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ABSTRACT

Using the fact that the lowest cost heat exchanger network nearly

always possesses the highest possible degree of energy recovery and

comprises the least number of positive stream/stream matches, a new

mathematical formulation for the network design synthesis problem is

proposed. The new representation accounts for the problem thermodynamic

constraints, and its solution space only includes networks with maximum

energy recovery. Neither cyclic nor split networks are ignored as long as

they are thermodynamically feasible.

The new model admits an efficient solution procedure and each of its

solutions represents at least a low cost network design. A near-optimum

solution of the model is found by solving a much simpler mathematical

relaxation of it. Frequently, it already comprises a minimum number of

positive matches. If not so, a modified version of the Stepping Stone

Algorithm commonly used to solve linear transportation problems permits

one to derive an optimal solution.

Another simple mathematical relaxation of the network synthesis

problem formulation is proposed to help the searching for all the other

feasible networks comprising a minimum number of matches. A very" well

defined and efficient search technique is presented and applied to two

example problems.

«^s*»



INTRODUCTION

A significant industrial design problem has become the synthesis of

energy recovery networks aimed at reducing the overall thermal energy

consumption in a processing plant. Such networks are commonly used to

recycle thermal energy within a process, preventing its wasteful loss with

effluent materials. This synthesis problem was formalized by Masso and

Rudd (1969), and its goal is the development of a systematic procedure

capable of discovering the heat exchanger network which reaches process

specifications at minimum cost.

Cyclic networks, that is networks in which two streams are matched

against each other more than once, are not excluded by the problem

statement. Neither are networks that contain paiaAAeA ^pAitting of

one or more of the streams. Very often, cyclic and/or split networks

represent the only options to reach maximum energy recovery. For instance,

when the heat capacity times the flow rate of a cold (or hot) stream is

excessively large as compared to those of the hot (or cold) streams it is

usually impossible to get maximum energy recovery in an unsplit acyclic

network. In such cases parallel stream splitting in the network becomes

absolutely necessary (Ponton and Donaldson, 1974). Unsplit acyclic net-

works are those which include neither multiple matches between the same

pair of streams nor parallel stream splitting.

As pointed out by Motard and Westerberg (1978), one of the crucial

obstacles to overcome in Process Synthesis is the modeUAing of the prob-

lem. Before searching for the optimal solution, we should have at hand a

representation of the problem tick enough, to embed all feasible alterna-

tives but still ^impAe. enough to admit a solution technique capable of

quickly discovering the better networks.



There were so far three attempts to develop an ancUyticaU repre-

sentation of the network synthesis problem (Kesler and Parker, 1971;

Kobayashi, Umeda and Ichikawa, 1971; Cena, Mustacchi and Natali, 1977). In

their review, Nishida et al. (1981) called them simultaneous match

decision algorithms. Those three attempts describe in different ways the

network synthesis problem as an assignment problem, a very well known

mathematical model in Operations Research for which quite efficient

solution algorithms are already available.

Kobayashi et al. (1971) formulated the network synthesis problem as

an assignment problem where each cold stream can be matched at most with

orvly one. hot or utility stream and conversely each hot stream can be

matched at most with a single cold or utility stream. A major model

limitation was the fact that the problem thermodynamic constraints were

not analytically considered. Cena et al. (1977) avoided such a difficulty

by using an approach similar to that of Kesler and Parker (1969). Their

basic idea consisted of partitioning each process stream into a number of

equivalent pseudostreams, all of them having the same elementary heat duty

equal to some small value Q. The assignment model was then applied to the

new set of pseudostreams.

A new analytical representation of the heat exchanger network synthe-

sis problem is introduced in this paper. Such a representation is not

restricted to special cases but it can be used for any network synthesis

problem. It embeds acyclic networks as well as cyclic networks or those

involving stream splitting. Its computational solution procedure permits

one to find a maximum energy recovery network which is not only thermo-

dynamically feasible, but it also contains the lowest possible number of

active stream/stream matches. If such an optimal solution of the proposed



model stands for an unsplit acyclic heat exchanger network, drawing the

network structure is straightforward. If not, additional steps must be

taken before drawing the structure of a split and/or cyclic network. They

are described in part 3 of tliis work. . .

Feasible Networks with Maximum Energy Recovery

Once the utility usage (UU) problem or problem PI (Cerda et al.,

1981) has been solved, the minimum heating and cooling requirements are

known. At this point, a slight modification of the set of constraints of

the UU problem is proposed which consists of cutting the amount of thermal

energy flow available at (or demanded by) the auxiliary heating (or

cooling) source to precisely its minimum value. At the same time,

obviously, matches between those auxiliary sources become forbidden. In

this way, a new get of constraints is derived which defines the set of all

feasible networks with the highest possible degree of energy recovery,

(S w). The costs of the networks belonging to (S_J differ only because of
M rl

their distinct investment costs.

Setting Performance Targets

If one really wants to find the minimum cost solution, the real cost

of a heat exchanger network should in principle be used as the objective

function of the problem. However, such an objective function makes the

mathematical description of the set of constraints much more difficult

because the process stream temperatures at intermediate points in the

network will arise as additional variables. Furthermore, the set of

constraints will no longer be linear.

In order to get rid of such a complexity, we are going to set two

pe-ifLoimonce. £atg.eJL4 usually reached by the economic optimum heat exchanger



network (Linnhoff et al., 1980). They can lead to a more convenient

objective function for the problem. Because of the variables it includes,

the new objective function could admit a much simpler mathematical model

and, what is more important, is still minimized by the lowest cost

solution in most cases.

From the examples found in the literature, one can make two impor-

tant observations about the optimal and near-optimal designs. In each

case, the optimal (or a near-optimal) design is one comprising a minimum

collection of matches among hot and cold process streams, including

utilities, where the maximum degree of energy recovery is achieved. -These

two features can be chosen as the performance targets to reach in the

design of heat exchanger networks.

