
Carnegie Mellon University
Research Showcase @ CMU

Parallel Data Laboratory Research Centers and Institutes

12-2003

Atropos: A Disk Array Volume Manager for
Orchestrated Use of Disks (CMU-PDL-03-101)
Jiri Schindler
Carnegie Mellon University

Steven W. Schlosser
Carnegie Mellon University

Minglong Shao
Carnegie Mellon University

Anastassia Ailamaki
Carnegie Mellon University

Gregory R. Ganger
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/pdl

This Technical Report is brought to you for free and open access by the Research Centers and Institutes at Research Showcase @ CMU. It has been
accepted for inclusion in Parallel Data Laboratory by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

Recommended Citation
.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpdl%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/research?utm_source=repository.cmu.edu%2Fpdl%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Appears in Proceedings of the 3rd USENIX Conference on File and Storage Technologies (FAST’04).
San Francisco, CA. March 2004.

Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks

Jiri Schindler�, Steven W. Schlosser, Minglong Shao, Anastassia Ailamaki, Gregory R. Ganger
Carnegie Mellon University

Abstract

The Atroposlogical volume manager allows applications
to exploit characteristics of its underlying collection of
disks. It stripes data in track-sized units and explicitly
exposes the boundaries, allowing applications to maxi-
mize efficiency for sequential access patterns even when
they share the array. Further, it supports efficient diag-
onal access to blocks on adjacent tracks, allowing ap-
plications to orchestrate the layout and access to two-
dimensional data structures, such as relational database
tables, to maximize performance for both row-based and
column-based accesses.

1 Introduction
Many storage-intensive applications, most notably
database systems and scientific computations, have
some control over their access patterns. Wanting the
best performance possible, they choose the data layout
and access patterns they believe will maximize I/O effi-
ciency. Currently, however, their decisions are based on
manual tuning knobs and crude rules of thumb. Applica-
tion writers know that large I/Os and sequential patterns
are best, but are otherwise disconnected from the under-
lying reality. The result is often unnecessary complexity
and inefficiency on both sides of the interface.

Today’s storage interfaces (e.g., SCSI and ATA) hide
almost everything about underlying components, forc-
ing applications that want top performance to guess and
assume [7, 8]. Of course, arguing to expose more in-
formation highlights a tension between the amount of
information exposed and the added complexity in the
interface and implementations. The current storage in-
terface, however, has remained relatively unchanged for
15 years, despite the shift from (relatively) simple disk
drives to large disk array systems with logical volume
managers (LVMs). The same information gap exists in-
side disk array systems—although their LVMs sit below
a host’s storage interface, most do not exploit device-
specific features of their component disks.

This paper describes a logical volume manager, called
Atropos(see Figure 1), that exploits information about
its component disks and exposes high-level information
about its data organization. With a new data organiza-
tion and minor extensions to today’s storage interface,

�Now with EMC Corporation.

APPLICATION

disk drive
parameters

I/O
requests

Atropos LVM

disk array

LVM
parameters

explicit hints
to applications

 layout w/ efficient

host

2

1

 data access

Figure 1: Atropos logical volume manager architecture. Atropos
exploits disk characteristics (arrow 1), automatically extracted from
disk drives, to construct a new data organization. It exposes high-level
parameters that allow applications to directly take advantage of this
data organization for efficient access to one- or two-dimensional data
structures (arrow 2).

it accomplishes two significant ends. First, Atroposex-
ploits automatically-extracted knowledge of disk track
boundaries, using them as its stripe unit boundaries. By
also exposing these boundaries explicitly, it allows ap-
plications to use previously proposed “track-aligned ex-
tents” (traxtents), which provide substantial benefits for
mid-sized segments of blocks and for streaming patterns
interleaved with other I/O activity [22].

Second, Atroposuses and exposes a data organiza-
tion that lets applications go beyond the “only one di-
mension can be efficient” assumption associated with
today’s linear storage address space. In particular, two-
dimensional data structures (e.g., database tables) can be
laid out for almost maximally efficient access in both
row- and column-orders, eliminating a trade-off [15]
currently faced by database storage managers. Atro-
pos enables this by exploiting automatically-extracted
knowledge of track/head switch delays to support semi-
sequentialaccess: diagonal access to ranges of blocks
(one range per track) across a sequence of tracks.

In this manner, a relational database table can be laid
out such that scanning a single column occurs at stream-
ing bandwidth (for the full array of disks), and reading
a single row costs only 16%–38% more than if it had
been the optimized order. We have implemented Atro-
posas a host-based LVM, and we evaluate it with both
database workload experiments (TPC-H) and analytic
models. Because Atroposexposes its key parameters ex-
plicitly, these performance benefits can be realized with
no manual tuning of storage-related application knobs.

The rest of the paper is organized as follows. Sec-
tion 2 discusses current logical volume managers and
the need for Atropos. Section 3 describes the design an
implementation of Atropos. Section 4 describes how At-
roposis used by a database storage manager. Section 5
evaluates Atroposand its value for database storage man-
agement. Section 6 discusses related work.

2 Background
This section overviews the design of current disk array
LVMs, which do not exploit the performance benefits of
disk-specific characteristics. It highlights the features of
the AtroposLVM, which addresses shortcomings of cur-
rent LVMs, and describes how Atropossupports efficient
access in both column- and row-major orders to applica-
tions accessing two-dimensional data structures.

2.1 Conventional LVM design
Current disk array LVMs do not sufficiently exploit or
expose the unique performance characteristics of their
individual disk drives. Since an LVM sits below the
host’s storage interface, it could internally exploit disk-
specific features without the host being aware beyond
possibly improved performance. Instead, most use data
distribution schemes designed and configured indepen-
dently of the underlying devices. Many stripe data
across their disks, assigning fixed-sized sets of blocks
to their disks in a round-robin fashion; others use more
dynamic assignment schemes for their fixed-size units.
With a well-chosen unit size, disk striping can provide
effective load balancing of small I/Os and parallel trans-
fers for large I/Os [13, 16, 18].

A typical choice for the stripe unit size is 32–64 KB.
For example, EMC’s Symmetrix 8000 spreads and repli-
cates 32 KB chunks across disks [10]. HP’s Au-
toRAID [25] spreads 64 KB “relocation blocks” across
disks. These values conform to the conclusions of early
studies [4] of stripe unit size trade-offs, which showed
that a unit size roughly matching a single disk track (32–
64 KB at the times of these systems’ first implementa-
tions) was a good rule-of-thumb. Interestingly, many
such systems seem not to track the growing track size
over time (200–350 KB for 2002 disks), perhaps because
the values are hard-coded into the design. As a conse-
quence, medium- to large-sized requests to the array re-
sult in suboptimal performance due to small inefficient
disk accesses.

2.2 Exploiting disk characteristics
Track-sized stripe units: Atroposmatches the stripe
unit size to the exact track size of the disks in the vol-
ume. In addition to conforming to the rule-of-thumb as
disk technology progresses, this choice allows applica-
tions (and the array itself [11]) to utilize track-based ac-

cesses: accesses aligned and sized for one track. Recent
research [22] has shown that doing so increases disk ef-
ficiency by up to 50% for streaming applications that
share the disk system with other activity and for compo-
nents (e.g., log-structured file systems [17]) that utilize
medium-sized segments. In fact, track-based access pro-
vides almost the same disk efficiency for such applica-
tions as would sequential streaming.

The improvement results from two disk-level details.
First, firmware support for zero-latency access elimi-
nates rotational latency for full-track accesses; the data
of one track can be read in one revolution regardless of
the initial rotational offset after the seek. Second, no
head switch is involved in reading a single track. Com-
bined, these positioning delays represent over a third
of the total service time for non-aligned, approximately
track-sized accesses. Using small stripe unit sizes, as
do the array controllers mentioned above, increases the
proportion of time spent on these overheads.

Atroposuses automated extraction methods described
in previous work [21, 22] to match stripe units to disk
track boundaries. As detailed in Section 3.3, Atropos
also deals with multi-zoned disk geometries, whereby
tracks at different radial distances have different num-
bers of sectors. that are not multiples of any useful block
size.

