Representation of faithful normal expectations in von Neumann algebras

Andre De Korvin
Carnegie Mellon University
REPRESENTATION OF FAITHFUL NORMAL EXPECTATIONS IN von NEUMANN ALGEBRAS

A. de Korvin

Report 67-35

October, 1967
Introduction.

Let G and IB be two C^* algebras with identity. Suppose $8 \in G$. Let φ be a positive linear map of G on IB such that φ preserves the identity and such that $\varphi(BX) = B\varphi(X)$ for all B in IB and all X in G. φ is then defined to be an expectation of G on IB. The extension of the notion of an expectation in the probability theory sense, to expectations on finite von Neumann algebra is largely due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers an expectation on von Neumann algebras to be a projection of norm one. If φ is an expectation in the sense $\varphi(BX) = B\varphi(X)$, φ positive and φ preserves identities, then $\varphi(XB) = \varphi(X)B$ for all X in G, B in B. IB is the set of fixed points of φ. By writing $\varphi[(X - (\varphi(X))^*(X - (\varphi(X)))] \geq 0$ we have $\varphi(X^*X) \geq \varphi(X)^*\varphi(X)$. In particular φ is a bounded map.

Let h and k be two Hilbert spaces, $h \odot k$ will denote the tensor product of h and k. Let G be a von Neumann algebra acting on h, by an ampliation of G in $h \odot k$ one means a map ij of G in $L(h \odot k)$ such that $S(A) = A \odot I$, where I denotes the identity operator on k. The image of G by an ampliation is then a von Neumann subalgebra of $L(h \odot k)$. In what follows CT will designated the image of G by an ampliation 0 and \tilde{A} will stand for $i)(A)$.

In this paper expectations of a particular type are considered. If IB is a subalgebra of G and if IB is the range of a faithful, normal expectation φ defined on G, then it will be shown that
there exists an ampliation of G in $h (D \mathcal{L})$, independent of B
and of φ, such that $\varphi 0 I_k$ is a spatial isomorphism of S
This result extends a result by Nakamera, Takesaki, and Umegaki [2], which consider the case when G is a finite von Neumann algebra.

Definitions.

Let M and N be C* algebras and φ a positive linear map
of M on N. Let M be the set of all $n \times n$ matrices whose
entries are elements of M, call those entries A_{ij}. Define for
each n, $\varphi^*(A_{ij}) = (\varphi(A_{ij}))^*$ and φ^n is then a map of M on N.

φ is called completely positive if each φ is.

Let G and \mathcal{B} be two von Neumann algebras, with $G \subset \mathcal{B}$. Let
φ be an expectation of R^∞ on G. φ is called faithful if for
any T in G^γ, $\varphi(T^\gamma) = 0$ implies $T = 0$. Let A^α be a net of
uniformly bounded self adjoint operators in G. φ is called normal
if $\sup_{\alpha} \varphi(A^\alpha) = \varphi(\sup A^\alpha)$.

The ultra-weak topology on G will be the weakest which will
make all $E_w (A) = L(Ax_i, y_i)$ continuous where $S||x_i||^2 < \infty$
and $S||y_i|| < \infty$. In what follows if N is arbitrary von Neumann
algebra, $N^\mathcal{T}$ will denote the commutant of N. If h is any Hilbert
space, $\dim h$ will denote the cardinality of the dimension of h.

Proposition 1.

Let M and N be two von Neumann algebras acting on h^M
and $h^\mathcal{N}$. Let φ be a * isomorphism of M on B. Let k be a
Hilbert space such that $\dim k >_\mathcal{N} \max (\dim h^M, \dim h^\mathcal{N})$, then
$\varphi \otimes I_k$ is a spatial isomorphism.

This theorem says that there exists a isometry V of $M \otimes k$ on
$h \otimes N$ such that $\varphi \otimes I_k (A \otimes k) = (\varphi(A) \otimes k) I_k = V (A \otimes I_k) V^\gamma (= V^\gamma V^\star)$. Tomiyama has shown this result in [5].
Proposition 2.

Let M and N be two C*-algebras with identities. Let ψ be an expectation of M on N, then ψ is completely positive. This result was shown by Nakamura, Takesaki, and Umegaki in [2].

One of the tools for the proof of the theorem will be the Stinespring construction which is given in [3] and which will be sketched here for completeness sake.

Let M be any von Neumann algebra acting on h. Let $M \otimes h$ denote the tensor product of M and h as linear spaces. Let N be von Neumann algebra of M which is the range of a faithful, normal expectation ψ. On $M \otimes h$ define an inner product by:

$$<T^i \otimes x^i, I^j \otimes y^j> = I^{\psi(x^i y^j)}$$

where $a_i \otimes x_i$ are in M, $b_j \otimes y_j$ are in h and where (\cdot) denotes the inner product in h. Now:

$$\sum_{i, j} (a_i^* x_i, y_j) = (I^{a_i^* x_i} I^{a_i x_i})^{\psi}.$$

Let A be in M_n with $\cdot A^* j = a_j^* a^*$ then if $x = (x_1, x_2, \ldots, x_n)$

$$(A x, x) = \sum_i (a_j^* a_i x_i, x_i) \geq 0.$$

By proposition 2,

$$\sum (a_j^* a_i x_i, x_j) \geq 0.$$

Hence the product defined on $M \otimes h$ is bilinear and positive.

