints are revealed as

fatal errors detected during the mapping check, causing the allocator

17




to print an error message identifying the erroneous mappings and halt.

If no errors are detected, the allocator reads the PROCESS
section of the technical file to determne the identity and quantity
of the processes declared by the user. The INPUT and QUTPUT sections
of the technical file are now processed and the information obtained

stored in the allocator synbol table.

The final step in the prelimnary processing is the assignnent of

menory address (MAR) and data (MDR) registers to the declared array

(RAM  menori es. The |SPL language does not require explicit.

declaration of MARs and MDRs, whereas in a hardware inplenmentation a
| arge amount of flexibility is gained in the design of the control
part by the presence of these registers. They are therefore
automatical |y assigned, using tenporary registers generated by the

allocator. If they are later found redundant, they are renoved
3.4.3 Variable and procedure usage analysis

.The al l ocator now anal yses the statenent table to deternmine the
variables and procedures wused in each process. |If no variables or
procedures coul d be shared betvieen processes, the task of allocation
would be greatly sinplified, as each process could be treated
essentially as a separate device description wth a totally
i ndependent data part. The existence of variables and procedures
shared between independent, asynchronous  control envi ronnment s

introduces several problens.

18




First, access tb the resource (vériable or procedure) nmust be
arbitrated in sone manner to prevent two processes from attenpting to
use the resource sinultaneously. Wile the actual arbitration
structure wll be created by the control allocator, information nust
be left specifying the process that a data link is associated wth.
This is necessary to allow the control allocator to create the proper
access arbitration structure for the resource- ldentifying the |inks

however, is the least of the problens to be dealt with

The second difficulty is associated with variables shared between
processes. From a veiwpoint internal to a particular process,'a
shared variable nust be regarded as subject to random change by the
other processes sharing the variable and cannot be wused by the

optimzation routines inside a given process.

The third difficulty arises when shared procedures - are present.
Again, from a viewpoint internal to a process, the hardware used to
i mpl ement the procedure will be subject to random unavailability due
to use by other processes. The allocator is capable of two actions in
this case. It can absorb the procedure into each process by the
creation  of separate hardware inplementations of the procedure
internal to each process, or it can treat the procedure as if it were
itself a separate process and allocate an independent hardware

incarnation whose use is arbitrated by the control al l ocat or

Information collected during the usage analysis is stored in the
appropriate synbol tables. In addition, statistics are collected on

the total nunber of operations specified in the statement table.




3.4.4 Allocation of declared variables and mappings

The path graph is now initialized by allocating the nodes
representing declared variables and mappings. All variables declared
by the user are allocated nodes in the graph, representing storage,
inputs or outputs. When the basic variables have been allocated, the
multiplexers, demultiplexers, operators, registers, and data 1links
needed to implement the addressing and access structures specified by

any logical mappings are determined and allocated.

In order that the nodes in the path graph can be easily related
to the variables specified in the 1ISPL statement table, and to
overcome several massive difficulties in the form of the tables, a
universal variable access pointer is created for each variable and
mapping declared by the user. These pointers contain all information
needed to create data paths to and from the variable in the path
graph, and also indicate any additional actions necessary to access

the value of the variable when it is implemented in hardware.

This completes the portion of the allocation referred to in the

global perspective as the global phase of the allocation.

Extended path allocation

The allocator now begins to allocate the extended paths necessary
to implement the actions specified in the functional description. For
~ each process specified by the user, there is an entry in the process
table. The allocator obtains the starting point of the process in the

ISPL statement table and begins a statement by statement allocation.

20




The first step in allocating the extended path is obtaining the
access. pointers for the sources specified in the statement. Any
actions necessary to make the variable value physically accessible,
such as reading it fromarray menory, are allocated and recorded at
this time. |If both sources nust be obtained fromarrays, a check is
made for accessing conflicts and, if necessary, tenporary storage is
allocated to hold the first value while the second is accessed. The

access pointers are manipulated as required to reflect these actions.

The access pointers and the operation code specified in the

statement table entry are now used to access the path table to

determne if the desired path has already been created. If it has

not, an operator with the required size and operation is created and
entered in the path graph, along with data links fromthe sources to

the operator, and the path is entered in the path table. [f the path

has already been allocated, the bit width of the operator is exam ned

| and it is expanded if necessary.

