
Carnegie Mellon University
Research Showcase

Parallel Data Laboratory Research Centers and Institutes

12-1-2003

Design and Implementation of a Freeblock
Subsystem (CMU-PDL-03-107)
Eno Thereska
Carnegie Mellon University

Jiri Schindler
Carnegie Mellon University

Christopher R. Lumb
Carnegie Mellon University

John Bucy
Carnegie Mellon University

Brandon Salmon
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/pdl

This Technical Report is brought to you for free and open access by the Research Centers and Institutes at Research Showcase. It has been accepted for
inclusion in Parallel Data Laboratory by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Thereska, Eno; Schindler, Jiri; Lumb, Christopher R.; Bucy, John; Salmon, Brandon; and Ganger, Gregory R., "Design and
Implementation of a Freeblock Subsystem (CMU-PDL-03-107)" (2003). Parallel Data Laboratory. Paper 77.
http://repository.cmu.edu/pdl/77

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpdl%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/research?utm_source=repository.cmu.edu%2Fpdl%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl?utm_source=repository.cmu.edu%2Fpdl%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/pdl/77?utm_source=repository.cmu.edu%2Fpdl%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

Authors
Eno Thereska, Jiri Schindler, Christopher R. Lumb, John Bucy, Brandon Salmon, and Gregory R. Ganger

This technical report is available at Research Showcase: http://repository.cmu.edu/pdl/77

http://repository.cmu.edu/pdl/77?utm_source=repository.cmu.edu%2Fpdl%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages

Design and implementation of a freeblock
subsystem

Eno Thereska, Jiri Schindler, Christopher R. Lumb, John Bucy,
Brandon Salmon, Gregory R. Ganger

CMU-PDL-03-107

December 2003

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Freeblock scheduling allows background applications to access the disk without affecting primary system activities.
This paper describes a complete freeblock subsystem, implemented in FreeBSD. It details new space- and time-efficient
algorithms that make freeblock scheduling useful in practice. It also describes algorithm extensions for using idle time,
dealing with multi-zone disks, reducing fragmentation, and avoiding starvation of the inner- and outer-most tracks.
The result is an infrastructure that efficiently provides steady disk access rates to background applications, across a
range of foreground usage patterns.

Acknowledgements:We thank the members and companies of the PDL Consortium (including EMC, Hewlett-Packard, Hitachi, IBM, Intel,
Microsoft, Network Appliance, Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights, feedback, and support.

Keywords: scheduling, disks, asynchronous, interfaces

1 Introduction

Many background disk maintenance applications (e.g., back-up, defragmentation, and report
generation) are highly disruptive if not run during off-peak hours. Others (e.g., flushes in write-
back caches and failed disk reconstruction in disk arrays) rate control their activity in an attempt
to bound their impact on foreground work. Various approaches exist for such rate control, most
of them ad hoc, and little system support exists for removing the implementation burden from the
application writer.

A recent paper [25] describes application programming interfaces (APIs) that allow disk-
intensive background activities to be built cleanly and easily. The APIs allow applications to
describe sets of disk locations that they want to read or write, referred to as “freeblock tasks”, and
a “freeblock subsystem” will opportunistically access the disk during idle periods and rotational la-
tency gaps. The APIs are explicitly asynchronous and they utilize dynamic memory management,
just-in-time locking, and explicit rate control to encourage implementors to expose as much work
as possible. That paper described how three applications (backup, write-back cache destaging, and
disk layout reorganization) were converted to the APIs, and it evaluated the resulting benefits. All
were shown to execute in busy systems with minimal impact (< 2%) on foreground disk perfor-
mance. In fact, by modifying FreeBSD’s cache to write dirty blocks for free, the average read
cache miss response time was decreased by 15–30%.

This paper details the freeblock subsystem used in that work. It complements [25] and prior
work [15, 16] by describing and evaluating the new scheduling algorithms and policies that make
it a viable OS component1. Implemented in FreeBSD, our freeblock subsystem replaces the disk
scheduler in the SCSI device driver. As illustrated in Figure 1, it includes both a traditional sched-
uler for normal (foreground) requests and a background scheduler for freeblock tasks. The back-
ground scheduler utilizes freeblock scheduling [16] and any disk idle time to weave freeblock
accesses into the foreground request stream with minimal disruption.

Although previous researchers have demonstrated the ability to perform the necessary low-
level disk scheduling outside the disk [1, 4, 15, 23, 28], engineering a practical freeblock subsystem
has come with several hurdles. For example, the previous freeblock scheduling work placed no
restrictions on memory or CPU usage by the scheduler, but a real system must be able to use most
of its resources for actual applications. Previous freeblock scheduling work also ignored the needs
of non-scanning tasks (e.g., cache write-backs), issues related to servicing multiple concurrent
tasks, and the role of disk idle time. This paper describes and evaluates new algorithms that leap
these hurdles.

