

Regret Minimizing Audits:
A Learning-theoretic Basis for Privacy Protection

Jeremiah Blocki, Nicolas Christin, Anupam Datta, Arunesh Sinha

February 23, 2011

(revised February 25, 2011)

CMU-CyLab-11-003

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

Regret Minimizing Audits:
A Learning-theoretic Basis for Privacy Protection

Jeremiah Blocki
Carnegie Mellon University

Nicolas Christin
Carnegie Mellon University

Anupam Datta
Carnegie Mellon University

Arunesh Sinha
Carnegie Mellon University

Abstract

Audit mechanisms are essential for privacy protection in permissive access control regimes, such as in hospitals where denying
legitimate access requests can adversely affect patient care. Recognizing this need, we develop a principled approach to audits.
Our first contribution is a game-theoretic model that captures the interaction between the defender (e.g., hospital auditors) and
the adversary (e.g., hospital employees). The model takes pragmatic considerations into account, in particular, the periodic nature
of audits, a budget that constrains the number of actions that the defender can inspect, and a loss function that captures the
economic impact of detected and missed violations on the organization. We assume that the adversary is worst-case as is standard
in other areas of computer security. We also formulate a desirable property of the audit mechanism in this model based on the
concept of regret in learning theory. Our second contribution is an efficient audit mechanism that provably minimizes regret for
the defender. This mechanism learns from experience to guide the defender’s auditing efforts. The regret bound is significantly
better than prior results in the learning literature. The stronger bound is important from a practical standpoint because it implies
that the recommendations from the mechanism will converge faster to the best fixed auditing strategy for the defender.

I. INTRODUCTION

Audits complement access control and are essential for enforcing privacy and security policies in many situations. The
importance of audit as an a posteriori enforcement mechanism has been recognized in the computer security literature. For
example, Lampson [1] takes the position that audit logs that record relevant evidence during system execution can be used to
detect violations of policy, establish accountability and punish the violators. More recently, Weitzner et al. [2] also recognize
the importance of audit and accountability, and the inadequacy of preventive access control mechanisms as the sole basis for
privacy protection in today’s open information environment.

However, unlike access control, which has been the subject of a significant body of foundational work (a very small sample
includes [3], [4], [5]), there is comparatively little work on the foundations of audit. A notable exception is a line of work by
Cederquist et al. [6] who present logical methods for specifying and enforcing a class of policies in collaborative environments
based on evidence recorded on audit logs. The policies they consider cannot be enforced using preventive access control
mechanisms. The evidence demonstrating policy compliance is presented to the auditor in the form of a proof in a logic and
can be checked mechanically.

While we share the goal of developing principled audit mechanisms for enforcing privacy and security policies, our focus
is on policies that cannot be mechanically enforced in their entirety. Privacy regulations, such as the HIPAA Privacy Rule [7],
provide one set of relevant policies of this form. For example, HIPAA allows transmission of protected health information
about an individual from a hospital to a law enforcement agency if the hospital believes that the death of the individual was
suspicious. Such beliefs cannot, in general, be checked mechanically either at the time of transmission or in an a posteriori
audit; the checking process requires human auditors to inspect evidence recorded on audit logs. A number of other subjective
concepts are present in privacy regulations. In fact, a recent formal study of privacy regulations by DeYoung et al. [8] shows
that a large fraction of clauses in HIPAA (67 out of 84 formalized clauses) requires some input from human auditors to
enforce.1

In practice, organizations like hospitals use ad hoc audits in conjunction with access control mechanisms to protect patient
privacy. Typically, the access control policies are quite permissive: all employees who might need patient information to
perform activities related to treatment, payment and operations may be granted access to patient records. These permissive
policies are necessary to ensure that no legitimate access request is ever denied, as denying such requests could have adverse
consequences on the quality of patient care. Unfortunately, a permissive access control regime opens up the possibility of records

This work was partially supported by the U.S. Army Research Office contract ”Perpetually Available and Secure Information Systems” (DAAD19-02-1-
0389) to Carnegie Mellon CyLab, the NSF Science and Technology Center TRUST, the NSF CyberTrust grant Privacy, Compliance and Information Risk
in Complex Organizational Processes, the AFOSR MURI Collaborative Policies and Assured Information Sharing, and HHS Grant no. HHS 90TR0003/01.
Jeremiah Blocki was also partially supported by a NSF Graduate Fellowship. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other
entity.

1A companion paper presents an algorithm that mechanically enforces objective parts of privacy policies like HIPAA based on evidence recorded in audit
logs and outputs subjective predicates (such as beliefs) that have to be checked by human auditors [9].

being inappropriately accessed and transmitted. Audit mechanisms help detect such violations of policy. This is achieved by
recording accesses made by employees in an audit log that is then examined by human auditors to determine whether accesses
and transmissions were appropriate and to hold individuals accountable for violating policy. Recent studies have revealed that
numerous policy violations occur in the real world as employees inappropriately access records of celebrities, family members,
and neighbors motivated by general curiosity, financial gain, child custody lawsuits and other considerations [10], [11]. Thus,
there is a pressing need to develop audit mechanisms with well understood properties that effectively detect policy violations.

This paper presents the first principled learning-theoretic foundation for audits of this form. Our first contribution is a game-
theoretic model that captures the interaction between the defender (e.g., hospital auditors) and the adversary (e.g., hospital
employees). The model takes pragmatic considerations into account, in particular, the periodic nature of audits, a budget that
constrains the number of actions that the defender can inspect thus reflecting the imperfect nature of audit-based enforcement,
and a loss function that captures the economic impact of detected and missed violations on the organization. We assume that
the adversary is worst-case as is standard in other areas of computer security. We also formulate a desirable property of the
audit mechanism in this model based on the concept of regret in learning theory [12]. Our second contribution is a novel audit
mechanism that provably minimizes regret for the defender. The mechanism learns from experience and provides operational
guidance to the human auditor about which accesses to inspect and how many of the accesses to inspect. The regret bound is
significantly better than prior results in the learning literature.

A. Overview of Results

Mirroring the periodic nature of audits in practice, we use a repeated game model [13] that proceeds in rounds. A round
represents an audit cycle and, depending on the application scenario, could be a day, a week or even a quarter.
Adversary model: In each round, the adversary performs a set of actions (e.g., accesses patient records) of which a subset
violates policy. Actions are classified into types. For example, accessing celebrity records could be a different type of action
from accessing non-celebrity records. The adversary capabilities are defined by parameters that impose upper bounds on the
number of actions of each type that she can perform in any round. We place no additional restrictions on the adversary’s
behavior. In particular, we do not assume that the adversary violates policy following a fixed probability distribution; nor do
we assume that she is rational. Furthermore, we assume that the adversary knows the defender’s strategy (audit mechanism)
and can adapt her strategy accordingly.
Defender model: In each round, the defender inspects a subset of actions of each type performed by the adversary. The
defender has to take two competing factors into account. First, inspections incur cost. The defender has an audit budget that
imposes upper bounds on how many actions of each type she can inspect. We assume that the cost of inspection increases
linearly with the number of inspections. So, if the defender inspects fewer actions, she incurs lower cost. Note that, because the
defender cannot know with certainty whether the actions not inspected were malicious or benign, this is a game of imperfect
information [14]. Second, the defender suffers a loss in reputation for detected violations. The loss is higher for violations that
are detected externally (e.g., by an Health and Human Services audit, or because information leaked as a result of the violation
is publicized by the media) than those that are caught by the defender’s audit mechanism, thus incentivizing the defender to
inspect more actions.

In addition, the loss incurred from a detected violation depends on the type of violation. For example, inappropriate access
of celebrities’ patient records might cause higher loss to a hospital than inappropriate access of other patients’ records. Also,
to account for the evolution of public memory, we assume that violations detected in recent rounds cause greater loss than
those detected in rounds farther in the past. The defender’s audit mechanism has to take all these considerations into account
in prescribing the number of actions of each type that should be inspected in a given round, keeping in mind that the defender
is playing against the powerful strategic adversary described earlier.

Note that for adequate privacy protection, the economic and legal structure has to ensure that it is in the best interests of
the organization to invest significant effort into auditing. Our abstraction of the reputation loss from policy violations that
incentivizes organizations to audit can, in practice, be achieved through penalties imposed by government audits as well as
through market forces, such as brand name erosion and lawsuits.
Regret property: We formulate a desirable property for the audit mechanism by adopting the concept of regret from online
learning theory. The idea is to compare the loss incurred when the real defender plays according to the strategy prescribed by
the audit mechanism to the loss incurred by a hypothetical defender with perfect knowledge of the number of violations of
each type in each round. The hypothetical defender is allowed to pick a fixed strategy to play in each round that prescribes
how many actions of each type to inspect. The regret of the real defender in hindsight is the difference between the loss of
the hypothetical defender and the actual loss of the real defender averaged over all rounds of game play. We require that the
regret of the audit mechanism quickly converge to a small value and, in particular, that it tends to zero as the number of rounds
tends to infinity.

