On the Growth and Decay of Discontinuities in Fluids with Internal State Variables

by

Bernard D. Coleman

and

Morton E. Gurtin

Report 67-14

February, 1967
1. Introduction

Singular surfaces, such as shock waves and acceleration waves, can propagate in materials for which the present stress depends on the histories of the strain and entropy in a manner compatible with a smoothness postulate called the "principle of fading memory", and a theory of such waves of discontinuity exists. In that theory explicit expressions have been derived for the velocity and time-dependence of the amplitude of acceleration waves and higher-order waves. Recently B. S. H. Rarity has shown us a manuscript in which he discusses the propagation of acceleration waves in an ideal gas having a single, finite, relaxation time for the exchange of energy between translational and vibrational modes of molecular motion. Using Johannesen's "heat-sink analogy" for the flow of such a gas, Rarity shows that the amplitude of a plane-compressive acceleration wave which has been propagating since time $t = 0$ into a region at rest will
become infinite at a finite time t provided the initial amplitude exceeds c a critical value which depends on the relaxation time of the gas. Although the method used by Rarity does not yield an expression for the time-dependence of the amplitude, he does obtain a formula for t^c. The existence of a critical amplitude for acceleration waves and the form of Rarity's expression for t^c are completely analogous to known results in the theory of waves in materials with memory. This observation has suggested to us the possibility of developing the theory of materials with internal variables along lines which have been explored in the general theory of materials with fading memory. Elsewhere we have attempted a unified treatment of the thermodynamics of materials with relaxing internal state variables. Here we report calculations of the growth and attenuation of waves in such materials. The emphasis is laid on plane-longitudinal waves advancing into homogeneous regions at equilibrium. The materials considered are fluids for which the specific internal energy $€$ (per unit mass), the pressure p, and the temperature 9 are determined through constitutive equations when the specific volume $x < 1/p$, the specific entropy r^i (per unit mass), and N internal (or "hidden") state variables Q_i^1, \ldots, Q^N_i are specified at the point. We assume that the material time-derivative of each of the a_i is given by a function h_i of x, r^i, and the complete internal state $\{Q_i^1, \ldots, Q^N\}$:

$$
\dot{a}_i = h_i(x, r^i, a_1, \ldots, a_N), \quad i = 1, \ldots, N.
$$

(1.1)
No assumptions of linearity are made for either the functions h_j or for the dependence of c, p, and b on T_j, X_j, or the c_{ij}.

Our constitutive equations appear sufficiently general to include as special cases those of theories which explain pressure-volume relaxation phenomena by postulating reactions of decomposition and association; in such applications each a_i becomes the degree of advancement of a chemical reaction. When our theory is applied to gases with finite rates of exchange of energy between translational and internal modes of molecular motion, the number a_i should be interpreted as the fraction of energy in the ith internal mode, and b should be identified with the translational temperature (i.e. the "active-mode" temperature).
2. Basic Assumptions

In the present theory a material is characterized by the following constitutive equations:

\[
\begin{align*}
\epsilon &= \tilde{\epsilon}(\nu, \eta, \omega), \\
P &= \tilde{p}(\nu, \eta, \omega), \\
\theta &= \tilde{\theta}(\nu, \eta, \omega), \\
\dot{\alpha} &= \tilde{h}(\nu, \eta, \omega),
\end{align*}
\]

(2.2)

where \(\dot{\alpha} \) is the material time-derivative of the internal state vector \(\alpha \). Shearing stresses are absent, and it is assumed that the material does not conduct heat. The response functions \(\tilde{\epsilon}, \tilde{p}, \tilde{\theta} \) in (2.1) are not independent, for the second law of thermodynamics requires \(\tilde{\epsilon} \) determine \(\tilde{p} \) and \(\tilde{\theta} \) through the pressure relation,

\[\tilde{p} = -d\tilde{\epsilon}, \] (2.3)

and the temperature relation,

\[\tilde{\theta} = \frac{\partial \tilde{\epsilon}}{\partial \eta}, \] (2.4)