Both performance targets have solid justifications. Soaring energy

costs have made the operating cost the dominant component of the network

total cost. Therefore, an economic network design should always minimize

the heating and cooling requirements (Hohmann, 1971; Rathore and Powers,

1975; Nishida, Liu and Lapidus, 1977; Grossmann and Sargent, 1978;

Linnhoff and Flower, 1978a; Flower and Linnhoff, 1980). On the other hand,

the capital outlay cost is controlled by the number of heat transfer units

in the network design (Hohmann, 1971; Nishida, Liu and Lapidus, 1977;

Linnhoff and Flower, 1978b; Flower and Linnhoff, 1980).

Since each match between process streams is implemented by at least

a single heat exchanger, the minimum numbe* o{L matches 4oJL* up a Aowet

bound on the numbea ofL heat exchangei* {Lot any {Lea^ibXe netwoik design.

Moreover, when each match is accomplished by a single unit, as happens in

an acyclic network, there is no difference between them, and we can refer

to either a match or its correspondent heat, exchanger. That situation



arises in the optimal network designs of most: of the test problems found

in the literature like 4SP1, 5SP1, 6SP1, 7SP1, 7SP2 and 1OSP1, because

they are acyclic networks. However, such a feature also characterizes the

optimal solution to the problem 4SP2 where parallel stream splitting is

absolutely necessary to have maximum energy recovery (Linnhoff and Flower,

1978b).

The Mathematical Model

For the rest of this work we shall refer to a cold (or hot) pseu-

dostreain, provided by the partitioning procedure proposed by Linnhoff and

Flower (1978a) and somewhat modified by Cerda et al. (1981), through a

pair of subscripts. The first of them will indicate the primitive process

stream from which it was generated, while the second stands for the level

of the temperature interval to which it belongs. Thus, q., stands
1K,J£

for the heat flow shipped from source h (the original hot stream j at

temperature level t) to destination c, (the primitive cold stream i at

level k ) . We shall also use b to indicate the energy flow available at

h and a., to represent the energy flow demand at c, .

The seven-stream test problem which will later serve to illustrate

the performance of the new synthesis procedure can be used to get a better

understanding of the nomenclature just described. Its set of relevant data

is shown in Table 1. Table 2 gives the four intervals for partitioning the

process streams, while the corresponding set of cold and hot pseudo-

streams, their supply and target temperatures and their energy flow

capacities (b ) or demands (a., ) are listed in Table 3.

A network design reaching the two performance targets discussed in

the last section is an optimal solution to the following problem P2.
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and

C H

P2: Minimize ^ £ yi •

subject to

C L

I I «ik,j*<ik,j*- V • for
1-rk"1

H L

mikjx ^ikjx = aik ' f o r

f o r i-1.2,"-,C (2.3)

X=1.*-*,L

bH = (Vm ;

L

I "ik.ji <ik,jl * Uij yij' f ° r i=1'2>*"»C (2.4)

y,.-O,l , for i=l,2,---,C (2.5)



where y.. is an integer variable that can only take binary values (1,0),

depending on whether or not the match (c.,h.) is accomplished in the

network. The number of cold process streams is C-l and the number of hot

process streams is H-l. A single auxiliary heating source H and a single

auxiliary cooling source C are considered in the problem formulation.

(â ,) and (b.f) are the minimum values found when solving problem UU
C» m H m

mentioned earlier. Frequently, either (ao) or (bu) is equal to zero and
C m rl m

consequently its corresponding constraint equation can be deleted decreas-

ing the number of rows (or columns) by one. m., is a binary coeffi-
ik, jx,

cient which is equal one when the match (c, ,h ) is thermodynami-
I K 1 As

cally feasible or otherwise is equal zero. The, problem is partitioned into

L temperature intervals - see part 1 (Cerda, et al., 1981). Finally, U..

is the upper bound on the amount of heat to assign to the match (c.,h.).

The upper bound U. . is the maximum amount of heat that can be

transferred from hot stream h. to cold stream c.. It can be determined by

applying the northwest corner rule to a standard transportation problem

tableau that only includes the hot pseudostreams which come from h. as

heat sources and the cold pseduostreams that come from c. as heat sinks.

Heat sources and sinks should be ordered in decreasing temperature levels.

In many cases, U. .= min(a.,b.) where b. is the total energy flow available

at h. and a. is the total energy flow to be supplied to c. In general,

U. . < min(a.,b.). To see that U. . can be less than min(a.,b.), think of

the extreme case where c. is everywhere hotter than h.. For this case U. .=

0 since h. is too cold to supply heat to c. When a certain match is

forbidden, its corresponding U.. is reduced to zero.



In order to understand constraints (2.4) and (2*5), one can make the

following observations. If for a given feasible solution y. .= 0 the match

(c.,h.) does not take part in the solution. In that case, the linear

constraint (2.4) for the match (c.,h.) reduces to

L

l Jt=l

mik, j* qik,

Since all q., . 0 are non-negative, the above expression becomes a strict

equality which is satisfied when all q., for k=l,...,L and

1=1,...,L are equal zero.

When y =1 the match (c.,h.) is active in the heat exchanger network
ij L .J

under consideration. The inequality (2.4) for that match becomes

which is not significant because such a restriction is already accounted

for through constraints (2.1) and (2.2).

As proposed here, the heat exchanger network synthesis problem is a

special type of mixed integer linear programming problem (M1LP) whose

general mathematical formulation is

(MILP) Minimize (c^ + c2y)

subject to

Aj q + A2 y = b

q > 0

y >^ 0 , integer

In P2, the vector c1 and the matrix A2 are both null.