Intuitively, this definition captures the idea that although the defender does not know in advance how to allocate her
audit budget to inspect different types of accesses (e.g., celebrity record accesses vs. non-celebrity record accesses), the

recommendations from the audit mechanism should have the desirable property that over time the budget allocation comes
close to the optimal fixed allocation. For example, if the best strategy is to allocate 40% of the budget to inspect celebrity
accesses and 60% to non-celebrity accesses, then the algorithm should quickly converge towards these values.
Audit mechanism: We develop a new audit mechanism that provably minimizes regret for the defender. The algorithm is
efficient and can be used in practice. In each round of the game, the algorithm prescribes how many actions of each type
the defender should inspect. It does so by maintaining weights for each possible defender action and picking an action with
probability proportional to the weight of that action. The weights are updated based on a loss estimation function, which
is computed from the observed loss in each round. Intuitively, the algorithm learns the optimal distribution over actions by
increasing the weights of actions that yielded better payoff than the expected payoff of the current distribution and decreasing
the weight of actions that yielded worse payoff.

The use of a loss estimation function and the characterization of its properties is a novel contribution of this paper that
allows us to achieve significantly better bounds than prior work in the regret minimization literature. Our main technical result
(Theorem 1) is that the exact bound on regret for this algorithm is approximately 2

√
2 lnN

T where N is the number of possible

defender actions and T is the number of rounds (audit cycles). This bound improves the best known bounds of O
(
N1/3 logN

3√
T

)
for regret minimization over games of imperfect information (see Section VII for a detailed comparison). The better bounds
are important from a practical standpoint because they imply that the algorithm converges to the optimal fixed strategy much
faster.

The rest of the paper is organized as follows. Section II presents the game model formally. Section III presents the audit
mechanism and the theorem showing that provably minimizes regret. Section IV discusses the implications and limitations
of these results. Section V describes in detail the loss estimation function, a core piece of the audit mechanism. Section VI
presents the outline of the proof of the main theorem of the paper (Theorem 1) while the complete proofs are presented
in the appendices. Section VII provides a detailed comparison with related work, in particular, focusing on technical results
on auditing in the computer security literature and regret minimization in the learning theory literature. Finally, Section VIII
presents our conclusions and identifies directions for future work.

II. MODEL

We model the internal audit process as a repeated game played between a defender (organization) and an adversary
(employees). In the presentation of the model we will use the following notations:
• Vectors are represented with an arrow on top, e.g., ~v is a vector. The ith component of a vector is given by ~v [i]. ~v ≤ ~a

means that both vectors have the same number of components and for any component i, ~v [i] ≤ ~a [i].
• Random variables are represented in boldface, e.g., x and X are random variables.

The repeated game we consider is fully defined by the players, the time granularity at which the game is played, the actions
the players can take, and the utility the players obtain as a result of the actions they take. We next discuss these different
concepts in turn and illustrate them using a running example from an hospital.
Players: The game is played between the organization and its employees. We refer to the organization as D (defender). We
subsume all employees into a single player A (adversary). In this paper, we are indeed considering a worst-case adversary,
who would be able to control all employees and coerce them into adopting the strategy most damaging to the organization. In
our running example, the players are the hospital and all the employees.
Round of play: In practice, audits are usually performed periodically. Thus, we adopt a discrete-time model for this game,
where time points are associated with rounds. Each round of play corresponds to an audit cycle. We group together all of the
adversary’s actions in a given round.
Action space: A executes tasks, i.e., actions that are permitted as part of their job. We only consider tasks that can later be
audited, e.g., through inspection of logs. We can distinguish A’s tasks between legitimate tasks and violations of a specific
privacy policy that the organization D must follow. Different types of violations may have a different impact on the organization.
We assume that there are K different types of violations that A can commit (e.g., unauthorized access to a celebrity’s records,
unauthorized access to a family member’s records, ...). We further assume that the severity of violations, in terms of economic
impact on the organization, varies with the types.

In each audit cycle, the adversary A chooses two sets of quantities for each type k: the number of tasks she performs, and
the number of such tasks that are violations. If we denote by Uk the maximum number of type k tasks that A can perform,
then A’s entire action space is given by A × A with A =

∏K
i=1{1, . . . , Ui}. In a given audit cycle, an action by A in the

game is given by 〈~a,~v〉, where the components of ~a are the number of tasks of each type A performs, and the components of
~v are the number of violations of each type. Since violations are a subset of all tasks, we always have ~v ≤ ~a. In our hospital
example, we consider two types of patient medical records: access to celebrity records and access to regular person’s record.
A typical action may be 250 accesses to celebrity records with 10 of them being violations and 500 accesses to non-celebrity
records with 50 of them being violations. Then A’s action is 〈〈250, 500〉, 〈10, 50〉〉.

0 100 200 300 400
0

100

200

300

400

500

600

Budget Line

number of type 2 actions

number of
type 1 actions

Actions of type 1

A
ct

io
ns

 o
f t

yp
e

2

Fig. 1. Feasible audit space, represented by the shaded area.

We assume that the defender D can classify each adversary’s task by types. However, D cannot determine whether a particular
task is legitimate or a violation without investigating. D can choose to inspect or ignore each of A’s tasks. We assume that
inspection is perfect, i.e., if a violation is inspected then it is detected. The number of inspections that D can conduct is
bounded by the number of tasks that A perform, and thus, D’s actions is defined by a vector ~s ∈ A, with ~s ≤ ~a. That is, D
chooses a certain number of tasks of each type to be inspected. Further, in each round t, D has a fixed budget Bt to allot to
all inspections. We represent the (assumed fixed) cost of inspection for each type of violation by ~C. The budgetary constraints
on D are thus given by ~C ·~s ≤ Bt for all t. Continuing our hospital example, the maximum number of tasks of each type that
D can inspect is 〈250, 500〉. Assuming a budget of 1500 and cost of inspection vector 〈4, 5〉, D’s inspection space is further
constrained, and then the feasible inspections are {〈x, y〉 | 4x + 5y ≤ 1500, 0 ≤ x ≤ 250, 0 ≤ y ≤ 500}. The feasible audit
space is shown as the shaded area in Figure 1.
Violation detection: Given the budgetary constraints D faces, D cannot, in general, inspect all of A’s tasks (i.e., ~C ·~a > Bt).
Hence, some violations may go undetected internally, but could be detected externally. Governmental audits, whistle-blowing,
information leaks are all but examples of situations that could lead to external detection of otherwise unnoticed violations. We
assume there is a fixed exogenous probability p (0 < p < 1) of an internally undetected violation getting caught externally.

Formally, we define the outcome of a single audit cycle as the outcome of the internal audit and the number of violations
detected externally. Due to the probabilistic nature of all quantities, this outcome is a random variable. Let ~Ot be the outcome
for the tth round. Then ~Ot is a tuple 〈~Ot

int,
~Ot
ext〉 of violations caught internally and externally. By our definitions, the

probability mass function for ~Ot
int is parameterized by 〈~a,~v〉 and ~s, and the probability mass function for ~Ot

ext conditioned
on ~Ot

int is parameterized by p. We make no assumptions about this probability mass function. Observe that, because not all
tasks can be inspected, the organization does not get to know the exact number of violations committed by the employees,
which makes this a game of imperfect information. In our hospital example, given that A’s action is 〈〈250, 500〉, 〈10, 50〉〉, a
typical scenario can be that the hospital performs 〈125, 200〉 inspections. These inspections result in 〈7, 30〉 violations detected
internally and 〈2, 10〉 violations detected externally.
Utility function: Since we consider a worst-case adversary, A’s payoff function is irrelevant to our model. On the other hand,
the utility function of D influences the organization’s strategy. We define D’s utility as the sum of D’s reputation and the cost
of inspecting A’s actions. In essence, D has to find the right trade-off between inspecting frequently (which incurs high costs)
and letting violations occur (which degrades its reputation, and thus translates to lost revenue).