Efficient access to non-contiguous blocks: In addi-
tion to exploiting disk-specific information to determine
its stripe unit size, Atroposexploits disk-specific infor-
mation to support efficient access to data across sev-
eral stripe units mapped to the same disk. This access
pattern, called semi-sequential, reads some data from
each of several tracks such that, after the initial seek,
no positioning delays other than track switches are in-
curred. Such access is appropriate for two-dimensional
data structures, allowing efficient access in both row-
and column-major order.

In order to arrange data for efficient semi-sequential
access, Atroposmust know the track switch time as well
as the track sizes. Carefully deciding how much data to
access on each track, before moving to the next, allows
Atroposto access data from several tracks in one full rev-
olution by taking advantage of the Shortest-Positioning-
Time-First (SPTF) [12, 23] request scheduler built into
disk firmware. Given the set of accesses to the dif-
ferent tracks, the scheduler can arrange them to ensure
efficient execution by minimizing the total positioning
time. If the sum of the data transfer times and the track
switch times equals the time for one rotation, the sched-
uler will service them in an order that largely eliminates
rotational latency (similar to the zero-latency feature for
single track access). The result is that semi-sequential
accesses are much more efficient than a like number of
random or unorchestrated accesses.

a1 a2 a3 a4row a

b1 b2 b3 b4row b

c1 c2 c3 c4row c

d1 d2 d3 d4row d

z1 z2 z3 z4row z

co
l 1

co
l 2

co
l 3

co
l 4

...

(a) 2D table.

disk 0 disk 1

a1 b1 c1 d1

b3 c3 d3 e3

g1 h1e1 f1

w1 x1u1 v1

x3 y3v3w3

z2 a3x2 y2

a2 b2y1 z1

z3 a4 b4 c4

... ...

... ...

... ...

... ...

(b) Naı̈ve.

disk 0 disk 1

a1
a2

g3
f3 g4

b1
b2

h3b3
h4

c1
c2d2 g2

f3e3
e4

d1
h2

c3
b4 c4

e1
e2

d3
d4

f1 h1g1
f2

a3
a4

t4 u4 v4w4

m1 n1 o1 p1

l2 i2 j2 k2

i1 j1 k1 l1

... ...

(c) Atropos.
0

a1 a2b1 b2c1 c2z1 z2 a3 b3 c3 z3 a4 b4 c4 z4

Figure 2: Two layouts for parallel access to a two-dimensional data structure mapped to a linear LBN address space.

2.3 Access to 2D data structures

Figure 2 uses a simple example to illustrate Atropos’s
benefits to applications that require efficient access to
two-dimensional structures in both dimensions and con-
trasts it with conventional striping in disk arrays. The
example depicts a two-dimensional data structure (e.g., a
table of a relational database) consisting of four columns
[1; : : : ;4] and many rows [a; : : : ;z]. For simplicity, each
element (e.g., a1) maps to a single LBN of the logical
volume spanning two disks.

To map this two-dimensional structure into a linear
space of LBNs, conventional systems decide a priori
which order (i.e., column- or row-major) is likely to be
accessed most frequently [5]. In the example in Fig-
ure 2, a column-major access was chosen and hence the
runs of [a1;b1; : : : ;z1], [a2;b2; : : : ;z2], [a3;b3; : : : ;z3], and
[a4;b4; : : : ;z4] assigned to contiguous LBNs. The map-
ping of each element to the LBNs of the individual disks
is depicted in Figure 2(b) in a layout called Näıve. When
accessing a column, the disk array uses (i) sequential
access within each disk and (ii) parallel access to both
disks, resulting in maximum efficiency.

Accessing data in the other order (i.e., row-major),
however, results in disk I/Os to disjoint LBNs. For the
example in Figure 2(b), an access to row [a1;a2;a3;a4]
requires four I/Os, each of which includes the high posi-
tioning cost for a small random request. The inefficiency
of this access pattern stems from the lack of information
in conventional systems; one column is blindly allocated
after another within the LBN address space.

Atropossupports efficient access in both orders with
a new data organization, depicted in Figure 2(c). This
layout maps columns such that their respective first row
elements start on the same disk and enable efficient row-
order access. This layout still achieves sequential, and
hence efficient, column-major access, just like the Naı̈ve
layout. Accessing the row [a1;a2;a3;a4], however, is
much more efficient than with Naı̈ve. Instead of small
random accesses, the row is now accessed semi-sequen-

tially in (at most) one disk revolution, incurring much
smaller positioning cost (i.e., eliminating all but the first
seek and all rotational latency). Section 3 describes why
this semi-sequential access is efficient.

2.4 Efficient access for database systems

By mapping two-dimensional structures (e.g., large non-
sparse matrices or database tables) into a linear LBN
space without providing additional information to appli-
cations, efficient accesses in conventional storage sys-
tems are only possible in one of row- or column-major
order. Database management systems (DBMS) thus pre-
dict the common order of access by a workload and
choose a layout optimized for that order, knowing that
accesses along the other major axis will be inefficient.

In particular, online transaction processing (OLTP)
workloads, which make updates to full records, favor ef-
ficient row-order access. On the other hand, decision
support system (DSS) workloads often scan a subset of
table columns and get better performance using an orga-
nization with efficient column-order access [15]. With-
out explicit support from the storage device, however, a
DBMS system cannot efficiently support both workloads
with one data organization.

The different storage models (a.k.a. page layouts) em-
ployed by DBMSs trade the performance of row-major
and column-major order accesses. The page layout
prevalent in commercial DBMS, called the N-ary stor-
age model (NSM), stores a fixed number of full records
(all n attributes) in a single page (typically 8 KB). This
page layout is optimized for OLTP workloads with row-
major access and random I/Os. This layout is also effi-
cient for scans of entire tables; the DBMS can sequen-
tially scan one page after another. However, when only
a subset of attributes is desired (e.g., the column-major
access prevalent in DSS workloads), the DBMS must
fetch full pages with all attributes, effectively reading
the entire table even though only a fraction of the data is
needed.

To alleviate the inefficiency of column-major access
with NSM, a decomposition storage model (DSM) verti-
cally partitions a table into individual columns [5]. Each
DSM page thus contains a single attribute for a fixed
number of records. However, fetching full records re-
quires n accesses to single-attribute pages and n�1 joins
on the record ID to reconstruct the entire record.

The stark difference between row-major and column-
major efficiencies for the two layouts described above is
so detrimental to database performance that some have
even proposed maintaining two copies of each table to
avoid it [15]. This solution requires twice the capacity
and must propagate updates to each copy to maintain
consistency. With Atropos’s data layout, which offers
efficient access in both dimensions, database systems do
not have to compromise.

2.5 A more explicit storage interface
Virtually all of today’s disk arrays use an interface (e.g.,
SCSI or ATA) that presents the storage device as a linear
space of equally-sized blocks. Each block is uniquely
addressed by an integer, called a logical block number
(LBN). This linear abstraction hides non-linearities in
storage device access times. Therefore, applications and
storage devices use an unwritten contract, which states
that large sequential accesses to contiguous LBNs are
much more efficient than random accesses and small I/O
sizes. Both entities work hard to abide by this implicit
contract; applications construct access patterns that fa-
vor large I/O and LVMs map contiguous LBNs to me-
dia locations that ensure efficient execution of sequen-
tial I/Os. Unfortunately, an application decides on I/O
sizes without any more specific information about the
LBN mappings chosen by an LVM because current stor-
age interfaces hide it.

In the absence of clearly defined mechanisms, appli-
cations rely on knobs that must be manually set by a
system administrator. For example, the IBM DB2 re-
lational database system uses the PREFETCHSIZE and
EXTENTSIZE parameters to determine the maximal size
of a prefetch I/O for sequential access and the number of
pages to put into a single extent of contiguous LBNs [6].
Another parameter, called DB2 STRIPED CONTAINERS,
instructs DBMS to align I/Os on stripe unit boundaries.
Relying on proper knob settings is fragile and prone to
human errors: it may be unclear how to relate them to
LVM configuration parameters. Because of these diffi-
culties, and the information gap introduced by inexpres-
sive storage interfaces, applications cannot easily take
advantage of significant performance characteristics of
modern disk arrays. Atroposexposes explicit informa-
tion about stripe unit sizes and semi-sequential access.
This information allows applications to directly match
their access patterns to the disk array’s characteristics.