with \(\frac{\partial}{\partial \nu} \) denoting ordinary partial derivatives. The second law also requires that \(\tilde{\epsilon} \) and \(\tilde{h} \) obey the following internal dissipation inequality:

\[\tilde{\epsilon}(\nu, \eta, \omega) \cdot \tilde{h}(\nu, \eta, \omega) \geq 0 \] (2.5)
for all triplets $(x^>, t^-, 0^f)$. Here $\tilde{e}(u, t^1, a)$ is the N-vector with components

$$
\left(\partial_{\tilde{e}}(u, \eta, \alpha) \right)_1 = \partial_{\alpha_1} \tilde{e}(u, \eta, \alpha_1, \ldots, \alpha_N),
$$

(2.6)

and "*" has its usual meanings for any two N-vectors ξ and η.

By an equilibrium state we mean a triplet $(x^>, t^-, a)$ such that (i)

$$h(x^>, t^-, a) = 0,
$$

(2.8)

and (ii) the solution $\tilde{\gamma}(t) = \tilde{\gamma}^*$ of the autonomous differential equation

$$\dot{\tilde{\gamma}}(t) = h(u, \eta, \alpha(t))
$$

(2.9)

is (locally) asymptotically stable. It follows that

$$\partial_{\tilde{e}}\tilde{e}(u, \eta, \alpha) = 0
$$

(2.10)

at every equilibrium state.

We here consider plane longitudinal motions of the type usually studied in shock tubes. Each such one-dimensional motion is described by a scalar function $x^* x(X, t)$ giving the location at time t of the material point which has the position X when the body is in a fixed reference configuration $(j\,|\,j$ with uniform mass density p^0. It is convenient to identify each material point of the flowing material with its position.
6. The velocity \(v \) and the specific volume \(u \) of \(X \) at time \(t \) are given by

\[
v = \frac{\partial}{\partial t} x(X,t), \quad \frac{\partial}{\partial t} \nabla \cdot x(X,t), \quad (2.11)
\]

In the absence of body forces and heat transfer by radiation or conduction, the laws of balance of momentum and energy become

\[
d_x p + P_o v = 0, \quad (2.12)
\]

\[
\epsilon + pv = 0. \quad (2.13)
\]

It follows from (2.1)-(2.4) and (2.13) that

\[
0 T + \left(\frac{\partial}{\partial t} \tilde{c} \right) \cdot \mathbf{e} = 0. \quad (2.14)
\]

By **wave** we mean a propagating singularity, i.e. a singularity that moves relative to the material. Let \(Y_t \) be the material point, labeled by its position in the reference configuration, at which the wave is to be found at time \(t \). The location in space of the wave at time \(t \) is the place

\[
y_t = x(Y_t,t). \quad (2.15)
\]

The **wave velocity** \(u \) is just the rate of advance of the wave as seen by an observer at rest:

\[
u(t) = \frac{d}{dt} T(t) - \frac{d}{dt} V(t) \cdot ^{\prime} - ^{\prime} (2.16)
\]
If the material velocity \(v \) happens to be continuous across the wave, then we can define a speed of propagation \(c \) for the wave by the formula

\[
c(t) = |u(t) - v(Y, t)|. \tag{2.17}
\]

\(c \) is the speed of the wave relative to the material point instantaneously situated upon it. If \(f(X, t) \) is continuous in \(X \) except for a jump discontinuity at \(X \cdot Y \), we define the jump in \(f \) across the wave to be

\[
[f]_{-} \overset{\text{def}}{=} \phi'_{-}(t) \quad \overset{\text{def}}{=} \phi_{+}(t) - \phi_{-}(t). \tag{2.18}
\]

For definiteness we assume that \(u(t) - v(Y, t) \) is positive, so that the wave moves faster than the material immediately ahead of it, and \([f]^\sim\) is the increase in \(f \) experienced at a given point \(X \) at the moment that the wave passes through \(X \).

