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al gorithmhas proved to be
extrenely fast and robust for small optimm power flow
problens (of the order of 100 buses). However,
at full size problens (of the order of 1000 buses).
paper devel ops a class of deconpositions to break |arge
probl ens down to sizes the Han-Powel| algorithm can
confortably tackle. Fromthis class we select one nem
ber - called the Super Hybrid - that seens to work best
and describe it in detail.

| . | NTRCDUCTI ON

Abstract - The Han- Powel |

1.1. _ Optinum Power Fl ows

The general form of an optimm power flow problemis:
(OPF): Mn f(u,x)
u, X
st: g(u,x) > 0 (1)
h(u,x) » 0 (2)
wher e:
f is some cost of running the power system

U eR* is a vector of variables whose val ues are con-
trolled by regulators. The set points of these
regul ators can be adjusted by the system opera-
tor, u consists largely of the real power out-
puts and vol t age magni tudes of generators, trans-
fornmer tap positions and |oads that can be con-

n tinuously managed, mis typically of order 100.

x eR is a set of state variables consisting |argely
of the reactive powers and vol tage angl es of
generators and the voltages (nagnitudes and an-
gl es) at non-generator buses, nis typically

Af  order 1000.

g0 R +RY% The inequalities in (1) represent the
systens operating constraints - equiprent rat-
ings and recommended practices. Typically g
contains strongly nonlinear elenents.

H R™* -*n, The equalities in (2) are the systenms
power flow equations. They are nonlinear but
only mildly so.

For further details on Qoti mumPower Fl ows see [1],

1.2 Mre Notation
T denotes transpose

T K

4

it bal ks
Thi s

Au and Ax are changes in u and x.

Al and Ax are values of Au and Ax that define a | ocal
direction-of -novenment that woul d be profitable to
pursue in seeking an inprovenent to the incunbent
estimate of the solution of (OPF).

f> T Gu» S&» M, and by are first dorjyatives of f,

g and h with respect to u' and x'.

ais a step length

y and X.are vectors of Lagrange multipliers

£ - f-y'g-X'h,is the Lagrangian of (CPF)

fz and £,2?°"i «t derivatives of f and £ with res-
pect to z'.

V£ is the reduced gradient of £ with respect to u'.

Q is a positive definite approxi mation to the second

derivative of £ with respect to z.

abd o are Partitions of Q COI‘I’ESpOI’]di ng

Auu' Aux't o Wi
to u and x.

w (.) is a formula for updating the value of Q
T T

f%» **| *e¢ @ Deconposition Point - a point used in
converting a large quadratic programmng problem
to a smaller one. .

a, B, C d are coefficients of the reduced quadratic
pr ogr ammi ng probl em :

<0{.) Is a test function used in linear searches

N is the nunber of iterations needed to reach an opti-
mal sol ution.

Nis the value of N for the Han-Powel | al gorithm

Subscripts: In dealing with iterations and the seg-
uences of estinates they produce, we will primrily
be concerned with a wi ndow fromwhi ch one can see
three successive estimates - the incunbent estimate,
its immedi ate predecessor and its inmediate succes-
sor. No subscript will be attached to the incunb-
ent estimate. Its immediate predecessor will be
identified by a "-" subscript, its immediate suc-
cessor by a™+M  For exanple, the three estimates
of uin order are: u_,u and UV

This is a Quasi Newton (Variable Metric) algorithm
that was suggested by Han [3], [4] and refined by
Powel | [51, [61. As we shall see, it has sone feat-
ures that make it attractive for optimmpower flows.
First, however, we will outline the algorithms steps.