As predicted by prior work, we find that freeblock scheduling makes it possible to provide disk
access to background applications with minimal impact on foreground response times. Further,
by also utilizing disk idle times, substantial fractions of the disk head’s time can be provided
regardless of the workload produced by foreground activities. New “region-based” data structures
and streamlined search algorithms allow the freeblock subsystem to use less than 8% of the CPU
and less than 9MB of memory even for heavy burdens on large disks. They also allow the scheduler
to account for the differing capacities of inner- and outer-zone tracks, reducing the tendency to
leave inner-zone tracks until the very end of a scan (when they then become a bottleneck); further,

1A technical report version of [25] is available at http://www.pdl.cmu.edu/Freeblock/ for reviewers wishing to
verify that it, and this paper, make distinct, substantial contributions.

1

foreground scheduler background scheduler

fb2

fore1

fb1

disk

fore2

pool of
foreground
requests

pool of
freeblock

tasks

current best selection

dispatch
queuenext selected request

foreground requests (read/write API) freeblock tasks (freeblock API)

Figure 1: The freeblock subsystem inside a device driver.

using long idle periods to access these infrequently schedulable regions reduces overall scan times
(e.g., by 20% when 30% utilized).

The remainder of this paper is organized as follows: Section 2 overviews related work. Sec-
tion 3 describes the architecture of the freeblock subsystem and its integration into FreeBSD.
Section 4 details and evaluates its data structures and algorithms. Section 5 summarizes the work.
Section 6 discusses future work.

2 Background and related work

The freeblock subsystem described in this paper is the culmination of much prior work. This
section overviews prior work and how it applies. It divides the discussion into application con-
struction and system mechanisms that can be used for background disk-intensive applications.

2.1 Application construction

Disk maintenance activities generally have long time horizons for completion, allowing them
to have lower priority at any instant than other applications running on a system. One common
approach is to simply postpone such activities until expected off hours; for example, desktop back-
ups are usually scheduled for late nights. For less sporadically-used systems, common ad hoc
approaches include trickling requests a few at a time [6, 18], using idle time [10], and combina-
tions of these with abstraction-breaking locality enhancement [11].

In [25], we described in-kernel and system-call APIs that allow disk-intensive background
applications to express their needs such that a freeblock subsystem can satisfy those needs un-
obtrusively. The framework was shown to be effective for three very different disk maintenance
activities: physical backup, cache write-backs, and layout reorganization. That paper also dis-
cusses the relationship to related storage APIs, such as dynamic sets [24], disk-directed I/O [14],

2

and River [2]. The remainder of this subsection reviews the in-kernel API; the system-call API is
similar, but without upcalls and with kernel-enforced rate control.

Applications begin an interaction with the freeblock subsystem with fb open, which creates
a freeblock session. fb read and fb write are used to add freeblock tasks, registering interest in
reading or writing specific disk locations, to an open session2. Sessions allow applications to
suspend, resume, and set priorities on collections of tasks.

No call into the freeblock scheduling subsystem waits for a disk access. Calls to register
freeblock tasks return after initializing data structures, and subsequent callbacks (to the provided
callback fn) report task completions.

Each task has an associated blksize, which is the unit of data (aligned relative to the first
address requested) to be returned in each callback fn call. This parameter of task registration
exists to ensure that reads and writes are done in units useful to the application, such as file system
blocks or database pages.

Calls to register freeblock tasks do not specify memory locations. For reads, the freeblock
scheduling subsystem passes back, as a parameter to callback fn, pointers to buffers that it owns.
When callback fn returns, the buffer is reclaimed; so, if a copy is desired, the application’s call-
back fn is responsible for creating one. For writes, the associated getbuffer fn is called when the
freeblock scheduler selects a part of a write task. The getbuffer fn either returns a pointer to the
memory locations to be written or indicates that the write cannot currently be performed (e.g., be-
cause the buffer is currently locked). In this latter case, the freeblock request is not generated and
that part of the freeblock task waits for a future opportunity.

The non-blocking and non-ordered nature of the interface is tailored to match freeblock schedul-
ing’s nature. Other aspects of the interface help applications increase the set of blocks asked for at
once. Late-binding of memory buffers allows registration of larger freeblock tasks than memory
resources would otherwise allow. For example, disk scanning tasks can simply ask for all blocks
on the disk in one freeblock task. The fb abort call allows task registration for more data than
are absolutely required (e.g., a search that only needs one match). The fb promote call allows one
to convert freeblock tasks that may soon impact foreground application performance (e.g., a space
compression task that has not made sufficient progress) to foreground requests. The fb suspend and
fb resume calls allow registration of many tasks even when result processing sometimes requires
flow control on their completion rate.