We shall here assume that \(x(X, t) \) is a continuous function of \((X, t)\) for all \((X, t)\) and that all the derivatives of \(x(X, t) \), \(T^\sim(X, t) \), and \(\sigma(x, t) \) are continuous at all points away from \((Y, t)\) and suffer nothing worse than jump discontinuities across the wave.

We say that a wave is of order \(N \) if the \(N \)th-order derivatives of \(x(X, t) \) suffer non-zero jumps across the wave, while all the derivatives of \(x(X, t) \) of order less than \(N \) and all derivatives of \(T^\sim(X, t) \) and \(\sigma(x, t) \) of order less than \(N-1 \) are continuous across the wave. Shock waves are of order 1. Waves of order 2 are called acceleration waves, while waves of order 3 or higher are called mild discontinuities.
3. Elementary Properties of Acceleration Waves

Across a wave of order 2 we have

\[\mathbf{M} - \mathbf{M} \cdot \mathbf{M} \mathbf{M} = 0 \] \hspace{1cm} (3.1)

but

\[\{\psi\} \neq 0, \quad \{\phi\} \neq 0, \quad \{\partial \psi\} \neq 0. \] \hspace{1cm} (3.2)

For the theory of acceleration waves it suffices to assume that the response function \(\xi \) of (2.1) is of class \(C_3 \) (i.e. 3-times continuously differentiable) while \(h \) in (2.2) is of class \(C \); it then follows from (2.3) and (2.4) that \(p \) and \(0 \) are of class \(C \). Thus (2.1) and (3.1) imply

\[\mathbf{M} = \mathbf{I} \mathbf{p} = \mathbf{M} = 0 \] \hspace{1cm} (<3.3>)

while (2.2) yields

\[\mathbf{M} = 2^{-} \] \hspace{1cm} (<3.4>)

Further, (2.14), (3.3) \(_2\), and (3.4) imply that \(i^\wedge \) is continuous across the wave \(^{13}\):

\[\{\bar{i}\} = 0. \] \hspace{1cm} (3.5)

Basic to our present subject is Maxwell's theorem \(^{14}\). If \(f(X,t) \), \(d_x f(X,t) \), and \(f(X,t) = S_{\Delta} f(X,t) \) suffer at worst, jump discontinuities
across \((Y, t)\) and are continuous functions of \((X, t)\) everywhere else, then

\[
[f] = 0 \quad \Rightarrow \quad [\dot{f}] = -U \dot{\tilde{\eta}},
\]

where

\[
U(t) = \dot{Y}. \tag{3.7}
\]

In view of this theorem, (3.1), (3.4), and (3.5) yield, for \(U \neq 0\),

\[
I \left\{ \alpha - 2 \right\} = \text{Ffi} - 0 = \left\{ -8 \right\}.
\]

It follows from (2.1) that

\[
\partial_x p = (\partial_{\nu}\tilde{\nu})\partial_x p + (\partial_{\eta}\tilde{\eta})\partial_x \eta + (\partial_{\gamma}\tilde{\gamma})\partial_x \gamma. \tag{3.9}
\]

Therefore, by (3.1), (3.8), and the fact that the functions, \(q_\nu \tilde{\nu}\) and \(d_{\alpha} \tilde{\alpha}\) are continuous, we have

\[
[\partial_x p] = (\partial_{\nu}\tilde{\nu})[\partial_x p], \tag{3.10}
\]

If in Maxwell's theorem we put, successively, \(f(X, t) \to v(X, t)\) and \(f(X, t) \cdot S_X(X, t)\), and use (2.11), we obtain the following compatibility conditions for an acceleration wave:

\[
[\tilde{\nu}] - U[d, v] = -p \ U[i] = p \ U^2 M, \tag{3.11}
\]

To relate \(U\) to the speed of propagation \(c\) we need merely note that (2.11),
(2.15), (2.16), and (3.7) yield
\[u(t) = U(t) \rho_0(Y_{\xi}, t) + v(Y_{\xi}, t), \]
(3.12)

and, therefore, by (2.17)
\[U(t) = \frac{c(t)}{\rho_0 v(Y_{\xi}, t)}. \]
(3.13)

Thus, by (2.13), (3.10), (3.11), and (3.13), the speed of propagation of an acceleration wave is given by
\[c(t)^2 = -U^2 \rho(Y, \nu, \xi), \]
(3.14)

with \(Y, \nu, \xi\), and \(\rho\) evaluated at the wave at time \(t\).

