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Abstract

Supervised machine learning techniques developed in
the Probably Approximately Correct, Maximum A Pos-
teriori, and Structural Risk Minimiziation frameworks
typically make the assumption that the test data a
learner is applied to is drawn from the same distribu-
tion as the training data. In various prominent appli-
cations of learning techniques, from robotics to medical
diagnosis to process control, this assumption is violated.
We consider a novel framework where a learner may in-
fluence the test distribution in a bounded way. From
this framework, we derive an efficient algorithm that
acts as a wrapper around a broad class of existing su-
pervised learning algorithms while guarranteeing more
robust behavior under changes in the input distribution.

Introduction

It is now widely accepted that there are tasks for
which hand-designed algorithms are extremely diffi-
cult to engineer but for which humans are able to in-
ject domain knowledge by providing a labeled “train-
ing set”. Machine learning techniques have broad ap-
plication in variety of these domains. For instance, re-
cent computer games use a wide assortment of super-
vised learning techniques; spam-reduction software
relies on techniques developed for text classification,
and learning results have become instrumental in the
development of robotics.

An important commonality of these applications of
machine learning algorithms is the violations of the as-
sumptions these algorithms are based on. In particular,
classifiers developed in the PAC, Bayesian, and Struc-
tural Risk Minimization frameworks all assume that a
learner’s predictions do not influence the distribution
of training examples upon which it will be tested. We
discuss the formalization of this restriction below. In
practical applications, this limitation of test data dis-
tribution matching training data is rarely mentioned
explicitly.

Crudely speaking, the goal of supervised learning
is to develop algorithms that construct from training

Copyright c© 2005, American Association for Artificial Intel-
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data a hypothesis that will not only predict with small
error on its training set but demonstrate small test er-
ror on future predictions. There are, then, at least two
ways in which this can fail. The first, colloquially
called “over-fitting” inspires a vast theoretical litera-
ture 1 and a great deal of attention in the experimental
and applied learning literature.

The second is that in practical application of learning
techniques predictions from a learner are often used in
a way that directly affects the distribution of examples
in the future. In this way, small prediction error, even
without overfitting, may lead to a dramatically higher
error in actual use.

Practitioners find that ignoring the complication of
shifting input distributions can lead to serious diffi-
culties. (Thrun 1995, Pomerleau 1989) Consider the
widely-known machine learning success of ALVINN,
a neural network designed to drive at speed in both
on- and off- road environments. The idea of training a
learning algorithms to match a human driver is a sim-
ple, elegant approach to the problem. Pomerleau, the
principle architect of the learning system, notes how-
ever that naive training of the network is insufficient.

Consider for a moment a classifier trained, as
ALVINN, to predict steering direction based on input
images. We can assume it able to achieve low training
set error and so that generalization bounds (e.g. cross-
validation) indicate that it will indeed exhibit small er-
ror on test-set. As Pomerleau notes, “when driving for
itself, the network may occassionally stray from the
center of the road so it must be prepared to recover
by steering the vehicle back to the center of the road.”
In reality, a network that makes small prediction er-
ror, ǫ, may choose controls that lead to a slightly less
typical test example at the next step, which leads to
large prediction error and a yet more atypical sample.
Pomerleau again, “...problems associated with training
on-the-fly stem from the fact that backpropagation re-
quires training data which is representative of the full
task to be learned.”

In the ALVINN work, Pomerleau developed two

1See, for instance, the tutorial of (Langford 2005) covers a
variety of methods for ensuring a classifier doesn’t overfit.



techniques that explicitly deal with the test-train mis-
match. First, Pomerleau develops a system that gen-
erated extra training data that effectively emphasizes
some of the harder cases ((Pomerleau 1989), section
3.2). 2 Second, Pomerleau ((Pomerleau 1989), section
3.4) uses a buffer to increase training on examples that
prove more difficult for the learner.

The techniques described in (Pomerleau 1989) are
rather domain-specific, but nevertheless, get to the
essence of an important problem. In this work, we pro-
vide a specific formalization of the problem of shift-
ing test-set distributions and derive a general algo-
rithm reminiscent of Pomerleau’s heuristic that opti-
mally solves the formulation. This formulation allows
us to find an optimal solution efficiently and derive
meaningful generalization bounds that hold out-of-
sample.