To conplete the allocation of the statement table entry, the
allocator obtains and examnes the access pointer for the specified
destination. If the destination is a variable declared by the user
conpletion of the extended path is straightforward. A data link is
created between the path output and the destination, if it is not
already present, and any operations necessary to physically store the
val ue, such as witing an array, arehaIIoCated and recor ded. If the
destination specified is a tenporary variable generated by the |SPL

conpiler, a nore conplicated series of actions is initiated to
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determne if a tenporary is necessary, or if the value can be left at

the path output for direct input to the next path in sequence

Wen the destination has been fixed and a data link created if

needed, the necessary hardware actions for the extended path are

~recorded by adding information to the statement table specifying the

exact location in the path graph of the sources, operator,

destination, and data links used to inplenent the instructions. Thi s

- information . is recorded as each extended path is allocated. The

number of .extended paths used to inplement an entry in the statenent
table can vary fromzero to seven, depending on the operation and the

types of variables used as the sources and destination.
3.4.5 Tenporary allocation

Tenporary variables are generated and used by the 1SPL conpiler
using the criterion "if a temporary is available of the proper size
and not currently holding a value, reuse it; otherwise, create a new

one." This criterion is unacceptable for hardware allocation, however

~due to the fact that it does not recognize if the tenmporary is in use

in a parallel sequence of operations. The all ocator nust decide
whether to remove the tenporary, or replace it wth a tenporary.
generated by the allocator in a manner conpatible with physica
hardware. The allocator mekes this decision based on an estimation of

the stability of the source variables for the operation




A source is defined as unstable if the value it contains could
change before the result of the operation is used. Such a change

could cause the output of the path to be undefined or erroneous when

it is wused in subsequent operations. Cases where this m ght oceur

are:
* The source is shared between processes and therefore subject to
random change.
* The source resides in the MR of an array nenory. It is

. inpossible to determine in the general case if the value in

the MR will change. A worst case exanple can plausibly be

devel oped here which would require N statenment |ookahead, a

value trace of the MAR and could still not be résolved

because of possible parallel actions.

* The.source is a previously allocated tenporary register.

If either source variable satisfies one -of the above criteria, a
tenporary of the proper size is allocated to hold the result of the
operation, replacing the tenporary generated by the [1SPL conpiler
The variable access pointer of the allocator temporary is then bound
to the conpiler tenporary and used for subsequent accesses of the
result value. An exanple of this sequence is thé i mpl ement ation of
the operations described in statements 21 and 22 of the exanple
statenent table shown in Fig. 3.He). The path graph for these
statements is the sequence on the left hand side of Fig. 3.4(b). The
tenporary labeled TREGL in the path graph was generated to replace the
conpi l er tenporary JTFAAA used in the statement table. The reason for

the generation of the tenporary is that the variable CAR FLOOR is
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shared with the other process, MAN in the full elevator controller

description.

If both sources are stable, however, the allocator sinply renoves
the conpiler tenporary and creates an access poi nter specifying the
output of the path as the place to obtain the result value. Thi s
provides the allocator with the capability to generate conbinatorial
logic networks "to inplement conplex actions in the functiona
description. An exanple of this action is shown in Fig. 3.5 for a
conpl ex conbinational |ogic expression. The conpiler has created the
tenporaries JTRAAC and JTRAAD.  These are removed and the resufting
path graph displays an OR-AND- (R Coﬁbinatorial'network

3.M.6 Special cases

Several Specia[ cases are worth nmentioning. Subfield accesses of
variables and |ogical negation, which are operations in the ISPL
statement table, are easily perforned in hardware. These do not
require the full processing just described, but are handled by sinple
mani pul ation of the access ﬁointers. The |ISPL control operations
using data values as conditionals require only the source processing,
so that acéess pointers may be created to allow the control allocator
to access the data value. Finally, operations commonly available as
register.functions (INCDEC, CLEAR shift operations) are recognized
and the required function is added to the register characteristics in

the allocator synbol table.

3.4.7 Parallelism analysis
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After each extended path has been allocated, a parallelism check
I's perforﬁed, both at the variable level and at the path level. Al
extended paths that are concurrently active wth the extended path
just allocated are recorded in the path paraLIeIism stack. The new
extended path is conpared with the stack entries to determne path
pairs active in parallel and to check for variables‘botentially in use
‘at the same time by different actions in the |[|SP. Path pairs are
recorded in the path parallelismtable for future use in optimzation

routines.

Variable_parallel usage errors are noted and a warning is issued

to the user. Conditions which.generate a warning are:

* Destination - destination conflicts: attenpts to wite a
storage location concurrently using the results of different
pat hs.

* Source - destination anbiguities: use of the sane variable aé
a source and a destination in separate parallel actions. This
could produce differing results depending on the relative
order in which the parallel actions were executed.

* Array access conflicts:

* Attenpts to read and wite the same array nenory
concurrently.
* Attenpts to use the same addréss path in tw separate
paral | el actions.
No nmore than a warning can be generated, however, as the allocator
cannot detect synchrdnization mechani sns specified by the user in the

| SPL description which could resolve the anbiguity or conflict.
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3.4.8 Optimzation

After a process has been allocated as described above, t he pat h

graph contains a worst case allocation of the process in terms of

operators and tenporary storage. Optimzation could be perforned at -

this time wusing the parallelisminformation in the path parallelism
table and the record of allocated paths in the path table. As an
exanple optimzation to denmonstrate the feasibility of .such
operations, reduction of tenporary registers has been inpllemanted
using the criterion "conbine the tenporaries if they are conpatible in

size and no parallel or sequential usage conflicts exist."