A Relaxation of the Network Synthesis Problem;
The Linear Transportation Problem P3

Let's ignore the integer constraints on the variables y..« In doing

so, we generate a new problem P2 which is a relaxation of the network

synthesis problem P2 in the sense that every feasible solution of P2 is

— — •& — — .

also feasible for P2 but the reverse may not be true. Then f (P2)

£ f (P2), where the asterisk indicates the problem optimal value. In other

words, the relaxation of P2, i.e. P2, provides a lower bound for the

value for P2.

As Balinski (1961) proved, (q M ,y..) is an optimal solution to
1K,JX, 1J

P2 only if 2.4 is a strict equality, i.e.

f o r i = 1 ' 2 ' - " .

The pr'oof is relatively simple. If y. .= 0, we have already seen that all

q., . for k=l,...,L and £=1,...,L are equal zero and the above expres-
1K,J&

sion holds. On the other hand, if y.. > 0 and

L L

I X mikfji
qikfji

<Uij y
k=l Ul

ij

then, as the integrality constraints on y. . have been dropped, y. . can

be decreased without violating constraints (2.4). In this way, the value

of the objective function of P2 is also decreased. The optimal value is

achieved when (2.4) hold as strict equalities. Balinski (1961) proposed

this theorem for the widely known fixed-cost transportation problem of

which ':'2 is a particular case. Then

k=l
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This expression for y. . assures that its value will be equal zero

when the match (c.,h.) is not implemented by the network. Replacing y\ .

for this expression in the objective function, the mathematical program

P2 is transformed into a new one:

C H I. L

k=l

Minimize £ £ O- £ X " »lkfJi <liktJjl
i=l j=l 1J k=l 4=1

subject to the set of constraints (2.1), (2.2) and (2.3) (Balinski, 1961).

By assigning very high unit costs M to infeasible and forbidden

routes (m., . = 0) to prevent them from being in the optimal solution,
lk, ja

the coefficients m., can be removed from the problem representation.

Now P2 can be written as the linear transportation problem P3.

C H

P3: Minimize £ \,

i=l j=l k=l

subject to

C L

xkfj^ j*
= l k S S l 1-1.—,L

H L

q<1r ft
 s «,v » f o r 1-1.2,'".C (3.2)

, for 1-1,2,---.C (3.3)
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where
M , if i = C and j = H or k >

1/U. . , otherwise

In the formulation of P3 the variables yi. no longer appear.

Both problems, the network synthesis problem P2 and the linear trans-

portation problem P3, have the same set of constraints on the variables

q., . . Therefore, aveau {LzaAible, Aoluition to 93 i* cU^o {Lo.aAibl& fLoiMik,jfc

92. A vertex of the common convex constraint set on q., will be

the optimal solution of P2. The same can be said of P3. However, the same

vertex does not always simultaneously minimize both problems.

It should be emphasized that no feasible heat exchanger network has

been excluded from the solution space defined by the set of constraints

(3.1), (3.2) and (3.3). It does not matter whether the network is acyclic,

cyclic or includes stream splitting. However, one can only guarantee that

the optimal solution to P2 will comprise the minimum number of units if it

stands for an acyclic network.

A Very .Good Solution to the Network Synthesis Problem

Like the utility usage problem P3 is a transportation problem in

linear programming that can also be solved using Dantzig's algorithm

(Dantzig, 1963). Both problems PI and P3 share the same set of constraints

on the variables q., (the only changes are the values of an and b..,

l k , J Xr On

and the infeasibility of the match (C,H)). Therefore, after finding the

minimum utility usage, to solve P3 only requires changing the cost

coefficients for the permissible routes (c.k»
h.«) and applying

Dantzigfs algorithm again. We should use (1/U..) as the new cost

coeffic ients.
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Tiplitz (1973) suggested that a very good solution to the network

synthesis problem P2 can be derived from the optimal solution to P3 by

taking

L L

L mi• i f

or
L L

7,, - 0 , if

The reason is rather simple. As the cost coefficients in P3 are the

reciprocals of the upper bounds U.., it follows that the optimal solution

to P3 will try to preferentially allocate the amount of heat to exchange

among process streams to those matches with higher upper bounds. At the

optimal solution to P3 the average value of the upper bound for the set of

positive or active matches (y. . > 0) is a maximum. On the other hand,

the total amount of heat to exchange among process streams including

utilities is a fixed quantity if the highest degree of energy recovery is

to be achieved. Then, a minimum collection of active matches means that

the average amount of heat flow to exchange in each match has been

maximized. Frequently, the average amount o{L heat q. . exchanged in the

active matches i* a maximum when the avziage vaXue o£ the uppet bound

U. . {JOI the <*et o{L active matches i* aJL^o maximum.
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Synthesizing a Good Heat Exchanger Network

Based on the linear transportation problem P3 a computational proce-

dure is proposed to synthesize a good heat exchanger network. It is

essentially the solution method of a standard transportation problem which

is applied to get a very good solution to the network synthesis problem

P2. The algorithm consists of four steps whose goals will be clearly

stated while solving the seven-stream test problem shown in Table 1.

Step 1: Find the minimum heating and cooling utility requirements to meet
the specifications of the process.

Cerda et al. (1981) have described a method to carry out Step 1 even

if some of the feasible matches would have been forbidden. It consists in

solving the utility usage problem PI, which is a linear transportation

problem, using Dantzig's algorithm. As stated by the authors, an appropri-

ate ordering of rows and columns greatly increases the algorithm

efficiency. For the seven-stream test problem, the optimal tableau is

displayed in Table 4 where hot pseudostreams (except for the auxiliary

heating source) have been arranged in increasing number of infeasible and

forbidden matches while cold pseudostreams were ordered in decreasing

number of such matches. The optimum was reached by simply applying the

northwest corner rule (Dantzig, 1963).

Step 2: Compute the upper bounds U.. for each match (c.,h.).