16

32

48

64

80

96

112

128

144

160

176

0

0 4 8 12

64 68 7276

128 132136 140

disk 0 disk 1 disk 2 disk 3

quadrangle 0 quadrangle 1 quadrangle 2 quadrangle 3

quadrangle 7quadrangle 6quadrangle 4 quadrangle 5

quadrangle 8 quadrangle 9 quadrangle 10 quadrangle 11

Figure 3: Atropos quadrangle layout. The numbers to the left
of disk 0 are the VLBNs mapped to the gray disk locations connected
by the arrow (not the first block of each quadrangle row). The arrow
illustrates efficient access in the other-major.

3 Atropos logical volume manager
The Atroposdisk array LVM addresses the aforemen-
tioned shortcomings of many current disk array LVM
designs. It exploits disk-specific characteristics to con-
struct a new data organization. It also exposes high-level
features of this organization to higher-levels of the stor-
age stack, allowing them to directly take advantage of
key device-specific characteristics. This section details
the new data organization and the information Atropos
exposes to applications.

3.1 Atropos data organization
As illustrated in Figure 3, Atropos lays data across p
disks in basic allocation units called quadrangles. A
quadrangle is a collection of logical volume LBNs, here
referred to as VLBNs, mapped to a single disk. Each
successive quadrangle is mapped to a different disk.

A quadrangle consists of d consecutive disk tracks,
with d referred to as the quadrangle’s depth. Hence, a
single quadrangle is mapped to a contiguous range of a
single disk’s logical blocks, here referred to as DLBNs.
The VLBN and DLBN sizes may differ; a single VLBN
consists of b DLBNs, with b being the block size of a
single logical volume block. For example, an application
may choose a VLBN size to match its allocation units
(e.g., an 8 KB database block size), while a DLBN is
typically 512 bytes.

Each quadrangle’s dimensions are w� d logical
blocks (VLBNs), where w is the quadrangle width and
equals the number of VLBNs mapped to a single track.
In Figure 3, both d and w are four. The relationship be-
tween the dimensions of a quadrangle and the mappings
to individual logical blocks of a single disk are described
in Section 3.2.2.

The goal of the Atroposdata organization is to allow
efficient access in two dimensions. Efficient access of

the primary dimension is achieved by striping contigu-
ous VLBNs across quadrangles on all disks. Much like
ordinary disk arrays, which map LBNs across individ-
ual stripe units, each quadrangle row contains a contigu-
ous run of VLBNs covering a contiguous run of a single
disk’s DLBNs on a single track. Hence, sequential ac-
cess naturally exploits the high efficiency of track-based
access explained in Section 2.2. For example, in Fig-
ure 3, an access to 16 sequential blocks starting at VLBN
0, will be broken into four disk I/Os executing in parallel
and fetching full tracks: VLBNs 0–3 from disk 0, VLBNs
4–7 from disk 1, VLBNs 8–11 from disk 2, and VLBNs
12–15 from disk 3.

Efficient access to the secondary dimension is
achieved by mapping it to semi-sequential VLBNs. Fig-
ure 3 indicates the semi-sequential VLBNs with a dashed
line. Requests to the semi-sequential VLBNs in a single
quadrangle are all issued together in a batch. The disk’s
internal scheduler then chooses the request that will in-
cur the smallest positioning cost (the sum of seek and
rotational latency) and services it first. Once the first re-
quest is serviced, servicing all other requests will incur
only a track switch to the adjacent track. Thanks to the
semi-sequential layout, no rotational latency is incurred
for any of the subsequent requests, regardless of which
request was serviced first.

Naturally, the sustained bandwidth of semi-sequential
access is smaller than that of sequential access. How-
ever, semi-sequential access is more efficient than read-
ing d effectively-random VLBNs spread across d tracks,
as would be the case in a normal striped disk array. Ac-
cessing random VLBNs will incur rotational latency, av-
eraging half a revolution per access. In the example of
Figure 3, the semi-sequential access, depicted by the ar-
row, proceeds across VLBNs 0;16;32; : : : ;240 and oc-
curs on all p disks, achieving the aggregate semi-sequen-
tial bandwidth of the disk array.

3.2 Quadrangle layout parameters
The values that determine efficient quadrangle layout de-
pend on disk characteristics, which can be described by
two parameters. The parameter N describes the num-
ber of sectors, or DLBNs, per track. The parameter H
describes the track skew in the mapping of DLBNs to
physical sectors. The layout and disk parameters are
summarized in Table 1.

Track skew is a property of disk data layouts as a con-
sequence of track switch time. When data is accessed
sequentially on a disk beyond the end of a track, the
disk must switch to the next track to continue access-
ing. Switching tracks takes some amount of time, during
which no data can be accessed. While the track switch is
in progress, the disk continues to spin, of course. There-
fore, sequential LBNs on successive tracks are physi-

Symbol Name Units
Quadrangle layout parameters

p Parallelism # of disks
d Quadrange depth # of tracks
b Block size # of DLBNs
w Quadrange width # of VLBNs

Disk physical parameters
N Sectors per track
H Head switch in DLBNs

Table 1: Parameters used by Atropos.

cally skewed so that when the switch is complete, the
head will be positioned over the next sequential LBN.
This skew is expressed as the parameter H which is the
number of DLBNs that the head passes over during the
track switch time.

Figure 4 shows a sample quadrangle layout and its pa-
rameters. Figure 4(a) shows an example of how quad-
rangle VLBNs map to DLBNs. Along the x-axis, a quad-
rangle contains w VLBNs, each of size b DLBNs. In the
example, one VLBN consists of two DLBNs, and hence
b= 2. As illustrated in the example, a quadrangle does
not always use all DLBNs when the number of sectors
per track, N, is not divisible by b. In this case, there are
R residual DLBNs that are not assigned to quadrangles.
Figure 4(b) shows the physical locations of each b-sized
VLBN on individual tracks, accounting for track skew,
which equals 3 sectors (H= 3 DLBNs) in this example.

3.2.1 Determining layout parameters
To determine a suitable quadrangle layout at format
time, Atroposuses as its input parameters the automat-
ically extracted disk characteristics, N and H, and the
block size, b, which are given by higher level software.
Based on these input parameters, the other quadrangle
layout parameters, d and w, are calculated as described
below.

To explain the relationship between the quadrangle
layout parameters and the disk physical parameters, let’s
assume that we want to read one block of b DLBNs from
each of d tracks. This makes the total request size, S,
equal to db. As illustrated in Figure 4(b), the locations
of the b blocks on each track are chosen to ensure the
most efficient access. Accessing b on the next track can
commence as soon as the disk head finishes reading on
the previous track and repositions itself above the new
track. During the repositioning, H sectors pass under
the heads.

To bound the response time for reading the Ssectors,
we need to find suitable values for b and d to ensure that
the entire request, consisting of db sectors, is read in at
most one revolution. Hence,

db
N

+
(d�1)H

N
� 1 (1)

w
d

b

b

b

b

unassigned disk LBNs

(a) Logical layout in disk LBN space.

single track representation

N

H

d

R R

b

b

b

b

b b b bH HH

(b) Physical layout on disk sectors.

Figure 4: Single quadrangle layout. In this example, the quadrangle layout parameters are b=2 (a single VLBNconsists of two DLBNs), w=10
VLBNs, and d= 4 tracks. The disk physical parameters are H=3 DLBNs and N=21 DLBNs. Given these parameters, R=1.

where db=N is the media access time needed to fetch
the desired S sectors and (d�1)H=N is the fraction of
time spent in head switches when accessing all d tracks.
Then, as illustrated at the bottom of Figure 4(b), reading
dbsectors is going to take the same amount of time as if
we were reading db+(d�1)H sectors on a single track
of a zero-latency access disk.

