
Carnegie Mellon University
Research Showcase
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

1-1-1979

SLIDE : an I O hardware descriptive language
John J. Wallace
Carnegie Mellon University

Alice C. Parker

Follow this and additional works at: http://repository.cmu.edu/ece

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase. It has been accepted
for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase. For more information,
please contact research-showcase@andrew.cmu.edu.

Recommended Citation
Wallace, John J. and Parker, Alice C., "SLIDE : an I O hardware descriptive language" (1979). Department of Electrical and Computer
Engineering. Paper 85.
http://repository.cmu.edu/ece/85

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece/85?utm_source=repository.cmu.edu%2Fece%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SLIDE: AN I/O HARDWARE DESCRIPTIVE LANGUAGE1

by

John J. Wallace and Alice C. Parker

DRC-18-16 -79

May 1979

* Bell Laboratories
Warrenville-Naperville Rd.
Naperville, IL 60540

** Dept. of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

This research has been supported by the U.S. Army Research Office
under grants #DAAG29-76-G-0224 and #DAAG29-78-G-0070.

SLIDE (formerly GLIDE) is an acronymn for Structured Language for
Interface Description and Evaluation

r JL

Table of Contents

1. Introduction
2. The Nature of I/O and Interface Operation
3. Novel Constructs of SLIDE

3.1. The Process
3.2. The DELAY Statement and Parallel Statement Execution
3.3. Other I/O Related Primitives
3.4. Requirements For a I/O Hardware Descriptive Language

4. The SLIDE Language
4.1. Processes
4.2. Hardware

4.2.1. Hardware Declaration
4.2.2. Synchronous 1/0
4.2.3. FIFO Buffers
4.2.4. Combinational Logic
4.2.5. Tables
4.2.6. Specifying Bit Slices
4.2.7. Operators

4.3. SLIDE Statements
4.3.1. Delay Statement
4.3.2. Iferror Statement
4.3.3. Sequential and Parallel Execution

5. Conclusions and Future Research
5.1. Simulation and Verification
5.2. Signals
5.3. Acknowledgements

1
2
4
4
4
5
5
5
6
9
10
10
11
11
11
12
12
12
13
13
14
14
15
15
16

PENNSYLVANIA 15213

1. Introduction

Recently, multiprocessing research and development has caused an increased interest in

I/O and interconnections. In fact, it has become important to document, simulate, and formally

verify entire systems, including their interconnections.

Naturally, the more detailed the interconnection description becomes, the more accurate

the simulation can be and the more information the description can contain. At present,

interconnections and their interfaces can be described accurately at both the gate and circuit

levels.

Unfortunately, this low level of description is not adequate for all applications. Sheer size

and speed of execution of simulation programs have precluded simulations of large

interconnected systems. Verification of system behavior is difficult at this level since function

must be recognized by the verifier from the description; also, the unstructured nature of the

hardware may make some aspects of the verification indeterminate. Finally, low level

interface and interconnection descriptions contain detail which the reader does not need and

which tends to obscure his understanding of the behavior of the hardware. For these

reasons, existing low level descriptive languages do not provide the kind of hardware

description needed for the above tasks. The obvious solution is to use a behavioral

register-transfer language.

There is strong motivation for constructing behavioral descriptions of I/O hardware.

Certainly, behavioral descriptions can convey the overall operation of interfaces better than

structural descriptions, since much of the unnecessary detail is eliminated. Simulations

proceed more rapidly, and can encompass larger systems. Verification is possible since the

behavior is explicit and the description can be structured.

Research is currently underway at Carnegie-Mellon University to produce such a

behavioral language called SLIDE for interface and interconnection description. This language

is the subject of this paper. There are two current projects which involve SLIDE and have

provided motivation for its development:

. 1. The development of a SLIDE simulator. This simulator will allow description and

Bohavioral descriptions differ from structural descriptions because they describe only the functions of the hardware
and not the hardware itself. Storage locations and register-transfers which exist in the hardware may be absent from
the behavioral description.

simulation of interconnection schemes like the UNIBUS^ and the D-bus[ANSI ??].
Eventually behavioral descriptions of processors and other functional units will
be linked to the interconnection descriptions and entire systems will be able to
be simulated.