In each iteration of the Han-Powell algorithm the
Incunbent estimate , [u',x"], to the solution of (OPF),
is Inproved by taking a step of length a in a direct-
i on-of -novenent, [Au', AxT]. The new and I|nproved
esti n%te is given by:

Lys-g - [uh X7 + a[ AT, AXT]

The direction-of-noverent is found by solving a
Quadratic Programmng Problem The objective of this
problemis a second order approximtion of f. The
constraints are first order approximations to g and
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h. Specifically, this problem is:
(QPP): Min f Au + £ Ax + %[Au’,Ax"] Q [AuT,axT)T (3)

Au, Ax
st: g + Gu Au + GxAx >0 (4)
h+EuAu+HxAx-O : (5)

In the first iteration Q is set equal to unity. Sub-
sequently its value is updated with derivative infor-
mation and a formula that maintains Q's positive def-
itnetness. The formula is given in detail in the
Appendix. It has the form:

Q+ = w(Q, z, z_, lz, lz ) (6)
The step size, a, is chosen so that it produces a
decrease in a test function, ¢(a), along the direction-
of-movement. One form that this test function can

take is given in the Appendix.

1.4 Strengths and Weaknesses -
The advantages and most attractive features of the
Han-Powell algorithm are:

1. It is fast. In tests on difficult problems it
seems to converge much more quickly than competing
methods [7], [8]. It tends to be especially fast
on heavily constrained problems. In fact, as the
number of active comstraints, M, approaches the
number of variables, mimn, the convergence approach-
es a quadratic rate. In the extreme circumstance
of M = min the algorithm devolves to Newton's meth-
od for solving the active constraints. This close
relationship to Newton's method is particularly
desirable in view of the success that Newton's
method enjoys in tackling power system equations.

2. It is robust. The Quadratic Programming Problem
in each iteration tends to force convergence even
under adverse circumstances such as profoundly
infeasible starting points or problems whose Lag-
rangians have second derivatives matrices with
large negative eigenvalves.

3. It is logically straightforward and therefore, is
easy to program.

4. As with other Quasi-Newton methods, it automatic-
ally provides the information with which to de-
termine the sensitivities of the optimal solution
to variations in arbitrary parameters. For de-
cision makers and analysts these sensitivities
can be as useful as the optimal solution.

The disadvantages of the algorithm are:

1. I1f, for some reason, the algorithm stops before
reaching an optimal solution, its last computed
estimate may not even be feasible. The reason is
that the algorithm often approaches the optimal
solution from outside the feasible region.

2. The square matrix Q, which is used in (QPP), is
nonsparse and its dimensions are equal to mim,
the number of variables in the problem. For pro-
blems with large numbers of variables (say 1000 or
more) the Q-matrix is difficult, if not impossible,
to deal with in (QPP).

The first disadvantage can be serious if very large
amounts of computer time are involved. However, with
power system problems we envision running times that
are small enough so that the occasional need to rerun
a program is not a matter for great concern.

The second disadvantage, however, prevents the Han-
Powell algorithm from being used on full sized optimum
power flow problems. The rest of this paper will be
devoted to finding decompositions that eliminate the
second disadvantage.

II. DECOMPOSITIONS

II.1 A General Framework

We consider here a class of decompositions that re-
placs (QPP), the quadratic programming problem in mtn
variables, with a much smaller problem, (RGPP), in
only m variables. The reduction is achieved by using
the equality constraints in (OPF) to eliminate the
state variables, x. The reduction is repeated at each
iteration of the overall algorithm. Specifically, the
steps involved in each iteration are:

Step 1: Select a point [uz,xfl which will be called
the Decomposition Point. This point could,
but does not have to, be the same as the in-
cumbent estimate [ul,xT].

Step 2: Linearize the equality constraints about the
Decomposition Point and express changes in x
in terms of changes in u as follows:

-1
Ax = - Hx [HuAu + h] N

Step 3: Select the coefficients, a,B,C,d of the re-
duced quadratic programming problem:

(RQPP): Min aTAu + %AuTBAu
Au

st: CAu > -d

Step 4: Find the solution, Au, of (RQPP)

Step 5: Substit*te Au in (7) to get Ax. The vector
[Ag?, Ax"] is the direction-of-movement. Now
proceed to find a step length and a new esti-
mate to the overall solution as in the full
Han-Powell method.