The maximal number of tracks, d, from which at least
one sector each can be read in a single revolution is
bound by the number of head switches that can be done
in a single revolution, so

d�

�
N
H

�
�1 (2)

If we fix d, the number of sectors, b, that yield the
most efficient access (i.e., reading as many sectors on a
single track as possible before switching to the next one)
can be determined from Equation 1 to get

b�
N+H

d
�H (3)

Alternatively, if we fix b, the maximal depth, called
Dmax, can be expressed from Equation 1 as

Dmax�
N+H
b+H

(4)

For certain values of N, db sectors do not span a full
track. In that case, db+ (d�1)H < N and there are
R residual sectors, where R < b, as illustrated in Fig-
ure 4. The number of residual DLBNs on each track not
mapped to quadrangle blocks is R= N mod w, where

w=

�
N
b

�
(5)

Hence, the fraction of disk space that is wasted with
Atropos’ quadrangle layout is R=N; these sectors are
skipped to maintain the invariant that db sectors can be
accessed in at most one revolution. Section 5.2.4 shows
that this number is less than 2% of the total disk capacity.

While it may seem that relaxing the one revolution
constraint might achieve better efficiency, Appendix B
shows that this intuition is wrong. Accessing more than
Dmax tracks is detrimental to the overall performance un-
less d is some multiple of Dmax. In that case, the service
time for such access is a multiple of one-revolution time.

3.2.2 Mapping VLBNs to quadrangles
Mapping VLBNs to the DLBNs of a single quadran-
gle is straightforward. Each quadrangle is identified
by DLBNQ, which is the lowest DLBN of the quad-
rangle and is located at the quadrangle’s top-left cor-
ner. The DLBNs that can be accessed semi-sequentially
are easily calculated from the N and b parameters. As
illustrated in Figure 4, given DLBNQ = 0 and b = 2,
the set f0;24;48;72g contains blocks that can be ac-
cessed semi-sequentially. To maintain rectangular ap-
pearance of the layout to an application, these DLBNs
are mapped to VLBNs f0;10;20;30gwhen b= 2, p= 1,
and VLBNQ = DLBNQ = 0.

With no media defects, Atroposonly needs to know
the DLBNQ of the first quadrangle. The DLBNQ for all
other quadrangles can be calculated from the N, d, and
b parameters. With media defects handled via slipping
(e.g., the primary defects that occurred during manufac-
turing), certain tracks may contain fewer DLBNs. If the
number of such defects is less than R, that track can
be used; if it is not, the DLBNs on that track must be
skipped. If any tracks are skipped, the starting DLBN of
each quadrangle row must be stored.

To avoid the overhead of keeping a table to remember
the DLBNs for each quadrangle row, Atroposcould re-
format the disk and instruct it to skip over any tracks that
contain one or more bad sectors. By examining twelve
Seagate Cheetah 36ES disks, we found there were, on
average, 404 defects per disk; eliminating all tracks with
defects wastes less than 5% of the disk’s total capacity.
The techniques for handling grown defects still apply.

(a) RAID 1 layout.

0

0

12

24

36

48

60

72

84

4 8

52

100

48 56

96

108

120

132

104 96

disk 0 disk 1 disk 2 disk 3

parity

parity

parity

quadrangle 0 quadrangle 1 quadrangle 2 quadrangle 3

quadrangle 7quadrangle 6quadrangle 4 quadrangle 5

quadrangle 8 quadrangle 9 quadrangle 10 quadrangle 11

(b) RAID 5 layout.

Figure 5: Atropos quadrangle layout for different RAID levels.

3.3 Practical system integration

Building an Atroposlogical volume out of p disks is not
difficult thanks to the regular geometry of each quadran-
gle. Atroposcollects a set of disks with the same ba-
sic characteristics (e.g., the same make and model) and
selects a disk zone with the desired number of sectors
per track, N. The VLBN size, b, is set according to ap-
plication needs, specifying the access granularity. For
example, it may correspond to a file system block size
or database page size. With b known, Atroposuses disk
parameters to determine the resulting d� Dmax.

In practice, volume configuration can be accom-
plished in a two-step process. First, higher-level soft-
ware issues a FORMAT command with desired values of
volume capacity, level of parallelism p, and block size
b. Internally, Atroposselects appropriate disks (out of a
pool of disks it manages), and formats the logical vol-
ume by implementing a suitable quadrangle layout.

3.3.1 Zoned disk geometries

With zoned-disk geometries, the number of sectors per
track, N, changes across different zones, which affects
both the quadrangle width, w, and depth, d. The latter
changes because the ratio of N to H may be different for
different zones; the track switch time does not change,
but the number of sectors that rotate by in that time does.
By using disks with the same geometries (e.g., same
disk models), we opt for the simple approach: quadran-
gles with one w can be grouped into one logical volume
and those with another w (e.g., quadrangles in a differ-
ent zone) into a different logical volume. Since modern
disks have fewer than 8 zones, the size of a logical vol-
ume stored across a few 72 GB disks would be tens of
GBs.

3.3.2 Data protection
Data protection is an integral part of disk arrays and the
quadrangle layout lends itself to the protection models
of traditional RAID levels. Analogous to the parity unit,
a set of quadrangles with data can be protected with a
parity quadrangle. To create a RAID5 homologue of a
parity group with quadrangles, there is one parity quad-
rangle unit for every p�1 quadrangle stripe units, which
rotates through all disks. Similarly, the RAID 1 homo-
logue can be also constructed, where each quadrangle
has a mirror on a different disk. Both protection schemes
are depicted in Figure 5.

3.3.3 Explicit information to applications
To allow applications to construct efficient streaming ac-
cess patterns, Atroposneeds to expose the parameter w,
denoting the stripe unit size. I/Os aligned and sized to
stripe unit boundaries can be executed most efficiently
thanks to track-based access and rotating stripe units
through all p disks. Applications with one-dimensional
access (e.g., streaming media servers) then exercise ac-
cess patterns consisting of w-sized I/Os that are aligned
on disk track boundaries.

For applications that access two-dimensional data
structures, and hence want to utilize semi-sequential ac-
cess, Atroposalso needs to expose the number of disks,
p. Such applications then choose the primary order for
data and allocate w� p blocks of this data, correspond-
ing to a portion of column 1 fa1; : : : ;h1g in Figure 2.
They allocate to the next w�p VLBNs the corresponding
data of the other-major order (e.g., the fa2; : : : ;h2g por-
tion of column 2) and so on, until all are mapped. Thus,
the rectangular region fa1; : : : ;h4g would be mapped to
4wpcontiguous VLBNs.

Access in the primary-major order (columns in Fig-
ure 2) consists of sequentially reading wp VLBNs. Ac-
cess in the other-major order is straightforward; the ap-

plication simply accesses every wp-th VLBN to get the
data of the desired row. Atroposneed not expose to ap-
plications the parameter d. It is computed and used in-
ternally by Atropos.

Because of the simplicity of information Atroposex-
poses to applications, the interface to Atroposcan be
readily implemented with small extensions to the com-
mands already defined in the SCSI protocol. The pa-
rameters p and w could be exposed in a new mode page
returned by the MODE SENSE SCSI command. To en-
sure that Atroposexecutes all requests to non-contiguous
VLBNs for the other-major access together, an applica-
tion can link the appropriate requests. To do so, the
READ or WRITE commands for semi-sequential access
are issued with the Link bit set.

3.3.4 Implementation details
Our Atropos logical volume manager implementation
is a stand-alone process that accepts I/O requests via
a socket. It issues individual disk I/Os directly to the
attached SCSI disks using the Linux raw SCSI device
/dev/sg. With an SMP host, the process can run on a
separate CPU of the same host, to minimize the effect on
the execution of the main application.

An application using Atroposis linked with a stub li-
brary providing API functions for reading and writing.
The library uses shared memory to avoid data copies and
communicates through the socket with the AtroposLVM
process. The AtroposLVM organization is specified by
a configuration file, which functions in lieu of a format
command. The file lists the number of disks, p, the de-
sired block size, b, and the list of disks to be used.