2. The verification of aspects of interface behavior and module-to-module
communication. The goals of this project are to determine aspects of SLIDE
which enhance or impede verification attempts as well as to develop assertion
and verification techniques.

In the process of designing SLIDE, the following design goals have been kept in mind: -

i - To provide a language which can be used to behaviorally describe interface
, hardware in a stand-alone fashion; the language should not depend on timing

diagrams or state diagrams for completeness.

- The language should be simple and not overburdened with obscure constructs
and primitives. It should be logically consistent in semantics and syntax.

There are already a number of hardware descriptive languages; some, like ISPS[Barbacci

78a, Barbacci 78b] and DDL[Dietmeyer 78] have been exercised and a software base exists.

Therefore it is difficult to justify the development of yet another hardware descriptive

language. For many reasons, some of which were described above, current hardware

descriptive languages do not provide the capabilities needed for the interconnection

descriptions being considered at CMU. Section 2 of this paper describes the problems

associated with I/O and interface descriptions, introduces the required capabilities of an I/O

descriptive language, and presents the past efforts at this type of description. Then, sections

3 and 4 present salient features of SLIDE.

2. The Nature of I/O and Interface Operation

Consider the following system configuration which illustrates the basic nature of interface

and I/O operation. A single bus connects a device controller, CPU, and memory. The device

controller is reading data in and writing it to memory; at the same time, the CPU is executing

a program, and therefore accessing memory for instructions and data. At any time, either the

device controller or the CPU might be transferring information across the bus. At the same

time, either or both might be requesting the bus for future transactions. Between the two

devices there are four processes, two for bus requests and two for bus transactions. At any

time a maximum of three can be executing (only one bus transaction can occur at a time).

This illustrates an inherent property of interface and I/O operation - complex control flow.

UNIBUS is a registered trademark of Digital Equipment Corporation.

More precisely:

- There can be multiple sequences of events executing concurrently and
independently of each other.

- An event in one sequence can alter the execution order of another sequence.

- The time steps between events can be different for different sequences.

- The onset of execution of one sequence can initiate or terminate another
sequence.

Each sequence of events in reality represents an independent control environment or a finite

state machine; we shall refer to these sequences hereafter as processes.

Thus, a language designed to describe this genre of control flow must possess powerful

and unconventional control constructs. In particular, semantics should exist to allow:

- Priority orderings between processes.

- Description of timing dependencies, timeouts and data I/O at fixed bit rates.

- Interprocess synchronization primitives such as signal and wait.

- Initiation, termination and suspension of processes.

- Event sequencing internal to a process.

- Communication between processes.

In addition to these, language primitives should exist which allow operations common to I/O

such as bit manipulation, code conversion, FIFO buffering, parity and error checking,

synchronous I/O, and combinational logic.

Previous research in the area of interface and I/O description has been done[Bell

72 , Knoblock 74, Marino 78, Sorensen 78, Vissers 76]. However, this research has either

produced gate level languages, circuit level languages, or incomplete proposals such as the

port descriptions of Bell and Newell[Bell 72] and Curtis[Curtis 75]. A recent proposal[Marino

78] does have some useful control constructs which are similar to those of SLIDE.

A more oxtonsive discussion of these primitives can be found in [Parker 75].

3- Novel Constructs of SLIDE

This section introduces the novel constructs of the SLIDE language. These include the

process - a construct for nonprocedural execution, the delay statement - a timeout construct,

and other I/O related primitives.

3 . 1 . The Process

In the same way that routines are the central unit of execution in most programming

languages, processes are the central unit of execution in SLIDE descriptions, A process is an

independent executing environment — a piece of hardware such as a device controller or a

bus arbitrator. Within each process, variables (registers, lines, etc.) can be declared, and

other processes (called subprocesses) can be defined. Consequently, a SLIDE description is

composed of layers of nested processes (much like an ALGOL program is composed of layers

of nested routines).

A SLIDE description consists on one mam process which encompasses all other

subprocesses (much like an ALGOL program consists of one main program which encompasses

all subroutines). Variables global to the entire description are declared within the main

process. Variables which are local to a subprocess are declared within that subprocess.