Observe that variations among members of this
class of decompositions are confined to the manner in
which the Decomposition Point and the coefficients,
a,B,C,d are chosen.

In the remainder of this section we will examine two
existing decompositions and then proceed to synthesize
an improved decompositionmn.

II.2 The BLW (Berna, Locke and Westerberg)
Decomposition [8].

The necessary conditions for a solution of (QPP)

are:
T T
Quu qu Gu Hu Au -fu
T T
qu Gx Hx Ax ] = -f
X
Gu Gx 0 0 -u _?_ -g
Hu Bx 0 0 “-A | = -h (8)
. p T - o
T
W' [G AutG Axtg) = 0
U > 0

If we eliminate Ax and A from (8) we get:

B C} {Au = |-a
9)

c o {l-u > |-d

where:

T e ou T -T -1

a t fxaxlnu -hE I, - Q. H, B o
- - gTg~T - _ aly -T,

B -y - BT, - (0 - HE T R, ab




C-G,- @;:“u (12)

d«g - Gxﬁ';lh (13)

Notice that (9) has the sane structure as (8).
Thus, (9) can be thought of as a set of necessary con-
ditions for another and smaller quadratic program ng
problem nanely, (RQPP). This observationis the
basis of the BLWDeconposition. Specifically, the
Deconposition Point is chosen to be the same as the
incumbent estimate and (BQPP)'s coefficients are cal-
cul ated fromexpressions (10) - (13).

In exact arithmetic the BLV Deconposition produces
the same results, iteration by iteration, as does the
full Han-Powell algorithm Mbst other deconpositions
converge more slowmy, especially fromdistant start-
ing points.

The main di sadvantage of the BLV Deconposition is
that it reduces but does not conpletely elimnate the
usage of the Qmtrix. While this matrix does not ap-
pear in (RQPP), it is used inits entirety in calcul-
ating the coefficients of (RQPP). It would be better if
one did not have to deal with the Qmatrix at all.

1.3 The Reduced Gadient Deconposition

Thi's deconposition has been widely used in a vari-
ety of ways and with a variety of nonlinear program
m ng nmethods, e.g. [10], 111]. In our context, the
deconposition has two key features:

(a) The Decomposition Point is chosen to satisfy
the equality constraints. This is done by
setting u*u and finding xa so that

h(u,x*) - 0 (14)

(b) The coefficients of (RQPP) are calculated dir-
ectly fromreduced gradient information. The
Qmtrix is not used.

The reduced gradients that we speak of here are
first derivatives.with respect to u in an mdinension-
al subspace of R*  Specifically, the subspace is
the mdimensional hyperplane that is tangent to the
equality constraints at the Deconposition Point.

The intent of using reduced gradients is to effect
a reduction in the size of (QPP) by projecting (QPP)
into the hyperplane.

Points in the hyperplane are given by x ¢ x* + AX
and y * y* + Ay where:

H AU +H_ Ac- 0 (15)

where H, and H, are evaluated at the Decomposition
Point. The projection of (QPP) into the hyperplane
is done in tw steps. First, (15) is used to elimn-
ate Ax fromal| but "the quadratic termin (QPP)s Se-
cond, the quadratic termis replaced with the term

h Au=BAu. B is a positive definite approxi mtion to
the second derivative of £ in the hyperplane. How-
ever, instead of first calculating-Q and then pro-
jecting it into the hyperplane, B is obtained by dir-
ect updating with formula (6) and reduced gradient
information. The results of these two steps yield
expressions for the coefficients of (RQPP). The ex-
pressions are given below (except where otherw se sp-
ecified, the quantities in the right hand sides nust
be evaluated at the Deconposition Point).

aT..fu*fX H;lHu_jX H;lh ' (16)

fu -fx H' Hy because h«0 (16a)