2.2 Mechanisms

“Freeblock scheduling” is the process of identifying free bandwidth opportunities and matching
them to pending background disk requests. It consists of predicting how much rotational latency
will occur before the next foreground media transfer, squeezing some additional media transfers
into that time, and still getting to the destination track in time for the foreground transfer. The
additional media transfers may be on the current or destination tracks, on another track near the
two, or anywhere between them. In the two latter cases, additional seek overheads are incurred,
reducing the actual time available for the additional media transfers, but not completely eliminating
it.

2The term freeblock request is purposefully avoided in the API to avoid confusion with disk accesses scheduled
inside the freeblock subsystem.

3

Lumb et al. [16] introduced freeblock scheduling, coined the term, and evaluated the concept
via simulation. The simulations indicated that 20–50% of a never-idle disk’s bandwidth could
be provided to background applications with minimal effect on foreground response times. This
bandwidth was shown to be more than enough for free segment cleaning in a log-structured file
system or for free disk scrubbing in a transaction processing system.

Later work by two different groups [15, 28] demonstrated that outside-the-disk freeblock
scheduling works, albeit with more than 35% loss in efficiency when compared to the hypothetical
inside-the-disk implementation assumed in Lumb et al.’s simulations. In both cases, the freeblock
scheduler was tailored to a particular application, either background disk scans [15] or writes in
eager writing disk arrays [28]. In both cases, evaluation was based on I/O traces or synthetic
workloads, because system integration was secondary to the main contribution: demonstrating and
evaluating the scheduler. This paper builds on this prior work with numerous algorithmic enhance-
ments needed to make freeblock scheduling effective in a real operating system.

Dimitrijević et al. [9] describe semi-preemptible I/O, which breaks up disk requests into small
steps and thereby minimizes the amount of time that a higher-priority request would have to wait.
Our approach to using short idle-time periods is a restricted form of this general approach.

Many disk scheduling algorithms have been devised, studied, and used. Most OSes use ap-
proximations of seek-reducing scheduling algorithms, such as C-LOOK [17] and Shortest-Seek-
Time-First [8], because they are not able to predict low-level access times. Disks’ firmware usually
uses Shortest-Positioning-Time-First (SPTF) [12, 21]. Related to freeblock scheduling are real-
time disk schedulers that use slack in deadlines to service non-real-time requests [4, 23]; the main
difference is that foreground requests have no deadlines other than “ASAP,” so the “slack” exists
only in rotational latency gaps or idle time.

2.3 Contributions of paper

Our freeblock subsystem implementation uses outside-the-disk freeblock scheduling, any avail-
able idle time, and limited forms of semi-preemptible I/O to support the APIs described above. In
addition to detailing the first complete freeblock subsystem, this paper makes several additional
contributions.

It describes new time- and space-efficient algorithms and data structures that allow freeblock
scheduling to work as part of a full system; previous work placed no restrictions on memory or
CPU usage. In addition to efficiency improvements, it describes and evaluates algorithmic im-
provements for addressing zoned recording, non-scanning tasks, and fragmentation due to greedi-
ness. It describes and evaluates freeblock scheduling algorithm extensions for exploiting both short
and long idle periods at the disk driver level. It describes data structures needed to support interface
aspects, like suspend/resume, that have been found useful by application writers. It discusses our
experiences with characterizing and modeling modern disks.

3 Architecture and integration

This section describes the architecture of our freeblock subsystem and its integration into FreeBSD.

4

3.1 Scheduling infrastructure

Our scheduling infrastructure replaces FreeBSD’s C-LOOK scheduler. The foreground sched-
uler uses Shortest-Positioning-Time-First (SPTF), and the background scheduler uses rotational
latency gaps and any idle time.

Like the original scheduler, our foreground scheduler is called from FreeBSD’s dastrategy()
function. When invoked, the foreground scheduler appends a request onto the driver’s device
queue. It then invokes the background scheduler, which may create and insert one or more free-
block requests ahead of the new foreground request.

When a disk request completes at the disk, FreeBSD’s dadone() function is called. Into this
function, we insert calls to the background and foreground schedulers. The background scheduler
code determines whether the completed request satisfies any freeblock tasks and does associated
processing and clean-up. The foreground scheduler selects a new foreground request, if any are
pending, adds it to the dispatch queue, and invokes the background scheduler to possibly add
freeblock requests. Then, dadone() proceeds normally.

3.2 Modeling disk behavior

Both schedulers use common library functions, which are much like other recent software-only
outside-the-disk SPTF implementations [1, 3, 4, 15, 23, 28], for modeling the disk to predict po-
sitioning times for requests. Our FreeBSD implementation uses DIXtrac [20] to extract the disk
parameters.