Since each process describes a piece of hardware, each is an independent executing

environment, and all processes which are executing do so in parallel. Processes which need

to communicate with each other can do so by using global variables (e.g. by asserting a

shared line) or by using signals (see section 5.2).

Processes are started (called initialization) nonprocedurally. When each process (except

for the main process) is defined, the conditions under which it is to be initialized are given. A

priority mechanism exists which can be used to allow some processes to terminate execution

or mutually excludo execution of others. This will be discussed more fully in section 4.1.

3.?. The DELAY Statement and Parallel Statement Execution

Aside from the usual statements such as assignment, if-then-else, loops, and subroutines,

SLIDE has a powerful delay statement which allows delays and timeouts to be described. This

statement is used to delay the execution of a process until some condition occurs and/or a

We use "description" here and no! "program" to emphasize that a SLIDE description describes the operation of a
piece of hardware. Correspondingly, we use "execute1* to mean "the operation of the actions described.1*

timeout occurs. Within a process, complex statements can be executed in parallel or

sequentially. These constructs will be discussed in section 4.3.

3.3. Oihor I/O Rolatod Primitives

Other I/O related primitives which have been incorporated into the SLIDE language are

those to:

- describe transitions (from low to high or high to low) as well as levels (low or
high).

- declare combinational logic via the comp declaration.

- declare synchronous lines via the sync declaration.

- declare FIFO buffers via the buffer declaration.

- declare associative memory tables via the table declaration.

- do I/O related operations such as packing and unpacking bit slices.

3.4. Requirements For a I/O Hardware Descriptive Language

This section has discussed some of the constructs in SLIDE which make it useful for

describing I/O hardware. We feel that these constructs should necessarily be included in any

I/O hardware descriptive language. To summarize, these constructs include:

- A nonprocedural executing environment such as the SLIDE process.
Nonprocedurality and priorities are important in I/O hardware descriptions
where many processes do not execute until some condition becomes true.
Examples of this are interrupts, bus arbitrators, device controllers, etc.

- A delay and timeout construct such as the SLIDE delay statement. This goes
hand in hand with the nonprocedurality discussed above. It allows a process to
delay execution until some condition becomes true subject to a timeout condition.

- An ability to specify actions in parallel as well as sequentially. The need for this
is obvious, and most hardware descriptive languages provide this.

- I/O related primitives such as those discussed in section 3.3.

4* The SLIDE Languaee

This section discusses more fully the constructs introduced previously. We will concentrate

more on the semantics of these constructs than the actual SLIDE syntax. Therefore we will

be loose with the syntax, introducing it as we go along. The complete SLIDE language is

described in [Parker ??].

4 . 1 . Processes

Processes are the central unit of execution in a SLIDE description. They are initialized

nonprocedurally and are independent executing environments. A process definition consists

of:

1. An init declaration which specifies under what conditions the process starts
executing (is initialized).

2. Declarations of registers, lines,1 combinational logic, etc. which are local to the
process.

3. Definitions of local subroutines.

4. Definitions of subprocesses.

5. The executable statements for the process.

Each process has an explicit priority. Informally, a process starts executing when (1) the

process it is a subprocess of is executing, (2) its initialization conditions are true, and (3) no

process at the same subprocess level with a higher priority is executing. When a process

starts executing, all process which are at the same subprocess level, have a lower priority,

and are executing are terminated.

Priorities can be used to time-order the execution of processes. For example, assume we

have 3 processes, A, B, and C, no two of which can execute concurrently. Also, A is to

always execute as soon as its initialization conditions become true; B is to execute when its

initialization conditions become true, but only if A is idle; and C can execute only if A and B

are idle. This can be done by giving A priority 0, B priority 1, and C priority 2. Then as

soon as /Ts initialization conditions become true, it will start executing, terminating B or C if

they were executing. When A finishes executing, it will restart if its conditions are still true.

If not, B may star! if its conditions are true. If not, C may start.

A detailed example follows. Assume we are writing a SLIDE description for a disk

controller. The controller is to do a transfer operation whenever the dataready line rises

from logical 0 to logical 1. The controller is to reset (i.e. stop any on-going transfer and

Lines arc interconnections ouch as address and data linos, bus-request and bus-grant lines, etc.