B«w(B_, u, u_, VEE’ vuf) (17)
=1

C.G, .6y B H, , (18)

-1
GH h (19)

(19a)

d= S-
= g because h - 0
The advantage of the Reduced G adient Deconposition

is that it elinminates all need to deal with the Q
matrix. However, it has two najor disadvantages:

» It expends a good deal of effort
to find Deconposition Points

in attenpting

. It can be slowto converge. Cccasionally, it
will fail to converge on problens that the full
Han- Powel | handl es wi th ease. Consider, for in-

stance, a problemin two variables with the con-
straint:
u2 + xz «4 and a starting point of u«5, x-5.

The first Deconposition Point sought by the
Reduced G adi ent Deconposition does not exist so
the deconposition fails. Another exanple in
five variables is given below [5]:

X1 %a%a"1 %2

(EX): Mne
st: x4y pxZ+ul+ul- 10 =0
. 17 X2+t7%3 717 V2

XXy - 5u1u2-0

3 3

zl+:|:2+1-0
with a starting point of x-,» -2, xg = 2, Xy= 2, U, =
-1, ur " -1. Thisis adi#ficult problemtd sol ve
and so is useful in testing methods. The Han- Powel |

algorithmsolves it quite easily but the Reduced G a-
di ent Deconposition fails.

|1.4 Towards More Efficient Deconpositions -

The total effort expended in solving (OPF) is de-
termned by the product of J and N where J is the
average effort expended per iteration and Nis the

nunber of iterations needed to reach an optinal sol -
ution.
J can be kept small by ensuring that: (1) no ef-

fort is expended in separating the Deconposition Point
fromthe Incunbent Estimate and (2) the Qnmatrix is
not used in calculating the coefficients of (RQPP).

N shoul d not be nmuch larger than N the nunber of
iterations required by the full Han-Powell. Qher-

wi se, the deconposition |oses much of its appeal as an
alternative to the full Han-Powell.
In attenpts to keep both J and N small, it has been

suggested [12], [13] that the Deconposition Point be
picked as in the BLV nethod (i.e. coincident with the
Incunbent Estinate) and the coefficients of (RQPP) be
calculated with expressions (16), (17), (18), (19)
fromthe Reduced Gadient method. W will call the
resul ting decomposition the Hybrid. It works well on
some probl ens but poorly on others, including (EX).
The followi ng observations provide sone clues to why
this happens and also contain the ingredients for a
nore robust deconposition.

(i) For the full Han-Powell algorithmto work well
Qnust be positive definite [14].

(il) In exact arithmetic and beginning with the
sane starting point, the full Han-Powel |l and
the BLV deconposition produce identical se-
quences of estimates to a solution of (OPF).

(iii) By conparing expressions (10) - (13) with (16)
- (19) we see that the BLV and Hybrid decom
positions differ only in the values they use
for a and B. These differences disappear when
the following conditions are satisfied.




Qe - HE H.;T =0 (20)
H He H-

% - Bagbria t f x G (21)

wher e waid is the value of B conmputed from

(17). Therefore, we can think of the Hybrid
Deconposition as being a BLW Deconposition in
which the Qmtrix has been chosen so that
(20) and (21) are satisfied. But it may not
be possible to make this Qmatrix positive
definite. This may be why the Hybrid Decom
position sonetinmes performs poorly.

Both analysis [14] and enpirical evidence [15]
suggest that sone pieces of the second deri -
vative information in Q are more inportant
than others. Suppose that z is partitioned
into u* and x* so that the variables in x*

are used to satisfy all the active constraints
at the optimal solution of (OPF). Then the
dinension of u' is the degrees of freedom
left tomnimze f. It happens that the dia-
gonal bl ock Q,j u contains the information

most inportant to the Han-Powel | algorithm
The information is Q?t and Q',*, is less

important. The information in Q»w» is un-
important. (This is partially illustrated by
the extrene case in which there are as many
equality constraints as variables in z. Then
x' * z; the Han-Powel| al gorithmdevolves to
Newton's nethod for solving the equalities;
and Q exerts no influence on performnce).