We assume, of course, that \(\partial U / \partial t\) is always negative.
4. The Amplitude of Acceleration Waves

Here we consider an acceleration wave advancing into an infinite homogeneous region at rest in an equilibrium state \((D_0, T_0, Z_0)\). Assuming \(U > 0\) and taking the reference configuration to be that of the material ahead of the wave, at each time \(t\) we have

\[
\langle X, t \rangle \ll \langle X, 0 \rangle - 1/\rho_0, \quad n(X, t) = T_0, \quad Q\xi(X, t) = G, \quad \text{for all } X > Y_t, \quad (4.1)
\]

where \(\rho_0\) is the mass density in the reference configuration. For such a wave, (3.13) and (3.14) yield

\[
U = c = \frac{V_T^2 S_0^2}{\rho_0} \text{ Const} \quad (4.2)
\]

It follows from \((\cdot \cdot \cdot)_{3,4} \quad (3.4), (3.5), \text{ and } (3.8)\) that \(r\) and \(a\) are not only continuous across the wave but in addition satisfy

\[
h \left| \nabla \right| = 0, \quad \frac{\partial f}{\partial \tau} - \frac{1}{2} \left\{ \left. \left. \mathbf{Q}^0 \right| \mathbf{z} = \mathbf{0} \right. \right\} \frac{\partial \left(\mathbf{E}^0 \right)}{\partial \mathbf{n}} = 0, \quad (4.3)
\]

Differentiating (2.14) we obtain

\[
\alpha'' + \sin + \left(d_0 \xi (\xi + C_0) \right) \frac{\partial f}{\partial n} - \frac{\partial g}{\partial n} = 0, \quad (4.4)
\]

and, therefore, by (4.3),

\[
e^{-i\tau} \mathbf{Q} + \mathbf{z} = 0, \quad (4.5)
\]

Since \(0 > 0\), and since in the present case (4.1) and (2.10) imply that
de \sim 0 \text{ at the wave, (4.5) yields}

\[\dot{\eta} = 0, \]

(4.6)

and, from this, (3.5), (3.8), and Maxwell's theorem we obtain

\[[\partial_x \dot{\eta}] = [\partial_x^2 \eta] = 0. \]

(4.7)

A convenient measure of the amplitude of a wave of order two is the jump

\[a \sim \left< \rho \right> \]

(4.8)

in the gradient of the density. Since we here assume that the material ahead of the wave is in its reference configuration and since dx/dx is continuous across the wave, at the wave a material derivative may be replaced by a spatial derivative, and (4.8) may be written

\[a = [\partial_x \rho] = \lim_{x \rightarrow y} \partial_x \rho(x, t); \]

(4.9)

i.e. the amplitude is just the spatial gradient of the density, evaluated immediately behind the wave. Of course, in general, the amplitude varies in time. Elsewhere, we have derived a general relation for da/dt which reduces to

\[2 \frac{da}{dt} = \rho_o [\partial_x \dot{\rho}] + \frac{1}{\gamma} [\partial_x \rho_c] \]

(4.10)

when $dU/dt = 0$ and $U^2 \Rightarrow \frac{c}{c}$, as is the case here. To calculate $[d_x \rho]$ we
first differentiate (3.9):

\[\partial_x \dot{p} = (\partial_v \tilde{p}) \partial_x v + (\partial_v \tilde{p}) \partial_\eta \dot{\eta} x + (\partial_\eta \tilde{p}) \partial_x \eta + \partial_\eta \tilde{p} \cdot \partial_x \eta + (\partial_v \tilde{p}) \partial_x \eta + \partial_v \tilde{p} \cdot \partial_x \eta \]