Note that O is highest priority; i is next highest: etc.

reset itself) whenever the sysreset line rises from logical 0 to logical 1. Part of a SLIDE

description for the controller is in figure 1. Lines 1 and 2 specify the conditions under which

the reset and transfer processes start executing. Reset is given a higher priority than

transfer since a reset should abort any on-going transfer operation.

[1] INIT reset:B UHEN sysreset EQL /;
[21 INIT t r a n s f e r : ! UHEN dataready EQL /;

[3] PROCESS reset ;
C4~3 BEGIN

here we reset the controller

[53 ENDJ

[8) PROCESS transfer;

declarations local to transfer

[7] BEGIN

do the transfer operation here

[83 END;

Figure 1: Reset and transfer processes

The expressions "sysreset EQL /" and "dataready EQL /" are true at the moment the line

rises from 0 to 1; not before or afterwards. These have different semantics than the

expressions "sysreset EQL 1" and "dataready EQL 1H which are true whenever the lines are

logical 1.

IS many controllers, each with its own transfer and reset processes, are to be connected to

a bus, the overall structure of the resulting SLIDE description is shown in figure 2.

In our example about processes A, S, and C above, if terminating a process once it has

started executing is undesirable, a 1 bit variable can be used which prevents other processes

8

MAIN PROCESS bus;

global bus declarations

INIT d e v i c e l t l WHEN TRUE;
1NIT dev ice2: l WHEN TRUE;

INIT devicenr l WHEN TRUE;

PROCESS dev ice l ;

INIT reset :8 UHEN sysreset EQL /}
INIT t r a n s f e r : ! UHEN dataready EQL / ;

PROCESS reset;

PROCESS transfer;

BEGIN !device l !
UHILE TRUE DO NOP; Mdle forever!

END;

other device processes are similar

BEGIN !main process!
UHILE TRUE DO NOP; Mdle forever!

END;

Figure 2: Bus description with n device controllers

fronn starting while any process is executing. This is done in the arbitrator process in the

UNIBUS description which is included in [Parker ??]. The arbitrator process is reproduced rn

figure 3.

In the arbitrator example, the 1 bit open collector variable, bg.enable, is initially set to 1 by

PROCESS arbitrator;
j

Process arbit is the bus arbitrator. It gives the bus
to the request of highest priority.

I
oc bg .enab leo ; ! bus grant enable — 1 b i t !

• INIT npr. grant: 1 UHEN npr AND bg.enable; ! non processor req !
INI T br7 .grant :2 UHEN br7 AND bg.enable; ! bus request level 7 !
INIT brG.grant:3 UHEN brG AND bg.enable; ! bus request level 6 !
INIT br5.grant:4 UHEN br5 AND bg.enable; ! bus request level 5 !
INIT br4 .grant :5 UHEN br4 AND bg.enable; ! bus request level 4 !

PROCESS npr.grant; ! gives a non processor grant !
BEGIN

bg.enable «- 0; ! disable bus grant enable immediately !

grant the bus here

END;

the other grant processes are similar

BEGIN ! executable statements for process arbitrator
bg.enable «- 1; ! enable bus grants !
delay until the bus is granted

END; ! of process arbi t rator !

Figure 3: UNIBUS arbitrator process demonstrating mutual exclusion

the arbitrator process. This allows the grant process (npr.grant, br7.grantf etc.) with the

highest priority to start executing. Immediately each grant process sets bg.enable to 0 which

excludes any other grant process from becoming initialized.

4.2. Hardware

The variables in a SLIDE description represent pieces of hardware. These can be

registers, arrays of memory, synchronous and asynchronous lines, combinational logic, FIFO

buffers, and associative tables. This section discusses each of these and their usage.

10

Any hardware declared within a process is local to that process. It can be accessed within

that process and its subprocesses using ALGOL-liKe scope rules.

4.2.1. Hardware Declaration

Registers, asynchronous lines, and arrays of memory can be declared with a hardware

declaration. The notation is similar to the ISPS notation described in [Barbacci 78a, Barbacci

78JD]. For example:

TTL 0C data,bus<7:0>, address,bus<7:0>;

declares two 8 bit wide TTL open collector bus segments, one named data.bus, and one named

address.bus.