For the seven-stream test problem, the tableaux to determine U.. for

all pairs (c.,h.) have been grouped in Table 5. Note that (c ,h_), (c.,h )

and (c,,h_) matches have upper bounds less than min(a.,b.) for the match.

U. = 236 for steam and any cold stream c. is limited to the minimum amount
In 1

found bv solving problem PI. All the values U.. and the corresponding cost

coefficients c.. are listed in Table 6.



14

Step 3: Invent a good initial feasible network design.

First, the auxiliary heating and cooling source capacities are

reduced to the limiting values required by a maximum energy recovery

network. If it remains in the tableau, the match (C,H) between the

utilities is forbidden.

In order to improve the quality of the initial feasible network

design, the ordering of the columns in the tableau will be somewhat

modified. At this step, the auxiliary heat source column should be placed

first in the tableau. When multiple heating sources are used, all the

columns including the utility columns are to be arranged in increasing

number of infeasible and forbidden matches. Similarly to PI, an initial

feasible solution to P3 is obtained through the northwest corner rule (see

Table 7). By merging the matches between the same pair (c.,h.) at

different temperature levels one obtains the simpler tableau also shown in

Table 7 from which an initial tplit network design can be derived (see

Part 3).

Step 4: Find the optimal solution to P3 by using the solution method of a
linear transportation problem.

In a linear transportation problem, there are usually at each

iteration several variables q., .0 whose introduction in the current solu-
1K, J&

tion will decrease the value of the objective function. All of them can be

detected from applying the transportation problem algorithm. As is usually

recommended, one should choose the one that produces the biggest improve-

ment to speed up convergence to the optimal solution. However, if there

are ties the following rules are given to break them; they should be used

in the order they are listed:

(1) P^3ce the variable q.. . „ into the solution that has the smallest

(2) Choose the variable q., located at the uppermost row.

(3) Pick up the variable qik -t at the rightmost column.
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For the test problem, the optimal solution to P3 is shown in Table

8. The merging procedure just mentioned in Step 3 permits one to draw the

unsplit acyclic network design depicted in Figure 1. As we shall discover,

Table 8 is not an optimal solution to P2. We now present how to discover

this fact and modify the solution to get an optimal solution to P2.

A New Relaxation of the Network Synthesis Problem

The "merged11 table in the lower left corner of Figure 1 suggests a

convenient relaxation of the network synthesis problem which provides a

precise J.owe.a bound on the number of active matches for a given network

design problem. Despite the fact we cannot guarantee that the optimum for

this relaxed problem is a feasible solution to P2, it sometimes happens.

In those cases, as its size will be much smaller than that of P2 the new

relaxation implies a fast way to find a minimum match solution with

maximum energy recovery by hand calculations, even for large problems.

When a subset of the linear constraints (2.1) or (2.2) is sub-

stituted for a single constraint that is the sum of them, a new math-

ematical problem is generated which is a relaxation of the original one.

Such a single constraint, called a surrogate constraint, is weaker than

the set of constraints it replaces. Therefore, each feasible solution to

the original constraint set also satisfies the surrogate constraint but

the reverse may not be true. By defining q. . as the amount of heat

exchanged in the match (c.,h.),

f o r
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a surrogate constraint can be generated from adding all the constraint

equations (2.1) or (2.2) which stand for pseudostreams that come ex-

clusively from the same h. (or c.) at different temperature intervals I

(or k). In this way, a new relaxation of P2 formed by "merging11 of

constraints is obtained that is given by:

C H

p2': Minimize

subject to

ij

C

q±j = K , for J-1,2,---;H (2«.1)

H

q * 0 , for i-l,2,..;,C (2« .3)

y - 0,1 , for i=l,2,"-,C (2« .5)
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b. is the amount of heat flow to remove from the hot stream h.,
J J

while a. is the quantity of heat flow to add to the cold stream c.. It may

happen that U.. < min(a.,b.) for certain matches (c.,h.). We saw this

for matches (c 1,h ?), (c4,h5) and (c4,h?) for our example 7 stream problem

(see Table 6). Therefore, if they are active (y..= 1), the corresponding

constraints (2'.4) are not already taken into account by (2f . 1) and (2'.2)

as for P2. Constraints (2'.1) and (2 • .2) only bound a match to be less

than min(a.,b.).

Ey ignoring the integer constraints on y.., we have a new "merged"

problem P2f which reaches its minimum when constraints (2'.4) are strict

equalities. That follows from Balinski's theorem because P2' is a partic-

ular type of fixed-charge transportation problem (Balinski, 1961). There-

fore, its value can be found by solving,

C H

P4: Minimize £ £ (1/U^) q±J

subject to the constraints (2f.l), (2'.2) and (2f.3) plus

where

^^ < min(ai,bj)}

If we want both problems P^ and P4 to have the same set of con-

straints on qi#, the upper-bound type constraints for those matches

(c^h ) with U. . < min(a.,b.) should be explicitly included in the formu-

lation of P4.
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For our seven stream problem the set II equals {(1,7), (5,4),

(4,7)} implying the constraints

q 1 ? ± 940 < min(946,1198)

q ^707 < min(1100,1256)

q4? ^ S S O ^ min(1100,1198)

are needed in addition to the usual transportation problem constraints

(2'.1), (2'.2) and (2'.3).

We remind the readers here of the problems defined so far to help

reduce confusion in what follows•

Partitioned problems

PI: Minimum utility problem, with streams partitioned.

P2:' Minimum match/minimum utility problem, with streams
partitioned.

P2: P2 but with integer constraints ignored on y...

P3: ¥2 with variables y., substituted out (alia Balinski).

Merged problems

P2 1: P2 but with merged surrogate constraints — i.e. streams not
partitioned. Leads to much reduced problem size.

P2 1: P21 but with integer constraints ignored on y...