We assume that the cost of inspection is linear in the number of inspections for each type of action. Hence, if D’s action
is ~s then inspection costs are ~C · ~s. In our running example of the hospital, this cost is 〈4, 5〉.〈125, 200〉 = 1500, which is the
also the full budget in our example.

We assume that any violation caught (internally, or externally) in a round affects D’s reputation not only in that round,
but also in future rounds and that the exact effect in any future round is known. We capture this by defining a function
rtk : {1, . . . , Uk}×{1, . . . , Uk}×N→ R for each type k of violation. At time t, rtk takes as inputs the number of violations of
type k detected internally, the number of violations of type k caught externally, and a time argument τ . rtk outputs the effect
of the violations occurring at time t on D’s reputation at time t+ τ . We assume that violations of a given type always have
the same effect on reputation, that is, rtk is actually independent of t, which allows us to use the shorthand notation rk from
here on.

Violations caught far in the past should have a lesser impact on reputation than recently caught violations, thus, rk should
be monotonically decreasing in the time argument τ . We further assume violations are forgotten after a finite amount of time
m, and hence do not affect reputation further. In other words, if τ ≥ m then for any type k, any time t, and any tuple of
violations caught 〈 ~Otint[k], ~Otext[k]〉, rk(~Otint[k], ~Otext[k], τ) = 0.

Moreover, externally caught violations should have a worse impact on reputation than internally detected violations, otherwise
the organization has a trivial incentive never to inspect. Formally, rk has the following property. If for any two realized outcomes
~Ol and ~Oj at rounds l and j, we have ~Olint[k] +

~Olext[k] = ~Ojint[k] +
~Ojext[k] (i.e., same number of total violations of type k

in rounds j and l) and ~Olext[k] > ~Ojext[k] (i.e., for type k, the number of violations caught externally is more than the number
caught internally) then for any τ such that 0 ≤ τ < m, rk(~Ol[k], τ) > rk(~O

j [k], τ).
We use rk to define a measure of reputation. Because, by construction, violations only affect at most m rounds of play,

we can write the reputation of the organization at time t, R0 as a random variable, function of the probabilistic outcomes
~Ot, ..., ~Ot−m+1:

R0(~O
t, ..., ~Ot−m+1) = R−

K∑
k=1

t∑
j=t−m+1

rk(~O
j [k], t− j)

where R is the maximum possible reputation. We assume that at the start of the game the reputation is R, and that rk’s are
so that R0 is always non-negative.

We cannot, however, directly use R0 in our utility function. Indeed, R0 is history-dependent, and the repeated game formalism
requires that the utility function be independent of past history. Fortunately, a simple construction allows to closely approximate
the actual reputation, while at the same time removing dependency on past events. Consider the following function R:

R(~Ot) = R−
K∑
k=1

m−1∑
j=0

rk(~O
t[k], j) .

Rather than viewing reputation as a function of violations that occurred in the past, at time t, R instead immediately accounts
for reputation losses that will be incurred in the future (at times t+ τ , 0 ≤ τ < m) due to violations occurring at time t.

While R and R0 are different reputation functions, when we compute the difference of their averages over T rounds,
denoting by ~vmax the maximum possible number of violations, we obtain:

1

T

t+T∑
τ=t

|R(~Oτ)−R0(~O
τ , . . . , ~Oτ−m)| ≤

1

T

K∑
k=1

m−1∑
j=1

j · rk(~vmax(k), j) .

The right-hand side of the above inequality goes to zero as T grows large. Hence, using R to model reputation instead of R0

does not significantly impact the utility function of the defender. We define the utility function at round t in the repeated game
by the random variable

Lt(〈~at, ~vt〉, ~st) = R(~Ot)− ~C · ~st .

Since utility gains are only realized through loss reduction, we will equivalently refer to L as a loss function from here on.
An example of the loss of reputation function rk is rk(O, t) = ck(Oint + 2×Oext)δt for 0 ≤ t < m and rk(O, t) = 0 for

t ≥ m, where δ ∈ (0, 1). Observe that rk decreases with time and puts more weight on external violations. Also for the same
number of violations and time t rk has different values for different types of violations due to ck that varies with the types.
Then, considering only one type of violation, the loss function can be written as

Lt(〈~at, ~vt〉, ~st) = R− c1
m−1∑
j=0

(Ot
int + 2×Ot

ext)δ
j − ~C · ~st .

Observe that we can expand the summation in the above equation to get c1(1+ δ...+ δm−1)Ot
int+2c1(1+ δ...+ δm−1)Ot

ext.
Then let Rint = c1(1+ δ...+ δm−1) and similarly let Rext = 2c1(1+ δ...+ δm−1). We can rewrite the loss equation above as

Lt(〈~at, ~vt〉, ~st) = R−Rint ·Ot
int −Rext ·Ot

ext − ~C · ~st .

III. AUDIT MECHANISM AND PROPERTY

In this section, we present our audit mechanism and the main theorem that characterize its property. The audit mechanism
prescribes the number of tasks of each type that the defender should inspect in each round of the repeated game. The property
compares the loss incurred by the defender when she follows this mechanism to the loss of a hypothetical defender who has
perfect knowledge of how many violations of each type occurred in each round, but must select one fixed action ~s to play in
every round. In particular, we obtain exact bounds on the defender’s regret and demonstrate that the average regret across all
rounds converges to a small value relatively quickly.

A. Audit Mechanism

The audit mechanism is presented as Algorithm 1. In each round of the game, the algorithm prescribes how many tasks
of each type the defender should inspect. It does so by maintaining weights for each possible defender action (referred to as
“experts” following standard terminology in the learning literature) and picking an action with probability proportional to the
weight of that action. For example, in a hospital audit, with two types of tasks—celebrity record access and regular record
access—the possible defender actions ~s are of the form 〈k1, k2〉 meaning that k1 celebrity record accesses and k2 regular record
accesses are inspected. The weights are updated based on an estimated loss function, which is computed from the observed
loss in each round. Intuitively, the algorithm learns the optimal distribution over actions by increasing the weights of experts
that performed better than its current distribution and decreasing the weights of experts that performed worse.

Algorithm 1 Audit Mechanism
• Initialize: Set w0

~s = 1 for each expert.
• Select Move: On round t let 〈~at, ~vt〉 denote the action of the adversary.

1) Set
AWAKEt = {~s : ~s ≤ ~at ∧ ~C · ~s ≤ Bt }

2) Set
W t =

∑
~s∈AWAKEt

wt~s

3) Set

pt~s =
wt~s
W t

for ~s ∈ AWAKE. Otherwise set pt~s = 0.
4) Play ~s with probability p~s (randomly select one expert to follow).

• Estimate loss function: Set L̃ = est
(
~Ot, ~st

)
• Update Weights: For each ~s ∈ AWAKEt update

wt+1
~s = wt~sγ

L̃t(~s)−γL̃t(Alg)

where L̃t(Alg) =
∑
~s p

t
~sL̃

t(~s), is the expected (estimated) loss of the algorithm.

Our algorithm is fast and could be run in practice. Specifically, the running time of Algorithm 1 is O (N) per round where
N is the number of experts.

In more detail, the algorithm maintains weights wt~s for all experts [15]. wt~s is the weight of the expert before round t has
been played. Initially, all experts are equally weighted. In each round, an action is probabilistically selected for the defender.
As discussed in the Model section there are two factors that constrain the set of actions available to the defender, which are the
number of tasks performed by the adversary and the budget available for audits. In our hospital example we had the feasible
audit space as {〈x, y〉 | 4x+ 5y ≤ 1500, 0 ≤ x ≤ 250, 0 ≤ y ≤ 500}. These considerations motivate the definition of the set
AWAKEt of experts that are awake in round t (Step 1). Next, from this set of awake experts, one is chosen with probability
pt~s proportional to the weight of that expert (Steps 2, 3, 4). Continuing our hospital example, 250 celebrity record accesses
and 500 regular record accesses will be inspected with probability 0.3 in a round if the expert 〈250, 500〉 is awake in that
round and its weight divided by the total weight of all the experts who are awake is 0.3. Technically, this setting is close to
the setting of sleeping experts in the regret minimization literature [16], [12].

However, we also have to deal with imperfect information. Since only one action (say ~st) is actually played by the defender
in a round, she observes an outcome ~Ot for that action. For example, the 〈250, 500〉 inspection might have identified 5
celebrity record access violations and 3 regular record access violations internally; the same number of violations may have
been detected externally. Based on this observation, the defender uses an algorithm est to compute an estimated loss function

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Time

A
ve

ra
ge

 R
eg

re
t

N=5 ε=0.01
N=100 ε=0.01
N=5 ε=0.10
N=100 ε=0.10

Fig. 2. Worst case Average Regret vs Time for different values of N and ε
.