Related Work

There are important frameworks that address issues of
learners that effect the input distribution. In Reinforce-
ment Learning, we are explicitly interested in agents
whose actions affect the world. Recent research in this
field can be understood as explicitly trying to control
the relationship between test and train distributions.
(See for instance, (Bagnell et al. 2003) and (Fern et al.
2003)). Here we address the fundamentally simpler su-
pervised learning problem where correct outputs are
given to us as part of the training set.

The online learning model (Littlestone and War-
muth 1989) makes no assumptions about a distribution
of inputs. It trades this for making no predictive state-
ments, but instead considering performance in retro-
spect. Predictive results can be established for many
online algorithms but typically make the explicit as-
sumption that the classifier has no effect on the test in-
stances.

One of the closest related works is (Daliv et al. 2004)
where a game between a learner an agent that can af-
fect the training examples is described. In (Daliv et al.
2004), there are more general costs and an adversary
can affect different features on instances in the data set.
Our framework applies instead to the input distribu-
tion (and later in the work p(y|x) as well) as opposed
to specific examples. It also presents a game that is
amenable to efficient optimization algorithms and can
make predictive statements.

Robust Learning Framework

In general it is very difficult to predict the changes a
classifier will induce on the test-set distribution. It is
often reasonable, however, to assume at the outset that
the change will be in some way bounded. We would

2This technique actually mixes two benefits: it is a “vir-
tual training example” technique to enforce a particular sym-
metry, and secondly it emphasizes cases that are rare in the
data-set.

like, then, to do well with respect to any distribution
that respects this bound.

Mathematical Preliminaries

We assume that the goal of learning can be phrased, as
in Maximum Likelihood, Bayesian Maximum Aposte-
riori, Structural Risk Minimization, etc, as an expect
risk minimization principle. In particular, suppose we
have an input space X and output space Y . Training
examples are generated fromD(x, y) = ptrain(x)p(y|x).
Furthermore, we have a setH of hypothesis h : X → Y
indexed by a continuous parameter vector θ ∈ Θ and
a loss function ℓ : Y,Y → [0, 1] 3 A common goal
in learning theory is to attempt to minimize the risk
ED[ℓ(x, y, hθ(x))] over Θ. We’ll further make the as-
sumption that Θ is a convex set and that ℓ is con-
cave loss function in θ. These assumption are satis-
fied by some of the most popular classification and re-
gression techniques (Support Vector Machines, logis-
tic and linear regression, Adaboost, Conditional Ran-
dom Fields, Naive Bayes, etc.) A weaker notion of lo-
cal convexity can be used to give similar but weaker
results to those developed here for a broader class of
learning techniques. In this work, we wish to modify
the objective to acknowledge changes in test distribu-
tion. Our way of asserting bounded influence of the
learner’s predictions is to assert that we will be tested
on D′(x, y) = qtest(x)p(y|x) where qtest(x) is a distri-
bution over inputs such that KL(qtest(x)|ptrain(x)) < ǫ,
where KL is the relative entropy or KL-divergence:

KL(f |g) =
∑

x

f(x) ln
f(x)

g(x)

We assume here that the inputs are discrete, al-
though there are simple generalizations to continuous
distributions over inputs using continuous relative en-
tropy. (Cover and Thomas 1997) We denote by Q the
set of test distributions that meet the KL constraint.

Relative entropy is a natural information theoretic
measure of the difference between distributions that
arises throughout machine learning. In particular, in-
formation theoreticallyKL(qtest(x)|ptrain(x)) measures
the inefficiency in nats incurred for using ptrain(x) to
develop an optimal code and then testing the code
against distribution qtest(x) . (Cover and Thomas 1997)
Given the requirement of doing well on all such dis-
tributions, it is natural to write our requirements as a
game

min
θ∈Θ

maxq∈Q Eq[g(x, θ)] (1)

where

g(x, θ) = Ep(y|x)[ℓ(y, hθ(x))] (2)

3The choice of upper loss bound as 1 is arbitrary but con-
venient. We can drop the finiteness requirement as well al-
though this leads to limitations in proving sample complex-
ity bounds.



in which our learner chooses a classifier so as to mini-
mize its loss while nature chooses qtest(x) so as to max-
imize the expected loss given knowledge of this classi-
fier.

The game as we have described it has a number of
interesting theoretical properties. An important one is
the minimax equality.