P4: P21 with variables y.. substituted out.
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A Lower Bound on the Number of Positive Matches

P4 is a special type of transportation problem with upper-bound

secondary constraints. Being a linear programming problem, every vertex of

the convex constraint set of P4 is a basic solution with

((C-1)+(H-1)+N -1-d+s) positive q.., where s is the number of upper-bound

type constraints that hold at the vertex, d is the number of basic

variables q.. which are equal zero and Nir is the number of utilities

(steam and/or cooling water) required by a maximum energy recovery network

(Llewellyn, 1964). For non-degenerate basic solutions, d=0. In other

words, ((C-1)+(H-1)+N -1-d+s) is the number of linearly independent equal-

ity constraints at each vertex. For this kind of transportation problem,

it need not be true that the basic cells at any basic solution form a tree

in the standard transportation problem tableau. It is quite possible that

a loop appears in the optimal solution with one of its basic cells or

matches holding at its upper bound. The tableau in the lower left corner

of Figure 1 contains a loop: (c2,h ), (c2,h7), (c ,h ), (c ,h ) and back

to (c2,h5).

As the merged problem P2' is a particular version of the fixed-cost

transportation problem, it immediately follows from using Balinski's

theorem that an optimal solution to P21 is always an extreme point of the

constraint set of P4. Moreover, it is a particular extreme point where the

number of secondary upper-bound constraints that holds is as small as

possible. In the limiting case, none of such upper-bound constraints would

hold as equalities, and the optimal solution to P2 • would only have

((C-l)+(H-l)+Nu-l-d) positive matches q±..

Let us now consider the fully partitioned network synthesis problem

P2 aga.:\. Since P2f is a relaxation of P2, the lower bound on the

objective function of P2' , which is equal to ((C-1)+(H-1)+N -1-d+s), also
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is a lower bound for P2. Therefore, in the absence of degeneracy, the

lower bound on the number of matches coincides with the lower bound on the

number of heat transfer units proposed by Hohmann (1971), only if s=0.

Linnhoff and Flower (1978,a,b) reported two instances where even

stream splitting solutions had to consist of a number of units larger than

Hohmann1 s lower bound by one. One can interpret this to mean that d=0 and

s=l at the optimal vertices of both problems. In their paper, Linnhoff and

Flower (1978b) also remarked that "it is not impossible that heat loads of

a hot and a cold stream are equal to each other (or to the total load on

coolers or heaters), or residuals turn out to be equal to each other or to

original loads. In any one of these situations, the minimum number of

units is less than that suggested by Hohmann1 s rule.11 In other words, the

optimal solution can be a degenerate solution to P4, and that may happen

if a partial sum of a. is equal to a partial sum of b.. It should be

pointed out that the degree of degeneracy of the optimal solution can be

greater than one. Grossmann and Sargent (1978) reported an optimal solu-

tion for Problem 20SP1 which comprises one unit less than Hohmann's lower

bound.

Tree-Type Solutions to the Network Synthesis Problem P2

When the value of the network synthesis problem P2 is equal to

((C-1)+(H-1)+N -1-d), the corresponding feasible solution of P4 is a basic

solution or extreme point with s=0. In other words, it forms a tree and no

loops can be observed in the q..-tableau. If d > 0, one or more basic

cells in the tree are equal to zero. Such solutions will be called

tree-type solutions to the network synthesis problem P2. If s > 0,

the basic solution to the merged problem P4 derived from an optimal

soluti:" .-» to the fully partitioned problem P2 will contain a loop where one

of the oasic cells holds at its upper bound U*. . < min(a.,b.). Therefore:
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a) If the optimal solution to the fully partitioned, problem P3 has at

most ((C-1)+(H-1)+N -1) positive q.. then an optimal solution to the

network synthesis problem P2 may be found. Unfortunately, if the

optimal solution to P2 is a degenerate solution to P4 the only way to

guarantee the optimality of the solution is by finding and comparing

all of the tree-type solutions to P2.

b). If the optimal solution to P3 includes a loop when it is displayed on

the q. .-tableau (as happened here - see Table 8 and Figure 1), either

of these Lhree cases occurs:

1. No optimal solution to P2 is an optimal solution to P3. In other

words, none of them minimizes the objective function of P3. From

that, it follows that a tree-type solution to the network synthesis

problem P2 can be obtained by breaking the loop(s) in such a

feasible way that the objective function of P3 incaea^e^. For

any feasible solution to P3, the objective functions of both linear

transportation problem P3 and the merged problem P4 take on the

same values. This means that the loop(s) should be broken in such a

feasible manner that the value of the P4-objective function becomes

larger. Ordinarily, at most one or two loops are to be broken.

2. An optimal solution to P2 is an alternate optimal solution to P3.

In this case, the loop is to be broken in a feasible way but

keeping the value of the objective function of P3 or P4 unchanged.

3. An optimal solution to P2 is the optimal solution to P3 that has

been found. It contains a loop when displayed on the merged

. q~--tableau, but there is no feasible way to break it. One of the

positive matches on the loop holds at its upper bound U..

< min(a ,b.).
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Searching for an Optimal Solution to the Network Synthesis Problem:
The Reverse Stepping Stone Method

The Stepping Stone Algorithm (see part 1 of this series of papers,

Cerda et al., 1981) is a method to solve a standard transportation problem

like P3. It involves the forming and breaking of loops in the solution

tableau. The approach to finding an optimal solution is first to establish

an initial feasible solution to the problem where the active (basis) cells

form no loops. The Northwest algorithm will find such a solution.

Any inactive (nonbasis) cell which can complete a loop in the

tableau for the current solution is a candidate cell to bring into the

solution. To make this cell active requires increasing its value for

q., . To maintain the total heat delivered to the row (which is fixed to
IK, JX»

be a., ) the active cell which is in the row and also in the loop with this

previously inactive cell, must have its value for q reduced by the same

amount. Similarly the q for the active cell in the same column must be

reduced by this amount to maintain the fixed column total required by the

problem.