L̃ for all experts (not just the one she played). We describe properties of the loss function for which this estimation is accurate
in subsection V. We also provide an example of a natural loss function that satisfies these properties. Finally, the estimated
loss function is used to update the weights for all the experts who are awake. The multiplicative weight update ensures that
the weights of experts who performed better than their current distribution increase and the weights for those who performed
worse decrease.

B. Property

Our algorithm provides the guarantee that the defender’s regret is minimal. Regret is a standard notion from the online
learning literature. Intuitively, regret quantifies the difference between the loss incurred by the defender when she follows the
audit mechanism and the loss of a hypothetical defender who has perfect knowledge of how many violations of each type
occurred in each round, but must select one fixed action (or expert) to play in every round. Our main theorem establishes exact
bounds on the defender’s regret.

Let T denote the total number of rounds played, I(t) be a time selection function whose output is either 0 or 1, Lt(~s) =
Lt (〈~vt,~at〉, ~s) be the loss function at time t after the adversary has played 〈~vt,~at〉, and pt~s be the probability of choosing the
action ~s in round t while following our audit mechanism. We define the total loss of the algorithm as follows.

Loss (Alg, I) =
T∑
t=1

∑
~s

I(t)pt~sL
t(~s)

Similarly for each fixed expert ~s we set the following loss function.

Loss (~s, I) =

T∑
t=1

I(t)Lt(~s).

We use Regret (Alg, ~s) to denote our regret in hindsight of not playing the fixed action ~s when it was available. Formally,

Regret (Alg, ~s) = Loss (Alg, I~s)− Loss (~s, I~s) .

Here, I~s(t) is the time selection function that selects only the times t that action ~s is available.
As before, we use N to denote the total number of fixed actions available to the defender. If T is known in advance we

can obtain the bound in Theorem 1 below by setting γ to be 1 −
√

2 lnN
T . Otherwise, if T is not known in advance we can

dynamically tune γ to obtain similar bounds. See Remark 7 for more details on dynamic tuning.

Theorem 1. For all ε > 0,

Pr

 ∃~s, Regret(Alg,~s)
T ≥ 2

√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 2

T lnN

 ≤ ε .
Remark 1. To prove this theorem we need to make several reasonable assumptions about the accuracy of our loss function
estimator est. We discuss these assumptions in section V. We also assume that losses have been scaled so that Lt(x) ∈ [0, 1].

Remark 2. This bound is a worst case regret bound. The guarantee holds against any attacker. Regret may typically be
lower than this, e.g. when hospital employees do not behave adversarially.

In order to understand what this bound means, consider the following example scenario. Suppose that an employee at a
hospital can access two types of medical records—celebrity or regular. The defender can choose to inspect accesses of a
certain type lightly, moderately, or heavily. In this case, the defender has N = 9 possible pairs of actions in each round. If
the hospital performs daily audits (which some hospitals currently do for celebrity record accesses) over a 5 year period, then
T = 365 × 5 = 1825. For simplicity, assume that each action ~s is available every day. In this case, the theorem guarantees
that except with probability ε = 1

100 , the average regret of our algorithm does not exceed 29%:

Regret (~s, I~s)

T
< 0.29 .

Note that there are several existing algorithms for regret minimization in games with imperfect information [14], [17], [18],
[19]. These algorithms do guarantee that as T →∞ the average regret will tend to 0, but the convergence rate is unacceptably
slow for our audit model (see Section VII-B for a more detailed comparison). The convergence rate of our algorithm is
significantly faster. Also, in contrast to prior work, we focus on exact (not asymptotic) regret bounds for our algorithm. This
is important because in practice we care about the value of the bound for a fixed value of T (as in the example above), not
merely that it tends to 0 as T →∞.

IV. DISCUSSION

A few characteristics of the model and algorithms described above may not necessarily be evident from the technical
presentation given above, and warrant further discussion.

Figure 2 shows the variation of average regret with time for different values of N and ε. As can be seen, our algorithm
produces smaller average regret bounds for higher values of time T and lower values of N . In other words, and quite intuitively,
a high audit frequency ensures low regret. Some medical centers carry out audits every week; our algorithm is particularly
appropriate for such high frequency audits. Lower values of N means that the algorithm’s performance is compared to fewer
fixed strategies and hence yields lower regret. N in our case is the number of discrete levels of audits coverage used by the
organization. In practice, we do not expect N to be large as the number of audit coverage levels are usually not very large.
Also, higher values of ε yield smaller average regret bounds. Indeed, ε is a measure of uncertainty on the stated bound. Thus,
when larger ε are tolerable, we can obtain tighter regret bounds, at the expense of more uncertainty on whether these bounds
are met.

We have already noted that all actions may not be available at all times. The result in Theorem 1 bounds the average regret
taken over all rounds of the game. It is easy to modify the proof of Theorem 1 to obtain average regret bounds for each expert
such that the average is taken over the time for which that expert is awake. The bound thus obtained is of the same order
as the bound in Theorem 1, but all instance of T in Theorem 1 are replaced by T~s, where T~s is the time for which expert
~s is awake. Similar result for the traditional sleeping experts setting can be found in Blum et al. [16]. The modified bound
equation exhibits the fact that the average regret bound for a given inspection vector (average taken over the time for which
that inspection was available) depends on how often this inspection vector is available to the defender. If a given inspection
vector is only available for a few audit cycles, the average regret bound may be relatively high. The situation is analogous
to whitewashing attacks [20], where the adversary behaves in a compliant manner for many rounds to build up reputation,
attacks only once, and immediately leaves the game after the attack. For instance, a spy infiltrates an organization, becomes a
trusted member by behaving as expected, and then suddenly steals sensitive data. However, we argue that, rather than being
an auditing issue, whitewashing attacks can be handled by a different class of mechanisms, e.g., that prevent the adversary
from vanishing once she has attacked.

Furthermore, our algorithm guarantees low average regret compared to playing a fixed action (i.e., inspection vector) in the
audit cycle in which that action was available; it does not guarantee violations will not happen. In particular, if a certain type k
of violation results in catastrophic losses for the organization (e.g., losses that threaten the viability of the organization itself),
tasks of type k should always be fully inspected.

Last, we note that non-compliance with external privacy regulations may not only cause a loss of reputation for the
organization, but can also result in fines being levied against the organization. For instance, a hospital found in violation
of HIPAA provisions [7] in the United States will likely face financial penalties in addition to damaging its reputation.

We can readily extend our model to account for such cases, by forcing the defender (organization) to perform some minimum
level of audit (inspections) to meet the requirements stipulated in the external regulations. Practically, we constrain the action
space available to the defender by removing strategies such as “never inspect.” As long as the budgetary constraints allow the
organization to perform inspections in addition to the minimal level of audit required by law, the guarantees provided by our
algorithm still hold. Indeed, Theorem 1 holds as long as there is a least one awake expert in each round.

V. ESTIMATING LOSSES

Our regret minimizing audit mechanism (Algorithm 1) uses a function est
(
~Ot, ~st

)
to estimate the loss function L̃t. In

this section, we formally define two properties—accuracy and independence; the regret bound in Theorem 1 holds for any
estimator function that satisfies these two properties. We also provide an example of a loss function estimator algorithm that
provably satisfies these properties, thus demonstrating that such estimator functions can in fact be implemented. The use of
an estimator function and the characterization of its properties is a novel contribution of this paper that allows us to achieve
significantly better bounds than prior work in the regret minimization literature for repeated games of imperfect information
(see Section VII for a detailed comparison).

a) Estimator Properties: The function L̃t = est
(
~Ot, ~st

)
should be efficiently computable for practical applications. Note

that the loss estimation at time t depends on the outcome ~Ot (violations of each type detected internally and externally) and
the defender’s action ~st at time t. Intuitively, the function outputs an estimate of the loss function by estimating the number
of violations of each type based on the detected violations of that type and the probability of inspecting each action of that
type following the defender’s action.

For each defender action (expert) ~s, we define the random variable

Xt
~s = L̃t(~s)− Lt(~s).

Intuitively, Xt
~s is a random variable representing our estimation error at time t after the actions 〈~vt,~at〉 and ~st have been fixed

by the adversary and the defender respectively.
Because we have assumed that our loss functions are scaled so that L̃t(~s),Lt(~s) ∈ [0, 1] we have Xt

~s ∈ [−1, 1]. This property
of Xt

~s is useful in bounding the regret as we discuss later.
Formally, we assume the following properties about est:

1) Accuracy: E
[
Xj
~s

]
= 0 for 0 ≤ j ≤ T .