When the OS boots, the freeblock subsystem for each disk is enabled by a boot-time utility. As
part of enabling the scheduler, the utility provides the parameter values needed by the scheduler’s
prediction models via an IOCTL() system call. These values include logical-to-physical layout
descriptions, mechanical timings, and so forth. The utility gets the values from a file created by
DIXtrac, which uses and builds on algorithms described by Worthington et al. [27] to obtain the
needed parameter values. The program takes about 5 minutes to complete when extracting a disk
with known layout algorithms (all disks, at one time, but no longer the case). For some new disks,
it takes 7-8 hours to extract the layout, because DIXtrac’s expert system fails and falls back on an
exhaustive translation table approach. The extraction program is run once when the corresponding
disk is first added to the system, before any file systems are created on it. Storing the results
from one extraction is important for two reasons: adding 5 minutes to every boot time would be
unacceptable, and the extraction program uses some writes meaning that data stored on the disk
could be corrupted.

3.3 Background scheduler architecture

The background scheduler has a two-layer architecture, as illustrated in Figure 2. The first
layer is the task-manager layer. Applications register tasks with this layer via the in-kernel APIs
described in Section 2.1. The second layer is the scheduling layer. This layer is responsible
for scheduling background tasks by using available disk idle time and rotational latency gaps.
Because our implementation is outside-the-disk, scheduling layer must also have the disk layout
and mechanical delays as described above.

5

foreground scheduler

fore1

fb1

disk

fore2

pool of
foreground
requests

dispatch
queuenext selected request

foreground requests (read/write API)

freeblock tasks (freeblock API)

task manager layer

application programming interfaces (APIs)
task registrations
memory management
request ordering and consistency

scheduling layer

idle time detection and utilization
rotational latency gap utilization

background scheduler

pool of
freeblock

tasks

Figure 2: Background scheduler layers. This diagram illustrates the two layers of the freeblock subsystem’s
background scheduler: the task manager and scheduling layer. The task manager layer is responsible for keeping track
of registered background tasks. The scheduling layer is responsible for scheduling them when appropriate.

3.4 Scheduling steps

When the freeblock scheduler decides to schedule a freeblock request for part of a registered
task, it constructs a request to be placed in the disk’s queue. For writes, it calls getbuffer fn to
get the source memory location. For reads, it allocates memory to act as the destination. When
the freeblock request completes, and post-request processing (described below) is done, allocated
memory is freed.

Recall that the blksize parameter of each registered task dictates the atomic unit of freeblock
requests. Our current scheduler only generates freeblock requests at least as large as the blksize
parameter. As a result, large values can prevent forward progress, especially if the size is larger than
can be fetched outside of long idle times. Another option, for reads, would be to internally buffer
portions of blksize units fetched with multiple freeblock requests. We have not yet encountered
an example where large (>64KB) blksize limits are necessary, so we have not paid a price for
avoiding the memory pressure and complexity associated with the buffering option. Section 4.4
analyzes in greater detail the impact of varying blksize on the memory complexity and scheduler
efficiency.

When any disk request (foreground or freeblock) completes, control is passed to the freeblock
subsystem in the device driver. The freeblock system performs a quick search to determine whether
any parts of registered freeblock tasks can be satisfied. For each satisfied part of a freeblock task,
the callback fn is called. When the callback completes, any memory that was occupied by the
satisfied part of the freeblock task is reclaimed. When the last part of a freeblock task is satisfied,
associated data structures are cleaned up.

4 Freeblock subsystem algorithms

This section details the algorithms used in our freeblock subsystem. As it does so, it evalu-
ates their effectiveness relative to previous freeblock scheduling algorithms and quantifies their
CPU and memory costs. It also reports on difficulties with the “outside-the-disk” implementation
beyond those anticipated in earlier works.

6

4.1 Experimental apparatus

The experiments throughout this paper use a workstation-class box that includes a 1GHz Pen-
tium III, 386MB of main memory, an Intel 440BX chipset with a 33MHz, 32bit PCI bus, and an
Adaptec AHA-2940 Ultra2Wide SCSI controller. Unless otherwise mentioned, the experiments
use the Seagate Cheetah 36ES disk drive, whose characteristics are listed in Table 1. The system
runs FreeBSD4.43, extended to include our freeblock subsystem.

Most of the experiments in this section are microbenchmarks, which allow more control on
different aspects of the system. Unless otherwise stated, we use a synthetic workload of small
4-8KB reads and writes with a read-write ratio of 2:1, keeping the disk fully utilized. Two requests
are kept outstanding at a time and a new one is generated after each completes. For exploring idle
time usage and empty queue scheduling, we draw inter-arrival times from a uniform distribution
with variable means.

The default background activity is that of scanning the entire disk. A single fb read task is
registered for all blocks on the disk, with blksize=32KB.

4.2 Data structures and usage

There are two sets of data structures used by the freeblock subsystem, as illustrated in Figure 3,
for its two layers. The task manager data structures maintain task-related bookkeeping informa-
tion. The scheduling data structures maintain direct information about the particular device that is
using freeblock scheduling and about the areas of the disk that freeblock tasks span.