Continuing around the loop the cells must be alternatively increased

("getter11 cells) or decreased ("giver11 cells) to maintain all row and

column totals. A loop contains an even number of cells so getter and giver

cells are the same regardless of the direction one moves around the loop.

The "q11 for the previously inactive cell can grow until Mqlf for one of the

giver cells is reduced to zero. The newly formed zero valued giver cell

breaks the loop leaving an altered feasible solution which again contains

no loops.

Fortunately an easy calculation exists to assess whether introducing

an inactive cell will increase, decrease or leave unchanged the objective

function for the problem.
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Given a feasible solution containing no loops, one finds an inactive

cell whose introduction will reduce the objective function. A loop of

active cells is then found which passes through this cell. The cell is

grown until a "giver11 cell in the loop becomes zero. This new tableau

becomes the current feasible solution. The process is repeated until no

cell can be found which reduces the objective function. The process

terminates at the optimal solution (Rothenberg, 1979).

We are now going to define the Reverse Stepping Stone Method (RSSM)

to turn solutions to P4 which contain loops into tree-type solutions, if

possible. To break a loop one of its cells (i,j) must be deleted. Such a

cell (i,j) must be a giver cell. We define the "value11 of a loop

associated with a cell as the sum of costs of the getter cells minus the

sum of the costs of the giver cells. Then if the value of the loop is zero

for a certain cell (i,j), it is also equal zero for the rest of the cells

in the loop. If that happens, we are facing Case (b.2) where an optimal

solution to P2 is an alternate optimal solution to P3. On the other hand,

if the value of the loop is positive for a certain cell, then its

exclusion from the solution will lead to an increase in the value of

P3-objective function.

Given an optimal solution to P3, which contains a loop in P4, the

Reverse Stepping Stone Method proceeds as follows:

1« Determine whether or not a positive q. . in a loop should stay in the

solution. In other words, we should verify if the removal of q. . is a

feasible modification. Such a test is done on the small-size relaxa-

tion problem P4 where each cell corresponds to a match between process

streams or utilities. One knows that every q..-solution which is an

infeasible solution for problem P4 is also infeasible for the network
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synthesis problem P2. Therefore, if a positive q.. on a loop cannot be

blanked without violating the non-negativity or upper-bound con-

straints of P4 for the other matches in the loop, such a cell must

stay in the solution. When all of the matches in a loop are to stay.,

one of its positive matches q.. holds at its upper bound U..

<min(a.,b.) and it is very likely that any optimal solution to P2

will include a loop. Otherwise, we should go on to the next step.

2. The value of the loop is computed for an eligible positive match in

the loop whose exclusion still leads to a feasible solution to P4. If

it is equal zero, it is also zero for the other eligible matches in

the loop. If it is different from zero, it will also take on the same

value for the other cells in the loop which act as giver cells. For

the getter cells, the value of the loop is also the same but with

opposite sign.

If the P3-optimal solution only contains a single loop whose value is

different from zero, a tree-type solution to P2 could be obtained by

removing an eligible match for which the value of the loop is

po^Ltlve.. Usually, there is only. one. eligible match in the loop for

which the value of the loop is positive. The same conclusion is still

valid if the values of the other loops are equal zero.

If the P3-optimal solution includes loops with zero values, it is

recommended to remove from each loop the lowest cost eligible match.

Usually, there is only one for each loop. This rule comes from the

fact that the optimal solution to P3 is obtained by choosing always

the lowest cost cell if two or more cells not in the basis would

produce the same improvement in the objective function by introducing

any of them into the solution.
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If the P3-optimal solution contains more than a single non-zero loop,

to get a tree-type solution to the network synthesis problem P2, an

eligible match is to be removed from each non-zero loop in such a

feasible way that the sum of their loop values is greater than zero.

Non-negativity and upper-bound constraints for P4 serve to identify

infeasible moves easily. Although it is not a frequent case, the

number of different ways to break the loops is still very low.

3. After enumerating the distinct ways the optimal solution to P3 can be

transformed into a tree-type solution to the network synthesis

problem, the solution of a modified problem P3 will indicate whether

or not it takes the current solution away from the feasible region of

P2. In order to avoid new matches which are not part of the above set

coming into the solution, a very high cost coefficient is assigned to

each of them in the new P3. Furthermore, the match whose exclusion is

attempted is also priced very high, although less than the previous

ones. Now, the transportation problem algorithm is applied to the new

P3 with the current optimal solution acting as the initial solution.

If the new optimum comprises the same set of positive matches, the

procedure has failed to produce a tree-type solution to P2 and another

alternative should be tried. It is clear that we can sometimes derive

from the optimal solution to P3 more than a single tree-type solution

to the network synthesis problem.

Synthesizing an Optimal Solution to the Network Synthesis Problem P2

The implementation of the Reverse Stepping.Stone Method introduces a

new step in the synthesis algorithm already proposed:
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Step 5: Verify whether the optimal solution to P3 includes cycles when
represented in the q..-tableau. If so, apply the Reverse Stepping
Stone Method (RSSM) Vo get a tree-type solution to the network
design synthesis problem P2.

Figure 1 shows us that the optimal solution to P3 for our seven

stream example problem contains a loop involving streams c2, c<* h_ and

h_. The P3 and P4 problem costs for these active cells are found in Table

6: (c2,h^) 7.96(xlO~4), (c2,h7> 8.35, (c^hj) 10.64 and (c^*^) 10.57.

Alternate cells around the loop are "givers11 and "getters11; we are looking

for ones which the givers will i/icyie.a^e. the P3 objective. If (c2,h_) is a

"getter" the loop value is 7.96 - 8.35 + 10.64 - 10.57 = -0.32 and if

(c9,h-) is a "giver" the value is +0.32. Thus we need only consider the

latter where cells (c2,h5) and (c ,h ) are givers, with (c ,h ) the one

which will go to zero first. Thus (c ,h_) is our only candidate.