However it is possible to have $<\xi, \xi> = 0$ with $\xi \neq 0$. Divide
out the space $M_0 h$ by all vectors of norm zero. Then taking
the completion of that space, one obtains a Hilbert space which
will be denoted $M_Q h$.

Lemma 3. h is imbedded as a Hilbert space in $M \otimes h$.

Proof: In fact we shall show that h is isomorphic to $N \otimes h$.

Let $a_i, i = 1, 2, \ldots, n$ be operators in B, consider the map

$$S : \bigotimes_{i=1}^{n} a_i \otimes x \mapsto \bigotimes_{i=1}^{n} a_i x.$$

then

$$< \bigotimes_{i=1}^{n} a_i \otimes x, \bigotimes_{i=1}^{n} a_i \otimes y >$$

$$= \bigotimes_{i,j} (\phi(a_i^* a_j) x_i, x_j)$$

$$= \bigotimes_{i,j} (a_i^* a_j x_i, x_j)$$

$$= S(a^\wedge a \otimes x, x)$$

$$= \left(\sum_{i=1}^{n} a_i x_i \right)$$

Hence S is an isometry of $N \otimes h$ on h. In particular then,
once can view h as a subspace of $M \otimes h$.

Lemma 4.

ϕ defines a self adjoint projection E of $M \otimes h$ on $N \otimes h$.

Proof: Let $a_i, i = 1, 2, \ldots, n$ be operators of M. Define

$$E(\sum_{i=1}^{n} a_i \otimes x_i) = \sum_{i=1}^{n} \phi(a_i) \otimes x_i$$

the proof in [2] shows that E is a well defined self adjoint
projection of $M \otimes h$ on $N \otimes h$. Recall for example how self
adjointness is checked out.

\[\langle E(\sum_{i} a_i \otimes x_i), \sum_{j} b_j \otimes y_j \rangle = \langle \sum_{i} \varphi(b_i^*) a_i x_i, y_j \rangle = 1 \]

\[= \sum_{i,j} (\varphi(\varphi(b_j^*) a_i) x_i, y_j) \]

\[= \langle \sum_{i} a_i \otimes x_i, \sum_{j} \varphi(b_j) \otimes y_j \rangle = \langle \sum_{i} a_i \otimes x_i, E(\sum_{j} b_j \otimes y_j) \rangle \]

Lemma 5.

There exists an ultra-weakly continuous representation \(I \) of \(M \) in \(L(M^{\otimes i}) \) such that \(t(b) E = El(b) \) for all \(b \) in \(N \).

Moreover if \(h \) and \(N(2) h \) are identified by the isometry \(S \) of lemma 3, then \(\varphi(a) = El(a) E \) for all \(a \) in \(M \).

Proof: For each \(a \) in \(M \) define

\[I(a) (\sum_{i} a_i \otimes x_i) = \sum_{i} a a_i \otimes x_i. \]

\(I \) is then a representation of \(M \) in \(L(M^{\otimes h}) \). Let \(b_i, i=1,2,\ldots,n \) be operators in \(N \) then:

\[Et(a)(\sum_{j} b_j \otimes x_j) = E(\sum_{j} ab_j \otimes x_j) \]

\[= \sum_{j} \varphi(a) b_j \otimes x_j = \varphi(a) (\sum_{j} b_j \otimes x_j) \]

identifying \(\sum_{j} b_j \otimes x_j \) with \(\sum_{j} b_j x_j \). this shows that \(Ef(a)E = \varphi(a). \)

Let \(b \) be in \(N \) then

\[t(b) E(\sum_{i} a_i \otimes x_i) = t(b)(\sum_{i} \varphi(a_i) \otimes x_i) \]

\[= b \varphi(a_i) 0x_i = Et(b)(\sum_{i} a_i \otimes x_i). \]
So \(l(b)E = Ep(b) \), for all \(b \) in \(N \). To show now that \(I \) is u. W. continuous. Let

\[
\xi_k = \sum_{i=1}^{n_k} a_i^{(k)} \otimes x_i^{(k)} \quad \text{and} \quad \eta_h = \sum_{j=1}^{n_h} b_j^{(h)} \otimes y_j^{(h)}
\]

with \(\sum C_k \| \| < \infty \) and \(\| \| \| Y \| \| h \| \| < \infty \). Let \(\alpha \) be a net converging u.w. to \(a \) in \(M \). Then it is sufficient to show that \(A \) tends to zero where

\[
A = \sum_{k,h} \langle \lambda(a - a'n) \xi_k , \eta_h \rangle.
\]