Since u' is a subset of u, we can arrange to pre-
serve the nost inportant second derivative infornmation
by retaining Q and discard the contents of the other
parts of Q and'Meplace themwith entries that add no
conput ational burden but keep Q positive definite.

One way to do this is with a procedure we will call
the Super-Hybrid Deconposition and describe bel ow.

1.5 The Super Hybrid Deconposition
The essential steps of this deconposition are:

(a) Choose the Incunbent Estimate as the Deconposition
Poi nt .

(b)  Set %: =1

- T -
g ™ Wy = 0

(c) Update Qu, with either gradient or reduced grad-
ient information (close to a solution the latter
seenms to work a little better).

(d) Evaluate a, B, Cand d fromexpressions (10) (13)

and then proceed as with either the BLWor Reduced
G adi ent Deconposi tions.

The details of an algorithmthat incorporates this de-
conposition are given in the Appendix. _

The Super-Hybrid is attractive because its effort per
iteration is low- the reasons are sunmmarized in Table
| - and because it seens to converge at least as fast,
often faster, than other deconmpositions that do not use
the full Qmtrix. For such deconpositions, problem
(EX) provides a very severe test. Notice, fromthe
results given in Table Il, that the Reduced Gadient and
Hybrid deconpositions fail when applied to (EX), but the
Super - Hybri d manages to converge, albeit linearly. On
| ess demanding probl ems, including optinmum power flows,
the Super-Hybrid seens to converge as fast as the full
Han- Powel | ¢

Finally, we note that the performance of a deconpos-
ition, particularly in regions far froma solution, seems
to be nuch nore sensitive to the manner in which the a-

coefficient is calculated than the way in which B is up-
dated. The best performance is obtained by using the
BLWs expression, (10), for calculating a.

I11. TEST RESULTS

I11.1 The Inportance of Full

How many Iterations will a nonlinear progranmm ng
method take to solve a given problen? Usually, the
best that theory can do in attenpting to answer this
question is tell us what the method's convergence rate
is and whether -it has quadratic termination. (The Han-
Powel | nmethod is superlinearly convergent and does have
quadratic termnation). Convergence rates tell us how
the method will behave close to a solution but not far
away. Methods with quadratic termination will take at
nmost Miterations to solve unconstrained problems with
quadratic objective functions in Mvariables. In other
words, we shouldn't be surprised if the nunber of iter-
ations increases with problemsize, even for sinple un-
constrained problens.

111.2 Sone Results -

In [15] and [22] we denonstrated that the BLW De-
conposition and certain variations on the Reduced
G adi ent Deconposition work very well on small OPFs.
Since then we have devel oped the Super Hybrid Deconp-
osition and tested it on a number of small and |arge
systens. Sone specinen results are shown in Table I11.
It seems that the nunber of iterations is not strongly
affected by problemsize. Infact, the Super-Hybrid of -
ten converges in about the sanme nunber of iterations as
a Newton nethod takes to find a load flow solution (both
procedures being started at the sane point). O course,
a Super Hybrid iteration contains a load flow iteration
and hence, involves nore conputations. Mst of the addi-
tional effort goes into solving (RQPP). A rough estimte
is that a Super Hybrid iteration requires from2 to 10
times the effort involved in a Newton-load-flowiter-
ation. Nunbers in the lower end of the range are ob-
tained when the dinension of uis smll in conparison
to the dinension of x; numbers in the upper part of the
rglnge are obtained when the two dinensions are conpar-
abl e.

Scal e Testing

111.3 Remarks

(i) Table IV conpares sonme of the Super Hybrid's sal-
ient features with those of other OPF nethods.