We price all inactive cells in problem P3 very high, we price

(c.,11-) not so high but high and resolve P3. The prices should preclude

any inactive cell from entering and should force (c ,h-) out if feasible

but leave it in if not.

Solving we find (c ,h_) is successfully removed, generating the

minimum match solution illustrated in Figure 2.

Note we have improved the objective function for P2 but had to

increase the objective function for P3 to do it. We used the reduced

problem P4 to screen out the alternatives we needed to consider.

Solving Related problems

—Frequently, control and safety constraints or other reasons rule out

certain matches between process streams. They should be kept out of the

network design by assigning to them very high costs. If additional

constraints are added to the statement of the seven-stream problem which
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indicate that the matches (co,hc) and (c,,h_) are forbidden, i.e. U(co,h )
2 3 6 / . z ->

= U(c,,h_) = 0, the optimal solution to the new problem P3 stands for the

tree-type network design depicted in Figure 3. In this case,, no loops

exist and thus the use of RSSM is not required. The formulation of problem

P2 can easily handle this kind of constrained network design problem.

The feasible region of problem P2 can be enlarged to include network

designs whose utility consumption is slightly higher than (an) or (b ) .
\j ro n m

One should change the constraint (2.2) and (2.3) for the utilities in the

following way:

C L

I I »ik,H «ik,H * < V »

and

H

whose Abu and Aa_ are arbitrarily selected small values,
n v*
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Searching for All Tree-Type Solutions
to the Network Synthesis Problem P2

By solving P3 and subsequently applying the Reverse Stepping Stone

Method, if necessary, one can usually find a single tree-type solution to

the network synthesis problem P2. However, we are interested in aXX of

the solutions to P2 that comprise at most the same number of active

matches as. the current best solution; i.e. all basic solutions to P4 which

are also feasible for P2 or P3. Thus, one not only synthesizes all

low-cost heat exchanger networks for a given problem but can find the

minimum cost network satisfying our assumptions as well.

In Figure 4, tableau 1 portrays the tree-type solution already found

for the seven-stream test problem through P3 and RSSM. We can generate a

new basic solution to P4 by bringing a non-basic match into the solution.

There are several alternatives: (c4,h5>, (c4,h7>, (c2,S) and so on. It may

happen, however, that the new basis is infeasible even for P4; i.e. it

violates its secondary upper bound constraints. If feasible for P4, the

new basis could require an additional amount of utilities.

We consider introducing an inactive cell. First we check problem P4.

The cell is grown in P4 until a giver cell is brought to zero in the loop

formed by introducing the inactive cell. If this change cannot be made

without violating one of the secondary upper bound constraints on P4, we

reject introducing this cell.

Next we check to see if introducing the new cell and deleting the

corresponding giver cell leads to an increase in the utilities required.

We do this step by solving problem PI after assigning very high costs to

(i) the active match to drive it from the solution, (ii) all the inactive

matches ( c , h.) except the one we are trying to introduce. That is, if

match (c.,h.) in P4 is inactive, then all matches (c.,,h ) in PI are
i J lk jt
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given high costs. To get a much better initial solution through the

Northwest corner rule, rows and columns in the Pl-tableau are to be

ordered as recommended for constrained heat recovery problems (Cerda et

al., 1981). Except for those involving utilities, highly priced matches

are ignored during the implementation of such a rule. Solving PI provides

a new tree-type solution for P2 and its minimum utility requirements in a

single step. Further studies on that solution are unnecessary if an

increase in the utility consumption is observed. Otherwise, the algorithm

to be proposed in Part 3 is applied to derive the network design structure.

To illustrate more fully the ideas, we consider Problem 5SP1.

The relevant data (Lee et al., 1970) , are shown in Table 9. A

complete description of the searching procedure to find all of its

tree-type solutions shown in Figure 5 is detailed in Tables 10 and 11.

Aimed at saving computing time the procedure includes an initial test

which verifies if any of the matches in the current basis (node 1) must

stay in it to keep the utility requirements at its minimum level. As

indicated in Table 10 putting (c ,h,) out of the starting basis makes the

utility consumption higher.

At the starting basis, node 1, there are four non-basic cells which

are candidates to enter the basis (see Table 11). The initial test (not

having (c.jh,) must increase utilities) rejects one of them, i.e. alterna-

tive (A.4). Another candidate (c^,h^) is discarded because bringing that

cell into the basis would violate one of P4-upper bound secondary

constraints. When each remaining, candidate (c~,H) or (c ,H) enters the

starting basis, a new one is generated by removing the smallest "giver11

cell in the cycle, i.e. (c^,H). Both new bases represent maximum energy

recovery network designs that are identified, as nodes 2 and 3 in the
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search tree depicted in Figure 5. After using tools given in Part 3 of

this paper, we will discover that node 2 stands for a network design which

requires the splitting of streams c and h^ and will require six heat

exchangers. We will also discover that, for therraodynamic reasons, it will

be necessary to accomplish match (c.,h,) in two units.

As said before, putting the nonbasis cell (c~,h-) or (c^h,) in the

basis is not studied. Sometimes, however, a new maximum energy recovery

basis is generated if both nonbasis cells enter the current basis in a

sequence. Such a solution would have never been found by the usual

procedure of entering a single nonbasis cell one at a time if by

themselves each would be rejected. This possibility may occur when one of

the candidates removes a basis match (c.,h.) whose upper bound U.. is

exceeded when one attempts to include the other candidate. We see this for

alternatives (A.4) and (A.3) where either removes the match (c ,h,) or

exceeds the upper bound constraint on that match. By doing (A.3) first,

then (c5,h.) enters the basis by replacing a match other than (c ,h,), and

the upper-bound secondary constraint for (c.,h,) ceases to be violated. In

(A.5) the match (c_,h2) is excluded instead of (c ,h,) and q(c ,h.) does

not exceed lUc^n,). See Table 11. The new maximum energy recovery basis

is called 4 in Figure 5,

Grimes (1980) proves that all solutions having positive heat loads

for each match are connected and may be discovered by the search procedure

being proposed here. The matches may not, however, be thermodynamically

feasible which relates precisely to our discovery that both matches

(c~, h2) and (c_, h.) get rejected but the two together do not. A complete

search must not reject a match because its precursor was rejected in the

search tree. .