For convenience, the interface stub also includes three
functions. The function get boundaries(LBN)returns
the stripe unit boundaries between which the given LBN
falls. Hence, these boundaries form a collection of w
contiguous LBNs for constructing efficient I/Os. The
get rectangle(LBN)function returns the wp contiguous
LBNs in a single row across all disks. These functions
are just convenient wrappers that calculate the proper
LBNs from the w and p parameters. Finally, the stub
interface also includes a batch() function to explicitly
group READ and WRITE commands (e.g., for semi-se-
quential access).

With no outstanding requests in the queue (i.e., the
disk is idle), current SCSI disks will immediately sched-
ule the first received request of batch, even though it may
not be the one with the smallest rotational latency. This
diminishes the effectiveness of semi-sequential access.
To overcome this problem, our Atroposimplementation
“pre-schedules” the batch of requests by sending first the
request that will incur the smallest rotational latency. It
uses known techniques for SPTF scheduling outside of
disk firmware [14]. With the help of a detailed and vali-

dated model of the disk mechanics [2, 21], the disk head
position is deduced from the location and time of the
last-completed request. If disks waited for all requests
of a batch before making a scheduling decision, this pre-
scheduling would not be necessary.

Our implementation of the Atropos logical volume
manager is about 2000 lines of C++ code and includes
implementations of RAID levels 0 and 1. Another 600
lines of C code implement methods for automatically ex-
tracting track boundaries and head switch time [22, 26].

4 Efficient access in database systems

Efficient access to database tables in both dimensions
can significantly improve performance of a variety of
queries doing selective table scans. These queries can re-
quest (i) a subset of columns (restricting access along the
primary dimension, if the order is column-major), which
is prevalent in decision support workloads (TPC-H), (ii)
a subset of rows (restricting access along the secondary
dimension), which is prevalent in online transaction pro-
cessing (TPC-C), or (iii) a combination of both.

A companion project [24] to Atropos extends the
Shore database storage manager [3] to support a page
layout that takes advantage of Atropos’s efficient ac-
cesses in both dimensions. The page layout is based
on a cache-efficient page layout, called PAX [1], which
extends the NSM page layout to group values of a sin-
gle attribute into units called “minipages”. Minipages in
PAX exist to take advantage of CPU cache prefetchers
to minimize cache misses during single-attribute mem-
ory accesses. We use minipages as well, but they are
aligned and sized to fit into one or more 512 byte LBNs,
depending on the relative sizes of the attributes within a
single page.

The mapping of 8 KB pages onto the quadrangles
of the Atroposlogical volume is depicted in Figure 6.
A single page contains 16 equally-sized attributes, la-
beled A1–A16, where each attribute is stored in a sepa-
rate minipage that maps to a single VLBN. Accessing a
single page is thus done by issuing 16 batched requests
to every 16th (or more generally, wp-th) VLBN. Inter-
nally, the VLBNs comprising this page are mapped di-
agonally to the blocks marked with the dashed arrow.
Hence, 4 semi-sequential accesses proceeding in parallel
can fetch the entire page (i.e., row-major order access).

Individual minipages are mapped across sequential
runs of VLBNs. For example, to fetch attribute A1 for
records 0–399, the database storage manager can issue
one efficient sequential I/O to fetch the appropriate mini-
pages. Atroposbreaks this I/O into four efficient, track-
based disk accesses proceeding in parallel. The database
storage manager then reassembles these minipages into
appropriate 8 KB pages [24].

16

32

48

64

80

96

112

128

144

160

176

0

0 4 8 12

64 68 7276

128 132136 140

disk 0 disk 1 disk 2 disk 3

quadrangle 0 quadrangle 1 quadrangle 2 quadrangle 3

quadrangle 7quadrangle 6quadrangle 4 quadrangle 5

quadrangle 8 quadrangle 9 quadrangle 10 quadrangle 11

A1-A4
r0:r99

A1-A4
r100:r199

A1-A4
r200:r299

A5-A8
r0:r99

A9-A12
r300:r399

A5-A8
r100:r199

A5-A8
r200:r299

A1-A4
r300:r399

A9-A12
r0:r99

A9-A12
r100:r199

A9-A12
r200:r299

A5-A8
r300:r399

Figure 6: Mapping of a database table with 16 attributes onto
Atropos logical volume with 4 disks.

Fetching any subset of attributes for a given page
(record range) is thus a simple matter of issuing the cor-
responding number of I/Os, each accessing a contiguous
region of the VLBNspace mapped to a contiguous region
on the disk. If several I/Os fall onto stripe units mapped
to the same disk, the internal disk scheduler optimizes
their execution by minimizing positioning times.

5 Evaluation
This section evaluates the performance of Atropos. First,
it quantifies the efficiencies of sequential, semi-sequen-
tial and random accesses and shows the impact of disk
trends on the layout parameter values. For all access
patterns, Atroposachieves performance comparable or
superior to conventional disk array data organizations.
Second, trace replay experiments of a TPC-H work-
load on the Atropos implementation shows the bene-
fit of matching the stripe-unit size to the exact track
size and exposing it to applications. Third, the benefits
of Atropos’s data organizations are shown for (a subset
of) queries from the TPC-H benchmark running on the
Shore database storage manager [3] and our Atroposim-
plementation.

5.1 Experimental setup
The experiments were performed on a four-way
500 MHz Pentium III machine with 1 GB of memory
running Linux kernel v. 2.4.7 of RedHat 7.1 distribution.
The machine was equipped with two Adaptec Ultra160
Wide SCSI adapters on two separate PCI buses, each
controlling two 36 GB Maxtor Atlas 10K III disks.

5.2 Quantifying access efficiency
Traditional striped layouts of data across disks in a
RAID group offer efficient (sequential) access along one
major. The efficiency of accessing data along the other
major is much lower, essentially involving several ran-
dom accesses. Atropos’s quadrangle layout, on the other

hand, offers streaming efficiency for sequential accesses
and much higher efficiency for the other-major access.
We define “access efficiency” as the fraction of total ac-
cess time spent reading/writing data from/to the media.
The access efficiency is reduced by activities other than
data transfer, including seeks, rotational latencies, and
track switches. The efficiencies and response times de-
scribed in this subsection are for a single disk. With p
disks comprising a logical volume, each disk can experi-
ence the same efficiency while accessing data in parallel.

5.2.1 Efficient access in both majors

Figure 7 graphs the access efficiency of the quadrangle
layout as a function of I/O size. It shows two important
features of the Atroposdesign. First, accessing data in
the primary-order (line 1) matches the best-possible effi-
ciency of track-based access with traxtents. Second, the
efficiency of the other other-major order access (line 2)
is much higher than the same type of access with the
Näıvelayout of conventional disk arrays (line 3), thanks
to semi-sequential access.

The data in the graph was obtained by measuring
the response times of requests issued to randomly cho-
sen DLBNs, aligned on track boundaries, within the At-
las 10K III’s outer-most zone (686 sectors or 343 KB
per track). The average seek time in the first zone is
2.46 ms. The drop in the primary-major access effi-
ciency at the 343 KB mark is due to rotational latency
and an additional track switch incurred for I/Os larger
than the track size, when using a single disk.

The I/O size for the other-major access with the quad-
rangle layout is the product of quadrangle depth, d, and
the number of consecutive DLBNs, b, accessed on each
track. For d = 4, a request for Ssectors is split into four
I/Os of S=4 DLBNs. For this access in the Näıve lay-
out (line 3), servicing these requests includes one seek
and some rotational latency for each of the four b-sized
I/Os, which are “randomly” located on each of the four
consecutive tracks.

The efficiency of semi-sequential quadrangle access
(line 2) with I/O sizes below 124 KB is only slightly
smaller than that of the efficiency of track-based access
with traxtents. Past this point, which corresponds to the
one-revolution constraint, the efficiency increases at a
slower rate, eventually surpassing the efficiency value at
the 124 KB mark. However, this increase in efficiency
comes at a cost of increased request latency; the access
will now require multiple revolutions to service. The
continuing increase in efficiency past the 124 KB mark
is due to amortizing the cost of a seek by larger data
transfer. Recall that each request includes an initial seek.