‘After the optinization routines, the path table and path
parallelism table ar.e cleared and the allocator begins again wth
extended path allocation for all remaining processes. After all have
been allocated, the second -or pr(;cess phase of the allocation is

conpl ete.
3.4.9 Final processing

After the process allocation is conpleted, a final examnation of
the path graph is mde to" place multiplexers where needed for
switching data |inks. Wen this activity is conpleted, the allocation

is conplete.

3.5 Allocator Qutputs
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The primary allocator output is the path graph, which is used by
the data base module, in conjunction with the allocator symbol table
to map IC's onto the 1logical allocation. Because the succeeding
routines have not yet been written, the allocator also produces a
human readable version of the process table, the called procedure
table, the operator table, the allocator symbol table, ahd the path

graph.

4.0 Measuring Allocator Performance

The allocator described here is only beginning to be tested, so
the results presented here are preliminary. Also, in the future, the
actual hardware is to be allocated by the module data base, which is
currently being designed. However, by performing a hand allocation of
IC chips for path graph designs, we have obtained some preliminary
results. Two designs have been donée by the allocator. The first is
part of an elevator controller and is described in Figs. 3.1, 3.2 and
3.4. The second is a reduced version (minus I/0) of the PDP-8/E. A
non-optimal hand mapping of integrated circuits onto the allocator

output logic diagram has been done, -and estimates of chip count and

cost were made.

The eievator controller was part of the design style experiment
of (Thom77b), which‘ provides a controlled measure of how well the
allocator performs in relationship to human designers. The results
are shown in Table 4.1. The cost figures for the allocator design

were derived using Thomas' cost estimate:
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C = (total chip cost) + ($3 overhead/ chip)
(ne can see that the cost of the automated design falls in the same

or der of magni tude as the cost of the designs produced for the design

experiment, with no significant optimizations attenpted by the

al l ocator.

It is difficult to conpare the automated PDP-8/E data path design
with the original. DEC (DEC72) design for three reasons. First, the
| SPL description input to the allocator declares as registers sone
val ues the PDP-8/E uses but never stores explicitly in registers,  such
as the effective addr ess. These show up as registers in the
al locator's design. Al'so, the allocator designs distributed |ogic
and the DEC design was done in the central-accunulator design style

(For a discussion of design styles, see (Thonv7a)). Finally, the DEC

design fortunately has assuned a boundary between the control and.

data-nemory parts of the design, but the boundary is different from
that inposed on the allocator by the |1SPL description. Thus some
tests, flags, and registers which nust be declared explicitly in the
| SPL description are parf of the control in the DEC design. In spite

of these differences, estimates of chip count indicate that the

al locator produces a path graph which could use 31-38% nore integrated

circuit chips than the human designers used for the data paths and

registers. O course, these estimtes were made using the sane 1970
technology chip set the DEC designers had to deal with. The 30J
excess hardware can be found in nultiplexers which connect the
registers, the extra registers declared in the ISPL description, and

duplicated operators like increment and add. Mich of this can be
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attributed to the way in which the ISPL description had to be written,
and some of these constraints will not be present in future ISPS
descriptions. However, other chips can only be eliminated when
optimization algorithms operate at some stage of the design process.
It has not been shown whether this design operates at comparable
speeds to the DEC processor. The complete block diagram of the
allocator output can be found in Appendix B, along with the
implementation information used to make the chip count estimates, and

‘the PDP-8/E ISPL description.

One interesting point to be illustrated is the differences in the
design seen even from the block diagram ievel. This is shown in
Figure 4.1. There are two reasons for the differences. First, as
stated previously, the design styles are different. Second, the
multiplexing is used in different ways. In the DEC version, the
operators are shared, and are even used to provide no-op paths from
one register to another. In the CMU version, only registers are
shared and use multiplexed inputs. The ISPL language is partially the
source of this disparity. In ISPL, the user can repeatedly use
register A as a destination from various sources. However, the
expressions A+B and C+D do not imply (or discount) a single adder.
Other differences in the design include the use of multiplexers for
shifting in the DEC desién, and use of true/complement 0/1 chips for
creating compleﬁents. "Oring™ of the MQ and AC registers in the DEC
version is done within the multiplexing hardware. Constants are often
created in one place and gated over already existant data paths to the

registers. In the CMU version, these constants are multiplexed at the
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register inputs. The |ower (31J) figure of excess chips was obtained

by using the CLEAR input on registers instead of a leg of the

mul tiplexers to set sonme registers to zero.

One final difference is the treatnent of  the Link FF and
Accunul ator register as a single register in the OMJ version. This is
done because of the way the PDP-8/ E ISPL description was witten.
Further analysis of this design is in progress and includes a human
i npl enentation of the control. Conparisons of the DEC and OW

data-path speeds will then be possible.