Task manager data structures: The first data structure in this category is the session list,
which keeps information about which freeblock sessions are open. The session list also keeps,
for each open session, its priority, a list of tasks in that session and their callback and getbuffer
functions. The status field records whether the session is open or closed, suspended or schedulable.

The second data structure is a hash table that contains the registered freeblock tasks for quick
lookup. Each task maintains a bitmap for blocks that still haven’t been satisfied. To reduce memory
constraints the freeblock subsystem has a minimum pickup size, MIN PICKUP SIZE, of blocks it
tries to read from (or write to) for free. This parameter is task-specific and is a multiple of the
blksize parameter that a task specifies when it registers. Each bit in the task bitmap represents a
unit of MIN PICKUP SIZE.

In our illustration, two tasks are registered with the freeblock subsystem for block ranges
1096-1155 and 1232-1315, respectively.

Scheduling data structures: For purposes of freeblock scheduling, each cylinder of the disk
is divided into angular regions, as illustrated in the bottom right of Figure 3. These regions are
used by the freeblock algorithms to quickly determine which tasks want blocks close to the disk
head location. Each disk cylinder (C cylinders in total) is divided into R angular regions for a total
of RxC regions. For example, Figure 3 shows the case when R is 8, the default value used in our
evaluations. Two freeblock fragments, one of them belonging to task 1 and the other to task 2,
span the second, third and sixth region on a particular track.

A “task map” is kept for in every region. This map keeps track of tasks that desire blocks in
that region. Whenever the disk head is in a particular region, the freeblock scheduler queries the
tasks in that region to give it the range of blocks they desire to pick up, together with the blksize

3The freeblock subsystem has been integrated in FreeBSD4.4 and recently in FreeBSD5.0.

7

10
96

1155

w
an

te
d

fr
eeblo

cks
1232

w
an

ted
freeb

locks

cylinder c :
region 2 tasks map {task 1}

1315

region 3 tasks map {task 1}
region 6 tasks map {task 2}

empty regions bitmap

track t : 3 freeblock fragments wanted

session map: 00000002

disk
parameters

task 1

task 2

task hash table

session_id
session task list entry
task_id
disk_addr
op
blksize
callback_param

task entry

scheduling data structures

task manager data structures

0 ... MAX_FBS_SESSIONS

session id
task list
priority
callback_fn
getbuffer_fn
status
tickets

session list

regions (cyl c)

Figure 3: Main freeblock subsystem data structures.

parameter. The freeblock scheduler then determines how much of those blocks it can read (or write
to) for free. The reason that every cylinder and not every track is divided into regions is based on
the observation that if the freeblock scheduler is not able to satisfy a freeblock fragment on a
particular cylinder, region and surface, it will most likely not be able to satisfy any other freeblock
fragments on other surfaces (but on the same region and cylinder). This observation considerably
reduces the memory cost by keeping fewer regions.

A region bitmap keeps track of regions with registered tasks and empty regions. This bitmap
is used by the freeblock algorithms to quicken their search; regions with no freeblocks can be
immediately pruned.

Each cylinder contains a map of sessions and the number of freeblock fragments they desire
in that cylinder. There is one entry per session in the map, and the entry size is 2 bytes, allowing
for up to 65536 fragments per session per cylinder. During the search for free bandwidth, cylinders
with no sessions (or with suspended session) are pruned. Also, only cylinders that have sessions
of a certain priority are considered, as described in Section 4.5.

Each track has a structure that records the total number of freeblock fragments on that track
that are desired for free. The number of freeblock fragments is useful to skip tracks that have fewer
fragments than what has already been picked up.

The disk parameter structure was discussed in Section 3.2 and is the last structure needed by
the whole freeblock subsystem. If freeblock scheduling were done inside-the-disk, this structure
would be replaced by the disk’s existing scheduler support. In the FreeBSD implementation, this
structure is about 8KB for an 18GB disk and its size scales well with the disk size.

8

Sectors No. of No. of Tskmgr. Scheduler
Disk Year Per Track Cylinders Heads Capacity Overhead Overhead

Quantum Atlas III 1997 256–168 8057 10 9 GB 2.7MB 1.3MB
IBM Ultrastar 18LZX 1999 382–195 11634 10 18 GB 3.1MB 1.6MB
Seagate Cheetah 36ES 2001 738–574 26302 2 18 GB 3.1MB 3.2MB
Maxtor Atlas 10k III 2002 686–396 31022 4 36 GB 3.9MB 3.8MB
Seagate Cheetah 73LP 2002 746–448 29550 8 73 GB 5.7MB 3.9MB

Table 1: Freeblocks subsystem memory cost for modern disk drives.This table shows the total memory overhead
of the freeblock subsystem, when 10 large tasks, each wanting to read 100% of the disk for free, 1000 medium tasks,
each wanting to read or write 0.1% of the disk for free and 10000 small tasks, each wanting to read or write 0.01%
of the disk for free, are registered and schedulable. The large tasks are representative of applications such as backup
or virus detection, the medium tasks are representative of applications such as disk reorganization, whereas the small
tasks are representative of applications like cache write-back. In all cases, the freeblock subsystems divides each
cylinder in 8 angular regions and the blksize and MIN PICKUP SIZE parameters for all registered tasks are 32KB.