Theorem 1 Minimax equality holds in Equation (1) if the
set Θ is compact. That is, we have:

min
θ∈Θ

maxq∈Q Eq[g(x, θ)] = maxq∈Q min
θ∈Θ

Eq[g(x, θ)]

It then does not matter whether nature chooses the test
distribution first or the learner chooses its hypothesis first.

Proof: Notice that as ℓ is concave and the objective
function is linear, hence convex, in qtest(x) , we have
a convex-concave saddle point problem. Q is clearly
convex and compact, while by assumption Θ is con-
vex and compact (for example, as a result of Ivanov or
Tikhonov style regularization). We appeal then to clas-
sic minimax results, e.g. Proposition 2.6.9 of (Bertsekas
et al. 2003).

There are weaker constraints then compactness that
let us conclude minimax equality as well, however,
compactness is perhaps the simplest as well as the
most common occurring in supervised learning.

Solving the game

Next we consider approaches to solving this game. Al-
though we have shown minimax inequality we are
considering an optimization problem the dimension-
ality of which scales with the number of possible in-
puts. We argue now, using Legendre-Fenchel duality
results, that we can solve for the worst case distribu-
tion in nearly closed-form.

Theorem 2 For a fixed hypothesis hθ , nature chooses dis-
tribution qtest(x) to solve the constrained optimization
problem:

maxqtest(x)∈Q Eqtest(x)[Ep(y|x)[ℓ(y, h(x))]] (3)

This problem is optimized by a distribution of form:

qtest(x) =
exp(βg(x))ptrain(x)

Z(β)
(4)

with β a scalar and Z the appropriate normalization con-
stant.

Proof: Notice that the objective function is linear in
qtest(x) and the constraints on qtest(x) are convex and
compact. We can use convex duality then to construct
the optimal distribution. (Boyd and Vandenberghe
2004) Form the Lagrangian:

L(qtest(x), λ, γ) = Eq[g]− λ(
∑

x

qtest(x) ln
qtest(x)

ptrain(x)
− ǫ)

− γ(
∑

x

qtest(x)− 1)

Solve for the stationary point of the Lagrangian with
respect to qtest(x) .

∂L

∂qtest(x)
= g(x)−λ(ln qtest(x)+1− ln ptrain(x))−γ = 0

gives
qtest(x) ∝ exp(βg(x))ptrain(x)

where β is chosen so that the KL bound holds.
We note that this duality result arises within the ro-

bust control community, where the concern is with the
control of dynamic stochastic systems, where the dy-
namics are either ill-specified or vary in some com-
plex way that remains bounded in KL-divergence. Re-
cently, (Nilim and el Ghaoui 2004) exploited this classi-
cal result for a particular efficient solution in (Bagnell
and Schneider 2001) robust stochastic control frame-
work. It is for this reason that we title our work “ro-
bust supervised learning”. 4

Reverse KL-divergence The KL-divergence order-
ing we have chosen is natural for more reasons than
its information theoretic loss interpretation. The re-
verse KL-divergence, which is also amenable to a sim-
ilar duality calculation (Nilim and el Ghaoui 2004),
intuitively seems unreasonable in our scenario. The
reverse divergence, allows test distributions where
qtest(x) is not absolutely continuous with respect to
ptrain(x) . This makes it a poor model for our goals
as the the optimal distribution may place mass on test
examples which cannot possible occur in our training
data.

Minimizing Empirical Robust Risk
In machine learning problems we cannot, of course
directly minimize the true risk function. Instead, we
choose some empirical estimate of the risk function,
based on the data, to optimize. In our setting, where
the input distribution is assumed to change, we must
similarly, form an approximation to the risk function.
Here we use an importance weighting scheme to affect
the change with respect to the empirical distribution.
That is, we use the identity

Eqtest(x)[g(x)] = Eqtest(x)[
ptrain(x)

ptrain(x)
g(x)] (5)

= Eptrain(x)[
qtest(x)

ptrain(x)
g(x)]

to allow us to use samples from ptrain(x) to estimate
the risk under qtest(x) . Our importance weights are
then just the ratio of distributions:

exp(βg(x))∑
x exp(βg(x))ptrain(x)

4This unfortunately clashes somewhat with the use of
“robust” in the statistics community where it refers to mod-
els using heavy tailed distributions or particularly flat loss
functions.



The boundedness of the KL-divergence and the
Radon-Nikodym theorem imply correctness of this
change of measure.