One nore conparison has been possible; The Design Style Selector
modul e is now running (Laws78) ahd makes cost and speed estimates for
the input |ISPS descriptions. It produced a worst-case cost estimte
for the PDP-8/E data paths of $294.88, using a $3/chip cost estinate.
Usng the sane cost estimate on the 64 chip DEC design produces a cost
of $192 and for the 84 chip CMJ design $252. The cost differences

illustrate the degree of optimzations performed by human and machi ne.

5.0 Conclusions and D scussion

The results described in this paper lead ‘to the followng
concl usi ons:
* The basic experinental allocator will function successfully as
the base for an expanded allocator wth optimzation
capabilities.

* Specific module set information is not necessary to produce a




reasonabl e design

* The size of the 1SPL description which can be handled is
limted only by the anount of core nemory available to thé
al | ocator.

* The allocator can detect wuser constructs in the [SPL
description which will produce conplex hardware or unreliable
operation.

* The_allocator wi Il also be capable of significant optimnzation
within the framework of the data structures described in this

| paper .
In addition, we have concluded that a large part of the conplexity of
the éllocator is due to:

* The ability to allocate multi-process |SPL descriptions.

* The lack of one-to-one correspondence between the conpiled
statement table operations and the actions necessary to
inplenent the operations in hardware.

* The availability of the ISPL |ogical napp[ng facility.

* The production of tenporaries by the ISPL conpiler.

In addition, multi-process allocation would be considerably
easier fromthe control viewpoint if arbitration mechanisns for shared

variables and procedures were explicit in the ISPL descriptions.

Unfortunately, it is unreasonable to expect these good results to
~hold for nore conplex designs, as the larger size allows greater
freedomto inprove the design through optimzation. Optim zation

research is, therefore, a significant part of the design automation
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effort.

The conversion to ISPS is expected to alleviate the
conpl ex-mapping problens, the conpiler tenporaries wll no |onger

exist, and the technical file will not be needed.
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Appendi x A: thpings

The ISPL anguage contains a generalized logical mpping facility
allowing the user to declare a logical conponent in terms of a previously
declared.physical or logical component. The onIy.restriction i nposed by
the ISPL conpiler is that the .physical size (total bits) of each side of
the declaration be equivalent. For mappings where the mapped variable is
a register, this restriction is sufficient. Wen the mapped variable is
defi ned ‘as an array structure (menory), however, additional restrictions
nust be inposed to insure that a reasonable hardware inplenentation of the
nappihg can be created. Consider the follow ng exanple mapping, which wll

be used to define the terns used in the equation defining the mapping constraints.

A [0:1, 89, 14:15] <0:7 > ; 1 declaration of base menory

AA2 [5, 9, 12]-<0:15>: = A [0:1, 8:9, 14:15] <0:7 > ;

I mapping declaration

Define the followng terns:

main declaration -::= declaration of A
nmapping primry = left half of the mappi ng declaration (AA2)
mappi ng- secondary ::= . right half of the mapping declaration (Al)

(may in general be all of the main dec-
laration or a subset of the addressing

space defined by the main declaration)

bitent = bit size of primary word - 16 bits in this exanple
bitcntS = bit size of secondary word - 8 bits in this exanple
d = I g, (bitcnt ébitcnt@ - 1 in this exanple

b0 = | onest address of primary - 5 in this exanple

p




| owest address of secondary - 0 in this exanple

b0
s

adrP

adrs

address fromprinary address space

address from secondary address space

Wth these definitions, any mapping satisfying the equation

(adrp +5) +d = ad% where 6= bOgr-d) -bQTp = const ant

and + is the logical shift operation

can be inplenented with at most an addition and wired shift in the address
path , a nultipiexOr-dénuItipIexor pair to provide the necessary gating
_ in.and out of the MR of the nain definition, and, for the case where
bitcntp > bitcnts, a MR for the primary to assenble the primry word
while the necessary number of menory accesses ‘are made in the main menory.

The path'graph representation of the exanple mapping as allocated

by the data-menmory allocator is attached as fig. A-le




APPENDI X B

CMJ PDP-8 Design

The next 4 pages contain the automated PDP-8 design. All connections
contain the nunber and position of bits specified. Qutput wres not
attached to any other blocks are used by the control to test for
certain conditions. MJX connections not speéified i ndicate that

registér bits in those positions are to remain unchanged.

Because DEC includes the LINK logic in the control nodule rather than
the data path module, we are able to reduce the conplexity of the
accunul ator input multiplexing. The link multiplexing belongs in the

control chip count.