2) Independence: ∀~s, X1
~s, . . . ,X

T
~s are all independent random variables.

Any estimation scheme est that satisfies both properties can be plugged into Algorithm 1 yielding the regret bound in
Theorem 1. Informally, accuracy captures the idea that the estimate is accurate in an expected sense while independence
captures the idea that the error in the estimate in each round is independent of the error in all other rounds. We motivate these
properties by way of an example.

Remark 3. In fact if our estimation scheme only satisfied δ-accuracy, i.e., E
[
Xj
~s

]
< δ, then we could still guarantee that the

average regret bounds from Theorem 1 still hold with an extra additive term δ. Formally, the following property holds: for all
ε ∈ (0, 1)

Pr

 ∃~s, Regret(Alg,~s)
T ≥ δ + 2

√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 2

T lnN

 ≤ ε .
b) Example Loss Function: We return to our running example of the hospital. We use the example reputation (loss)

function from the previous section:

Lt(~s) = R− (~Ot
int · ~Rint + ~Ot

ext · ~Rext + ~C · ~s) .

To simplify our presentation we assume that there is only one type of violation. It is easy to generalize the loss function
that we present in this example to include multiple types of violations.

Lt(s) = R− (Ot
int ×Rint +Ot

ext ×Rext + C × s) .

Here Ot
int represents the number of violations caught internally after the actions 〈vt, at〉 and st are played by the adversary

and the defender respectively, Rint (resp. Rext) captures the damage to the hospital’s reputation when a violation is caught
internally (resp. externally), and C is the cost of performing one inspection. Notice that

E
[
Ot
ext ×Rext

]
= p

(
vt − E

[
Ot
int

])
×Rext

where p is the probability that an undetected violation gets caught externally. Therefore,

E
[
Lt(s)

]
= R− (E

[
Ot
int

]
(Rint − p×Rext) + p× vt ×Rext + C × s) .

We can set R′ = (Rint − p×Rext) and then

E
[
Lt(s)

]
= R− (E

[
Ot
int

]
×R′ + p× vt ×Rext + C × s)

In our loss model, we allow the defender to use any recommendation algorithm REC that sorts all at actions at time t and
probabilistically recommends st actions to inspect. We let pd ≤ 1 denote the probability that the dth inspection results in a
detected violation, where this probability is over the coin flips of the recommendation algorithm REC. Because this probability
is taken over the coin flips of REC the outcome Ot

int is independent of previous outcomes once 〈~vt,~at〉, ~st have been fixed.
For example, a naive recommendation algorithm REC might just select a few actions uniformly at random and recommend

that the defender inspect these actions. In this case pj = at

vt for each j. If REC is more clever, then we will have p1 > at

vt . In
this case the pj’s will also satisfy diminishing returns (pj > pj+1).

We assume that inspection is perfect, i.e. if we inspect a violation it will be caught with probability 1. This means that if
we inspect all at actions we would catch all vt violations, i.e.

at∑
j=1

pj = vt.

Set
pj = vt

(
1− β
1− βat

)
βj−1

where the parameter β could be any value in (0, 1). Notice that

a∑
j=1

pj = vt
(

1− β
1− βat

) at−1∑
j=0

βj = vt ,

and pj > pj+1 so our model does satisfy diminishing returns. Furthermore, if β = max{1− 1
at ,

1
2} then we have pj ≤ 1 for

each j. We can express E [Oint] =
∑st

i=1 pj .

E
[
Lt(s)

]
= R− (R′

st∑
i=1

pj + p× vt ×Rext + C × s)

c) Example Loss Estimator: Our loss function estimator est (Ot
int, s

t) is given in Algorithm 2.

Algorithm 2 Example: est (Ot
int, s

t)

• Input: Ot
int, s

t

• Estimate vt: Set ṽt := 1−βa
t

1−βst O
t
int

• Compute L̃: Set

L̃(x) := R−

(
R′ × ṽt ×

∑x
j=1

(
1−β
1−βa β

j−1
)

+p× ṽt ×Rext + C × x

)
• Output: L̃t

Assuming that the defender understands the accuracy of his recommendation algorithm REC2 β is a known quantity so
that this computation is feasible and can be performed quickly. Independence of the random variables Xt

s follows from the
independence of Ot

int. Now we verify that our estimator satisfies our accuracy condition.

2If the algorithm recommends actions uniformly at random, then the accuracy is certainly understood.

Claim 1. When L̃t = est (Ot
int, s

t) from Algorithm 2 E [Xt
s] = 0.

The proof can be found in Appendix A. The main insight here is that because of the way the scaling is done, the expectation
of the estimated number of violations is equal to the number of actual violations, i.e. E [ṽt] = vt. Consequently, the expected
value of the error turns out to be 0, thus satisfying the accuracy property.

Remark 4. If there are multiple types of actions then we can estimate ṽtk, the number of violations of type k at time t,
separately for each k. To do this est should substitute ~Ot

int[k] and ~st[k] for Ot
int and vt and set

ṽtk :=

(
1− βat

1− βst

)
Ot
int .

Then we have

L̃t(x) = R−

(
~R′ · 〈ṽtk〉k ×

1−βx[k]
1−βa

+p× 〈ṽtk〉k · ~Rext + ~C · ~x

)
.

VI. PROOF OUTLINE

In this section, we present the outline of the proof of our main theorem (Theorem 1) which establishes high probability
regret bounds for our audit mechanism. The complete proof is in the appendices. The proof proceeds in two steps:

1) We first prove that our algorithm achieves low regret with respect to the estimated loss function using standard results
from the literature on regret minimization.

2) We then prove that with high probability the difference between regret with respect to the actual loss function and
regret with respect to the estimated loss function is small. This step makes use of the two properties—accuracy and
independence—of the estimated loss function est presented in the previous section and is the novel part of the proof.
The key technique used in this step are the Hoeffding inequalities [21].

Let T denote the total number of rounds played, T~s denote the total number of rounds that the action ~s was awake and I
as before is a time selector function. We define

L̃oss (Alg, I) =
T∑
t=1

∑
~s

I(t)pt~sL̃
t(~s)

to be our total estimated loss. Notice that L̃oss is the same as Loss except that we replaced the actual loss function Lt with
the estimated loss function L̃t. We define L̃oss (~s, I) and R̃egret (Alg, ~s) in a similar manner by using the estimated loss
function.

Lemma 1 and Lemma 2 below bound the regret with respect to the estimated loss function. They are based on standard
results from the literature on regret minimization. We provide full proofs of these results in Appendix C.

Lemma 1. For each expert ~s we have

R̃egret(Alg,~s) ≤ 1

L− 1
T + 2L lnN

where N is the total number of experts and γ, our learning parameter has been set to γ = 1− 1
L

Remark 5. We would like to bound our average regret:

R̃egret(Alg,~s)

T~s

There is a trade-off here in the choice of L. If L is too large, then L lnN will be large. If L is too small, then 1
L−1T will be

large. If we know T in advance, then we can tune our learning parameter γ to obtain the best bound by setting

L =

√
T

2 lnN
+ 1

After substituting this value for L in Lemma 1, we immediately obtain the following result:

Lemma 2. For each expert ~s we have

R̃egret(Alg,~s) ≤ 2
√
2T lnN + 2 lnN

where N is the total number of experts and where our learning parameter has been set to

γ = 1−
√

2 lnN

T

Remark 6. This shows that our algorithm can achieve low regret with respect to the estimated loss functions L̃t. This completes
step 1 of the proof. We now move on to step 2.

Notice that we can write our actual loss function (Loss (Alg, I)) in terms of our estimated loss function
(
L̃oss (Alg, I)

)
and Xt

~s.

Fact 1.

Loss (Alg, I) = L̃oss (Alg, I) +
T∑
t=1

I(t)Xt
~s

We know that E [Xt
~s] = 0 (from the accuracy property of the loss estimation function) and that X1

~s, . . .X
T
~s are independent

(from the independence property), so we can apply the Hoeffding inequalities to bound
∑
tX

t
~s obtaining Lemma 3. Appendix B

contains a description of the inequalities and the full proof of the following lemma.

Lemma 3.
Pr
[
∃~s,Regret (Alg, ~s)− R̃egret (Alg, ~s) ≥ 2K

]
≤ ε

where K =
√
2T ln

(
4N
ε

)
.