31

In table 11 several ways have been used to reduce the search for all

maximum energy recovery bases. We just mentioned that an alternative can

be ignored due to either of the following facts:

(i) Violation of any of the upper-bound secondary con-
straints for Problem P4.

(ii) Increase in the minimum utility consumption when a
* basis match is not included in all starting bases.

Such a verification has been called the Initial Test.

(iii) Generation of a non-maximum energy recovery basis.

Other procedures were also employed in Table 11:

(iv) Avoid considering alternatives that would again put in
matches which were previously removed from the basis
somewhere along the branch connecting the root node
and the current node in the search tree. This avoids
generating the same node more than once.

(v) Avoid considering alternatives that would remove
matches which have been brought into the basis some-
where along the branch connecting the root node and
the current node in the searching tree. This avoids
moving backward along the branch and producing nodes
which belong to other branch in the tree.

(vi) In spite of (iv) and (v) a node could be generated
more than once and this node is then ignored.

The set of maximum energy recovery bases found by the search are

shown in Figure 5. Although there are six, only five of them were reported

by Flower and Linnhoff (1980).

Now, we apply the search technique to finish identifying all of

maximum energy recovery bases for a constrained version of the seven-

stream test problem. For control or safety constraints we assume that the

matches (c^'*1?) and (c1>h ) must stay out of the network. Moreover, we

require that (c^,h^) must be included in the heat exchanger network. These

requirements significantly decrease the number of alternatives which
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result. Returning to Figure 4, we find the search tree for this

constrained seven-stream problem. It includes 20 nodes. Using techniques

from Part 3 we find that 17 stand for unsplit networks comprising a mini-

mum number of units. Their total fixed costs are listed in Table 12. They

were evaluated based upon the design data used by Masso and Rudd (1969).

The lowest cost network, i.e. node 15, which is perhaps the best answer

for the unconstrained seven-stream problem, is depicted in Figure 6.

Clearly this is not the only useful information provided by Table 12.

Three other network designs have fixed costs higher than the lowest one by

at most 0.567o, an insignificantly small difference since costs are only

estimated approximately. Node 17 represents ah interesting design because

it could use a cheaper auxiliary heating source. Its temperature level

must be only 148 or higher (see Figure 7).
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CONCLUSIONS

1. A well-known mathematical model in Operations Research is proposed to

describe the heat exchanger network synthesis problem. Each of its

solutions represents at least a near-optimum network design* This goal

is achieved by analytically forcing the problem feasible region to

include only networks with maximum energy recovery and by selecting

the number of active matches as the objective function.

2. A solution procedure is presented which provides an optimal solution

to the mathematical model. Its implementation requires a relatively

small storage size and execution time even for large problems.

3. If the lowest cost network is an acyclic structure then it is an

optimal solution to the proposed model.

4. Since the problem solution space includes cyclic and/or split net-

works, this method will yield an answer even if such types of struc-

tures are needed to achieve maximum energy recovery.

5. If the network discovered is cyclic or includes stream splitting, then

an additional procedure to be introduced in Part 3 should be applied

to derive the network structure.

6. The new synthesis method has been applied to a seven-stream test

problem subject to several additional constraints. It yielded a

maximum energy recovery network whose total fixed cost is only 6.8%

higher than the optimum.
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7. A simple mathematical relaxation of the network synthesis problem

formulation is defined to help in the searching for all the other

optimal solutions to the synthesis model, even if they stand for

cyclic and/or split networks.

8. A well-defined search technique is presented to discover all of the

optimal solutions to the synthesis model and applied to problem 5SP1.

Only 15 alternatives should be considered before finding the six

optimal solutions. The method was also used to solve a constrained

seven-stream test problem yielding 17 unsplit network designs which

contain a minimum number of units.
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NOTATION

a. thermal energy flow required by the cold stream i, kw.

a , thermal energy flow at temperature level k required by the cold
stream i, kw.

b. thermal energy flow to be removed from hot stream j, kw.

b I thermal energy flow at temperature level A to be removed from

^ hot stream j, kw.

B. bottom temperature level of the cold stream i, dimensionless.

B. bottom temperature level of the hot stream j, dimensionless.

c. primitive cold process stream i, dimensionless.

c , primitive cold process stream i at temperature level k, dimensionless,

c . . - cost of shipping a single kw from heat source h. * to heat sink
* c C kw ^ •

C cold utility stream index; also cold utility stream.

C-l number of cold process streams, dimensionless.

F. heat flow capacity of the process stream i, kw/°C.

h. primitive hot process stream j, dimensionless.

h.^ primitive hot process stream j at temperature level -£, dimensionless.

H hot utility stream index; also hot utility stream.

H-l number of hot process streams, dimensionless.

mik \l t i n a r y coefficient which indicates whether the match (h., ,c^)

>J is thermodynamically feasible, dimensionless. lKp &

q thermal energy flow exchanged in the match (c ,h ), kw.

q., .g thermal energy flow exchanged in the match (c#, ,h.j), kw.

T. top temperature level of the cold stream i, dimensionless.

T. top temperature level of the hot stream j, dimensionless.

U{ i upper bound on the thermal energy flow exchanged in the match
3 (Vhj), kw.

y. . binary variable which indicates whether the match (c.,h.) is ac-
^ complished in the heat exchanger network, dimensionless^
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