Two chip counts have been done. The first was a "worst-case"
al location, which was done by fitting chips to the path graph just as
it stands. This allocation uéed 90 chips. The only alteration was to
exclude the link logic. The second, or "intelligent" allocation also

removed sone |egs on nuxes, assunming registers could clear themselves.
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A. DESCRIPTION PROCESSING
B. DESIGN PROCESSING
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Vo DESIGN STYLE
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'
!
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! | ACCESS !
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: MODULE
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]
| BOUND DATA ELEMENTS | o BASE |q! MODULE SET !
|
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' .
' CONTROL GRAPH \I, A
: . 1 RUNTIME
! MODULE ! DATA
i P aivoive [ | _Base |
! BOUND CONTROL
| ELEMENTS —r—

St =P wavour [

;

| COMPLETED |

! DESIGN '

FIG 21 RT-CAD SYSTEM OVERVIEW




! Declarations for Simple.elevator.control !

car. floor<2:08> floor car is on
car.call [15:8]<> ; 18 floors, 1 bit each u/d
macro top.floor := 7%

-1 Declarations for Look.for.calls !

scan. floor<2:0> ; !scan inputs from 8 floors
up.call<> ;- linput used with scan
doun.call<> ; linput used uith scan
button<> : linput used With scan

| end declarations for Look.for.calls |
Look. for.calls := (

| floorscan controls multiplexors whose inputs
lare the call buttons. The outputs of the multiplexors
lare upcall, douncall, and button

scan. floor « B8 next
Next. floor := (
lupcall at scanned floor ?
(IF up.call => car.calll[lescan.floor] « 1) next
tdouwn call at scanned floor ?
(IF doun.call => car.call[Bescan. flioor] « 1) next
lbutton in car pushed for floor ? '
(IF button => (
ldecide wether up or doun call
DECODE car. floor GTR scan. floor =>
car.call (lescan. floor] « 1;
car.cal |l [Bescan. floor] « 1
)) next
scan. floor « scan.floor + 1 next
(IF scan. floor LEQ top.floor => next.floor))
lleave if all floors scanned; otherwise look at next floor
next look. for.calls

)s

Fig. 3.1(a) ISPL Source Code for LOOK.FOR.CALLS




&
)
3
3

- .
~NOOWWWNNPEAEDRNNELDN

18888888
18888888
18888888
18888888
18881188
18888188

118888888

18888888
18888881
18B88B81
18888881
18888881
18888881

00 00 00 OO g OO 00 OO OO CO OO Co CoO

OO0 0O OO CoO OO OO OO OO OO, ©O OO OO OO

FLAGS [ HBK LB

00 CO 0O CO 0O 00 00 OO LW OO OO OO OO

-bl—‘wlén—w—\oooooopwppé

N
OOOOOOOOOOI—\HOOOOHI—‘OOHé

PNA EO\I UORQSj BI TSt WHE (POS1TION

:OAR CA*C8<17): 17(8)]
* CAR Flé;<B(2):2(B)>

Fig. 3.Kb) ISPL Conpiler Synbol Table for LOOK FOR CALLS




I NDEX  LABEL

11
12
13
15

16

17
20

21
22
23
24

25
26

27

30

.31
32

33
34
35

3
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'NEXT.F'

(

3B)

FLAG

0PCOOE DEST
'CLEAR "SCAN.F*
( 33
'SMERGE*
"ISP
NE 'UP.CAL*
( 37
'CONC  "XTRAAC I'SCAN.F'
52)(  42)(  33)
'WRITE " CAR. CA" XTRAAC 1
( 5)( 52)( 42)
'SMERGE'
NE 'DOUN.C
( 19
'CONC  "XTRAAC 0'SCAN.F'
( 5( 4)< 33
'WRITE "CAR.CA"XTRAAC 1

( 5)( 52) ( 42)
'ST1ERGE' '
E '‘BUTTON'
3)
'GTR "XTFAAA"CAR.FL"SCAN.F'
( 47)( G)( 33)
'BRANCH* 'XTFAAA'
i ( 47)
'CONC "XTRAAC I'SCAN.F'
( 52)( 42)( - 33)
"WR TE " CAR. CA" XTRAAC 1
( 5)( 52) ( 42)
JaN -
'‘CONC "XTRAAC 0'SCAN.F'
52)(  41)(. 33)
'WRITE "CAR.CA"XTRAAC 1
( 5)( 52)( 42)
'StiERGE'
'SMERGE' .
'INCR " SCAN. F" SCAN. F'
(33 ( 33

"LEO.  "XTFAAA"SCAN,F 7
{  4n( _ 33)( 44)
"IF ’ ' XTFAAA
o (47)
"JON "NEXT. F*
( 30)
" SMERGE'
‘NP ' NEXT. F
( 30)