+ \tilde{\partial}_x \tilde{p} \cdot \partial_\eta \eta x + \tilde{\partial}_x \tilde{p} \cdot \partial_x \eta x + \tilde{\partial}_x \tilde{p} \cdot \partial_\eta \dot{\eta} x + \tilde{\partial}_x \tilde{p} \cdot \partial_\eta \eta x + \tilde{\partial}_x \tilde{p} \cdot \partial_\eta \dot{\eta} x ,

(4.11)

where \((\tilde{\partial}_x \tilde{p})\) stands for the linear transformation with components \(\partial_v \partial_x \tilde{p}, \partial_\eta \partial_x \tilde{p}\).

Since \(\tilde{\eta}, \tilde{\tau}, \tilde{a}\) are continuous across the wave and \(\tilde{p}\) is of class \(C\), each of the coefficients \(\tilde{v} \tilde{p}, \tilde{v} \tilde{p}, \tilde{v} \tilde{p}, \tilde{v} \tilde{p}\), etc. in parenthesis in (4.11) is continuous at \(Y, t\). Hence (4.11), (4.3), and (4.7) yield

\[\partial_x \dot{p} = (\partial_v \tilde{p}) \partial_x v + (\partial_v \tilde{p}) \partial_\eta \dot{\eta} x + (\partial_\eta \tilde{p}) \partial_x \eta + \partial_\eta \tilde{p} \cdot \partial_x \eta x + \tilde{\partial}_x \tilde{p} \cdot \partial_\eta \eta x + \tilde{\partial}_x \tilde{p} \cdot \partial_\eta \dot{\eta} x \cdot \partial_x \eta x \]

(4.12)

By (2.2),

\[\partial_x \dot{\eta} = (\partial_v \tilde{b}) \partial_x v + (\partial_\eta \tilde{b}) \partial_x \eta + (\partial_\eta \tilde{b}) \cdot \partial_x \eta ; \]

(4.13)

therefore, since \(\tilde{\eta}\) is of class \(C^1\) we conclude from (3.8) that

\[\partial_x \dot{\eta} = (\partial_v \tilde{b}) \partial_x v \cdot \partial_x \eta \]

(4.14)

It follows from (4.1) and (2.18) that here

\[\{ \partial_x \dot{\eta} \} = \{ \partial_x \dot{v} \} \partial_x \eta \]

(4.15)

Since \(t) - 1/p\), (4.8) and (4.1) imply

\[\{ \partial_x \dot{v} \} = -p' a. \]

(4.16)
and by (3.11) and (4.2)

$$sI - cp_0^2a.$$ \hspace{1cm} (4.17)

Substituting (4.12) and (4.14)-(4.17) into (4.11), we obtain the following differential equation for $a(t)$:

$$\frac{d}{dt} = \alpha a + \frac{1}{2} \varepsilon^2 \varepsilon.$$ \hspace{1cm} (\sim 18)

with

$$a = \frac{v_0^2(\partial \tilde{p}) \cdot (\partial \tilde{h})}{2c^2}, \quad \lambda = \frac{(\partial \tilde{p}) \cdot (\partial \tilde{h})}{x_0^2 \tilde{p} \tilde{p}}.$$ \hspace{1cm} (4.19)

Integration of (4.18) yields the following theorem19: The amplitude $a(t)$ of an acceleration wave which since time $t > 0$ has been advancing into a homogeneous region at rest in an equilibrium state $(D_0, r, 0L)$ obeys the formula20

$$a(t) = \frac{\gamma^{\tilde{p} / \gamma}}{(\lambda - a(0)) e^\gamma + a(0)}.$$ \hspace{1cm} (4.20)

Here x and p are constants given by (4.18) with $\partial \tilde{p}$, $5 \tilde{p}$, and $d \tilde{h}$ evaluated at (x_o, T_o, a_o).