Newt on-1 oad-flow iterations becone cheap relative
to a Super Hybrid iteration when the nunber of
retained variables (i:e. variables inu) is com
parable to the nunber of eliminated variables
(i.e. variables inx). In these circunstances,

it makes sense to use a fewnore Newt on-|oad-flow
iterations wherever they can reduce the nunber

of Super-Hybrid iterations. It happens that the
greatest benefits fromsuch additional iterations
are obtained towards the end of the overall pro-
cess, close to the optimal solution and not as
intuition would suggest, at the starting point.
The strategy governing additional iterations is
to use themto keep the linear approximation to
the elimnated variables at |east as accurate as
the estimate to the solution of the retained
variables [22].

Suppose we want to consider not only the exist-
ing network configuration but also the configur-
ation that could result fromthe occurrence of
contingencies. This means that we would like to
expand the constraints in an OPF formulation to
include those of an exi.sting configuration and
al so several additional configurations. Since
the elimnation of the state variables for each
configuration can proceed independently, the el-
imnations can be processed n parallel on sep-
arate processors.

(i)

(iii)




I V. QONCLUSI ONS

This paper has identified a class of deconpositions
and fromtwo of its existing nenbers synthesized a
third - called the Super-Hybrid - that is well suited
to OPF problens. The al gorithm obtained by conbining
the Super-Hybrid deconposition with the Han-Powel |
net hod of nonlinear programmng has the follow ng at-
tractive features.

Nonl i near objective functions and constraints can
be accommodated directly, without tricks or intri-
cate manoeuvres. This nakes it easy to add conpli -
cated security constraints and to do real power dis-
pat chi ng, reactive power dispatching or both simu-
taneously. It also sinplifies the coding, main-

tai nance and updating of the algorithm

The deconposition works by elimnating sone vari a-
bles. It is convenient to choose these variabl es

to be the sane as the ones calculated in a load flow
program Then one iteration of a standard Newt on-
Load- Fl ow can be used to nake the elimnation.

In tests on large problens the al gorithmhas proved
to be fast. Oten it will find an optinal solution
in about as many iterations as a Newton nethod takes
to find a load flow solution.

The algorithmis robust. The starting point does not
have to be feasible. Infact, the algorithmwill
force convergence fromprofoundly infeasible start-
ing points.

» The information with which to calculate the sensiti-
vity of the optimal solution to paraneter variations
is readily made available by the al gorithm (though
we have not yet taken advantage of this feature in
the code we have written).

There are two principal factors that limt the
type of problens that can be effectively handl ed by
the algorithm They are the nunbers of retained vari-
ables (i.e. variables, inu) and inequality constraints.
These factors determne the size of the quadratic pro-
granm ng probl em that nust be solved in each iteration
of the algorithm

The nunber of equality constraints is not a linit-
ing factor because the equalities are elininated by
the deconposition. The elimnation can be done with
paral | el processing when the equalities arise from sev-
eral different network configurations as happens in con-
tingency constrained opti rumpower flows [24], [25].

Avai |l abl e quadratic programm ng codes, e.g.[263»
can efficiently handl e about 300 retained vari abl es.
This is nore than enough to accommodate all the regul -
ated generator variables for nost networks. However*,
networks with |arge nunbers of tap-changi ng transfor-
mers nmay boost the nunber of retained variables to 500
or so. Three possibilities for handling such situations
are: ignore the less inportant tap changers or handl e
themin the second stage of a two-stage process; expand
the capabilities of quadratic programm ng codes; use
| arger conputers. W are not sure which of these pos-
sibilities is best. W suspect that the probl emof how
to handl e |arge nunbers of tap-changing transformers
also remains to be suitably solved in other OPF pack-
ages.
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FEATURES AFFECTI NG THE EFFORT

