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ABSTRACT
~Using the f-act .that the |owest cost -h'eat exchanger net wor k nearly
_al'vvays possesses. the - hi ghe‘st possi bl e degree_ of energy recovery and
-clorrp'rises the least nunber of Ipo'sitive stream stream matches, a héw
mat hemat i cal fbrrrullati'on for “the network Qesign synt.hesis problem is
proposed. The new representation accoun'ts for ‘the problem therrmdynahm'c
constraints, and its solution space only includes networks vvith.maxirrum
energy recovery. Neither cyclic nor split networks are ignbred as long as
they are thernodynanmically feasible.
| The new rodel admits an efficient solution procedure and each Qf its

solutions represents at least a low cost network design. A near-optinum

solution of the nodel is found by éol ving a ch_h simpl er mat hemati cal
relaxation of it. Frequently, it already conprises a mninmm nunber of
positive matches. |If ﬁot so, a nodified version of the Stepping Stone
Al gorit hm conmonly used to solve linear transport a_ti on problems permts

one to derive an optimal solution.

Another sinmple wmathematical relaxation of the network synt hesi S
problem formulation is proposed to help the searching for all the other
feasible networks conprising a mninmm nunmber of matches. A very" well
defined and effici ent‘ search technique is presented and applied to two

exanpl e probl ens.
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I NTRODUCTI ON

A significant industrial design problem has beéone the synthesis of
energy recovery networks ained at reducing the overall thermal ehergy
- consunption in a processind plant. Such netmnfks are comonly used ‘to
recycle thermal energy within a process, preventing its wasteful loss with
effluent materials. This synthesis problem.mﬁs_ formalized by Masso “and
Rudd (1969), and its goal is the developnment of a systematic procedure
capable of discovering the heat exchanger network which reaches process
specifications at mninmm cost.

Cyclic networks, that is networks in which two streans are natched
against each other nore than once, are nof excluded by the broblem
statenent. Neither are networks that éontain pai aAAeA "pAitting of
one or nore of the streams. Very often, cyclic and/or split networks
represent the only options to reach maxi num energy recovery. For instance,
when the heat capacity times the flow rate of a cold (or hot) stream_is
excessively large as conpared to those of thé hot (or cold) streams it is
usually inpossible to get maxinmum energy recovery in an unsplit acyclic
network. In such cases parallel stream splitting ih the network becones
absol utely necessary (Ponton and Donaldson, 1974). \Unsplit acyclic net-
works are those which include neither multiple matches between the sane
pair of streans nor parallel stream splitting.

As pointed out by Mtard and Westerberg (1978), one of the crucial
obstacles to overcone in Process Synthesi§ is the nmodeUAing of the prob-
lem Before searching for the optimal solution, we should have at hand a
representa{ion of the problem tick enough, to enbed all feasible alterna-
tives but still ”~inpAe. enough to adnit a solution technique capable of

QUickIy di scovering the better networks.




There were SO far three attenpts Ito devel op .an ancUy‘ti.caU répre—
sentation of the network synthesis probl em_-(Kes.I er‘ and Parker, 1971,
Kobayashi, Uneda and |chi kawa, 1971; Cena, Muistacchi and Natali, 1977)-. In
~their review, Ni shida et 'él. (1981) caIIed' t hem sirrultane.ous match.
decision algorithms. Those three attenpts describe in different ways the
network synthesis problem as an assignnent .pro_bl em a very v_veII‘ known
mat hemat i cal nodel in Operations Research for which quite efficient
solution algorithns are already avail able.

Kobayashi et al. (1971) fornulated the network synthesis problem as
an assignment problem where each cold stream can.be mat ched at nobst with
orvly one. hot or wutility stream and convers‘elly each hot stream ban be
matched at nost with a single cold or.utility stream A mjor nodel
limtation was the fact that the problem t hernodynam ¢ constraints were
not analytically considered. Cena et al. (1977) avoided such a difficulty
by using an approach simlar to that of Kesler and Parker (1969). Thei r
basi ¢ idea consisted of partitioning each pro-cess stream into a nunber of
equi val ent pseudostreans, all of them having the sanme el enentary heat duty
equal to sone small value Q The assignment nodel vvés the_n applied to the
new set of pseudostreans.

A new anal ytical representation of the heat exchanger network synthe-
sis problem is introduced in .this paper. Such a representation is not
restricted to $pecial cases but it can be used for any network synthesis
problem It enbeds. acyclic networks as wel | as.cyclic networks or those
involving stream splitting. |Its -conputational solution procedure pernits
one to find a maxinmum energy recovery network which is not only therno-
dynanmi caI.Iy feasible, but it also contains the lowest possible nunber of

active stream stream matches. |f such an optimal solution of the proposed




nodel stands for an unsplit acyclic heat exchanger networ k, draw 'ng t he
network structure is. straightforward. |If not, additional steps nust be
taken before drawing the structure of a split and/or cyclic network. -They

are described in part 3 of tliis work.

Feasi bl e Networks with Maxi mum Ener gy Recovery

Once the wutility usage (UU) problem or problem Pl (Cerda et a'l
1981) has been solved, the mnimm heating ‘and cooling requi rerrénts are
known. At this point, Ca sli ght nodification of the set of constraints of
the UU problem is proposed which consists of cutting the amunt of thernal
e.nergy flow available at (or demanded by) the auxiliary heating (or
cooling) source to precisely its mninum value. At the sane tineg,
obvi ously, matches between those auxi. liary sources beconme forbidden. 1In
this way, a new get of constraints is derived which defines the set of all
feasible networks with the highest possible degree of energy recove'r_y,

(ﬁ\w). The costs of the networks belonging to (ﬁ_\] differ only because of

their distinct investnent costs.

Setting Performance Targets

I-f one really wants to find fhe m ni nrum cost solution, the real. cost
of a heat exchanger network should in principle be used as the obj ective
function of the problem However, such an obj ect‘ive function nakes the
mat hemati cal description of the set of constrai nts. much nore difficult
because the process stream tenperatures at int‘errredi ate points in the
network wll arise as additional variables. Furthernore, the set of
constraints will no longer be linear.

In order to get rid of such a conplexity, we are going to set two

pe-ifLoi nonce. £atg.eJL4 usually reached by the economi c opti numheat exchanger




network (Linnhoff et al., 1980). They' can lead to a .rro'ré conveni ent
obj ective function' for the problem Because of the. vari abl es. it includes,
the new objective function could admt a nu-ch sinpler mathematical nodel
~and, what is npre inportant, is still m‘nidized by the Ibwest cost .
solution in nost cases.

From the exanples found in the Iiterat'urej one can make two.irrpor-
tant observations about the optimal and negr—optimal 'designs. 1n each
case, the optimal (or a near-optimal )‘ design is one conprisi r;g a mni nmum
collection of matches anmong hot and cold process streans, including
utilities, where the nmaxi num degree of energy rec‘overy is achieved. -These
two features can be chosen as the perforrranc-e targets to reach in the
design of heat exchanger networks.

Both performance targets have solid'justifications. Soaring energy
costs héve made :[he operating cost thé dom nant conponent of the network
total cost. Therefore, an econonic network design should always minimze
the heating and cooling requirenents (Hohmann, 1971; Rathore and Powers,
1975; Nishida, Liu and Lapidus, 1977; Grossmann and Sargent, 1978;
Li nnhoff and Flower, 1978a; Flower and Linnhoff, 1980). On the other hand,
t he cabital outlay cost is controlled by the nunber of hea.t transfer 'units
in the network design (Hohmann, 1971; N shida, Liu and Lapidus, 1977,
Li nnhoff and Fl ower, 1978b; Flower and Linnhoff, l9§0).