In applications we expect to have

$$|i| > 0.$$ \hspace{1cm} (4.21)

In this case $|X|$ plays the role of a critical amplitude: If $|a(0)| < |X|$
or if \(\text{sgn } a(0) \neq -\text{sgn } X \) then \(a(t) \to 0 \) monotonically. If \(a(0) = X \), then \(a(t) = a(0) \). On the other hand, if both \(|a(0)| > |X| \) and \(\text{sgn } a(0) = \text{sgn } X \) then \(|a(t)| \to \infty \) monotonically in a finite time \(t_c \) given by

\[
t_c = -\frac{1}{\mu} \ln\left(1 - \frac{\lambda}{\sqrt{\gamma \rho_0}}\right).
\]

(4.22)

For gases we generally have

\[
d\nabla \cdot (\rho \mathbf{v}) < 0,
\]

(4.23)

and hence, by (4.19) and (4.21)

\[
X < 0.
\]

(4.24)

Thus for a gas, in order to have \(|d^p(t)| \to \infty \) it is necessary that \(d\nabla \cdot (\rho \mathbf{v}) \) be negative, i.e. that the acceleration wave be "compressive".

One is tempted to suppose that the approach of \(|d\nabla \cdot (\rho \mathbf{v})| \) to \(\infty \) as \(t \to t_c \) indicates the formation of a shock wave at time \(t_c \) but a rigorous proof is lacking. In any event, we see that an acceleration wave moving into a homogeneous equilibrium state in a shock tube can grow into a shock wave only if it is compressive, and this is, of course, just what is observed in practice. Our theory states further that a shock wave should not form unless \(-[d\nabla \cdot (\rho \mathbf{v})] \) is initially greater than \(-X \).

We do not know whether this critical jump \(-X \) has ever been measured with precision, but surely it exists in experience; otherwise the feeblest bursts of sound could grow into shock waves.
5. Mild Discontinuities

The methods we have used to calculate the velocity and amplitude of acceleration waves can be applied without difficulty to waves of order 3 and higher. Here we give results of such calculations.

For the theory of waves of order N we assume that the response functions \tilde{c} and h are of class $C^{\frac{N-1}{2}}$ and $C^{\frac{N-1}{2}}$, respectively.

It turns out that, since the materials we consider here do not conduct heat, all waves of order $N > 2$ share the common formula (3.14) for their speeds of propagation.

A fundamental distinction between acceleration waves and mild discontinuities arises, however, as soon as we consider reinforcement and attenuation. We may define the amplitude of a wave of order $N > 2$ by the formula

$$a \sim \frac{1}{x} \exp \left(\frac{-1}{x} \right),$$

(5.1)

which reduces, when the wave is propagating into a homogeneous region with the properties (4.1), to

$$a = \lim_{x \to y} \delta_{x}^{\frac{1}{2}}.$$

Our main result for such waves is summarized in the following theorem.

For the amplitude $a(t)$ of a wave of order 3 or greater propagating into a homogeneous region at rest in an equilibrium state $\left(x_{0}, r_{0}, a_{0} \right)$ we have
the simple formula

\[a(t) = a(0)e^{\eta E}; \] (5.3)

the constant \(\eta \) is again given by (4.19), with \(d_j \eta \) and \(\eta_i \) evaluated at

\((v_0, \eta_0, \alpha_0). \)

Thus, if we assume (4.21), then for a mild discontinuity

propagating into a homogeneous region at equilibrium, \(a(t) \to 0 \) exponentially

as \(t \to \infty \).
6. Ideal Gases with Vibrational Relaxation

Our general theory covers, as special cases, ideal gases with vibrational relaxation, that is materials for which the constitutive equations (2.1) and (2.2) assume the special forms with

\[\begin{align*}
\epsilon &= \epsilon_A(\theta) + a, \\
p &= Rg/X, \\
\dot{a} &= c(0,e)U(e) - a, \quad K > 0
\end{align*} \]

with

\[0 = \tilde{0}(), T, a); \]

here \(R \) is the universal gas constant divided by the molecular weight of the gas, \(0 \) and \(\epsilon_A(0) \) are called the active-mode temperature and active-mode energy, while \(a \) is called the vibrational energy. It can be shown that for such a material our formulae (4.2) and (4.19) reduce to

\[\begin{align*}
c^2 &= 7R0, \\
\lambda &= \frac{\gamma c_v}{c_A} \left[\frac{\gamma(\gamma+1)}{\gamma - 1} + \frac{\partial \gamma}{\partial \delta} \right]^{-1}, \\
\mu &= \frac{(7-1)/c_v}{2c_A},
\end{align*} \]

where

\[G_A = 55(\Delta \nabla)^2, \quad \gamma = \gamma(0) = \frac{R}{\nabla}, \quad c_v = h'W \]