TABLE | :
PER | TERATI ON OF FQUR DECOVPCSI Tl ONS
Feat ur es Deconposi ti ons
BLW Reduced Hybri d {Super -
Q adi ent Hybrid
Effort expended NONE,! Consi der abl e, [NONE, |NONE,
to find DP DP is the DP-1E [DP-1E
DP-1E :
sol ution of
the equalit-
ies
I's the Qnatrix YES | Equi val ent NO YES
of the eauival - Han- Powel |
ent Han- Powel | doesn't exi st
al gorit hm posi -
tive definite?
Is the Qmatrix YES NO NO NO
used in cal cul -
ating the coeffi-
cients of (RQ@PP)?
DP:  Deconposition Point
IE  Incunbent Estimate
*Even if the Qmatrix is not explictly used, it nust

be positive definite for the deconposition to work
wel | .

TABLE I'1. RESULTS FOR PROBLEM (EX)
Iteration | Euclidian Normof Error in Estimate
Nunber
Han- BLW Reduced {Hybrid Super -
Powel | QG adi ent - Hybrid
0 0. 6205 0.6205 [0.6205 }0.6205 0. 6205
1 0. 1409 0. 1409 0. 1409
2 0. 1080 0. 1080 0. 0972
3 0.0874 0.0874 0. 0791
4 0. 0046 0. 0046 0. 0634
5 0. 0001 0. 0001 0. 0507
6 0. 0000 0. 0000 0. 0406
7 % 3 0. 0325
8 - 0. 0260
9 = £ 0. 0209
TABLE 111: SPEC MEN RESULTS FCR THE
SUPER- HYBRI D ALGCRI THM
AEP 30 | APS 550 ] Hypotheti cal
Problem Bus Bus {1110 Bus
# of equalities 60 1110 2220
# of inequalities 44 160 320
# of elenents inu 12 42 84
# of Newton lterat- 5 5 5
ions to reach a
Load Fl ow Sol ut -
ion
# of Super-Hybrid 7 6 9
Iterations to
reach an Optinal
Power Fl ow Sol ut -
/ ion




TABLE |V

A REPRESENTATI VE SAVPLI NG OF NONLI NEAR PROCGRAMM NG ALGCR THVB FCR CPF PRCBLEMS [ 2] .

Techni ques for

Ret ai ned D recti onrof g
. : Handl i ng Non-
Al gorithm Vari abl es Movenent Li neari%i es St at us Connent s
Dormael - Ti nney u QG adi ent Penal ty Many Probably the nost coded al gorithm
[17] Functi ons Production  Wirks well when carefully tuned
Pr ogr ans to a system Detection of infeasi-.
bility is slow and the penalty
functions are a di sadvant age.
General i zed Changed from @ adient Vari abl e At | east Appears to be nore robust than
Reduced grad-- one itera- Swi t chi ng one product - the Dommel - Ti nney al gorithm
ient (CGRG tion to the ion Program but the intricate variable ex-
[18],[19] next change nechanisns are a signifi-
cant di sadvant age.
Wi, G oss, Changed from QG adient Vari abl e One Product*- A nodified GRG al gorithmin which
Lui ni, Look, ~one iter- Swi tching, Penalty jon Program the variable switching is made
Qibik ation to Functions and AUg- Conpatib|e with a | oad f|owpro_
[20],[21] t he next nment ed Lagrangi ans gram A two stage approach is -
used. The solution of the first
stage rel axed problemis used as
a starting point for the second
st age.
Super - Hybri d u Quasi - Li neari zation Experi - Sinpler to program than other
Newt on nment al met hods. Very fast and robust.
Sensitivity data is readily avail-.
able. Can be deconposed for par-
al l el processing.
Burchett-Happ- Changed from Quasi-Newton Linearization One Product- The algorithmis simlar to the Han-
Wrgau [23] one iter- or Conjugate and an Aug- ion Program Powel | except that in deternining
ation to Q adi ent nented Lagrangi an the direction-of-novenent the Han-
t he next Powel | uses a quadratic objective
while the algorithmuses a nore
nonl i near objective. It seens that
fhe algorithmrequires about as many
Iterations but more work per iteration
than the Super-Hybrid.
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APPENDI X;