Since each match between process streans is inplenented by at |east
a single heat exchanger, the mini rrum_nun‘oe* q{L mat.ches 40JL* up a Aowet
bound on the nunbea of L heat exchangei* {Lot any {Lea”i bXe netwoi k design. _
Mor eover, when each match is acconplished by a single uni_t, as happens in
an acycli-c network, there is no difference between them and we can refer

to either a match or its. correspondent heat, exchanger. That situation
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arises in the optiml network designs of nost: of the test problems found
in the literature like -4SP1, 5SPl1, 6SP1l, 7SP1, 7SP2 and 10SP1, because

they are acyclic networks. However, such a feature also characterizes the

~optimal solution to the prolblem 4SP2 where parallel stream splitting .is‘

absol utely necessary to have maxi mum energy recovery (Linnhoff and Flower,

1978b) .

The ©Mat hemati cal Model

For the rest of‘ this work we shall refer to a cold (6r hot) pseu-
dostreain, provided by the partitioning procedure -proposed by Linnhoff and
F.I ower (1978a) anq somewhat nodified by Cerda et al. (1981), through a
pair of subscripts. The first of themwll indicate the primtive process
stream fromwhich it was generated, while the second stands for the |[evel

of the tenperaturé interval to which it be'longs. Thus, q., .. st ands
: 1K, JE

for the heat flow shipped from source h' (the original hot stream j at
tenperature level t) to destination ci¥ (the primtive cold stream i at
level k). We shall also use b to indicate the energy flow avail able at
hd* and al¥ to represent the energy flow demand at c*¥.

The seven-stream test problem which will Ilater serve to illugtrate
the performance of the new synthesis procedure can be used to get a better
understandi ng of the nonmenclature just described. I_ts set of relevant data
is shown in Table 1. Table 2 gives the four intervals for partitioning the
process streans, while the cprréspondi ng set of cold and hot pseudo-
st reans, their supply and target tenperatures and their energy flow
capacities (bd¥ or demands (al¥) are listed in Table 3.

A network design reaching the two performance targets discussed in

the last section is an optimal solution to the follow ng problem P2.
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wher e y.l.J is an integer variable that can only téke bi nar}} val ues (1,0),
dependi ng on vvhéther or not the match (0'1’h'3) is’ acconplished in the
netvvt;rk. The nunber of cold process streanms is G| and the nunber of hot
_process streams is H-1. A single auxiliary heat i ng source H an('JI a single’
auxiliary cooling source C are considered in the problem fornulation.
‘(a’é) m and (bl-fa‘ are the mninum values found when solving probl em W

mentioned earlier. Frequently, either (a,) or (b,) is equal to zero and
Cm M m

consequently its corresponding constraint equation can be deleted decreas-

ing the nunber of rows (or colums) by one. m, | is a binary coeffi-
K, j%, '
cient which is equal one when the match (c, ,h" ) is thernmodynam -
’ I K 1As :

cally feasible or otherwise is equal zero. The, problemis partitioned into

._ L tenperature intervals - see part 1 (Cerda, et al., 1981). Finally, Ul‘1
is the upper bound oh the anmobunt of heat to éssign to the match (c.l, h.J).

The upper bound U.l'? is the maximum anount of heat that can be

transferred from hot stream h.-1 to cold stream c.l. It can be deternined by

applying the northwest corner rule to a standard transportation problem

. J
tableau that only includes the hot pseudostreans which come from h. as
b

heat sources and the cold pseduostreanms that come from c. as heat sinks.

Heat sources and sinks should be ordered in decreasing tenperature |evels.

1] L | J
In many cases, U .= min(a.,b.) where b. is the total energy flow avail able
b 1 - . 1
at h.- and a. is the total energy flow to be supplied to c. In general,
1) - 1 ) ’ 1) S I )

U . <mn(a.,b.). To see that U . can be less than mn(a.,b.), think of

the extreme case where c. is everywhere hotter than h.. For this case U .=
) 1
0 since h. is too cold to supply heat to c. Wen a certain match is
1]
forbidden, its corresponding U.. is reduced to zero.




In order 'to_ understand constr ai nts (2.4) and (2*5), one can meke the

“fol | ow ng observations. If for a given feasible solution Va3~ 0 the match

(c.,h.) does not take part in the solution. In that case, the linear
o) o _
constraint (2.4) for the match (c.l,h.J) reduces to
7 .
- Z E.m' Kk, 5050
kFI Jt=|
Since all g, .o are non-negati\}e, the above expression beconmes a strict
equality which is satisfied when all % e mn : for k=l,...,L and
]
1=1,...,L are equal zero.

Wen y =1 the rratch (c h.)'
g : J
under consideration. The inequality (2.4) for that match becones

is active in the heat exchanger network

i Z Mk, b ‘llk,sff Usy

k=1 =1

which is not significant because such a restriction is already accounted
for through constraints (2.1) and (2. 2).
As proposed here, the heat exchanger network synthesis problemis a

special type of mnmixed integer |inear programmng ‘problem (MLLP) whose

general mathematical fornulation is

(MLP) . Mnimze (c™ + cyy)
subj ect to
A] q + A2 y = b

y >0 , integer

In P2, the vector c; and fhe matri x A, are both nuI_I.




A Rel axation of the Network Synthesis Problem
The Linear Transportation Problem P3

Let's ignore the integer constraints on the variables yij« I'n doing
so, we generate a new problem P2 which is a relaxation of the network

synthesis problem P2 in the sense that every feasible solution of P2 is

also feasible for P2 but the reverse may not be true. Then f (P2)

£ f (P2), where the asterisk indicates the problemoptimal value. In other

words, the relaxation of P2, i.e. P2, provides a lower bound for the

val ue for P2. )
As Balinski (1961) proved, (dm ..,Y..) "is an optimal solution to

1K, JX 1J

P2 only if 2.4 is a strict equality, i.e.

L L

z Z mlk j-lr qik,_']-f- yi_‘j s for istize e €

k=1 t=1 -

3'1329' A'H

The pr'oof is relatively sinple. |If y.”.: 0, we have already seen that all
9., .. for k=l,...,L and £=1,...,L are equal zero and the above expres-
1K, J&

sion holds. On the other hand, if yi.J > 0 and

L L

I X "M keji%ikeji <Y Vi
kd U
then, as the integrality constraints on y'1'_] have been dropped, 371. can
. J
be decreased without violating constraints (2.4). In this way, the value

of the objective function of P2 is also decreased. The optinmal value is
achieved when (2.4) hold as strict equalities. Balinski (1961) proposed

this theorem for the wdely known fixed-cost transportation problem of

which ':"2 is a particular case. Then
L L
‘; 1 z z i=l,2’-oa’_c
i] U

j=1,2,-- "ﬁ
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This expression for y':.j assures that its value will "be equal zero
- when "'the match (c.l,h.} is not inplenented by the network. Replacing y'\l.

: - R . : h]
for this expression in the objective function, the mathenmatical program

‘P2 is transformed into a new one:

¢ H L. ,
~ Mnimze £ £ 0 £ X" gl iyl
i=lj=l Y k="l 4=1
subject to the set of constraints (2.1), (2.2) and (2.3) (Balinski, 1961).

By assigning very high unit costs M to infeasible and for bi dden

rout es (ml’kj'a: 0) to prevent them from being in the optinmal solution,

the coefficients my, 44 can be removed from the problem representation.