SOURCEL SOURCE2 MERGE ~ PATHS

30

4

13 13,11

17 17,15
31 3121

30 23,2G

36 36, 35
6

6

Fig. 3.He) ISPL Conpiler Satenent Table for LOCK FOR CALLS

40



! technical file for elevator control

PROCESS t MAIN , LOOK.FOR.CALLS ;
INPUT :
I inputs for LOOK FOR CALLS

up.call - level down / élec ttl

down.call + level down / elec ttl
button « level down / elec ttl

Fig. 3.2 . Technical File for LOOK.FOR. CALLS

41




42

& = === Unitructurtd input «*r|«
== w===="varinble DMMandlirvclurt

”

rd
VARIABLE MAR<0:3> & < e ---- vtriabto noda body

NODE
( OUT )4 = =====~=~ unstructured output divert*
= = = === == iNput bit connections ) o
s’ connect ions are writton aa <(of t bit>»<rtf hi bit>
7 tho loftmoat bit of a variabio it bit 0
4 ' '
Om7 TPI<- - - - - - - - input connection flat
. " tho flat® doacrte tho connection lofkal choractoriatics
LINK NODE LINK Klw = = == =~ = procoaa id
0,7 TPQ* - ---- - - output connection flat
R I outpui bit connectiona
@Q.-’-—-operator mputa ( may bo any numbor )
<ii> <> | = = = = = = input bitwidth
OPERATOR .
. -—— === == Operation
NODE ADD <~ - 1 p
«f» & - ~|~ = ==~ = =«output bitwidth

@g- = =m===== 0perator output ( may alao be any number)

S «=-=--=-=-=--- unstructured input marto
——— - - - muttipJex/demuHiplex data path chotcee

MULTIPLEXOR/ { e
DEMULTIPLEXOR MIX 2X<8> . SELECT} <——path aelect control input
NODE A t\V, '
] » data path bitwidth
: ¢ our » unatructurod output dtverte
Y e e —mm. - - - - muxidomux kientficatfon
. 4= ===---- constant value
pd
- CONSTANT CONST, 6'<{3'3>
NODE ' S ,

S - - constant structure
m ~——unstructured output diver to

AG 3.3a) BASI C PATH GRAPH GROUPS




CONCATENATION
NODE

HALF LINK
NODE

AG 3.3(0b)

@

CONC

G

1.2 CPO
uaad lo apoctfy on* aida of a connection
[HUNK ]_ for laiar v*9 by tha control allocator
e .- codaa ara idafttical to full Knka

CONNECTION FLAG CODE

C : complamantad
T: truo

P: paraflal

S - aarial

| input

0 : output

BASI C PATH GRAPH GROUPS
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NST. 1< C:i::) : :
CONST. 1 to fig 24() to fie a4(b) CONST. 0<>

 @n SCANFLOOR<2:0> |
/ ' ' 0w0 TPO
. | . ’j_\our _

o)

L) —  |uw o
0,0 TPO 0,2 T - _!_0..2 TPO 0,0 TPI
LINK oJ LINK 'ivl LINK _EJ e
— 100 TP 3T L | 1_:

CONC

I
02

L o,0 PO 0.3 PO 0,3 TPO

| cone _
EXEE ' L
—Ti.T TRl | 5.3 TPI 7RI
———-quj_} — IN
MUX  2X <t>
b
o

B MUX 2 X <>
LOlIN
0,0 TPO 0*0 TPI . 043 TPO
[l
LINK TS unk i LNk PSS
Q_p TPI 0*0 TPO 0w3 TPI
N @ CW)
MORe CAR.CALL[15K)]o : MAR<0:3>
Cour]:) CIN > —— Com|:)
_Jo.3 TPO
0.0 TPI LlNK Prdoc
nap
roc
LINK ﬁ\dp _ 0°3 TP
oo TPO

FIG. 3.4a) PATH GRAPH FOR LOOK.FOR.CALLS




CAR.FLOOR<2:0>

fro« fit a4<.)

@D

LINK

from fit a4(t)

AS

CONST.

7<Q2>

0.2 TPO 0.2 VPO y<U TRO 0.2 TPO
0 LINK 0 LINK 0 LINK 0
0,2 TPI 0.2 TPI 0*2TPI

<3» <3> @
' GTR
<1> 00WN.CAU.O
G foti}
(our )
0,0 TPO 0,0 TPO
LINK 0 _l : %0 RO | HLINK oJ
| | LN (-):| --------

TREGIo

UP.CAU.O

0,0TPO

HLNK ol
........ J

BLHTONo

FIG. 3.4(b) PATH GRAPH FOR LOOK.FORCALLS
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bi g.reg<0:63> ; -‘ I big register

little.reg<0:15> :« hig.reg<Si23> ; I tittle register
a<7:0> | extra registers |,
b<7:8> 5

blah :- (a «- b AND NQT(b OR a) CR NOT(hig.reg<IB$25> CR littlé.reg))