0 50 100 150 200 250 300 350

Access Efficiency for Maxtor Atlas 10K III

I/O size [KB]

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1
Quadrangle (d=4) - primary-major access
Quadrangle (d=4) - other major access
Naive (d=4) - other-major access

track-based access (traxtents)

3

2

1

Figure 7: Comparison of access efficiencies. The maximal stream-
ing efficiency, i.e., without seeks, for this disk is 0.82 (computed by
Equation 6 in Appendix A).

5.2.2 Random accesses in the other-major
Figure 8 compares access times for a random 8 KB
chunk of data with different data layouts. The goal is to
understand the cost of accessing data in the other-major
order (e.g., row-major order access of the table in Fig-
ure 2). For context, a block in the primary-major has its
data mapped to consecutive LBNs. Such an access incurs
an average seek of 2.46 ms and an average rotational la-
tency of half a revolution, followed by an 8 KB media
access. The total response time of 5.93 ms is shown by
the bar labeled “Contiguous.”

Accessing 8 KB of data randomly spread across non-
contiguous VLBNs (e.g., single row access in the Naı̈ve
layout of Figure 2) incurs nearly half of a revolution of
rotational latency for each of the d accesses in addition
to the same initial seek. Such an access results in a large
response time, as shown by the bars labeled “Naive.”
Database systems using the DSM data layout decom-
posed into d separate tables suffer this high penalty when
complete records are retrieved.

In contrast, with the quadrangle layout, an access in
the other-major incurs only a single seek and much less
total rotational latency than the access in the traditional
Näıve layout. This access still incurs one (for d = 2)
or three (for d = 4) track switches, which explains the
penalty of 16% and 38% relative to the best case.

5.2.3 Access performance analysis
Using parameters derived in Section 3.2 and the ana-
lytical model described in Appendix A, we can express
the expected response time for a quadrangle access and
compare it with measurements taken from a real disk.

Figure 9 plots response times for quadrangle accesses
to the disk’s outer-most zone as a function of I/O request
size, S, and compares the values obtained from the ana-
lytic model to measurements from a real disk. The close
match between these data sets demonstrates that Atropos

d=2 d=4 d=2 d=4

Naive
Contiguous/

Atropos Atropos
other-major accessprimary-major access other-major access

R
es

po
ns

e
T

im
e

[m
s]

Random 8KB Access

3

0

6

9

12

15

18

21

Figure 8: Comparison of response times for random access.

can reliably determine proper values of quadrangle lay-
out analytically rather than empirically, which may be
time consuming. The data is shown for the Atlas 10K III
disk: N = 686, H = 139, and 6 ms revolution time.

The plotted response time does not include seek time;
adding it to the response time would simply shift the
lines up by an amount equivalent to the average seek
time. The total I/O request size, S, shown along the x-
axis is determined as S= db. With d= 1, quadrangle ac-
cess reduces to normal disk access. Thus, the expected
response time grows from 3 to 6 ms. For d = 6, the
response time is at least 10.8 ms, even for the smallest
possible I/O size, because Dmax= 5 for the given disk.

The most prominent features of the graph are the
steps from the 6 ms to 10–12 ms regions. This abrupt
change in response time shows the importance of the
one-revolution constraint. If this constraint is violated
by an I/O size that is too large, the penalty in response
time is significant.

The data measured on the real disk (dashed lines in
Figure 9) match the predicted values. To directly com-
pare the two sets of data, the average seek value was
subtracted from the measured values. The small differ-
ences occur because the model does not account for bus
transfer time, which does not proceed entirely in parallel
with media transfer.

5.2.4 Effect of disk characteristics

Figure 9 shows the relationship between quadrangle di-
mensions and disk characteristics of one particular disk
with Dmax= 5. To determine how disk characteristics
affect the quadrangle layout, we use the analytic model
to study other disks. As shown in Table 2, the dimen-
sions of the quadrangles mapped to the disks’ outer-most
zones remain stable across different disks of the past
decade. The smaller Dmax for the Atlas 10K III is due
to an unfortunate track skew/head switch of H = 139. If
H = 136, Dmax= 6 and b= 1.

0 50 100 150 200 250 300 350

Quadrangle Access Maxtor Atlas 10K III

I/O size [KB]

R
es

po
ns

e
T

im
e

[m
s]

d=1
measured

predicted

d=2
d=3
d=4
d=5
d=6

d=1

d=2

d=3
d=4
d=5
d=6

0

2

4

6

8

10

12

Figure 9: Response time of semi-sequential access.

Table 2 also shows that, with d set to Dmax, the number
of DLBNs, b, accessed at each disk track remains below
10, with the exception of the Atlas 10K III. The data re-
veals another favorable trend: the small value of R(num-
ber of DLBNs on each track not mapped to VLBNs) is
a modest capacity tradeoff for large performance gains.
With the exception of the Atlas 10K III disk, less than
1% of the total disk capacity would be wasted. For that
disk, the value is 1.5%.

5.3 Track-sized stripe units
We now evaluate the benefits of one Atropos feature
in isolation: achieving efficient sequential access by
matching stripe units to exact track boundaries and ex-
posing it to applications. To do so, we replayed block-
level I/O traces of the TPC-H benchmark, representing
a decision support system workload dominated by large
sequential I/O. The original traces were captured on an
IBM DB2 v. 7.2 system using 8 KB NSM pages and
running each of the 22 TPC-H queries separately. The
configuration specifics and the description of the trace
replay transformations are detailed elsewhere [20].

For the experiments described in the remainder of this
section, we used a single logical volume created from
four disks (p= 4) and placed it on the disks’ outermost
zone, giving it a total size of 35 GB. The quadrangle
layout was configured as RAID 0 with d = 4 and b= 1.

To simulate the effects of varying stripe unit size and
exposing its value to DB2, we modified the captured
traces by compressing back-to-back sequential accesses
to the same table or index into one large I/O. We then
split this large I/O into individual I/Os according to the
stripe unit size, preserving page boundaries.

To simulate traditional disk arrays with a (relatively
small) hard-coded stripe unit size, we set the stripe unit
size to 64 KB (128 blocks) and called this base case sce-
nario 64K-RAID. To simulate systems that approximate
track size, but do not take advantage of disk character-

Disk Year Dmax b R
HP C2247 1992 7 1 0
IBM Ultrastar 18 ES 1998 7 5 0
Quantum Atlas 10K 1999 6 2 0
Seagate Cheetah X15 2000 6 4 2
Seagate Cheetah 36ES 2001 6 7 3
Maxtor Atlas 10K III 2002 5 26 10
Seagate Cheetah 73LP 2002 7 8 2

Table 2: Quadrangle parameters across disk generations. For
each disk, the amount of space not utilized due to R residual DLBNs is
less than 1% with the exception of the Atlas 10K III, where it is 1.5%.

istics, we set the stripe unit to 256 KB (512 blocks) and
called this scenario Approximate-RAID. By taking ad-
vantage of automatically-extracted explicit disk charac-
teristics, Atroposcan set the stripe unit size to the ex-
act track size of 343 KB and we called this scenario
Atropos-RAID. For all experiments, we used the Atropos
LVM cofigured for RAID 0 (i.e., d = 1 and w was 128,
512, and 686 blocks respectively) and I/O sizes match-
ing stripe unit sizes.

The resulting I/O times of the 22 TPC-H queries are
shown in Figure 10. The graph shows the speedup of
the Approximate-RAIDand Atropos-RAIDscenarios rel-
ative to the base case scenario 64K-RAID. The results
are in agreement with the expectations of sequential ac-
cess efficiencies in Figure 7. The larger, more efficient
I/Os of the Approximate-RAIDand Atropos-RAIDresult
in the observed speedup. The exact full-track access of
Atropos-RAIDprovides additional 2%–23% benefit.

Some fraction of the query I/Os are not sequential or
stripe-unit sized (e.g., less than 1% for query 1 vs. 93%
and 99% for queries 14 and 17, respectively). These
differences explain why some queries are sped up more
than others; Atroposdoes not significantly improve the
small random I/Os produced by index accesses.