Now P2 can be witten as the |inear transportation problem P3.

C H . 1
P3: M ninze E‘ \, 2 zcikjﬁqikjlr
izl j=l k=l 4=1 '
subject to
c L
Z 21 xka/\ j*
i) xssi 1-1. —L
HoL
2‘ 1 Agp st «y. » 0 1-1.2,'".C (3.2)
1‘1 x‘_-]' k:ll’coo’L .
Ye,j4z20 , for 1-1,2,---.C . (3.3)
j=1a23“'sn
kF-l”",I;

bl’o-.’L
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wher e
M, if i =C and j =H or k> &
Cik,34 ~ '
/U .. , otherwse
1}
In the fornmulation of P3 the variables V‘j no | onger appear.
Both problems, the network synthesis problem P2 and the linear trans-

portation problem P3, have the sane set of constraints on the variables
Q'k,j'f c Therefore, aveau {LzaAible, Aoluitionto 93 i* cUo {Lo.aAi bl &fLoi

92. A vertex of the common convex constraint set oOn Oy, js will  be
the optimal solution of P2. The same can be said of P3. However, the sane
vertex does not always sinultaneously mnimze both problens.

It should be enphasized that no feasible heat exchanger network has
~been excluded from the solution space defined by the set of constraints
(3.1), (3.2) and (3.3). It does not matter whether the network is acyclic,
cyclic or includes stream splitting. However, one can only guarantee that

the optimal solution to P2 will conprise the mninmm nunber of units if it

stands for an acyclic network.

A Very .&od Solution to the Network Synthesis Problem

Like the wutility usage problem P3 is a transportation problem in
linear programming that can also be solved using Dantzig's algorithm
(Dant zig, 1963). Both problens PI and P3 share the sanme set of constraints

on the variables g, .. (the only changes are the values of a, and b..,
l k, IJX On

and the infeasibility of the match (C,H)). Therefore, after finding the
mnimum utility wusage, to solve P3 only requires changing the cost
coefficients for the permi ssible routes (C‘."k»“:‘?q and appl ying
)

Dant zi g's algorithm again. We should use (1/U.1. as the new cost

coefficients.
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Ti pl'i_tz '(1973) suggested that a very good solution to the network

' synthesis problem P2 can be derived from the optimal solution to P3 by

takingl
L L |
= . >
i3 Lo 2 Ln]_.k,j.lr Ux,j4 0
k=1 -5?1 o
or

7,y -0, if i imik,jft Uy, 54 = 0
k=1 L1 _

The reaéon is rather sinple. As the cost coefficients in P3 are the
reciprocals of the upper bounds U.I.J, it follows that the optimal solution
to P3 will try to preferentially all ocate the anount of heat to exchange
anong process streans to those matches with higher upper bounds. At the
optihal solution to P3 the average val ue of the_upper bound for the set of
positive or active matches (y'1j >_O) is a maximunmi On the other hand,
the total anpbunt of heat to exchange anobng process streans including
utilities is a fixed quantity if the highest degree of energy recovery is
to be achieved. Then, a mnimm collection of active matches neans that
the average amount of heat flow to exchange in each match has been
maxi m zed. Frequently, the average anobunt o{L heat q.q'.‘ exchanged in the
active matches i* a nmaxi num when the avziage vaXue of the uppet bound

U'l.i' {JO| the <*et ofL active matches i* aJL"o maxi num
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Synt hesi zi ng a Good Heat Exchanger Network

Based on the Iinear transportation problem P3 a conputational proce-
dure_ is proposed to synthesize :;1 good heat exchanger network. It is
essentially the solution method of a standard transportation prdbl em whi ch °
is applied to get a very good solution to the network synt hesis problem
P2. The algorithm consists of four steps whose goals wll be clearly
stated while solving the seven-stream t_est probl em shown in Table 1.

Step 1: Find the mninmum heating and cooling utility requirenments to neet
the specifications of the process.

Cerda et al. (1981) have described a method to carry out Stép 1 even
if some-of the feasible matches would have been forbidden. It consists in
solving the wutility usage problem PI, which is a linear transportation
~problem wusing Dantzig's al gorit'hm As stated by the authors, an appropri-
ate ordering of rows and colums greatly increases the algorithm
efficiency. For the seven-stream test problem the optiml tableau is
displayed in Table 4 where hot pseudostreams (except for the auxiliary
heati ng source) have been arranged in incr_easing number of in-feasible and
forbidden matches while cold pseudostreams' were ordered in decreasing
nunber of such matches. The optinum was reached by simply applying the

nort hwest corner rule (Dantzig, 1963).

Step 2: Conpute the upper bounds U'1'J for each match (0'1' h'_])'
For the seven-stream test problem the tableaux to determne U.l.J for
all pairs (C'z.’h'_]) have been grouped in Table 5. Note that (c 1 h_’), (c‘.',hs)

and (ch, h_f) mat ches have upper bounds |ess than m'n(a.l, b)) for the match.

U'IH': 236 for steam and any cold stream c.1 is limted to the m ni mum anount

found bv solving problem PlI. Al the.values Ulj and the correspondi ng cost

coefficients c,, are listed in Table 6.
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Step 3: Invent a good initial feasible network design.

First, the 'auxil_i ary heating and coo] i ng éource capacities are
reduced to the |limting values fequired by a maximum energy recovery
netw_ork. If it remains in the tableau, the mtch (CH) between the -
ut.ilities is forbidden.

In order to inprove the quality of the initial feasible network
design, the ordering of the colums in the tabl eau.will bé sonewhat
modi fied. At this step, the auxiliary heat source colum shoulld be placed
first in the tableau. Wwen multiple heating sources are use_d, all the
colums including the wutility colums are to be arranged in increasing
number of infeasible and forbidden matches. Simlarly to PlI, an initial
feasible solution to P3 is obtained through the northwest corner rule (see
Table 7). By merging the matches between the sane pair (C'1’h'3) at
differenf tenperat-ure level s one obtains the sinpler tableau also shown in
Table 7 fromwhich an initial tplit network design can be derived (see

Part 3) .

Step 4. Find the optimal solution to P3 by using the solution nethod of a
linear transportation problem

In a linear transportation problem there are usually at each

iteration several variables g, .o, whose introduction in the current solu-
1K J&

tion will decrease the value of the objective function. Al of themcan be

detected from applying the transportation problemalgorithm As is usually
recomrended, one should choose the one that produces the biggest inprove-
ment to speed up convergence to the optinal solution. However, if there
are ties the following rules are given to break them they should be used
in the order they are listed: | |

(1) P’E‘Q(’:%l.the variable qg.. .7, into t'he solution that has the snallest

(2) Choose the variable %k 58 | ocated at the upper nost row.
. .

(3) Pick up the variable qjk 3t at the rightnost col um.
¥
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For the test problem, the obtimal solution to P3 is shown in Table
8. The merging procedure just mentioned in Step 3 permits one to draw the
unsplit acyclic network design depgcted in Figure 1. As we shall discover,
‘Table 8 is not an 6ptimal solution to P2. We now present how to discover

this fact and modify the solution to get an optimal solution to P2.

A New Relaxation of the Network Svnthesis Problem

The '"merged" table in the lower left corner of Figure 1 suggests a
convenient relaxation of the network synthesis problem which provides a
precise Jdowenr bound on the numbef of active matches for a given network
design problem. Despite the fact we cannot gﬁarantee that the optimum for
this relaxed problem is a feasible solution to P2, it sometimes happens.
In those cases, as its size will be much smaller than that of P2 the new
relaxation implies a fast way to find a minimum match solution with
maximum energy recovery by hand calculations, even for large problems.