ECL INT count.register<7:0>;

declares a single 8 bit ECL logic register which is internal to this process.

MOS INT mem[1023:0]<15:0>;

declares a IK by 16 bit MOS memory which is internal to this process.

4.2.2. Synchronous I/O

Description of synchronous I/O (i.e. I/O which occurs at a fixed rate) is difficult because of

the different implementations of hardware which perform synchronization. SLIDE allows a

limited description of synchronous I/O with the sync declaration. For example:

SYNC tapel<8:0> @ 10000;

declares the synchronous transfer of 9 bits in parallel from/to a bus named tapel at a rate

of once per 10000 clock pulses. The use of a variable declared as synchronous carries with

it an implicit wait for the data to synchronize.

We can test for a time-ordered sequence of values on synchronous line(s) as in the

following example. If s is declared as follows:

SYNC s o S 50000;

then the statement below delays execution until s takes on the values of 5 ones followed by
a zero:

DELAY UNTIL s EQL | 1 1 1 1 1 1 1 1 1 1 0 | ;

t h i s r e a d s delay until s equals the time-ordered sequence of values lt 1, I , 1 , 1 , then 0 . *

Tho delay statement is discussed in section 4.3.1.

11

4.2.3. FIFO Buffers

FIFO buffers (also known as queues) can be declared with the buffer declaration. An

assignment to a buffer puts the item at the end of the buffer. An assignment from a buffer

removes the first item. Overflow and underflow can be tested for via the iferror statement

discussed in section 4.3.2.

4.2.4. Combinational Logic

Combinational logic can be declared with the comp declaration. For example: .

COMP absum<8:0> i= a<7:0> + b<7x0>;

declares combinational IORJC to evaluate the sum of a and 6. Since a and 6 are both 8 bits

wide, absum is declared to be 9 bits wide. The effect is similar to a function Collr every time

absum is used in an expression, the sum of a and 6 is used instead.

4.2.5. Tables

Code conversion is often done by table lookup. (Of course, hardware logic is also used for

this purpose and can be described in SLIDE with comp declarations.) SLIDE has a special

declaration for associative memory tables. For example:

TABLE grey < 1 : 0 > < 1 I 0 >
f00=> !00,
f 01=> ! 01,
f 1 0 = > f l l ,
f l l = > f 1 0 j

This is a grey code conversion table specified in binary.^ The table above, named grey, takes

2 bits as input and produces 2 bits as output. The last 4 lines specify the conversions. A

table can be accessed with the encode and decode unary operators. For example:

ENC(grey) f10

has the value '11, and:

DEC(grey) f l l

has the value '10.

'Comp'1 stands for "compound"

In SLIDE, a singlo quote (') indicates a binary number; a pound sign («) indicates an octal number.

12

4.2.6. Specifying Bit Slices

An important property of SLIDE is that arbitrary bit slices of a variable can be accessed.

There are two ways to do this. First, Ht/arta6/e-name<i:j>" references the ith through jth bits

of variable-name {L and j must be constants). Secondly, Hi/arta6/e-fia/7ie<e(i)>w references the

i bits of varcable-name starting at bit position e (i, the bit slice width, is a constant, but e, the

starting bit position, can be an arbitrary expression).

4.2.7. Operators

Along with the operators discussed above such as encode and decode^ SLIDE has other I/O

related operators. These include logical, comparison, arithmetic, parity, concatenation, and

formatting operators. The SLIDE operators are summarized in figure 4.

bi tu ise Ioqi caI operators:
OR, XOR, AND, EQV

compar i son operators (evaluate to 1 for true, 0 for f a lse) :
EQL, NEQ, GTR, GEQ, LSS, LEQ

ar i thmet i c operators:
+, - , * , / , MOD

format and concatenat i on operators:
FfiT (p a t t e r n) 1 , @

unaru operators:
- , NOT (
PARE, PARO
-, NOT (b i twise) , ENC {table), DEC {table),

2

Figure 4: SLIDE operators

4.3. SLIDE Statements

SLIDE has three more constructs of interest. These are: the delay statement, the iferror

statement, and the ability to specify actions in parallel as well as sequentially.