Of course, all the quantities on the right in (6.3)-(6.5) are to be evaluated at the equilibrium state ahead of the wave.
This research was supported in part by the Air Force Office of Scientific Research and the Office of Naval Research.

1 In refs 2 & 3 thermodynamic influences on the stress are shown explicitly.*

Ref. 2 and other works on waves of discontinuity are reprinted in the book:
Coleman, Gurtin, Herrera R°, and Truesdell, Wave Propagation in Dissipative Materials, (Springer-Verlag, New York, 1965). Existence and uniqueness theorems for steady shock waves are given in ref. 4.

9 For an example see the discussion of M. J. Lighthill, J. Fluid Mech. 2, 1 (1957).

11 A derivation of the relations (2.3)-(2.5) is given in ref. 8.

12 Ref. 8, Eq. (7.21).

13 The analogous result for materials with fading memory is given in ref. 2, p. 277, Theorem 4.3.

15 Theorem 9.1 on p. 292 of ref. 2 contains the analogous result for materials with fading memory.

16 Cf. ref. 2, p. 297, Remark 11.3.

17 Ref. 18, p. 245, Remark 2.2.

19 For the complete analogue of this theorem in the theory of materials with fading memory, see ref. 2, p. 297, Theorem 11.1.

20 Equations of the general form (4.22) have been derived for Noll's "hygrosteric materials" by J. Dunwoody and N. T. Dunwoody, for
materials of integral type by Varley and for more general materials by Coleman and Gurtin, and Coleman, Greenberg, and Gurtin. Of particular interest here are Eqs. (4.20) and (4.21) identifying X and I for materials with internal state variables.

Cf. ref. 2, p. 325, Theorem 2.2.

A result of the form (5.3) was obtained by Coleman, Greenberg, and Gurtin, p. 345, Theorem 5.1, under neglect of thermodynamic influences.

In ref. 8 we discuss in more detail the phenomenological assumptions behind the theory of ideal gases with vibrational relaxation. The number T in (6.2) is the sum of the active-mode entropy and the vibrational entropy.

This research was supported in part by the Air Force Office of Scientific Research and the Office of Naval Research.
On the Growth and Decay of Discontinuities in Fluids with Internal State Variables

In the non-linear theory of one-dimensional motions of fluids exhibiting mechanical dissipation through the relaxation of internal state variables, one can derive exact expressions for the growth and attenuation of acceleration waves and higher-order waves. The methods and concepts used are simpler than those required for analogous problems in the general theory of materials with fading memory. Here we discuss in detail the time dependence of the amplitude of waves propagating into homogeneous regions at equilibrium.
KEY WORDS

- Thermodynamics
- Continuum Mechanics
- Internal State Variables
- Wave Propagation

INSTRUCTIONS

1. **ORIGINATING ACTIVITY**: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION**: Enter the overall security classification of the report. Indicate whether "restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

26. **GROUP**: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author used.

3. **REPORT TITLE**: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. **DESCRIPTIVE NOTES**: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S)**: Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE**: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES**: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

76. **NUMBER OF REFERENCES**: Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER**: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8d, & 8e. **PROJECT NUMBER**: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S)**: Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S)**: If the report has been assigned any other report number(s) (either by the originator or by (ho uponor), also enter this numbers.

10. **AVAILABILITY/LIMITATION NOTICES**: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"
 5. "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

II **SUPPLEMENTARY NOTES**: Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY**: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT**: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (V).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS**: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

DD FORM 1473 (BACK)