When a subset of the linear constraints (2,1) or (2.2) 1is sub-
stitﬁted for a single Eonstraint'that is the sum of them, a new math-
ematical problem is generated which is a relaxation of the original one.
Such a single constraint, called a surrogate constraint, is weaker than
the set of constraints it replaces. Therefore, each feasible solution to
the original constraint set also satisfies the surrogate constraint but
the réverse may not be true. By defining qij as the amount of heat

exchanged in the match (ci’hj)’

L L

U3 =.2 Z ®x,jb ik, j4 » for 1=1,2,00e,C
=1 &=
k=1 : 1 j=1,2,-,H
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a surrogate constraint can be generated from adding all fhe constraint
equations (2.1) or (2.2) which stand for pseudostreams that cone ex-
cl usfvely from the same h.J (or c.l)'at different tenperature intervals |

(or k). In this way, a new relaxation of P2 formed by "rﬁarging11 of -

constraints is obtained that is given by:

| 'c H
p2': M ni m ze z 2;?_,
I
i=1 j=1
subject to
C
l s = Koo for J9-1,2,---5H (2« 1)
i=1
H
= = P T
z qij a;, for 1i=1,2, , C (2'.2)
=1
qij 0 , for i-1,2,..;,C (2« . 3)
j=1,2,.--,H
s - ) A l-
qij Uij yij , for 1i=1,2, » G (2'.4)
§=1,2,¢+, K
y..- 01 , for i=l,2,"-,C (2« . 5)

jﬂl,'z’...’n
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bj is the amount of heat flow to remove from the hbt_' stream hj’

while a3 is the quantity of heat fliowto add to the cold streamca It may
happen that Uaxyy < min(aa, by for certain matches (ca hj). W saw.this
for matches (ci, h2), (c4,hs) and (cg4, h,) for ou-r exanple 7 stream probl em
(see Table 6). Therefore, if they are active (yay= 1), the corresponding
constraints (2'.4) are not al ready taken i"nto account by (2. 1) and (2 ...2)
as for P2. Constraints (2'.1) and (2+ .2) only bound a match, to be |ess
than min(aa, by).

Ey ignoring the integer constraints on ya3 We have a new "merged"

probl em P2" which reaches its mninum when constraints (2'.4) afe strict
equalities. That follows from Balinski's theorem because P2' is a partic-
ular type of fixed-charge transportation brobl em (Balinski, 1961). There-

fore, its value can be found by sol ving,

C H
P4. Mnimze £ £ (L/U') gu
' i=1 j§=1 -

subject to the constraints (2'.1), (2'.2) and (2'.3) plus

94 = Uij » for all (i,j) en

wher e

0= {(,5)"" < mn(a,b)}

If we want both problems P* and P4 to have the sane set of con-
~straints on qiﬁ, the upper-bound type constraints for those matches

(c™h,) wth U'zj < m'n(al.,t}.) should be explicitly included in the formu-

J
| ati on of P4.
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For our seven stream problem the set Il equals {(1;7), (5,4),

(4,7)} inplying the constraints

qi» * 940 < min(946,1198)

Og, "707 < min(1100, 1256)

g4» ~SSO™M mn(1100,1198)

are needed in addition to the wusual transportation problem constraints
(2'.1), (2'.2) and (2'.3).
W remind the readers here of the probl ems defined so far to help

reduce confusion in what foll owse

Partitioned problens

PI : Mnimmutility prdblem with streans partitioned.

p2:" M nimum match/mninmum utility probl em Wi th st reans
partitioned.

P2: P2 but with integer constraints ignored on yij'
P3: ¥2 with var‘i abl es y.l,J substituted out (alia Balinski).

Mer ged probl ens

P2t P2 but with merged surrogate constraints —i.e. streans not
partitioned. Leads to nmuch reduced problem size.

P21 P2' but with integer constraints ignored on yij'

P4: P2T with variables yij substituted out.
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A Lower Bound on the Nunber of Positive Matches

P4 is a sbeci al type of transportation problem vvit.h upper - bound
secondary constraints. Being a Iinéar programmi ng problem every vertex of
the  convex constrai nt set of PA is a basic sol utlion with
((C—1)+(H-1)+NU- 1-d+s) positive q.l.J, where s is the nunber of upper - bound
type constraints that hold at the vertex, d is the nunber of basic
variables q.. which are equal zero and N, is the nuhber of wutilities
(steam and/or cooling water) required by a nmaxi num energy recovery network
(Llewellyn, 1964). For non-degenerate basic solutions, d=0. In other
words, ((G1)+(H1) +I\h- 1-d+s) is the.nunber of linearly independeht equal -
ity constraints at each vertex. For this kind of transportation problem
it need not be true that the basic cells at any basic solution forma tree
in the standard transportation brobl emtableau. It is quite possible that
a loop appears i-n the optimal solution with one of its basic cells or
mat ches holding at its upper bound. The tableau in the lower |eft cornér
of Figure 1 contains a loop: (cz h ; (cz,H7)', (Cl’h?)’ (01’h5) and back
to (cy, hs). '

As the nerged problem P2' is a particular version of the fixed-cost
transpoftati on problem it imediately follows from using Balinski's
theorem that an optimal solution to P2' is always an extreme point of the
constraint set of P4. Moreover, it is a particular extrenme point where t he
nunber of secondary upper-bound constraints that holds is as snall as
possible. In the limting case, none of such upper-bound constraints woul d
hold as equalities, and the optimal solution to P2« would only have
((Gl)+(HIT)+N,-1-d) positive matches qi.J.

Let us now consider the fully bartitioned networ k synt hesis probl em
P2 aga.:\. Since 'P2f is a relaxatibn of P2, the lower bound on the

obj ective function of P2' , which is equal to‘((C-1)+(H-1)+Nﬁl-d+s), al so
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is a lower bound for P2. Therefore, in the absence of degeneracy, the
lower bound on the number of matches coincides with the |ower bound on the
number of heat transfér units proposed by Hohrrahn (1971), only if s=0..

Li nnhoff and Flower (1978, a,b) repor_ted two instances where even
stream splitting solutions had to consist of a number of units Iarger. t han
Hohmann's |ower bound by one. One can int_erpret this to nean that d=0 Qnd
s=| at the optinmal vertices of both problens. In their paper, Linnhoff and
Fl ower (1978b) also remarked that "it is not inpossible that heat |oads of
a hot and a cold stream are equal to each other (or to the total |oad on
coolers or heaters), or residual.s. turn out to be equal to each other c;r to
original loads. In any one of these situations, the mninmm nunber of

units is less than that suggested by Hohmannls rule. !

In other words, the
optimal solution can be a degenerate solution to P4, and that may happen
if a partial sum of a.1 is equal to a part.ial sum of b.J.. It should be
pointed out that the degree of degeneracy of the optimal solution can be
greater than one. Gossmann and Sargent (1978) reported an optimal solu-

tion for Problem 20SP1 which conprises one unit |ess than Hohmann's | ower

bound.