We have

\[
A = \sum_{k,h} \left(\sum_{i,j} \left(\sum_{j} a_i^{(k)} (a - a'n) a_j^{(k)} \right) \right) \left(\sum_{j} b_j^{(h)} \otimes y_j^{(h)} \right) \left(\sum_{i} \sum_{j} \left(\sum_{i} a_i^{(k)} (a - a'n) a_j^{(k)} \right) \otimes x_i^{(k)} \otimes y_j^{(h)} \right)
\]

Now \(\left(\sum_{i} a_i^{(k)} (a - a'n) a_j^{(k)} \right) \) tends to zero u.w. As \(\langle \rho \rangle \) is normal, \(A \) tends to zero. Let \(N \subset M \) be two von Neumann algebras acting on \(h \). Let \(\rho \) be a faithful, normal expectation of \(M \) on \(N \).

Proposition 6.

There exists a Hilbert space \(k \) such that:

1. \(h \) can be imbedded in \(k \)
2. There exists an u.w. continuous representation \(I \) of \(M \) in \(L(k) \) such that \(\rho(A) = p_t(A)p \), where \(p_t \) is the projection of \(k \) on \(h \).
3. \(t \) is \(a^* \) isomorphism.
4. \(p \) commutes with all \(I(b) \) with \(b \) in \(N \).

Proof: Let \(k = M \otimes h \), if \(I(a) = 0 \) then \(t(a^*a) = 0 \) so \(\rho(a^*a) = 0 \).
By faithfulness of $\langle p \rangle$ this implies $a = 0$. Hence I is a * isomorphism of M in $L(k)$. The rest of proposition 6 is a restatement of lemma 5.

Theorem 7.

There exists an ampliation of M in $h \otimes k$ such that if $^* \subseteq Y$ von Neumann subalgebra of M which is the range of JL faithfully normal expectation $\langle p \rangle$ then there exists an isometry V in $(N \otimes I_k)^f$ such that $\langle p \otimes I_k, \widetilde{\alpha} \rangle = V \tilde{V}^*$, $VV^* = I$. Then putting $V^*V = P$, then J^*s in $(N \otimes I^f)^i$, $\langle p \otimes I, \alpha \rangle P = P \tilde{P}$. For all * positive, $\tilde{P} = 0$ implies $\tilde{\alpha} = 0$.

Proof: Let s be a Hilbert space with cardinality greater or equal to the maximum of x_1 and cardinality of a Hammel basis of $M(x)^h$. Define $T(\tilde{\alpha}) = i(\alpha)0I_s \otimes s = \langle p \otimes I, \tilde{\alpha} \rangle$. Then:

$\tilde{\varphi}(\tilde{\alpha}) = (P, (x)1_s)T(\tilde{\alpha}) (P \otimes I_s)$. By proposition 1, X is spatial, there exists an isometry U of $h \otimes s$ onto $k (x) s$ such that $\tilde{\varphi}(\tilde{\alpha}) = U(\tilde{\alpha})U^*$. Hence

$$\tilde{\varphi}(\tilde{\alpha}) = P_{h \otimes s}U(A \otimes I_s)U^*P_{h \otimes s}$$

where $P_{h \otimes s}$ denotes the projection of $k \otimes s$ on $h \otimes s$. Moreover $P_{h \otimes s}$ commutes with all $\tilde{\alpha}B$ as B ranges over N (proposition 6). So $U^*P_{h \otimes s}U$ commutes with all \tilde{B} for B in N.

Let $V = P_{h \otimes s}^e$ then $W^* = P_{h \otimes s}$ (= $I_{h \otimes s}$) * Define $V^*V = P = ^*P_{h \otimes s}U$. Then P is in $(N \otimes I_s)^i$. So $\tilde{\varphi}(\tilde{\alpha}) = V \tilde{V}^*$ for all A in M; Claim: V is in $(N \otimes I_s)^i$. Let B be in N $\tilde{B} = \tilde{\varphi}(\tilde{B}) = V \tilde{V}^$ so $V^*B = P\tilde{B}^* = \tilde{B}P^V = \tilde{B}V \otimes s$ so V is in N. Now
\[\text{PAP} = V^*V\tilde{\phi}(\tilde{A})V \]
\[= V^*(\tilde{\phi}(\tilde{A}))V \]
\[= V^*V\tilde{\phi}(\tilde{A}) = P\tilde{\phi}(\tilde{A}) \text{ Also,} \]

\[\tilde{\phi}(\tilde{A}) = \tilde{\phi}(\tilde{A})V^*V \]

Let \(\tilde{P} \) be now the central carrier of \(P \), \(I - P = (I - \tilde{P}) = (I - \tilde{P})P \) then \(0 \). So \(\tilde{P}^* = I \). Hence if \(A(\tilde{B}) = P\tilde{B}\tilde{P}^* \) then \(\tilde{P}^* = I \). By faithfulness if \(A \) is positive \(A = 0 \).
References

Carnegie-Mellon University-
Pittsburgh, Pennsylvania