Taskmg. Structures Memory (MB)
session list 1.06
task hash table 1.99

Scheduling. Structures Memory (MB)
total # regions 2.53
region bitmap 0.026
cylinder session maps 0.42
track fragments 0.10
disk parameters 0.08

Table 2: Detailed memory overhead for a Seagate Cheetah 36ES.This table shows the per-data-structure memory
overhead of the freeblock subsystem using the same setup at Table 1

4.3 Memory and CPU overheads

Memory complexity: Table 1 shows the cost of both classes of data structures for some modern
disks. Table 2 breaks down the memory cost per layer for the Seagate Cheetah 36ES disk. Both
tables illustrate the scenario when the freeblock subsystem is massively loaded.

Even with such a large set of registered tasks, the memory demands are quite reasonable. The
memory complexity of the task manager is mainly dependent on the MIN PICKUP SIZE param-
eter, which for a given task is always at least as large as (or a multiple of) the blksize parameter.
Recall that a task maintains a bit for each unit of size MIN PICKUP SIZE and it clears that bit
whenever the unit has been read (or written) for free. Increasing MIN PICKUP SIZE decreases
the opportunities for finding a large enough rotational latency gap to satisfy that unit, but reduces
the task manager’s memory complexity. Decreasing MIN PICKUP SIZE increases the opportuni-
ties for freeblock scheduling to satisfy that unit, but places a burden on the memory complexity.
Figure 4(a) shows the tradeoff involved when using the Seagate Cheetah 36ES disk.

The memory complexity of the scheduling layer is mainly dependent on the number of regions.
Each region has a fixed-size map for quick lookup that contains up to N task ids4 ; if more tasks

4N is 2 in our implementation

9

0

5000

10000

15000

20000

25000

4 8 16 32 64 128 256

MIN_PICKUP_SIZE (KB)

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

0

1

2

3

4

5

6

7

8

T
a

sk
m

g
r. m

e
m

o
ry

 co
m

p
le

x
ity

 (M
B

)

Completion time (s) Memory complexity (MB)

(a) Memory complexity and scheduler’s per-
formance as a function ofMIN PICKUP SIZE.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

regions

C
o

m
p

le
ti

o
n

 t
im

e
 (

s)

0

0.5

1

1.5

2

2.5

3

3.5

4
Completion time (1 task) (s)
Completion time (100000 tasks) (s)

Memory complexity (MB)

S
c

h
e

d
u

lin
g

 m
e

m
o

ry
 co

m
p

le
x

ity
 (M

B
)

(b) Memory complexity and scheduler’s per-
formance as a function of the number of cylin-
der regions.

Figure 4: Memory complexity and scheduler’s performance tradeoffs.

fall into a region, they are added to a list of tasks that is otherwise uninitialized. Because there
is a fixed-size map associated with each region, the greater the number of regions, the larger the
memory overhead. However, decreasing the number of regions may not necessarily reduce the
memory overhead. This is because the task id will have to be registered in all region(s) it falls into,
independently on the number of regions there are.

Depending on the number and characteristics of the registered tasks, decreasing the number
of regions may degrade the performance of the freeblock scheduler. Regions help narrow down
the search for tasks that can be satisfied. Figure 4(b) shows the tradeoff involved when using the
Seagate Cheetah 36ES disk. When the whole disk is to be scrubbed for free using one task, the
number of regions is irrelevant. This is because for every track searched, there is only one task to
be queried for wanted blocks on that track. When the complete read of the disk is split into 100000
tasks (each reading 1/100000 of the disk in consecutive order), the number of regions significantly
impacts the performance of the scheduler because having fewer regions means that search time is
wasted searching for tasks whose blocks cannot be read (or written to) for free and the first pass
does not complete. Note that we chose 8 regions because at the host we have the available memory
resources. For an inside-the-disk implementation, where memory resources are scarcer, choosing 4
regions would halve the memory requirements while losing only 15% of the scheduler’s efficiency
(the scheduler’s efficiency inside-the-disk is, according to simulations shown in [15, 16], 35%
higher then outside-the-disk, so this loss wouldn’t be an issue).