An issue now arises regarding computing these
weights. If we assume we are in a noise free setting,
as in the PAC (Haussler 1995) framework, it is easy
to compute a good approximation to these importance
weights. We simply evaluate for sample i:

wi =
expβℓ(yi, h(xi))∑
i exp βℓ(yi, h(xi))

Unfortunately, if p(y|x) is not almost-surely deter-
ministic, exp(βl(yi, h(xi))) may be a badly biased esti-
mate of exp(βg(xi). We take up further consideration
of this point below.

Algorithms

The results above suggest a simple strategy for learn-
ing a classifier robust to the classifier own influence on
the test distribution. A natural proposition is a dual
loop algorithm to solve for the optimal classifier. It is
natural to view the optimization problem as minθ C(θ)
where we know C is a concave function that includes
the maximization over distributions. This is a rather
general convex optimization algorithm and we can ap-
ply a host of techniques to including, for instance, sub-
gradient descent type algorithms.

Unfortunately, this approach requires a modification
of existing training procedures to accomodate the ro-
bust weighting scheme. This may be a good strategy,
but generally it does not allow us to take advantage of
specialized existing algorithms that have already been
developed for supervised learning. To do so, we lever-
age the minimax inequality (Theorem 1) and propose
a dual-loop type algorithm for the dual:

maxq∈Q min
θ∈Θ

Eq[g(x, θ)] = maxq∈Q r(q)

One natural approach is projected supergradient as-
cent. ((Bertsekas et al. 2003)) The subgradient supre-
memum theorem tells us that the set of supergra-
dient of r, ∂r includes the set of supergradients of
∂Eq[g(x, θ∗)] where θ∗ minimizes Eq[g(x, θ)]. We pro-
pose a close relative of this approach where instead of
choosing a subgradient and projecting, we choose to
step in the direction q that maximizes Eq[g(x, θ)] for
the current θ. This allows us to directly enforce the KL
constraints as well as move in a direction closer to the
optimal one. This gives us the following algorithm:

Algorithm 1: Dual-loop using supervised learning
oracle

Initialize weights q = [ 1
N

. . .]; repeat
θ ← Learner(x,y,q);

q̂ ← maxq∈Q
exp(βg(xi,yi;θ))

P

i
exp(βg(xi,yi;θ)) ;

q ← αq + (1− α)q̂;

until θ has converged

It is also natural to try a very simple and fast
damped “best-response” type algorithm. Such algo-
rithms in general are difficult to provide convergence
guarantees for, but often are very efficient in practice.

Out-of-sample performance
Our approach was derived using the unknown input
distribution ptrain(x) and then applied using an impor-
tance sampling approach on the empirical distribution
of examples. It is important to then ask whether per-
formance guarrantees can be expected to hold out-of-
sample. By noting that the expectation we care about
(under qtest(x)) can be written as in Equation (5), we
can see that for a fixed β we can prove sample com-
plexity results for testing out- of-distribution. Such
bounds, of course, multiply the sample complexity of
an underlying algorithm by O(exp β).

Unfortunately, it is also possible to construct exam-
ples that show that bounding the performance of a
classifier under a change in test distribution that is KL
-bounded by ǫ may require (with high probability) a
number of samples that scales exponentially with ǫ.
For small ǫ this remains reasonable, and potentially the
effective sample complexity on many problems is such
that the robustness bound remains applicable.

Experimental Observations
We applied our approach to robust supervised learn-
ing to a number of data-sets from the UCI dataset
(Blake and Merz 1998) to explore some of its proper-
ties. In our experiments we used a maximum-entropy
classifier (Nigam et al. 1999) for each example (equiva-
lent to logistic regression in the two class instances).
We applied Algorithm (1 ) using the maximum en-
tropy classifier applied directly to the features given in
the datasets. To perform a controlled simulation of the
effect of applying our classifier to a difficult test distri-
bution, we leveraged the result above on finding the
optimal distribution. For an independent test set, we
computed the optimal weights, subject to a KL bound
(or equivalently, for a fixed β), and then tested against
the resulting weighted data-set.