After straightforward algebraic substitution we can obtain our main result in Theorem 1 by combining Lemma 3 with Lemma
2 (see Appendix D).

Observe that the optimal value of γ is dependent on T . But, it is conceivable that the time T for which the game is played
is not known in advance. The following remark shows that we can overcome this problem by choosing a dynamic value for
γ. This makes Algorithm 1 usable in the real world.

Remark 7. Even if we don’t know T in advance we can tune γ dynamically using a technique from [22]. We set

γt =
1

1− αt
,

where

αt =

√
2

lnN

Lt − 1
.

where Lt is the minimum loss of any expert till time t (calculated using the estimated loss). Before playing round t we
recompute the weights wt~s, pretending that our learning parameter γ had been set to γt from the beginning i.e.

wt~s = γ
∑t
i=1 I~s(t)(L̃

t(~s)−γtL̃t(Alg))
t .

In this case our final guarantee (similar to Theorem 1) would be that:

Pr

 ∃~s,
Regret(Alg,~s)

T ≥ 2
√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 10

T lnN+
4
T (lnN) (ln(1 + T))

 ≤ ε .
VII. RELATED WORK

A. Auditing in Computer Security

The importance of auditing has been recognized in the computer security literature. For example, Lampson [1] points out
that audit logs should record the evidence and rules (i.e. the proof) that go into making access control decisions. An auditor can
review the logs to figure out whether some unintended access was granted, and why. This idea has been developed formally
in subsequent work on logic-based access control. In particular, Vaughan et al. [23] show how proofs in an authorization logic
can be logged and then analyzed to detect flaws in the access control policy specification. In a similar vein, Bauer et al. [24]
show how to use association rule mining techniques over audit logs to predict access control policy misconfigurations.

In contrast, we use audits to detect violations of policies, such as those restricting information use to specified purposes, that
cannot be enforced using access control mechanisms. Thus, we view audits as policy enforcement mechanisms. Indeed this
view has also been discussed in the literature. For example, Lampson [1] takes the position that audit logs can be used to detect
violations, establish accountability and punish the violators. Weitzner et al. [2] also recognize the importance of accountability
and the inadequacy of access control for privacy protection. Our work provides a principled approach to conducting such
audits taking into account worst-case adversaries and the economic considerations that shape organizations’ decision making

processes. Since it is not possible for an organization to examine all logged events, the mechanism provides operational
guidance on what subset it should focus on.

Zhao et al. [25] note that rigid access control can cause loss in productivity of employees in certain types of organizations.
They propose an access control regime that allows all access requests, but marks accesses not permitted by the policy. These
marked accesses are later audited and, depending on whether access was for a legitimate purpose, the associated employee
is either punished or rewarded. They assume that the utility function for the organization and the employees are known and
use a single shot game to analyze the optimal behavior of the players. Our approach of using a permissive access control
policy coupled with audits is a similar idea. However, we consider a worst-case adversary (employee) because we believe it is
difficult to identify the exact incentives of the employee. Hence our guarantees hold even for completely irrational adversaries.
We further recognize that the repeated nature of interaction in audits is naturally modeled as a repeated game rather than a
one-shot game. In addition, we model the fact that an access may also be a violation of some policy and that may have a
negative utility for the organization if they are missed in the audit. Finally, we restrict the amount of audit inspections because
of budgetary constraints. Thus, our game model is significantly more realistic than the model of Zhao et al. [25].

Guts et al. [26] consider an orthogonal problem in this space. They provide a characterization of auditable properties and
describe how to type-check protocols to guarantee that they log sufficient evidence to convince a judge that an auditable
property was satisfied on a protocol run.

B. Regret Minimization

A regret minimization algorithm Alg is a randomized algorithm for playing in a repeated game. Our algorithm is based
on the weighted majority algorithm [15] for regret minimization. The weighted majority maintains weights w~s for each of
the N fixed actions of the defender. wt~s is the weight of the expert before round t has been played. The weights determine
a probability distribution over actions, pt~s denotes the probability of playing ~s at time t. In any given round the algorithm
attempts learns the optimal distribution over actions by increasing the weights of experts that performed better than its current
distribution and decreasing the weights of experts that performed worse.

1) Sleeping Experts: In the setting of [15] all of the actions are available all of the time. However, we are working in the
sleeping experts model where actions may not be available every round due to budget constraints. Informally, in the sleeping
experts setting the regret of our algorithm with respect to a fixed action ~s in hindsight is the expected decrease in our total
loss had we played ~s in each of the T~s rounds when ~s was available.

There are variations of the weighted majority algorithm that achieve low regret in the sleeping experts setting [16], [12].
These algorithms achieve average regret bounds:

∀~s, Regret (Alg, s̃)

T~s
= O

(√
T logN

T~s

)
In fact our regret minimization algorithm is very similar to these algorithms. However, we are interested in finding exact

(not asymptotic) bounds. We also have to deal with the imperfect information in our game.
2) Imperfect Information: In order to update its weight after round t, the weighted majority algorithm needs to know the

loss of ever available defender action ~s . Formally, the algorithm needs to know Lt(~s) for each ~s ∈ AWAKEt. However, we
only observe an outcome ~Ot, which allows us to compute

Lt(~st) = R(~Ot)− ~C · ~st,

the loss for the particular action ~st played by the defender at time t. There are several existing algorithms for regret minimization
in games with imperfect information [14], [17], [18], [19].

For example [14] works by grouping the rounds into blocks of K rounds, and then randomly sampling each of the N actions
once during each block to estimate the true loss function for that particular block. The weights are updated only after every
round in a block is completed. This sampling stage is expensive. By picking K appropriately the average regret bound is

∀~s, Regret(Alg, ~s)

T
= O

(
N1/3 logN

3
√
T

)
It is acceptable to have logN in the numerator, but the N1/3 term will make the algorithm impractical in our setting. The
average regret still does tend to 0 as T → ∞, but in our setting N is very large so our average regret converges too slowly.
Other algorithms [17], [18], [19] improve this bound slightly, but we still have the N1/3 term in the numerator.

Furthermore, [14] assumes that each action ~s is available in every round. There are algorithms that deal with sleeping experts
in repeated games with imperfect information, but the convergence bounds get even worse.

We circumvent this problem by using ~Ot to estimate our true loss function after each round. By contrast [14] could only
updated weights after each of the N actions once during block of K rounds. We use L̃t(~x) to denote this estimated loss
function given ~Ot.

Our baseline algorithm will achieve low regret with respect to these estimated losses L̃t(~x). However, we want to achieve
low regret with respect to the actual expected losses L(~s) so our is meaningless unless we can guarantee that our estimated
losses are close to our true losses.

Regret minimization techniques have previously been applied in computer security by Barth et al. [27]. However, that paper
addresses a different problem. They show that reactive security is not worse than proactive security in the long run. They
propose a regret minimizing algorithm (reactive security) for allocation of budget in each round so that the attacker’s “return
on attack” does not differ much from the case when a fixed allocation (proactive security) is chosen. They take into account the
attackers incentives, and compare the attacker’s “return on attack” for the two scenarios; hoping that the only benefit attacker
derives from the attack is as calculated in their model. But, the guarantees in that paper depends on the defender knowing the
attackers incentives, which is often not true. In contrast, we do not attempt to model the attacker’s utility; instead we present a
loss model for the defender, and propose a strategy for the defender so that her regret is minimized. This is more realistic as
the defender does know his own incentives. From a technical standpoint, the regret minimization techniques we use are also
different. In that work, the defender learns the attack path played by the adversary after each round, and by extension the true
loss function. By contrast, our algorithm must work in the imperfect information setting as we discussed in Section VII-B2.

VIII. CONCLUSION AND FUTURE WORK

We presented a principled approach to audits in organizations, such as hospitals, with permissive access control regimes.
We modeled the interaction between the defender (e.g., hospital auditors) and the adversary (e.g., hospital employees) as a
repeated game. The model takes pragmatic considerations into account, in particular, the periodic nature of audits, a budget that
constrains the number of actions that the defender can inspect, a loss function that captures the economic impact of detected
and missed violations on the organization, and a powerful worst-case adversary. We formulate a desirable property of the audit
mechanism in this model based on the concept of regret in learning theory. We then presented an efficient audit mechanism that
provably minimizes regret for the defender. This mechanism learns from experience to guide the defender’s auditing efforts.
The regret bound is significantly better than prior results in the learning literature. The stronger bound is important from a
practical standpoint because it implies that the recommendations from the mechanism will converge faster to the best fixed
auditing strategy for the defender.