CPU utilization : The CPU utilization of the freeblock scheduler varies from 0.5%, when
there are no freeblock tasks registered (but the foreground scheduler is still doing SPTF), to 8%
of a Pentium III 1GHz in the middle of scanning. The main source of CPU usage lies in com-
puting physical locations and relative angular distances from logical blocks. Code analysis with
the common gprof tool reveals that over 60% of the time used the freeblock subsystem is used by
this conversion. These functions perform relatively poorly in our system because of our desire to
support the wide range of differing layout schemes observed for different disks. This results in

10

generic, thus expensive, code paths. Section 4.4 discusses efficient algorithms used to minimize
the amount of CPU utilization.

4.4 Scheduling algorithms

The foreground scheduler uses the SPTF algorithm to select the next request to send to disk.
The background scheduler includes algorithms for utilizing otherwise wasted rotational latency
gaps and for detecting and using disk idle time.

There are many possible algorithms that could be used for utilizing rotational latency gaps.
Desired characteristics for such algorithms include low CPU utilization, low memory require-
ments, and high utilization of free bandwidth opportunities. This section discusses several algo-
rithms and the environments they are suited for.

To minimize the CPU utilization, all algorithms use two phases for their search. The first
phase is a quick-pass search through the disk cylinders during which the algorithms find the closest
freeblock fragments to the source and destination cylinders; these fragments are the easiest to pick
up. The first phase runs for a quanta of time, whose length is derived from the desired CPU
utilization. After the quick-pass search completes the freeblock subsystem yields the CPU to other
processes. If there is idle CPU time the freeblock scheduler continues to refine its search for
freeblock fragments. This is called the second phase of search. Depending on the number of CPU
tasks in the system, the second phase may or may not happen. Hence, it is important that the first
phase be very efficient and effective. The fragments are coalesced whenever possible (e.g., when
they are on the same track) or sent to the disk as separate freeblock requests. In the FreeBSD
implementation, the freeblock algorithms do not attempt to pick up fragments in the source track
and only try to pick up fragments that can be coalesced with the destination request. The reason
for this conservatism is avoiding the interference with any disk prefetching, as described in [15].

Below we discuss several freeblock algorithms and how they deal with three biases that result
from the way logical blocks are physically organized on a disk:

1. Foreground workload bias towards high-density zones. This bias arises because the first few
zones of a disk usually have a larger number of logical blocks than the middle or innermost
zones. Hence, because the foreground workload tends to go to these zones, the other zones
will less frequently get a chance to be searched for free bandwidth.

2. Search bias towards cylinders closer to the middle of the disk. With all else equal, cylinders
closer to the middle of the disk have a larger chance of being searched for free bandwidth
than innermost or outermost cylinders.

3. Search bias towards high-density cylinders. With all else equal, a bandwidth-greedy strategy
for searching for free bandwidth will favor cylinders with a large concentration of logical
blocks.

Whereas the first bias is workload-dependent, the other two biases can be minimized as de-
scribed in the design of the algorithms below. The foreground and background workloads are the
default ones.

BW-Greedy: The first algorithm, called BW-Greedy, is similar to the one described by Lumb
et al. in [16]. The algorithm starts by considering the source and destination tracks (the locations of

11

2000 6000 10000 14000 18000 22000 26000

5000

4000

3000

2000

1000

6000

0 1 2 3 4 5 6 7 8 9 10

BW-EP-GreedyBW-Greedy

cylinders

ti
m

e
(s

ec
s)

7000

0

Figure 5: A comparison of BW-Greedy and BW-EP-Greedy.This diagram illustrates the time to pick up the last
block of each of the 11 zones of the Seagate 36ES disk for both BW-Greedy and BW-EP-Greedy when the background
activity is that of disk scrubbing.

the current and next foreground requests) and then proceeds to scan the tracks closest to these two
tracks. The greedy approach assumes that the most complete use of a free bandwidth opportunity
is the maximal answer to the question, “for each track on the disk, how many desired blocks
could be accessed in this opportunity?”. The main advantage of the greedy approach is its relative
simplicity. The main disadvantage is that it can induce severe fragmentation in the freeblock space.
We have observed that, after some time, many small freeblock fragments will be needed around
the disk, making searches inefficient. Another disadvantage of this algorithm is that it has a search
bias towards high-density cylinders. This bias favors the outer cylinders over the inner cylinders.
BW-Greedy also exhibits a search bias towards cylinders closer to the middle of the disk. This is
because it searches the cylinders closest to the foreground source and destination cylinders.

BW-EP-Greedy: To alleviate the bias BW-Greedy has towards cylinders closer to the middle
of the disk, BW-EP-Greedy (bandwidth-extra pass-greedy) during the quick pass partitions the
search quanta such as two-thirds of it are spent searching cylinders starting from the source and
destination cylinders, and the remaining time is spent searching starting from the disk’s innermost
and outermost cylinders. Figure 5 illustrates the difference between BW-Greedy and BW-EP-
Greedy. BW-EP-Greedy still exhibits the search bias towards high-density cylinders.