P Fig* 3.5(a). ISPL Source Text

lm'EX TYPE  FLAGS [

BK LA BCNT WCNT PNAVE V\ORDS Bl TS NAI\/E(POSITlOl
21BBB88BB 8 O B 10 1A "<B(7):7(B
2 218888888 B 0 8 10 1B '<B(7):7 B)>
3 21888888 8 O B 100 1 +BIGRE <7 7 8g )>
4 2 18100000 3 8 8 20 1 *Bl G RE'<27(17):18(8)>
5 .4 10001108 8 8 4 O O ¢BLAH '
12 - 21sBissBB 4 B 0 20 -1 «LITTLE <17(17):0<8) >
48 5 100008B1 O 0O 0 28 0 65,46
43 7 18888881 O 8 0 10 0 « XTRAACK
44 7 18888881 0O B p 2° 0 « XTRAAO
Fig. 3.5(b) ISPL Conpiler Synbol Table for BLAH
4 'BLAH ' 1 'SMERE
( 5
45 8 S 18
46 - B e ' XTRAAC+B A ’
{ . 43)( 2)( 1)
47 8 . oNOT ' *XTRAACXTRAAC .
( 43)( 43)
58 8  «AND ' «XTRAACB * « XTRAAC
( 43) ( 2)( 43)
51 O  +RBYTE ' *XTRAAO *BIGRE' 65, ,46
( 44) ( 3)( 48)
52 8 'R’ +XTRAAO «XTRAAO 'LITTLE
- ( 44)( 44)( 12)
53 B  «NOT ' «XTRAAD' « XTRAAD :
( 44)(  44)
54 0 @R 'eA  '<XTRAAC' XTRAAO
( D( 43)( 44)
55 8  <RETUN '(BLAH 5') 44

Fig. 3.5(c) [ISPL Conpiler Statement Table for BLAH




SELECT

0,7 TPO
LINK oJ
0,7 TP1
A<7:0> B<7:0>
ourt ourt
0,7 TPO 0,7 TPO
LINK 0 LINK 0
0,7 TP1 0,7 TP1
<B8> OR <B8>
<8>
( ourt )
0,7 CPO 0.7 TPO
LINK 0 LINK 0
0,7 TP1 0,7 TPI
<8> AND <8>
<8>
PATH GRAPH FOR BLAH (ouT)

FIG. 3.5(d)

CIiD
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BIG.REG<0:63>
(_our )
8,23 TPO 10,25 TPO
LINK 0 LINK 0
0,15 TPI 0,15 TP

<16> <{6>

<16>

LINK 0

0,7 TPQ 0,15 CPO
LINK 0 LINK 0
8,15 TPI 0,15 TP1
<186> <16>
<16>




Cost for data part of process LOOK.FOR.CALLS as
impliemented for Thomas’ design experiment:

832. 48
$71.45

Designer 18
Designer S

Cost for data part of process LOOK.FOR.CALLS as
implemented from allocator path graph » i
$47.63

se The same subset of the TTL chip family used in the
design experiment was used to implement the allocator
path graph

Table 4.1
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1

EADO<O:II>

I<0:11>

LAST.P<O:11>

1
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MAR<Q:11> MOR<O:11>
| .‘l,
- —> < é’
J, MEMORY
E B> 5
L&AC<0:12> SWITCHES
| B
TEMP<0:12>

BLOCK DIAGRAM OF CMU PDPS/E DESIGN




@

MUX 2 X <8>

our
DATA OUT
FOR AA2 DATA IN FOR Al
0.I5 TPO 0,7 TPl i
4 . 0.7 TPO
Pfo‘c
0415 TPI LINK indp
roc 0,7 TRl
LINK  fhdp "
10..15 TPO

ADDRESS IN FOR AA2
Ow2TPI

50

CONST. 6<0:3>

0,3 TPO

roc
LINK ,P,,dp_J

0,3 TPI

MAR<0:3>

43—

0,3 TPO

N frde

J 0,3 THI

noia : This repreaenta tha fraph imnradiaialy
afiar craaiion by tha mamory mapping

AA2MDR<0:15> A1IMDR<O:7 > Al[O:I,8:9.14§l5}<0:7s
h
/7,
DATA OUT [On?_TPO Ow? TPI
LINK
0L7TPO médp LINK foan:
C7 TPI ]“ 0..7 TPO
( IN ’
DATA IN _
FOR AA2 DEMUX 2 X <8> SELECT
04,i5 TPI
0,0 TPI
out .
LINK  Prd’s
3,3 TPO
0.7 TPI a.15 TP
c
LINK  Poa%C LINK fnrd°p
10,7 TPO 8,16 PO
routinea.

FIG.AI

PATH GRAPH FOR MEMORY MAPPING EXAMPLE
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CMJ - PDP-8 Chip Count
Intelligent Allocation

The followi ng chip count was taken fromthe part of the automated design
corresponding to the DEC PDP-8 MB300 "rmmj.or resistors.' The chips were allo-
cated by hand using an intelligent allocation. For exanple, if the allocator
specified a 7 to 1 13 bit MJX, and the MJX coul d be deconposed into a sinpler

structure, it was*

Part of Path Graph

Part # (T1 TTL EqQuiv,) . Quantity, Implemented
74153 6 MUX 4 x <12>*
8271 74194 3 AC<O0:llI>
7474 Qo) 1 TREG3 <0>
7402
2404 l}_ OR<12>
74153 MUX 3 x <13>
8271 74194 3 TREG3 <1:12>
8271 74194 3 LAST.P<O:ll>
7483 3 INCR<13>
7404 2
7420 1 f EQL<12>
7430 1)
7483 "4 ADD<14>
7400 3
7404 2 } AND<12>
74153 6 MWX 4 x <12>
8271 74194 3 TREGL <O:I1>
74153 6 MWX 3 x <12>
8271 74194 3 PC<O0:Il>
74153 6 MUX 3 x <12>
8271 74194 3 TREG2 <O0:Il>
7483 3 INCR<13>
8271 74194 3 EADD<O:lI>
8266 74157 3 MUX 2 x <12>**
7404 2
7400 f } EQL<9>
7430 1)

Tot al 84
* Reduced froma 7 x <13>MUX due to- exclusion of link logic and allow ng

AC to be able to clear itself.