There are several directions for future work. First, we plan to implement our audit mechanism and evaluate its performance
over hospital audit logs. We have had conversations with Chief Privacy Officers at a number of hospitals and they have
expressed significant interest in acquiring and using better audit capabilities. Second, we plan to develop similar results with
a weaker (but still realistic) adversary model. Specifically, the regret bounds guaranteed by our algorithm hold even if an
adversary controls the actions of all the employees in a hospital. It is reasonable to believe that not all employees behave
adversarially. We plan to consider an alternative model in which some employees are adversarial, some are selfish and others
are well-behaved (cf. [28]). Such a model could enable us to develop audit mechanisms that provide better bounds on the
organization’s regret.

REFERENCES

[1] B. W. Lampson, “Computer security in the real world,” IEEE Computer, vol. 37, no. 6, pp. 37–46, 2004.
[2] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. A. Hendler, and G. J. Sussman, “Information accountability,” Commun. ACM, vol. 51,

no. 6, pp. 82–87, 2008.
[3] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin, “A calculus for access control in distributed systems,” ACM Trans. Program. Lang. Syst.,

vol. 15, no. 4, pp. 706–734, 1993.
[4] A. W. Appel and E. W. Felten, “Proof-carrying authentication,” in ACM Conference on Computer and Communications Security, 1999, pp. 52–62.
[5] C. Fournet, A. Gordon, and S. Maffeis, “A type discipline for authorization in distributed systems,” in CSF, 2007, pp. 31–48.
[6] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and G. Lenzini, “Audit-based compliance control,” Int. J. Inf. Sec., vol. 6, no.

2-3, pp. 133–151, 2007.
[7] US Congress, “Health Insurance Portability and Accountability Act of 1996, Privacy Rule,” 45 CFR 164, 2002, available at http://www.access.gpo.gov/

nara/cfr/waisidx 07/45cfr164 07.html.
[8] H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta, “Experiences in the logical specification of the HIPAA and GLBA privacy laws,” in Proceedings

of the 9th annual ACM Workshop on Privacy in the Electronic Society (WPES), 2010.
[9] D. Garg, L. Jia, and A. Datta, “Policy Monitoring over Evolving Audit Logs: A Logical Method for Privacy Policy Enforcement,” CMU, Tech. Rep.

CMU-CyLab-11-002, January 2011.
[10] G. Hulme, “Steady Bleed: State of HealthCare Data Breaches,” September 2010, InformationWeek.
[11] HIPPA Enforcement, 2010 (accessed November 19,2010). [Online]. Available: http://www.hhs.gov/ocr/privacy/hipaa/enforcement/index.html
[12] A. Blum and Y. Mansour, “Learning, regret minimization, and equilibria,” Algorithmic Game Theory, pp. 79–102, 2007.
[13] D. Fudenberg and J. Tirole, Game theory. MIT Press, 1991.
[14] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The nonstochastic multiarmed bandit problem,” SIAM Journal on Computing, vol. 32, no. 1, pp.

48–77, 2003.
[15] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Inf. Comput., vol. 108, no. 2, pp. 212–261, 1994.
[16] A. Blum and Y. Mansour, “From external to internal regret,” in COLT, 2005, pp. 621–636.
[17] V. Dani and T. Hayes, “Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary,” in Proceedings of the seventeenth

annual ACM-SIAM symposium on Discrete algorithm. ACM, 2006, p. 943.
[18] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret minimization in games with incomplete information,” Advances in Neural Information

Processing Systems, vol. 20, pp. 1729–1736, 2008.

[19] B. Awerbuch and R. Kleinberg, “Online linear optimization and adaptive routing,” Journal of Computer and System Sciences, vol. 74, no. 1, pp. 97–114,
2008.

[20] M. Feldman, C. H. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding and whitewashing in peer-to-peer systems,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 5, pp. 1010–1019, 2006.

[21] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association, vol. 58, no. 301, pp.
13–30, 1963.

[22] P. Auer, N. Cesa-Bianchi, and C. Gentile, “Adaptive and self-confident on-line learning algorithms,” Journal of Computer and System Sciences, vol. 64,
no. 1, pp. 48–75, 2002.

[23] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic, “Evidence-based audit,” in CSF, 2008, pp. 177–191.
[24] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving policy misconfigurations in access-control systems,” in SACMAT, 2008, pp. 185–194.
[25] X. Zhao and M. E. Johnson, “Access governance: Flexibility with escalation and audit,” in HICSS, 2010, pp. 1–13.
[26] N. Guts, C. Fournet, and F. Z. Nardelli, “Reliable evidence: Auditability by typing,” in ESORICS, 2009, pp. 168–183.
[27] A. Barth, B. Rubinstein, M. Sundararajan, J. Mitchell, D. Song, and P. Bartlett, “A Learning-Based Approach to Reactive Security,” Financial

Cryptography and Data Security, pp. 192–206, 2010.
[28] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth, “Bar fault tolerance for cooperative services,” SIGOPS Oper. Syst. Rev.,

vol. 39, pp. 45–58, October 2005. [Online]. Available: http://doi.acm.org/10.1145/1095809.1095816

APPENDIX

Our main goal is to prove our main theorem from section III-B, showing that our audit mechanism (algorithm 1) achieves
low regret with high probability.

First, we prove an orthogonal result in appendix A. We prove that our example estimator function from section V is accurate
for the example loss function that we provided.

In appendix B we prove that Lemma 3 holds for any estimator function est satisfies the accuracy and independence properties
outlined in section V. Therefore, with high probability the defender’s actual regret will be close to his estimated regret.

In appendix C we review standard regret bounds from the literature on regret minimization. We prove that our algorithm
achieves low regret with respect to our estimated loss function.

Finally, in appendix D we combine our results to prove our main theorem in section III-B. This theorem shows that, except
with probability ε, our algorithm will achieve low regret.

A. Estimating Losses

Recall that our regret bounds for algorithm 1 depended on the accuracy of the loss function estimator est. We prove that
our example estimator (Algorithm 2) from section V is accurate.

Reminder of Claim 1. When L̃t = est (Ot
int, s

t) from algorithm 2

E
[
Xt
s

]
= 0 .

Proof: First observe that

E
[
ṽt
]

=
1− βat

1− βst
E
[
Ot
int

]
=

1− βat

1− βst
st∑
i=1

pj

=
1− βat

1− βst
st∑
i=1

vt
1− β
1− βat

βj−1

=
1− β
1− βst

vt
st∑
i=1

βj−1

= vt

E
[
Xt
s

]
= E

[
L̃t(~s)

]
− E

[
Lt(~s)

]
= R−R′

x∑
i=1

pj − p× vt ×Rext

−C × s− E
[
Lt(~s)

]
= R−R′

x∑
i=1

pj − p× vt ×Rext − C × s

−R+R′ × E
[
ṽt
]
×

x∑
j=1

(
1− β
1− βa

βj−1
)

+p× E
[
ṽt
]
×Rext + C × s

= R′ × E
[
ṽt
]
×

x∑
j=1

(
1− β
1− βat

βj−1
)
−R′

x∑
i=1

pj

=

R′ × x∑
j=1

(
1− β
1− βat

βj−1v

)−R′ x∑
i=1

pj

=

R′ × x∑
j=1

pj

−R′ x∑
i=1

pj

= 0

B. Hoeffding Bounds

Hoeffding Bound [21] bounds the probability of the deviation of a sum of independent random variables from the mean of
the sum of random variables. The statement of Hoeffding Bound is as follows: if X1, X2, ..., Xn are independent real valued
random variables and ai ≤ Xi ≤ bi, then for t > 0

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]∣∣∣∣∣ > t

]
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
Claim 2. For every ~s

Pr
[∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)

∣∣∣ ≥ K] ≤ ε

2N
,

where K =
√
2T ln 4N

ε .

Proof: Notice that we can rewrite

Loss (~s, I~s)− L̃oss (~s, I~s) =

T∑
t=1

I~s(t)X
t
~s

By the independence property of of loss estimator est, the random variables Xt
~s are independent. By the accuracy property of

our loss function estimator est we have

E

[
T∑
t=1

I~s(t)X
t
~s

]
= 0 .

By definition there are exactly T~s times when I~s(t) = 1 so the sum contains T~s independent random variables. We also have
−1 ≤ Xt

~s ≤ 1 so we can apply Hoeffding Bounds directly to obtain.

