November 2008

Using Cognitive Modeling to Understand the Roles of Prefrontal and Posterior Parietal Cortex in Algebra Problem Solving

Jared F. Danker
Carnegie Mellon University

John R. Anderson
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/psychology
Using Cognitive Modeling to Understand the Roles of Prefrontal and Posterior Parietal Cortex in Algebra Problem Solving

Jared F. Danker & John R. Anderson
Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University

Introduction
- Retrieval and transformation are highly correlated in algebra problem solving:
 - Solve \(2x + 1 = 5 \) Retrieve \(5 - 1 = 4 \) Transform \(2x = 4 \) Retrieve \(4 / 2 = 2 \) Transform \(x = 2 \) Respond 2

- The current instantiation of the ACT-R theory (Anderson, 2005) associates retrieval and transformation with activity in prefrontal and posterior parietal cortex, respectively
- Activity in these regions are likewise correlated during naturalistic problem solving (Anderson et al., 2003)
- Can we isolate the processes of transformation and retrieval in algebra problem solving and manipulate them independently?
- If so, can we also isolate activity in their neural correlates?

Method
- 20 participants run in a BOLD fMRI study
- Algebra equations were created that needed to be solved in 2 phases:
 - Transformation phase: isolate x from a and b
 - Retrieval phase: calculate the value of x given the numerical values of a and b
- The transformation and retrieval could both be either high or low difficulty

Results and Modeling
- Manipulating retrieval load of algebra problems results in differential activity in both prefrontal and posterior parietal cortex
- Manipulating transformational requirements of algebra problems results in differential activity in both prefrontal and posterior parietal cortex

- Why did our manipulations fail to isolate the activity in these regions?
 - Explanation 1: These regions are not functionally distinct as characterized by ACT-R
 - Explanation 2: Our task manipulations failed to properly isolate retrieval and transformation

- We designed two ACT-R models to determine the plausibility of Explanation 2
 - Pure Model: Encompassed our initial assumptions about the design but failed to fit the RT data \((R^2 = .50)\)
 - Mixed Model: Assumed that both manipulations had retrieval and transformation components and fit the RT data well \((R^2 = .94)\)

Conclusions
- There is a lot of difficulty isolating the basic cognitive processes characterized by ACT-R
- The difference between the roles of prefrontal and posterior parietal cortices in algebra problem solving remains unclear
- Using cognitive modeling can help in the interpretation of behavioral and neuroimaging data

References