In Figure (1) we compare a naively trained maxi-
mum entropy classifier (i.e. ignoring potential distri-
bution changes) with one trained using the robust al-
gorithm. The figure shows performance on a test set
where we have scaled the KL bound in the same way.
(For instance training and testing both aKL ≤ 0.1). We
measure performance here as the training algorithm
does using average log loss. ( 1

N

∑
i log p(yi|xi))

In the next set of experiments, on the “Iris” data-set,
whose results are depicted in Figure (2), we used the
same KL bound (here 0.5) on the test distribution uni-
formly over all the classifiers. Here we vary instead
just the KL bound applied during training. It is in-
teresting to note, as in Figure (2) right, that the test
error often continues to drop when the training KL
bound is substantially greater than the test KL bound.
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Figure 1: The graph above shows log loss on the Pima Indi-
ans dataset. We vary the KL bound for both the training and
testing weighted data. The naive methods loss grows sub-
stantially faster as the KL bound on the test weights grows
larger.

On typical examples we note that the test error on
data that is identically distributed to the training dis-
tribution (i.e. the standard setting with unweighted
test data), the error rises (relatively slowly) while we
make the classifier more and more robust. This intu-
itively makes sense– we trade performance for robust-
ness across more distributions. Occassionally, as in
this dataset, (shown in Figure (2) left) the unweighted
training error actually drops as the classifier becomes
more and more robust.

Extensions

A quick derivation along the lines of that developed
above will convince that the noise-free assumption and
the algorithms developed in that framework of robust-
ness can be seen instead as allowing not just the input
distribution, but also the concept (i.e. p(y|x)) to vary.
That is, suppose we attempt to solve the game:

min
θ∈Θ

maxqtest(x,y)∈Q Eq[ℓ(y, hθ(x))]

where we take Q here to be the set of distributions
q(x, y) so that KL(qtest(x)|D) < ǫ.

This has two important implications. First, it implies
that our analysis and algorithms provide an additional
important measure of robustness: to “concept drift”
or change in D in response to the learner’s behavior.
If we are interested in only changes to qtest(x), how-
ever, it indicates that in the noisy label case we are be-
ing overly conservative. More careful approximations
should be developed for this case. In the next section
we take up consideration of connections that may al-
low for that extension.

Relation with AdaBoost
Boosting (Schapire 1990) is a general technique for con-
structing a powerful learning algorithm based on a set
of weak learners– that is, a single strong classifier is
built from a set of classifiers that are potentially barely
better than random guessing. AdaBoost (Mason et al.
1999) is an iterative boosting algorithm. In each round,
it attempts to construct a new data-set to “weak-learn”
on which the current constructed classifier appears to
perform no better than random. Interestingly, Ad-
aBoost does so by a re-weighting the training data set
using an exponential of the loss function.

This is reminiscent of the scheme developed in this
work. AdaBoost, of course, is solving the different
problem of trying to find a single good classifier where
the test and train distributions agree. Our analy-
sis does, however, lead to some insight into the al-
gorithm’s behavior, as well as suggesting future ap-
proaches to the robust supervised learning problem.
In particular, recent progress on noise-tolerant boost-
ing (Kalai and Servedio 2003) might be folded into our
attempts to build classifiers robust to changing input
distributions. One interpretation of AdaBoost’s poten-
tial poor noise tolerance (Mason et al. 1999) is that it
is requiring the weak learners to perform well in the
harder case where both the input distribution and con-
cept class distributions might vary.

Future Work
Robotics is an area where learning algorithms very
much affect their own test distribution. Within the
robotics learning community a class of algorithms that
are locality sensitive are popular. (Moore et al. 1995)
These models are intuitively appealing because local
models do not experience “catastrophic interference”
where learning in one part of an input space adversely
affects things already learned in another part of the
space. Our hope is that the robust framework can be
extended to better understand these properties of local
modeling, possibly to provide performance guarran-
tees and more appropriate algorithms.

We have also done initial experiments in apply-
ing our algorithm to doing generalized policy itera-
tion with classifiers. This is an area where the classi-
fier can dramatically effect the distribution of text in-
stances (albeit not in a way that naturally suggests a
KL bound). Preliminary results are encouraging in
that instabilities that typically haunt generalized pol-
icy iteration seem greatly reduced.

Finally, we will investigate the connections de-
scribed between boosting and the robust supervised
learning framework.
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Figure 2: Iris Data Set (Left) We compare log loss on an independent test set for both the robustly trained (red solid) and standard
(blue dashed) maximum entropy classifiers. In this (atypical) dataset, we gain test set improvements as the training robustness
(i.e. KL bound) is increased. (Right) We compare Log Loss on a data set where the KL-bound on the test set is held at 0.5 while
the training bound is varied. Interestingly, it is often the case that performance of the robust classifier continues to improve
significantly even as the training robust passes the test bound.
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