Tr ee- TYpe Solutions to the Network Synthesis Problem P2

When the value of the network synthesis problem P2 is equal to
((C—1)+(H—1)+NU-1-d), the corresponding feasible solution of P4 is a basic

solution or extreme point with s=0. In other words, it forns a tree and no

| oops can be observed in the q.l.J-tabI eau. If d > 0, one or nore basic
cells in the tree are equal to zero. Such solutions wll be called
tree-type solutions to the network synthesis problem P2. If s > 0,

the basic solution to the nerged -problem P4 derived from an optinal
soluti:" » to the fully partitioned problemP2 will contain a |oop where one

of the oasic cells holds at its upper bound U. i < m n(a.l, b.J). Ther ef ore:
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-If the optinmal solution to the fully partitioned, problem P3 has at
@st ((C 1) +( H- 1) +NU- 1) positi vé qi) theh an opti nmal s_ol uti _on to the
net wor k ~synthesis problem P2 may be found. Unfortunately, if the
optimal solution tp. P2 is a_degénerate solution to P4 the o'nly way to
Quarant ee the optimality of the solution is by finding and conparing

all of the tree-type solutions to P2.

If the optimal solution to P3 includes a loop when it is displayed on
t he q.lJ.-tabI eau (as happened here - see Table 8 and Figure 1), either

of these Lhree cases occurs:

1. No optinmal solution to P2 is an optirfal solution to P3. 1In other
wor ds, none of them m'nirrizes.the ob_j ective function of P3. From
that, it follows that a tree-type solution to the network synthesis
problem P2 can be obtained by breaking the Iloop(s) in such a
feasible way that the objective function of P3 incaea’e’. ' For
any feasible solution to P3, the objective fupctions of both I|inear
transportation problem P3 and the nerged problem P4 take on the
sane values. This neans that the |oop(s) should be broken in such a
feasi ble manner that the value of the P4-objective function becones

Ia.rger. Ordinarily, at nost one or two loops are to be broken.

2. An optimal solution to P2 is -an alternate optinmal solution to- P3.

In this case, the loop is to.be broken in a feasible way but

keeping the value of the objective function of P3 or P4 unchanged.

3. An optimal solution to P2 is the optimal sSolution to P3 that has

been found. It contains a loop when displayed on the nerged
qu- tabl eau, but there is no feasible way to break it. One of the
positive matches on the [loop holds at its wupper bound Ui'

<rrin(aib.J).
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Searching for an Optinmal Solution to the Network Synthesis Pr obl em
The Reverse Stepping Stone Method

The Stepping Stone Algorithm (see part 1 of this series of papers,
Cerda et al., 1981) is a method to sol ve a standard transportati on problem
like P3. It involves the formng and breaking of loops in t_he sol ution
tabl eau. The approach to finding an optinal 'sol ution is first to establish
an initial feasible solution to the problemwhere the active (basis) cells
formno | oops. The Northwest algorithmwil]l fi'r_ld such a sol ution.

Any inactive (nonbasis) <cell which can conplete a loop in the
tableau for the current solution is a candidate cell to bri‘ng into the
sol uti on. To make this cell active requires increasing its value for

g, ... To maintain the total heat delivered to the row (which is fixed to
I K, %

.be a.l,K) the active cell which is in the rowand also in the loop with this
previously inactive cell, r_rust have its value for q reduced by the_ sane
ampunt. Sinmlarly the q for the active cell in the sane colum nust be
reduced by this anmount to maintain the fixed colum total required by the
pr obl em ‘

Continuing around the loop the cells nust be alternatively increased
("getter’™ cells) or decreased ("giver' cells) to maintain all row and
colum totals. A loop contains an even nunber of cells so getter and giver
cglls are the same regardless of the direction one nmobves around the Ioop.
The "g* for the previously inactive cell can grow until ™g'" for one of the
giver cells is reduced to zero. The newy forned zero valued giver cell
breaks the loop leaving an altered feasible solution which again contains
no | oops.

Fortunately an easy calculation exists to assess whether introducing

an inactive cell will increase, decrease or |eave unchanged the objective

function for the problem
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G ven a feasible solution contéi ning no Io-ops-, one finds an inactive
cell whose introducti_on_vvill reduce the obj ective'.function-. A loop of
active cells is then found which passes through this cell. The cell is
grown until a "giver' cell "in the |oop becomes zero. This new tabl eau
becomes the current fe_asi ble solution. The process is repeated until no
cell can be found which reduces the objective function. The process
t-erm' nates at the optimal solution (Rothenberg, 1579).

We are now goi ng to define the Reverse -Steppi ng Stone IVl-ethod (RSSM
to turn solutions to P4 which contain loops into tree-type solutions, if
possi ble. To break a loop one of its cells (i,j)'rrust be deleted. Such a
cell (i,j) nust be a giver cell. W define the "value of a |oop
associated with a cell as the sum of costs of the getter cells minus the
sum of the costs of the giver cells. Then if_ the value of the loop is zero
for a cértain ceII. (i,j), it is also edual zero for the rest of the cells
in the loop. If that happens, we are facing Case (b.2) where an optimal
solution to P2 is an alternate optinmal solution to P3. On the other hand,
if the value of the loop is positive for a certain celi, then its
exclusion from the solution will Jlead to an increase in the value of
P3- obj ective function.

Gven an opti nmal soluvtion to P3, which contains a loop in P4, the

Reverse Stepping Stone Method proceeds as foll ows:

1« Determ né Wﬁet her or not a pos_itive q.1j in a |oop shoUId‘stay in the
solution. In other words, we shoul d verify if the renpval of q'x’; is a
feasible nodification. Such a test is done on the small-size rel axa-
tion problem P4 where each cell cprresponds to a match between process

streams or utilities. One knows that every qij-soluti‘on which is an

i nfeasible solution for'problem P4 is also infeasible for the network
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synthesis,problem‘PZ. Therefore, if a positive qij on a.loop cannot be
blanked without violating the bnon-negativity or upper-bound con-
straints of P4 for the other matches in the loop, such a cell must
stay in the solution. When all of the maéches in a loop are to stay,
one of its positive matches qij holds at its wupper bound Uij
< min(ai,bj) and it is very likely ;hat'any optimal solution to P2

will include a loop. Otherwise, we should go on to the next step.

The value of the 1oop is computed for an eligible positive match in
the loop whose exclusion still leads to a feasible solution to P4. If
it is equal zero, it 1is also zero for the other eligible matches in
the loop. If it is different from zero, it will also take on the same
value for the other cells in the.loop thch act as giver cells. For
the getter ceils, the value of the loop is also the same but with
opposite sign.

If the P3-optimal solution only contains a single loop whose value is

different from zero, a tree-type solution to P2 could be obtained by

removing an eligible match for which the wvalue of the 1loop is

which the value of the loop is positive. The same conclusion is'étill
valid if the value; of the other loops are equal zero.

If the P3-optimal solution includes loops with' zero values, it is
recommen&ed'to remové from each lobp the lowest cost eligible match.
Usually, ﬁhere.is only one for each loop. This rule comes from the
fact that the optimal solutién to P3 is obtained by choosing always
the lowest cost cell if two or more cells not in the basis would

produce the same improvement in the objective function by introducing

any of them into the solution.
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If the P3-optimal solution contains nore than a singl e. non-zero | oop,
to get a tr‘ee—type solution to the network synt'hesi S problem P2, an
e‘l igible match is to be renoved from each non-zero loop in such a
f easi bl e way that the sum of “their | oop -val ues is greater .than zero. ‘
Non- negativity and upper-bound constraints for P4 serve to identify
infeasible noves easily. Although it is not a frequent casé, 't he

nunber of different ways to break the loops is still very |ow.