The efficiency of Atropos-RAID is automatically
maintained with technology changes (e.g., increasing
numbers of sectors per track). While Approximate-RAID
must be manually set to approximate track size (pro-
vided it is known in the first place), Atroposautomati-
cally determines the correct value for its disks and sets
its stripe unit size accordingly, eliminating the error-
prone manual configuration process.

5.4 Two-dimensional data access

To quantify the benefits of both efficient sequential and
semi-sequential accesses, we used a TPC-H benchmark
run on the Shore database storage manager [3] with three
different layouts. The first layout, standard NSM, is op-
timized for row-major access. The second layout, stan-
dard DSM, vertically partitions data to optimize column-
major access. The third layout, here called AtroposDB,
uses the page layout described in Section 4, which can

TPC-H Benchmark Trace Replay

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query #

S
pe

ed
up

 r
el

at
iv

e
to

 6
4K

-R
A

ID

Approximate-RAID
Atropos-RAID

Figure 10: TPC-H trace replay on Atropos.

take advantage of Atropos’s full set of features. Each
setup uses an 8 KB page size.

The results for TPC-H queries 1 and 6 are shown in
Figure 11.1 These queries scan through the LINEITEM
table (the largest table of the TPC-H benchmark), which
consists of 16 attributes, and calculate statistics based
on a subset of six (Q1) and four (Q6) attributes. As ex-
pected, the performance of DSMand AtroposDBis com-
parable, since both storage models can efficiently scan
through the table, requesting data only for the desired
attributes. NSM, on the other hand, fetches pages that
contain full records (including the attributes not needed
by the queries), which results in the observed 2:5� to
4� worse performance. All scans were performed on
a 1 GB TPC-H installation, with the LINEITEM table
constituting about 700 MB.

Random record accesses to the LINEITEM table ap-
proximate an OLTP workload behavior, which is domi-
nated by row-major access. For DSM, which is not suit-
able for row-major access, this access involves 16 ran-
dom accesses to the four disks. For NSM, this access
involves a random seek and rotational latency of half a
revolution, followed by an 8 KB page access, resulting in
a run time of 5.76 s. For AtroposDB, this access includes
the same seek, but most rotational latency is eliminated,
thanks to semi-sequential access. It is, however, offset
by incurring additional track switches. With d=4, the
run time is 8.32 s; with d=2, it is 6.56 s. These results
are in accord with the random access results of Figure 8.

6 Related work

Atroposbuilds upon many ideas proposed in previous
research. Our contribution is in integrating them into
a novel disk array organization, cleanly extending the
storage interface to allow applications to exploit it, and
evaluating the result with a real implementation execut-
ing benchmark database queries.

1Of the four TPC-H queries implemented by the Shore release
available to us, only Q1 and Q6 consist of LINEITEM table scan that
is dominated by I/O time.

Shore Database Storage Manager

8.14 7.34

5.76

2.68
1.89

18.69

2.70
1.88

8.32

2.77
1.83

6.56

0.0

4.0

8.0

12.0

16.0

20.0

TPC-H Query 6TPC-H Query 1 1000 Random Records

R
un

tim
e

[s
]

NSM DSM AtroposDB(d=4) AtroposDB(d=2)

Figure 11: Database access results. This figure shows the runtime
of TPC-H queries 1 and 6 for three different layouts. The NSM and
DSM layouts are optimized for row- and column-order access respec-
tively, trading off performance in the other-order. Atropos, on the other
hand, offers efficient execution of TPC-H queries as well as random-
page access in OLTP workloads (random access to 1000 records).

Atropos’s track-based striping is inspired by recent
work on track-aligned extents [22], which showed that
track-based access could provide significant benefits for
systems using a single disk. Most high-end systems use
disk arrays and LVMs, and Atroposallows those to uti-
lize track-based access.

Gorbatenko and Lilja [9] proposed diagonal disk lay-
out of relational tables, allowing what we call semi-se-
quential access. Atroposintegrates such diagonal lay-
out with track-aligned extents to realize its support for
two-dimensional data structures with no penalty to the
primary access order.

Section 2.4 describes how modern databases address
the trade-off between row-major and column-major ac-
cess to database tables. Recently, Ramamurthy and De-
Witt proposed that database systems should address this
trade-off by maintaining two copies of data, one laid out
in column-major order and the other in row-major or-
der, to ensure efficient accesses in both dimensions [15].
This approach, however, not only doubles the storage re-
quirements, but also makes updates difficult; they must
propagate to two copies that are laid out differently.
Atroposprovides efficient accesses in both dimensions
with only one copy of the data.

Denehy et al. [7] proposed the ExRAID storage in-
terface that exposes some information about parallelism
and failure-isolation boundaries of a disk array. This
information was shown to allow application software
to control data placement and to dynamically balance
load across the independent devices in the disk ar-
ray. ExRAID exposed coarse boundaries that were es-
sentially entire volumes, which could be transparently
spread across multiple devices. Atropos, on the other
hand, defines a particular approach to spreading data
among underlying devices and then exposes information
about its specifics. Doing so allows applications to ben-
efit from storage-managed parallelism and redundancy,

while optionally exploiting the exposed information to
orchestrate its data layouts and access patterns.

7 Conclusions
The Atroposdisk array LVM employs a new data organi-
zation that allows applications to take advantage of fea-
tures built into modern disks. Striping data in track-sized
units lets them take advantage of zero-latency access to
achieve efficient access for sequential access patterns.
Taking advantage of request scheduling and knowing
exact head switch times enables semi-sequential access,
which results in efficient access to diagonal sets of non-
contiguous blocks.

By exploiting disk characteristics, a new data orga-
nization, and exposing high-level constructs about this
organization, Atroposcan deliver efficient accesses for
database systems, resulting in up to 4� speed-ups for
decision support workloads, without compromising per-
formance of OLTP workloads.

Acknowledgements
We thank the members and companies of the PDL
Consortium (including EMC, Hewlett-Packard, Hitachi,
IBM, Intel, LSI Logic, Microsoft, Network Appliance,
Oracle, Panasas, Seagate, Sun, and Veritas) for their
interest, insights, feedback, and support. This work
is funded in part by NSF grants CCR-0113660, IIS-
0133686, and CCR-0205544, and by an IBM faculty
partnership award.

References
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weav-

ing relations for cache performance. International Conference
on Very Large Databases(Rome, Italy, 11–14 September 2001),
pages 169–180. Morgan Kaufmann Publishing, Inc., 2001.

[2] J. S. Bucy and G. R. Ganger. The DiskSim simulation environ-
ment version 3.0 reference manual. Technical Report CMU–
CS–03–102. Department of Computer Science Carnegie-Mellon
University, Pittsburgh, PA, January 2003.

[3] M. J. Carey et al. Shoring up persistent applications. ACM SIG-
MOD International Conference on Management of Data(Min-
neapolis, MN, 24–27 May 1994). Published as SIGMOD Record,
23(2):383–394, 1994.

[4] P. M. Chen and D. A. Patterson. Maximizing performance in a
striped disk array. ACM International Symposium on Computer
Architecture(Seattle, WA), pages 322–331, June 1990.

[5] G. P. Copeland and S. Khoshafian. A decomposition storage
model. ACM SIGMOD International Conference on Manage-
ment of Data(Austin, TX, 28–31 May 1985), pages 268–279.
ACM Press, 1985.

[6] IBM DB2 Universal Database Administration Guide: Implemen-
tation, Document number SC09-2944-005.

[7] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Bridging the information gap in storage protocol stacks. Sum-
mer USENIX Technical Conference(Monterey, CA, 10–15 June
2002), pages 177–190, 2002.

[8] G. R. Ganger. Blurring the line between OSs and storage de-
vices. Technical report CMU–CS–01–166. Carnegie Mellon
University, December 2001.

[9] G. G. Gorbatenko and D. J. Lilja. Performance of two-
dimensional data models for I/O limited non-numeric applica-
tions. Laboratory for Advanced Research in Computing Tech-
nology and Compilers Technical report ARCTiC–02–04. Uni-
versity of Minnesota, February 2002.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach, 3rd ed.Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 2003.