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)X
t
~s

∣∣∣∣∣ ≥ K
]
≤ 2 exp

(
−2K2

22 × T~s

)

Plugging in for K and using the fact that T~s ≤ T

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)X
t
~s

∣∣∣∣∣ ≥ K
]
≤ 2 exp

(
−T ln 4N

ε

T~s

)

≤ 2 exp

(
− ln

4N

ε

)
=

ε

2N

Claim 3. For every ~s
Pr
[∣∣∣Loss (Alg, ~s)− L̃oss (Alg, ~s)

∣∣∣ ≥ K] ≤ ε

2N
,

where K =
√
2T ln 4N

ε .

Proof: Notice that we can rewrite

Loss (Alg, ~s)− L̃oss (Alg, ~s) =
T∑
t=1

∑
~s

I~s(t)p
t
~sX

t
~s

Set Yt =
∑
~s p

t
~sX

t
~s, and observe that the random variables Yt are independent and that Yt ∈ [−1, 1]. Substituting we get

Loss (Alg, ~s)− L̃oss (Alg, ~s) =
T∑
t=1

I~s(t)Y
t .

Applying Hoeffding Bounds we have

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)Y
t

∣∣∣∣∣ > K

]
≤ 2 exp

(
−2K2

22T~s

)
Set K =

√
2T ln 4N

ε then

Pr
[∣∣∣Loss (Alg, ~s)− L̃oss (Alg, ~s)

∣∣∣ > K
]

= Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)Y
t

∣∣∣∣∣ > K

]

≤ 2 exp

(
−2K2

22T~s

)
≤ 2 exp

(
− ln

4N

ε

)
≤ ε

2N

Lemma 4. Except with probability ε, for all ~s we have∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)
∣∣∣ < K ,

and ∣∣∣Loss (Alg, ~s)− L̃oss (Alg, ~s)
∣∣∣ < K ,

where K =
√

2T ln 4N
ε .

Proof: There are N fixed actions ~s and thus 2N total events. Applying the union bound to claims 2 and 3 yields the
desired result immediately.

Claim 4. Suppose that for all ~s we have ∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)
∣∣∣ < K ,

and ∣∣∣Loss (Alg, ~s)− L̃oss (Alg, ~s)
∣∣∣ < K ,

where K =
√
2T ln 4N

ε . then for every ~s we have

Regret (Alg, ~s)− R̃egret (Alg, ~s) ≤ 2K .

Proof: We use the definition of Regret (Alg, ~s) and R̃egret, and then apply Lemma 4.

Regret (Alg, ~s)− R̃egret (Alg, ~s)

= (Loss (Alg, ~s)− Loss (~s, I~s))

−
(
L̃oss (Alg, ~s)− L̃oss (~s, I~s)

)
≤

∣∣∣Loss (Alg, ~s)− L̃oss (Alg, ~s)
∣∣∣

+
∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)

∣∣∣
≤ 2K

We are now ready to prove Lemma 3 from section VI.

Reminder of Lemma 3.
Pr
[
∃~s,Regret (Alg, ~s)− R̃egret (Alg, ~s) ≥ 2K

]
≤ ε

where K =
√
2T ln

(
4N
ε

)
.

Proof: We combine claim 4 and Lemma 4.

C. Standard Regret Bounds

We prove upper bounds on our estimated R̃egret. The proof techniques used in this section are standard. We include them
to be thorough. The following claims will be useful in our proofs.

Claim 5. ∑
~s∈AWAKEt

wt~sL̃
t(~s) =

∑
~s∈AWAKEt

wt~sL̃
t(Alg)

Proof: We plug in the definition of L̃t(Alg)∑
~s∈AWAKEt

wt~sL̃
t(Alg) =

∑
~s∈AWAKEt

wt~s
∑
~σ

L̃t (~σ)

=
∑

~s∈AWAKEt

wt~s
∑
~σ

pt~σL̃
t (~σ)

=
∑
~σ

∑
~s∈AWAKEt

wt~sp
t
~σL̃

t (~σ)

=
∑
~σ

L̃t (~σ)

 ∑
~s∈AWAKEt

wt~sp
t
~σ


=

∑
~σ

L̃t (~σ)
(
wt~σ
)

Relabel ~σ
=

∑
~s

L̃t (~s)
(
wt~s
)

Claim 6. For all times t ∑
~s

wt~s ≤ N

Proof: Initially, w0
~s = 1 so initially the claim holds ∑

~s

w0
~s = N

The sum of weights can only decrease. At time t we only update the weights for those experts ~s ∈ AWAKEt.∑
~s∈AWAKEt

wt+1
~s =

∑
~s∈AWAKEt

wt~sγ
L̃t(~s)−γL̃t(Alg)

=
∑

~s∈AWAKEt

wt~sγ
L̃t(~s)γ−γL̃

t(Alg)

≤
∑

~s∈AWAKEt

wt~s

(
1− (1− γ) L̃t(~s)

)
(
1 + (1− γ) L̃t(Alg)

)
≤

 ∑
~s∈AWAKEt

wt~s


−(1− γ)

 ∑
~s∈AWAKEt

wt~sL̃
t(~s)


+(1− γ)

 ∑
~s∈AWAKEt

wt~sL̃
t(Alg)


Apply Claim 5

≤
∑

~s∈AWAKEt

wt~s

Where we used the following two facts

Fact 2.
∀γ, y ∈ [0, 1], γy ≤ 1− (1− γ)y

and

Fact 3.
∀γ, y ∈ [0, 1], γ−y ≤ 1 + (1− γ)y

γ

Therefore, ∑
~s

wt+1
~s =

∑
~s/∈AWAKEt

wt+1
~s +

∑
~s∈AWAKEt

wt+1
~s

=
∑

~s/∈AWAKEt

wt~s +
∑

~s∈AWAKEt

wt+1
~s

≤
∑

~s/∈AWAKEt

wt~s +
∑

~s∈AWAKEt

wt~s

≤ N

Claim 7. For each expert ~s we have

L̃oss(Alg, I~s) ≤
L̃oss(~s, I~s) +

lnN
ln 1
γ

γ

where N is the total number of experts.

Proof: By assumption, L̃t(~s) is independent of ~st so we can think of L̃t(~s) as being fixed before the defender selects its
action ~st. Notice that for all times j we have

N ≥ wj~s = γ
∑j
t=1 I~s(t)(L̃

t(~s)−γL̃t(Alg))

Taking log 1
γ

we obtain:

log 1
γ
N =

lnN

ln 1
γ

≥ −
j∑
t=1

(
I~s(t)L̃

t (~s)− γL̃t (Alg)
)

= −L̃oss (~s, I~s) + γL̃oss (Alg, Is̃)

Hence,

L̃oss(Alg, I~s) ≤
L̃oss(~s, I~s) +

lnN
ln 1
γ

γ

We are now ready to prove Lemma 1.

Reminder of Lemma 1. For each expert ~s we have

R̃egret(Alg,~s) ≤ 1

L− 1
T + 2L lnN

where N is the total number of experts and γ, our learning parameter has been set to γ = 1− 1
L

Proof: Set γ = 1− 1
L and apply claim 7. We have

L̃oss(Alg, I~s) ≤
L

L− 1
L̃oss(~s, I~s) +

L

L− 1

lnN

ln L
L−1

.

Using the definition of R̃egret(Alg,~s) we get

R̃egret(Alg,~s) ≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

lnN

ln L
L−1

.

We will use the following fact

Fact 4.
1

L− 1
< 2 ln

(
L

L− 1

)

R̃egret(Alg,~s) ≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

logN

log L
L−1

≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

logN
1

2L−2

≤ 1

L− 1
L̃oss(~s, I~s) + 2L logN

Lemma 2 follows immediately from 1.

Reminder of Lemma 2. For each expert ~s we have

R̃egret(Alg,~s) ≤ 2
√
2T lnN + 2 lnN

where N is the total number of experts and where our learning parameter has been set to

γ = 1−
√

2 lnN

T

D. Main Theorem

We are finally ready to prove our main theorem from section III-B.

Reminder of Theorem 1. For all ε > 0,

Pr

 ∃~s, Regret(Alg,~s)
T ≥ 2

√
2 lnN

T +

2

√
2 ln(4N

ε)
T + 2

T lnN

 ≤ ε .
Proof: Lemma 2 tells us that for each expert ~s we have

R̃egret(Alg,~s) ≤ 2
√
2T lnN + 2 lnN .

and Lemma 3 tells us that except with probability ε, for all actions ~s we have

Regret(Alg,~s)− R̃egret(Alg,~s) ≤ 2

√
2T ln

(
4N

ε

)
.

Combining Lemma 2 with Lemma 3 we obtain the desired result.