3. After enunerating the distinct ways the optinmal solution to P3 can be
transformed into a tree-type solution to the networ‘k synt hesis
prob.l em the solution of a nmodified prob! em P3 will indicate whether
or not it takes the current solution a\/\ay-from the feasible region of
P2. In order to avoid new n’atches.which are not part of the above set
comi ng into the sol ution, a very high cost coefficient is assigned to
each of them in the new P3. Furthermore, the match whose excl usion _is
attenpted is also priced very high, although less than the previous
ones. Now, the transbortation problem algorithm is applied to the new
P3 with the current optinmal solution acti.ng as the initial solufion.
If the new optinum conprises the sane set of positive matches, the
procedure has failed to produce a tree-type solution to P2 and anot her
alternative should be tried. It is clear that we can sonetines derive
from the optimal solution tb P3 nore than a single tree-type solution

to the network synthesis problem

Synt hesi zing an Optinmal Solution to the Network Synthesis Problem P2

The inplementation of the Reverse Stepping.Stone Method introduces a

new step in the synthesis algorithm already proposed:
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Step 5: - Verify whether the optimal solution to P3 includes cycles when
represented in the q..-tableau. If so, appl y the Reverse Stepping
Stone Method (RSSM) Vo get a tree-type solution to the network
design synthesis problem P2. ' '

Figure 1 .shows us that the optimal solution to P3 for “our seven -
streém exanpl e probl em éont ains a | 6op i nvol ving streamns Ca, c<: h_b and
h-r' The P3 and P4 problem costs for these active cells are found in Table
6 (cp hn) 7.96(xI O=%). (c, hs> 8.35, (cAhj) 10.64 and (cA*A) 10,57
Alternate cells around the loop are "givers* énd "getters!; we are |ooking
for ones which the givers will i/icyie.a”e. the P3 objective. If (cf,hj) is a
"getter" the loop value is 7.96 - 8.35 + 10.64 - 10.57 = -0.32 and if

(Cg,hs) is a "giver" the value is +0.32. Thus we need only consider the

latter where cells (c,, hs) and (c 1,h_’) are givers, wth (Cl’hT) ‘the one
which will go to zero first. Thus (Ci’h-r) is our only candidate.
We price all inactive cells in problem P3 véry high, we price

(c.l, 11;) not so high but high and resolve P3. The prices should preclude
any inactive cell from entering and should force (c v h—I) out if feasible
but leave it in if not.

Solving we find (Cl’h is successfully renpved, generating the

1)
m ni mum match solution illustrated in Figure 2.
Note we have inmproved the objective function for P2 but had to

increase the objective function for P3 to do it. W wused the reduced

probl em P4 to screen out the alternatives we needed to consider.

Sol vi ng .Rel ated probl ens

-—Fr equent-ly, control and safety constraints or other reasons rule out
certain r_ra.tches between process streans. They should be kept out of the
net wor k dési gn by assigning to them very .high costs. |If additional

constraints are added to the statement of the seven-stream probl em which
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indicate that the matches (co, he) and (c,,h_) are forbidden, i.e. U(co, hy)
2 3 6 / : z >

= _U(c?,hi) = 0, the optimal solution to the new problemP3 stands for the

tree-type network design depicted in Fi gure‘3.' In this case,, no |oops

exist and thus the use of RSSMis not required. The fornulation of problem
P2 can easily handle this kind of constrained network design problem
The feasible region of problem P2 can be enlarged to include network

desi gns whose utility consunption is sI‘ightIy hi gher than (a,) or (b")

\j ro n m

One should change the const rai nt (2.2) and (2.3) 'for the utilities in the

foll owing way: . |
' C L

| | »kHakH* <V»+ abH

i=1 k=1

and

§=1 £=1

i L
z 2 me, it c,50 = (3t B3¢

whose AbH and Aav are arbitrarily selected snall val ues,
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Sear ching for Al Tree- Type Sol utions
to the Network Synthesis Problem P2

By sol ving P3 anc_i subsequently applying the Reverse Stepping Stone
Met hod, if necessary, one can usually find a single tree-type solution to
the network synthesis problem P2. However, we are interested in aXX of“
the solutions tb P2 _t.hat conprise at nost the sane nunber of active
m-at'chesl as. the c.urrent best sol ution; i.e.. all basic solutions to P4 which
are also feasible for P2 or P3. Thus, one not only synthesizés all
| ow cost heat exchangef networks for a given problem but can find the
m ni num cost network satisfying our assunptions as well.

In Figure 4, tableau 1 portrays the tree-'_t-ype sol ution already found
for the seven-stream test problem through P3_and RSSM W can generate a
new basic solution to P4 by bringing a non-basic match into the sol ution.
There are several alt-ernatives: (C4, hs>, (c4,.h7>, (c2,S) and so on. It may
happen, however, that the new basis is infeasible even for P4; i.e. it
violates its secondary upper bound constraints. |If feasible for P4, the

new basis could require an additional amount of utilities.

W consider introducing an inactive cell. First we check problem P4,
The cell is grown in P4 until a giver cell is brought to zero in the |oop
formed by introducing the inact ive cell. If this change cannot be ‘made

without violating one of the secondary upper bound constraints on P4, we
reject introducing this ceI_I. '

Next we check to see if introducing the new cell and del etiné t he
corresponding giver cell |eads ‘to an increase in the utilities required.
W do thi-s step by solving problem Pl after assigning very high costs to
(i) the a'ctive. match to drive it fromthe solution, (ii) ‘all the inactive
mat ches (Cr h.J) except the one we are tryi ng_.to introduce. That is, if

n’atch-(ci;hj) in P4 is inactive, then all matches (cl.k,hj,t_) in Pl are
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given high costs. To get a nuch better initial sol utién. through the
Nor t hwest cornerh rule, rows and colums in the Pl -tableau are to be
ordered as recommended for constrained heat recovery problens (Cerda et
al ., 1981). Except for those involving utililti' es, highly pricéd mat ches
are ignored during the inplementation of such a rule. Solving Pl provides
a new tree-type solution for P2 and its mni rfum_utility requirenenté ina
single step. Further studies on that sol utlion are unnecessary . if én
increase in the utility consurrption‘ is‘observed. Q herwi se, the algorithm
to be proposed in Part 3 is applied to derive the network design structure.

To illustrate nmore fully the ideas, we consi der Pr obl em 5SP1.

The relevant data (Lee et al., 1970) ','are shown in Table 9. A
conplete description of the searching procedure to find all of its
‘tree-type solutions shown in Figure 5 is detailed in Tables 10 and 11.
Aimed at savi ng conputing tine the pr-ocedure includes an initial test
which verifies if any of the matches in the current basis (node 1) nust
stay in it to keep the utility requirements at its mnimm level. As
indicated in Table 10 puttin.g (Cl’hh) out of the. starting basis makes the
utility consunption higher. '

At the starting basis,_ node 1, there are four non-basic cells y\hi ch
are candidates to enter the basis (see Table 11). The initial test (not
havi ng (Clj hh) must increase utilities) rejects one of them i.e. alterna-
tive (A.4). Another candidate (c”,h?) is discarded because bringing. that
cell into the basis would violate one of I:;4-upper bound secondary
constraints. When each remaining, candidate (CS’H) or (cl,l—b enters the
starting basis, a new one is generated by renoving the snallest "gi ver
cell in the cycle, i.e. (c”,H. Both new ba_ses represent maxi mum ener gy

recovery network designs that are identified, as nodes 2 and 3 in the
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search tree depicted in Figure 5 After 'usi ng toél_s giveﬁ |n Part 3 of
this paper, we wiI-I di scover that node 2 st ands for a’netv\orkl desi gn whi ch
requires the splitting of streans <, and h™ and will require six heat
.exchangers. V& will also di scover that, for tﬁerr'aodynanic reasons-, it will
be necessary to acconplish match (c.l, h,) in two units.