*x Reduced froma 3 x <12>MUX due to clear on register elimnating (> |eg
of this MJX




DEC - PDP-8/E Chip Count

The following chip count was taken from M8300 "major registers.”

/T m
Part # ’:TTL equi V. Y Quantity
7400 3
7402 1
74H04 2
7420 1
7430 1
74H87 3
7483 3
84151 12
74153 6
8271 74194 15
8266 74157
8235 - 74H87
8881 " 7401 6
64

Tot al

Functi on

Quad 2 input
Quad 2 input
Hex inverter
Dual 4 input
8 input NAND

4 bit true/conpl emrent

4 bit binary
1 of 8 MUX

NAND
NOR

NAND

full adders

dual 4 to 1 MJX

4 bit universal

Quad 2 to 1 MK

4 bit true/conpl enent

Quad 2 input

iiliteerated circuit

NAND

chi ps

shift

reg.
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Figure Bl (a) The Allocated PDPS. PDP8. ISP (1 SPL)
- PDP82. QUT 7/ 30/ 78
[Ta]
114 ]
<0 [ LAC
TFO
TPL TP1 11 TP Tr1
oL DR oL OR | OL OR TP1 oL OR oL OR IPI 1 TP1
<12:23 }<0:11> . §235> <P:il> §e36:47> <12:23 L oR 0L OF  OL OR
- Y _ <14:25> §<38> 1:12>
<0:11> ko: 11> w3/
TP0 TPO «Bil2s
- — — — — — — R T " P e R e — ] - - - 1.?0
r 1
TF1 PO TPI TP1
! <0: 11> <0311> k014> «0:172>
"v,mo-lb l L\{[u-aoas](o-us | [‘mmo-lh I X
1 . — . . . ' TREGI<0:12>
I ;11> <Q: 11> <ftll> j<0:11> kD: 11> <@ 11> <D:ll> cl:12> <1:12> <112 €1:12> <1113>
. : 1: : : 1
' PO TPl TPI TPO PO ) TPO TPO %0 70 70 170 170
b o m o am m am om s = s o owr e o e e e o Em = a ws _— -
TPl
<0> - R[—
j PO <0 1 1 ]
i <4135} <arll>
I 13 TP TPY TP Tr1 TPL
' la:11> OL OR <> cl: > <5:11> FLTTA] SWITCH<Q;: 11>
o <12:23 <0: 7> <0: 11> ko: 11>
| TPO TPO TPO
Pl '
| kC:ll>
!_ | :.wn«a;ml
i €B:1l> | <0:ll> <G:11>
i PO PO TFO
B TPI
oL oR
<0:11>
;
INCE 123
0eQsll>  Dea
o: 11> <0;:;11> T
Fo 1F0 ™
™1 TPIL TP1 Tl TPL 1Pl
oL OR oL OR oL OR 2L R oL OR | OL OR
nLld <17 :25> <53:64>4<79190> 112 <37:38> iz~ €13:75> g <b5>
LEIE Ay win /S
<0:il> . <0:12>
™0
1 T50 TSt .
<0:11>» <> 0 <>
<U: - .
Ircm:m lmc Lic LSHFT, 2SHET INC
. Q>
<0: 11> <0:ll» <0: 11> k1:12> <l:12> <l:12> fl 23> <1 12 < <o> <I: lz> <l 2> <1:12» <03 12> TPO
TPO PO TFO PO TPO PO TFO ™0 PO
. 2 mor ~ MDR 0 EQL 2 EQL zoam. 1 155 1 . YGEQ 12 NEQ 10

ALLOCATOR VER. 1,0
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ALLOCCATOR VER. |.C

-

TPO

|
L

i
w

™

=ty

L

Figure B (b) The Allocated PDP8. PDP8. ISP (ISPL) -
. PDP82. QUT 7130/ 78
MR
1P1 OL OR
) <D: 11>
Teh:11>
<63 7> <7» <3:11>  |<B> <7 <5 e3rtl> | <5 5> <5:11> <> «5:11»
TPO TFC TP TFOD TPO IrD TPO PO TFO TPO THO TPO TrC

SZL, SKA
SPA

TSTATE+]

PO

SMA

SPA

| <o>
TPO

| <0> ]
TrO

L. REQU<>

SNA

o>}
70

Q:2
]

2<0: 1>

le»

o
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