The format oporaior makes an arbitrary bit pattern from two sources.

2PARE and PARO return even/odd parity bits.

13

4.3.1. Dolay Statomont

The delay statement is fairly Reneral and allows for:

- delaying for a fixed period as in

DELAY 100;

which delays execution for 100 clock pulses.

- delaying until some condition becomes true as in

DELAY WHILE code<2:0> EQL #7;
»

: which delays execution while the 3 bits of code are equal to octal 7.

- delaying until some condition becomes true subject to a timeout.

This timeout capability is very important. For example, assume a bus arbitrator grants the

bus to another process by raising the busgrant line. Within 500 clock pulses, it expects the

process to acknowledge by raising the ack line. If this does not occur, the arbitrator should

timeout, then raise the sysresct line for 100 clock pulses. A SLIDE description of this is in

figure 5. (A "NEXT" used as a statement delimiter forces sequential execution.) If 500 clock

pulses elapse before ack is raised high, the statements [3] through [7] are executed.

[11 busgrant <- / NEXT ! grant the bus !
[2] DELAY 500 UNTIL ack EQL /
[33 ELSE BEGIN ! do th is if a timeout !
[43 sysreset •- / NEXT ! reset the bus !
[51 DELAY 108 NEXT
[6] sysreset 4- \
[7] END

Figure 5: Delay statement example with timeout

4.3.2. Iferror Statement

Error conditions can arise in two cases:

1. when accessing a FIFO buffer if an overflow or underflow occurs

2. when using the encode or decode operators if an illegal operand is used

The existence of an error condition can be tested for with the iferror statement. An error

condition exists if the last buffer or table access resulted in an error (the two cases above).

For example, assume we wish to extract a command from a command buffer named combuf.

If the buffer was not empty, we process the command. Otherwise, we idle for 100 clock

pulses. After this, we repeat. The SLIDE description to do this is in figure 6.

! get the next command !

tu
[2]
[33
[43
[§J
[61

UH1LE TRUE DO
BEGIN

command «-
IFERROR

THEN
ELSE

combuf

DELAY
BEGIN

NEXT

180

E7J
[8]

process the command

END
END

Figure 6: Iferror statement example

4.3.3. Sequential and Parallel Execution

Process execution normally flows sequentially from statement to statement with the

delimiter between statements being a "NEXT." If two statements are to execute in parallel, a

semicolon (5) is used for the statement delimiter.

Any degree of parallelism can be achieved by using the semicolon to indicate parallel

execution of arbitrarily complex statements. Two blocks of statements separated by a

semicolon such as "BEGIN ... END; BEGIN ... END" execute in parallel. The BEGINs act as a fork,

and the ENDs act as a join.

5. Conclusions c:nd Future Research

SLIDE has proved itself general enough yet powerful enough to be useful as an I/O

hardware descriptive language. We have written a SLIDE description of the UNIBUS, a

non-trivial problem [Parker ??]. The nonprocedural and priority properties of the process

are very powerful, allowing descriptions such as the reset (in figure 1) to be written. This is

not possible in other hardware descriptive languages such as ISPS.

15

5.1. Simulation and Verification

a SLIDE compiler exists [Wallace ??a], and a simulator Is being written. The simulator will

allow research to proceed in studying bus structures, I/O, and multiprocessor communications.

It will also provide a tool for teaching the above in an interactive fashion.

It is possible to parameterize a SLIDE description and then test the effect of these

parameters on the hardware by simulation. These parameters are numbers whose values are

not bound until simulation time. By using parameters, the effects of* varying buffer sizes,

timing, etc. can be studied.

In the summer of 1979, we plan to study the verification aspects of SLIDE. That is: (1) is

verifying the operation of hardware described in SLIDE possible, and (2) what types of SLIDE

descriptions are easily verified.

5.2. Signals

a SLIDE description is an abstraction away from the details of hardware implementation.

Since synchronization is basic to I/O, we plan to introduce two synchronization primitives,

signal and receive [Wallace ??b]. These represent another step toward abstraction and are

similar to the P and V semaphore operations. For example, process A can send a signal called

s to process B with the following statement:

SIGNAL(B:s);

This is similar to the P(s) operation. Process B can delay until it receives the same signal
from process A with:

DELAY UNTIL RECEIVE(A: s) ;

This is similar to the V(s) operation. Process B can test whether a signal has been sent with:

IF RECEIYE(A:s)
THEN . . .
ELSE . . .