[11] R. Y. Hou and Y. N. Patt. Track piggybacking: an improved re-
build algorithm for RAID5 disk arrays. International Conference
on Parallel Processing(Urbana, Illinois), 14–18 August 1995.

[12] D. M. Jacobson and J. Wilkes. Disk scheduling algorithms
based on rotational position. Technical report HPL–CSP–91–
7. Hewlett-Packard Laboratories, Palo Alto, CA, 24 February
1991, revised 1 March 1991.

[13] M. Livny, S. Khoshafian, and H. Boral. Multi-disk management
algorithms. ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 69–77, 1987.

[14] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock schedul-
ing outside of disk firmware. Conference on File and Storage
Technologies(Monterey, CA, 28–30 January 2002), pages 275–
288. USENIX Association, 2002.

[15] R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured
mirrors. International Conference on Very Large Databases
(Hong Kong, China, 20–23 August 2002), pages 430–441. Mor-
gan Kaufmann Publishers, Inc., 2002.

[16] A. L. N. Reddy and P. Banerjee. A study of parallel disk organi-
zations. Computer Architecture News, 17(5):40–47, September
1989.

[17] M. Rosenblum and J. K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Com-
puter Systems, 10(1):26–52. ACM Press, February 1992.

[18] K. Salem and H. Garcia-Molina. Disk striping. International
Conference on Data Engineering(Los Angeles, CA), pages 336–
342. IEEE, Catalog number 86CH2261-6, February 1986.

[19] J. Schindler. Matching application access patterns to storage
device characteristics. PhD thesis. Carnegie Mellon University,
2004.

[20] J. Schindler, A. Ailamaki, and G. R. Ganger. Lachesis: robust
database storage management based on device-specific perfor-
mance characteristics. International Conference on Very Large
Databases(Berlin, Germany, 9–12 September 2003). Morgan
Kaufmann Publishing, Inc., 2003.

[21] J. Schindler and G. R. Ganger. Automated disk drive character-
ization. Technical report CMU–CS–99–176. Carnegie-Mellon
University, Pittsburgh, PA, December 1999.

[22] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned extents: matching access patterns to disk drive character-
istics. Conference on File and Storage Technologies(Monterey,
CA, 28–30 January 2002), pages 259–274. USENIX Associa-
tion, 2002.

[23] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited.
Winter USENIX Technical Conference(Washington, DC, 22–26
January 1990), pages 313–323, 1990.

[24] M. Shao, J. Schindler, S. W. Schlosser, A. Ailamaki, and G. R.
Ganger. Clotho: decoupling memory page layout from storage
organization. Technical report CMU–PDL–04–102. Carnegie-
Mellon University, Pittsburgh, PA, February 2004.

[25] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP Au-
toRAID hierarchical storage system. ACM Transactions on Com-
puter Systems, 14(1):108–136, February 1996.

[26] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-
line extraction of SCSI disk drive parameters. ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer
Systems(Ottawa, Canada), pages 146–156, May 1995.

A Access Efficiency Calculations
Let T(N;K) be the time it takes to service a request of
K sectors that fit onto a single track of a disk with N
sectors per track (i.e., track-aligned access). Ignoring
seek, and assuming no zero-latency access, this time can
be expressed as

Tnzl(N;K) =
N�1

2N
+

K
N

where the first term is the average rotational latency, and
the second term is the media access time. For disks with
zero-latency access, the first term is not constant; rota-
tional latency decreases with increasing K. Thus,

Tzl(N;K) =
(N�K +1)(N+K)

2N2 +
K�1

N
These expressions are derived elsewhere [19].

The efficiency of track-based access is the ratio be-
tween the raw one revolution time, Trev, and the time it
takes to read S= kN sectors for some large k. Hence,

En =
kTrev

Tn(N;N)+(k�1)(Ths+Trev)
�

kTrev

k(Ths+Trev)

where Tn(N;N) is the time to read data on the first track,
and (k�1)(Ths+Trev) is the time spent in head switches
and accessing the remaining tracks. In the limit, the ac-
cess efficiency is

En(N;H) = 1�
H
N

(6)

which is the maximal streaming efficiency of a disk.
The maximal efficiency of semi-sequential quadran-

gle access is simply

Eq(N;H) =
Trev

Tq(N;S)
=

Trev

Tzl (N;db+(d�1)H)
(7)

with d and b set accordingly.

B Relaxing the one-revolution constraint
Suppose that semi-sequential access to d blocks, each of
size b, from a single quadrangle takes more than one rev-
olution. Then the inequality in Equation 1 will be larger
than 1. With probability 1=N, a seek will finish with
disk heads positioned exactly at the beginning of the b
sectors mapped to the first track (the upper left corner of
the quadrangle in Figure 12). In this case, the disk will
access all db sectors with maximal efficiency (only in-
curring head switch of H sectors for every b-sector read).

However, with probability 1� 1=N, the disk heads
will land somewhere “in the middle” of the b sectors af-
ter a seek, as illustrated by the arrow in Figure 12. Then,
the access will incur a small rotational latency to access
the beginning of the nearest b sectors, which are, say, on
the k-th track. After this initial rotational latency, which
is, on average, equal to (b�1)=2N, the (d�k)b sectors
mapped onto (d� k) tracks can be read with maximal
efficiency of the semi-sequential quadrangle access.

L

b b b b

b
N-(K mod N)

Collapsing quadrangle with d = 6 into a request of size db+(d-1)H

b

b

b

b

b

N

d

Physical layout of a quadrangle across disk tracks of size N

H

H H H H

H

head position after seek

Figure 12: An alternative representation of quadrangle access.

To read the remaining k tracks, the disk heads will
need at be positioned to the beginning of the b sectors
on the first track. This will incur a small seek and ad-
ditional rotational latency of L=N. Hence, the resulting
efficiency is much lower than when the one-revolution
constraint holds, which avoids this rotational latency.

We can express the total response time for quadrangle
access without the one-revolution constraint as

Tq(N;S) =
b�1
2N

+
K
N

+Plat
L
N

(8)

where Plat = (N�H�b�1)=N is the probability of in-
curring the additional rotational latency after reading k
out of d tracks, K = db� (d� 1)H is the effective re-
quest size, L = N� (K mod N), and S= db is the origi-
nal request size. To understand this equation, it may be
helpful to refer to the bottom portion of Figure 12.

The efficiencies of the quadrangle accesses with and
without the one-revolution constraint are approximately
the same when the time spent in rotational latency and
seek for the unconstrained access equals to the time
spent in rotational latency incurred during passing over
dRresidual sectors. Hence,

dR
N

=
N�1

N

�
N�1

2N
+Seek

�

Ignoring seek and approximating N�1 to be N, this oc-
curs when R 6= 0 and

d�
N
2R

:

Thus, in order to achieve the same efficiency for the
non-constrained access, we will have to access at least
d VLBNs. However, this will significantly increase I/O
latency. If R= 0 i.e., when there are no residual sectors,
the one-revolution constraint already yields the most ef-
ficient quadrangle access.

	Carnegie Mellon University
	Research Showcase @ CMU
	12-2003

	Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks (CMU-PDL-03-101)
	Jiri Schindler
	Steven W. Schlosser
	Minglong Shao
	Anastassia Ailamaki
	Gregory R. Ganger
	Recommended Citation

	Introduction
	Background
	Conventional LVM design
	Exploiting disk characteristics
	Access to 2D data structures
	Efficient access for database systems
	A more explicit storage interface

	Atropos logical volume manager
	Atropos data organization
	Quadrangle layout parameters
	Determining layout parameters
	Mapping VLBNs to quadrangles

	Practical system integration
	Zoned disk geometries
	Data protection
	Explicit information to applications
	Implementation details

	Efficient access in database systems
	Evaluation
	Experimental setup
	Quantifying access efficiency
	Efficient access in both majors
	Random accesses in the other-major
	Access performance analysis
	Effect of disk characteristics

	Track-sized stripe units
	Two-dimensional data access

	Related work
	Conclusions
	Access Efficiency Calculations
	Relaxing the one-revolution constraint