"A Hybrid Techni que
Power Fl ow Probl ens",
and Tech. Exchange,

R Mehrotra, N Tyle, "A Framework
sub-

A SUPER HYBRI D ALGORI THM

Step 0: Initialization

i. Choose u and x so that H is nonsingular for all
values of u and x that are of interest. In the
case of power systenms choose x to be the variables
solved for by a Newt on-l|oad-flow

ii. Choose the starting point [uT,xT]

Step 1. FEvaluate the first derivatives fy, fy, G, Gx,
Hy, and the residues h and g. These eval uations

nust De made at the incunbent estimate [uT, x'].

Step 2; Evaluate a, Cand d, coefficients for (RQPP),
from

o=t -ttty +0wTaly
u Ix u

X X 1
C- Gy- Gza;lﬂu
d- g- G Hln
Step 3: Update B. In the first iteration set B-I
and E«l. (Eis a dummy variable that makes writing

the fornmulas a little easier.) In subsequent iterat-
ions update B and E using the fornul as:

ES § E

i Eep .-—uu- + Dl
) - T T T
[8,E8, + 5 61 &'
where 6 » z - z_
éu-u-u_ and 5X'X-X. s
n-6a +(1-00 ES
0-1 if 5'y>0.2 6'E 6_
0.86"E_5
= ot herwi se
[6"E_6- 6"y]

Ty is avector of the last n elements of n
n, is avector of the first melenments of n
YT - dlgzlg.l) - 62!:_.&1!
T T
bz iz
Kz,V,\) - f - yTg - Xh

y and X are calculated in the previous iter-
ation in Steps 4 and 5.

ii. B-E+H HTH™
4 X X u

(These formulas were obtained by nmaking two sets
of modifications to the BFGS updating formula [16]..
The first nodification was nade by Powell [5] to'
ensure that the updates renained positive defin-.
ite. The second nodification was made by us to
adapt the formulas to updating only the Q,, part-
ition of the Qmatrix . V¢ note that
the formulas given above update Q,, with gradient
information. Cose to a solution, the use of re-
duced gradient information seems to work a little
better. To include reduced gradient information
one would replace Y with V I~ - V £

Step 4:  Solve the reduced quadratic programming pro-
bl em
(RQPP):  Mn a’Au + *j A" B Au

Au

st: BAu > -d

Let Au be the solution and y the Lagrange multiplier
associated with the inequality constraints.

Step 5: Calculate AX and X from

- o _1
Ax Ex [Hu Ay + h)
=T T
A -HX [fy GX U LAx

(These expressions are obtained by rearranging the
second and fourth equations in (8)).

Step 6: Find a step size, a, such that
and <ax 1
wher e 4x(3) <<k0) i
(e = fa(@, x(a)) +y'lg(u(a), x(a))| +X"| h(u(a),
x(a))} |

u(a) = u+aAu
x(a) ¢ x +aAx’

|g] and |h| are vectors of the absolute val ues of
gandh

U - Max {|ly], hIW + Ilijj

X -Max {X| JS[X| + |XJ]

If no such a can be found stop. Otherwise set:

U, * U+ aAy

Xi o X + ahX

(The test function 4> used in this step has been given
the formof a penalty function. This is not the only
possibility. The Lagrangi an works well too and other
as yet undiscovered forns may work even better. An-
other observation is that the algorithmseenms to work
best when a is unity or close to it. Therefore, one
should not performa line search to seek out the smal -
lest value of the test function along the direction-of-.
movenment. Rather, one shoul d seek the |argest value
of athat is unity or Iess and produces a decrease in
the test function.)

. T
Step 7: Check for convergence. |If a?l\u+ Au_+ B > ¥,

where 6 is a normof the constraint violations and \\f
is atolerance, go to Step 1. Qtherw se, stop.
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