As said before, putting the nonbasis cell _(c;, h-z) or (Cl,\hu) in the
basis is not studied. Sonetinmes, however, a_ new naxi mJ.m ener‘gy recove'ry
basis is generated if both nonbasis éells enter the current basis in a
sequence. Such a solution would have never been found by the usual
procedure of entering a single nonbasis cell - one at a tine if by
t hensel ves each would be rejected. This possi bi-Iity may occur when one of
the candidates renoves a basis match (c'.l, h.J) whose upper bound U.l.J is
exceeded when one attenpts to include the other candidate. W see this for
alternatives (A 4) and (A 3) where eifher renoves the natch (cl,h,q) or
exceeds the upper bound constraint on that match. By doing (A 3) first,
t hen ((:?,h.q) enters the basis by replacing a match other than (c 1h,‘2, and
t he upper-bound secondary constraint for (c.l, h,‘) ceases to be violated. In
(A.5) the match (CD_, h_z) is excluded instead of (cl,'h,q) ar_md q(cl,h.“) does
not exceed IUc:‘n,q). See 'I_'able 11. The new maxi mum energy recovery 'basis

is called 4 in Figure 5,

Ginmes (1980) proves that all solutions having positive heat | oads
for each match are connected and may be discovered by the search procedure
bei ng proposed here. The matches nay not, however, be thernodynamcally

feasi bl e

which relates precisely to our discovery that both matches

(c;, h,) and (Cr’ hd) get rejected but the two together do not. A conplete

search nmust not reject a match because its precursor was rejected in the

search tree.
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I'n 'fabl'e 11 several ways hav.e ‘been used to re_zducé t he s'earch for all
maxi nmm énergy recovery bases. W just nentioned tha.t an alternative can
be ignored due to i t her of the fol | owi ng facts:

(i) Volation of any of the- upper -bound secondary con-

straints for Problem P4.
(ii)* Increase. in.the mnimum utility 'consunption when a

basis match is not included in all starting bases.
Such a verification has been called the Initial Test.

(iii) Ceneration of a non-naxi num energy recovery basis.

G her procedures were also enployed in Table 11:

(iv) Avoid considering alternatives that would again put in
mat ches which were previously removed from the basis
somewhere along the branch connecting the root node
and the current node in the search tree. This avoids
generating the same node nore than once.

(v) Avoid considering alternatives that would renove
mat ches whi ch have been brought into the basis sone-
where along the branch connecting the root node and
the current node in the searching tree. -This avoids
novi ng backward along the branch and produci ng nodes
whi ch belong to other branch in the tree.

(vi) In spite of (iv) and (v) a node could be generated
nmore than once and this node is then ignored.

The set of maxi num energy recovery bases found by the search ére
shown in Figure 5. Alihough there are six, only five of themwere reported
by Fl ower and Linnhoff (1980).

Now, we épply the search techni due to finish identifying all of
maxi mum energy recovery bases ‘for a constrained version of the seven-
stream test probl em For control or safety constrai.nts we assune that the
mat ches (é’;’*lf)_ and (c1>h7) nmust stay out of the network. Moreover, we
requi re that (c’_‘,h:\) must be included in the heat exchénger network. These

requirements significantly decrease the nunber of alternatives which
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result. Returningk to Figure 4, we find the search tfeé for this

constrained seven-stream problem. It includes 20 ﬁodés. Using techniques
from Part 3 we find that 17 stand for unsplit networks comprising a ﬁini—
‘mum number of units. Their total fixed costs~aré listed in Table 12. They.
were evaluated based upon the design data used by Masso and Rudd (1969).
The lowest cost network, i.e. node 15, which is perhaps the best.answer
for the unconstrained seven-stream problem{ is depicted in Figure ‘6.
Clearly this is not the only useful. information provided by Table 12.
Three other network designs have fixed costs higher than the lowest one by
at most 0.56%, an insignificantly small differeﬂce since costs are only
estimated approximately. Node 17 represents an interesting design because
it could use a cheaper auxiliary heating source. Its temperature level

must be only 148°'or higher (see Figure 7).
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CONCLUSI ONS

1.

A vvél | - k:nown' mat hemati cal nodel "in Operations _Res_earch is prop'osed to
descri be the - heat. exchanger nétwork synthesis problem Each of its
sol ut‘i ons repre_sent s at .l east é near - opt i num net wor k design* This goal
is achieved by analyti cal | y -fo'rci ng the problem feasible region .t.o
include only net vvor ks with naxinmm energy recovery and by selecting

the nunber of active matches as the objective function.

A solution procedure is presented which provides an optimal solution
to the mathematical nodel. Its impl ementation requires a relatively

smal| storage size and execution time even for large problens.

If the Ilowest cost network is an acyclic structure then it is an

optimal solution to the proposed nodel.

Since the problem solution space includes cyclic and/or split net-
works, this nmethod will yield an answer even if such types of struc-

tures are needed to achieve maxi mum energy recovery.

If the network discovered is cyclic or i ncl udes stream splitting, then
an additional procedure to be introduced in Part 3 should be applied

to derive the network structure.

The new synthesis nethod has been applied to- a seven-stream test
probl em- subject to .several additional const raints. It yielded a
maxi mum energy recove'ry network whose total fixed cost is only 6.8%

hi gher than the opti mum
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A sinple mathematical relaxation of the network synthesis problem
formulation is defined to help in the searching for all the other
optimal solutions to the synthesis nmodel, even if they stand for

cyclic and/or split networks.

A well-defined search technique is presénted to discover all of .the
optimal solutions to the synthesis nodel and applied to problem SSPl.
Only 15 alternat i_ves should be ‘consi déred before finding the six
optimal solutions. The nethod was al so. used to solve a constrained
seven-stream test problem yielding 17 unspl it network desi gns which

contain a nini num nunber of units.
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NOTATI ON
a, thermal energy flow required by the cold s_tfgami, Kw.

a thermal energy flow at tenperature level k required by the cold
streami, kw.

bj thermal energy flow to be renoved f'r;)m hot streamj, kw.
b,‘I' thermal energy flow at tenperature level A to be renoved from
N hot streamj, kw.
B bottom tenperature |level of the cold streami, dinensionless.
B3 bottomtenperature |evel of the hot étreamj, di mensi onl ess.
ct primtive cold process streami, dinensionless.
ci',c primtive cold process streami at tenperature |evel k, dinensionl ess,’
Cik*j"-ccosct:k\?vi’“sr-“ ppi ng a single kw from heat sour ce h.J; to heat sink
ik - _
C cold utility streamindex; also cold utility stream
Gl . nunber of cold process streans, dinensionless.
Fi heat flow capacity of the procéss streami, kw °C.
h.J primtive hot process streamj, dimensionless.
hJ"- primtive hot process stream| at tenperature level -£ dinmensionless.
H hot utility streamindex; also hot utility stream
H-1 number of hot process streans, dinensionlesé.

Mk \lt''"@y coefficient which indicates whether the match (h., ,c?)

>} i's thernmodynamical ly feasible, dinmensionless. g
qi:I thermal energy flow exchanged in the match (c i, hj), kw.
q.]',x"?‘é t hermal energy flow exchanged in the match (c#,u,‘h."r'), kw.
T+ top tenperature level .of the cold streami, dinensionless.
73 top tenperature level of the hot streamj, dinmensionless.
ugi upper bound on the thermal energy flow exchanged in the match

3 (Vhj), kw

yi, bi nary vari abl e whi ch indicates whether the match (c* h.) is ac-

A conplished in the heat exchanger network, dinmensionless”




LI ST OF TABLES

1.