There is no corresponding semaphore operation for this. Consequently signal and receive are

more general then semaphores. It is easy to see how signals can be used to do process

synchronization such as handshaking, bus requests and grants, etc.

The use of signals is an alternative to communicating using global variables. The
advantages of using signals are:

i. Communication between processes is explicit, cleaner, and consequently less

16

error prone.

2. Signals are a more abstract primitive (i.e. they express what is to be done
without expressing too much of the detail). A program which designs hardware
from SLIDE descriptions has the freedom to determine the method of
sending/receiving signals (assert high or low, etc.).

3. Because communication between processes is explicit, simulation and verification
of SLIDE descriptions become more straight forward.

5.3. Acknowledgements

We would like to acknowledge the assistance of some people whose efforts made this work

possible: Bill Lyden wrote the origional SLIDE compiler; Andy Nagle labored over the

language; Mario Barbacci helped with the language design and the compiler; and Art Altman is

currently working on the simulator. Also Steve Crocker and Bill Overman provided

valuable feedback.

References

[ANSI ??] ANSI Technical Committee X3T9.
U.S.A. Contribution to ISO TC97/SC13 For a Small Computer-to-Peripheral

Bus Interface Standard-
December 12, 1978.

[Barbacci 78a] Barbacci,M., Barnes,G., Cattell,R., Siewiorek,D.

The Symbolic Manipulation of Computer Descriptions ; The ISPS Computer
Description Language.

Technical Report, Dept. of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pa., March 1978.

[Barbacci 78b]

[Bell 72]

[Curtis 75]

[Dietmeyer

Barbacci,M., Nagle,A.
The Symbolic Manipulation of Computer Descriptions ; ISPS Application

Note: An ISPS Simulator.
Technical Report, Dept. of Computer Science, Carnegie-Mellon University,

Pittsburgh, Pa., March 1978.

Bell,C, Grason,J., Newell,A.
Designing Computers and Digital Systems Using PDP-16 Register Transfer

Modules.
Digital Press, Digital Equipment Corp., Maynard, Mass., 1972.

Curtis,D.
IDS, An Interface Description System.
Unpublished note, ALCOA.

78]
Dietmeyer, D.
Logic Design of Digital Systems.

17

[Knoblock 74]

[Marino 78]

[Parker 75]

[Parker ??]

[Sorensen 78]

[Vissers 76]

[Wallace ??a]

[Wallace ??b]

Allyn and Bacon, 1978.

Knoblock,D., Loughry, D., and Vissers,C.
Insight Into Interfacing.

IEEE Spectrum :, November 1974.

Marino, Edward.
Computer Interface Description.
In Proceedings of the 17th Annual Technical Symposium, pages . national

Bureau of Standards and ACM, June, 1978.

Parker, A.
A Generalized Approach to Digital Interfacing.
PhD thesis, Electrical Engineering Department, Norih Carolina State

University, May, 1975.

Parker, A.
The Development of GLIDE: A Hardware Descriptive language for Interface

and I/O Port Specifications.
Research Report, Electrical Engineering Department, Carnegie-Mellon

University, November, 1978.

Soresen, Ib Holm.
System Modeling.
Master's thesis, Computer Science Department, University of Aarhus,

Denmark, March, 1978.

Vissers, C.
Interface, A Dispersed Architecture.
In Proceedings of the Third Annual Symposium on Computer Architecture,

pages 98-104. ACM SIGARCH and IEEE Computer Society, 1976.

Wallace, J.
The GLIDE Compiler.
Research note, Electrical Engineering Department, Carnegie-Mellon

University, April, 1979.

Wallace, J.
SIGNALS: A Proposed Extension to GLIDE.
Research note, Electrical Engineering Department, Carnegie-Mellon

University, Feb., 1979.

	Carnegie Mellon University
	Research Showcase
	1-1-1979

	SLIDE : an I O hardware descriptive language
	John J. Wallace
	Alice C. Parker
	Recommended Citation