10.

11«

12*

Set of Relevant Data for the Seven-Stream Test | Pr obl em

Tenperature Intervals for Partitioning -the Process Streans (m ninum
tenperature difference = 10°C).

New Set of Cold a.nd Hot P§eudostrean5.

M ni num Wil i ty Requirements for the Seven-Stream Test Probl em
Procedure to Deternine the Upper-Bound U‘i; for Each Match (c.l, h.J).
Mat ch Cost Coefficients Used to Sol ve Probllem P3.

Initial Solution to the Network Synthesis -Probl em

A Go'od Solution to the Network Synt hes.i S Erobl em

Set of Data for the Test Probl em 5SP1. -

Rul'ing Qut Alternatives in the Search for New Tree-Type Solutions to
Probl em5SP1: The Initial Test.

Detail ed Description of the Search for Al the Tree-Type Solutions to
Pr obl em 5SP1.

Total Fixed Costs of the Tree-Type Solutions to the Constrained
Seven- Stream Probl em '




1100
608
473
473

473

697

228

419

236
9764

125 466 30 83

1888

~ TABLE 4

1892

07 550 70 10000
ha4 . tsq Mgty sz g hsp oty b H
i v
¢y | 1100 ' | | | | |
>y 608 | | | : | |
o 184 289 | | | | | | |
o 418 55 | | ol
013 473 * | N
%3 " 22 25 466 84. | | |
%9 '8 | |
%) . .. B 08 188 | 70
1 10 166
c 9764

0 236kw

Q - 10,000 - 9764 - 236kw
Q, = Ckw




1100

608
473

228

236

473
473

697
419

TABLE 5

1892 125 707 466 . 83 550 290 188 70

hzy hss hgy hes hg, ha h,s h;, by
Cag 1100 I, 707 I I 550 I I I
C4 608 I 608 I I 550 I I I
Cyg 473 99 374 I 390 1 1
Cyr 228 92 83 188 1
51 ', 236 20.
14 473 1 473 I I 473 1 I 1
Cy3 473 234 239 1 77 390 I I
Co3 697 697 I 550 147 I 1
Co2 419 409 243" 176 1

10




~ TABLE 6

1)

Mat ch Us; Ci-JX1O+4 :
m
(c2, h) 1545 6. 47
(C2, hs) 1256 7.96-"
(C2sho) 1198 8.35 -
(ce, hs) 1116 8.96
(e, he) 1116 . 8.96
(Cs, ho) 1116 | 8. 96¢
(Ca hy) 1100 9. 09
(crha) 46 10. 57
(a, hs) 946 10. 57
(crhy) " 940* 10. 64
(C4, hs) 70?* 14, i4
(Cq ty 550+ 18.18
by 236 42. 37
*Uij < min(ajibj)
4y = ialnimum utility bound on steam




TABLE 7

236 1892 . 707 . 550 _125 466 390 83 188 70
H h34 "54 h74 h33 h53 h73 h52 h22 h71
- .608 4 ; 608 o I I I I I
473 c14 420 53 I I I : : :
473 13 181 292 - : I I I
228 oo " __ : - 152 . 76 . I
-419 . C62 . ' e . 314 "&3 22 _ .
236 | o | L | . | 166 . 70

23Q 2017 . 1256 1198

1 H. hg W o+ hg h-

- 1100 .o 236 864
1545 Co 608 625 312
946 . Cq 420 234 292.
- 1116 6 ' 125 397 594




1100

608

473
473
473
697
228
419
236

TABLE 8

26 1892 707 5850 15 466 30 83 188 0
H "34  "s4  M74 . P33 "s3 M3 s M2 M

aq | 26 864 | | | N o
oy 608 | | | ] | |
o 473 | | | | | |
3 420. 53 . | L
13 234 12 21 | L
%3 538 15 - | |
n » 156. o © o
- 21 188
&3 & 70

21




TABLE 9

-Streams Fi(kv\(/°C) | Tin ro | T, 2 (Gl Qi(kw)
i 11.40 38 ' 205 1904
o 1é.62 _' . 54_9/ 21 2127
¢ 3 o2 65 182 1512-
g 13.29 | | 205 | 66 -1847

13.03, %4 25 i446

* _ iQi = 888




TABLE 10

Vat ch

© Mnimm Wility

- Qut ~Usage (kw
(ci;h4) _ 1148 (> 888)
(cs, S) 888
(c55h,) 888
(crhy) . 888
(C3, hy) _ 888




-~ TABLE 11

At Alternative Mat ch Mat ch ~Mnimum Wility New Reasons for Rejecting
Node | No. In Qut Usage (kw) Node the Alternative
1 1 (s B (cs H) 888 2
2 ( CvH) (Cs, H) 883 3
3 (cs3, hy) (Cs3, hy) Rej ected: q(c hs)=1847>U(c. ], hy)
4 (Cs, ha) (¢ hyg) | Rejected: due to inifiai t est
. 1 5 (C3, hz) (C3, h4) . 888 4
(Cs, hy)
2 6 (cah) | (C3V Rej ected: q(cyha) > U(c,, hy)
7 - (s, hy) (Crh4)' ) Rejected: due to initial test
2 8 (C3, hy) * Rej ected: q(csg, hs). > U(Cg, hy)

(500




TABLE 11

At Alternative Mat ch Mat ch Mninum Wility New Reasons for Rej ecting
Node No. In Qut Usage (kw Node the Alternative
3 9 Noid'a 888 5
10 (Cs, hy) Ccrhy) Rejected: due toinitial test
4 . 1 (c.H (cs H Rej ected: q(cs, ha) > U(cs, ha)
12 (G, H) (Cs, H Rejected!.q(cs, hy) > U(cC hy)
5 13 (Cs, h4) (C3, h4) 8% 6 . .
14 (G, H (€3, hy) . Rejected: q(crhy) > U(c hy)
6 15 (G H) (Cs, hy) * Rejected: q(c hs) > U(c,hy)




TABLE 12

- | Total o Total Heat

Network =~} Fixed Cost - Exchange Area
| " ' (sq.m)
1 CsL00 121.6
2 52,928 119.1
4 50,050 117.8
6 52, 691 . 118. 0
7 53, 715 ' 115.5
8 49, 786 113. 0
r 2,089 . 113. 6
il | - 49,376 - 1110
13 49,169 L2
TR 48,825 108. 8
15+ 48,592 1076
16 49,110 113.4
17 49,994 | 110. 3
18 . 48, 867 S 139
19 48,824 1089
0 50,223, - 114.3




LI ST OF FI GURES

1.. A Near-Optimm Network Design Found for the Seven-Stream Problem by
Sol vi ng P3. '

2. An Optinmal Network Design for the Seven-Stream Problem According to P2.

3. An Optimal Network Design for the Constrained Seven-Stream Problem
(Mat ches (cz,hs) and (Cb’ hT) are forbidden.)

4. Tree of Maxinmum Energy Recovery Basis for a Constrained Seven-Stream
Probl em '

5. Tree of Maxinmum Energy Recovery Basis for the Problem 5SP1.
6. The Lowest Cost Network Design for a Constrained Seven-Stream Probl em

7. A Low Cost Network Design for the Constrained Seven-Stream Probl em

whi ch Requires a Cheapter Auxiliary Heating Source.
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