Angle-EP-Greedy: To correct the bias BW-EP-Greedy has towards high-density cylinders,
Angle-EP-Greedy compares the anglesaccessed by the potential free requests. Thus, free angles
rather then free blocks are compared when selecting the best units to pick up. Figure 6 illustrates
the difference between BW-EP-Greedy and Angle-EP-Greedy. The per-zone pickup time is further
smoothed (but not flat, since the foreground bias towards high-density zones still exists) and results
in a 15% reduction in total scan time.

Angle-EP-Frag: The fourth algorithm, called Angle-EP-Frag, is the same as Angle-EP-
Greedy, except that, whenever possible, Angle-EP-Frag prefers accessing fragments that will clear
a whole track. Given two equally good choices Angle-EP-Frag will prefer the one belonging to the
track with the fewest free blocks remaining to be accessed. These methods reduce fragmentation
considerably. Figure 7 illustrates the difference between Angle-EP-Greedy and Angle-EP-Frag.

12

2000 6000 10000 14000 18000 22000 26000

5000

4000

3000

2000

1000

6000

0 1 2 3 4 5 6 7 8 9 10

BW-EP-Greedy Angle-EP-Greedy

cylinders

7000

0
ti

m
e

(s
ec

s)

Figure 6: A comparison of BW-EP-Greedy and Angle-EP-Greedy.This diagram illustrates the time to pick up
the last block of each of the 11 zones of the Seagate 36ES disk for both BW-EP-Greedy and Angle-EP-Greedy when
the background activity is that of disk scrubbing.

Angle-EP-Frag is the default algorithm in our system. All algorithms have a low CPU utiliza-
tion around 2-8%, depending on the total area of the disk wanted for free.

4.5 Priority-guided search

Angle-EP-Frag is modified to consider priorities when searching for freeblocks. The current
implementation uses a simple form of lottery scheduling [26]. The initial tickets allocated to each
session are proportional to the priorities associated to that session by the application. The lottery
determines both which pending tasks are considered, since there is limited CPU time for searching,
and which viable option found is selected.

The role of the tickets is two-fold. First, they provide a way to allocate the search time to tasks
that belong to each priority group. Second, they act as absolute priorities when freeblock units
from different category groups are picked up in one search.

During the quick-pass search Angle-EP-Frag searches cylinders with tasks from the winning
session. Any option from the winning session found will be selected. In addition, all pending tasks
on the destination cylinder and within one cylinder of the source are considered; these are the most
likely locations of viable options, reducing the odds that the rotational latency gap goes unused.
During a second phase, all pending tasks from the winning session are considered and given strict
priority over pending tasks from other sessions.

4.6 Idle time integration

As the foreground workload moves from heavy to moderate or light, the opportunity to use
rotational latency gaps rapidly decreases. Therefore, steady disk maintenance progress requires
the ability to use idle disk time. Previous research [10, 19] suggests that most idle periods are
just a few milliseconds in length, but the bulk of idle time comes in very long (multiple second)
durations. This section describes how our freeblock subsystem uses short and long idle times.

13

2000 6000 10000 14000 18000 22000 26000

5000

4000

3000

2000

1000

6000

0 1 2 3 4 5 6 7 8 9 10

Angle-EP-Frag Angle-EP-Greedy

cylinders

7000

0
ti

m
e

(s
ec

s)

Figure 7: A comparison of Angle-EP-Greedy and Angle-EP-Frag.This diagram illustrates the time to pick up
the last block of each of the 11 zones of the Seagate 36ES disk for both Angle-EP-Greedy and Angle-EP-Frag when
the background activity is that of disk scrubbing.

In general, using idle time for background tasks raises the following concerns:

1. Interference with on-disk caching and prefetching. The interference with the on-disk cache
could happen because freeblock fragments could evict other blocks in the cache that could
be wanted by an upcoming foreground request. The interference with prefetching could also
happen because the disk prefetching mechanism after a foreground request completes could
be preempted by our freeblock scheduler issuing a freeblock request. Note that there is no
interference with the file system cache since buffers returned by freeblock requests bypass
that cache.

2. Delays incurred by loss of locality. The interference with locality could happen if, between
two foreground requests (A and B) that exhibit high locality (meaning that the time to go
from the location of A to the location of B is small), a freeblock request is inserted during
idle time that is far away from both A and B.

3. Delays incurred by non-preemptibility of disk requests. Once the disk starts to service a
freeblock request, it cannot be pre-emptied when a new foreground request arrives.

While the delays incurred by non-preemptibility have been recently addressed by aggressively
partitioning requests as discussed in [9], the interference with the cache and locality requires more
analysis, and is discussed below, together with methods to utilize short and idle time periods.

To detect idle times, the scheduler monitors the arrivals and completions of foreground re-
quests. It maintains two separate timers: one to detect short idle time periods and one to detect
long idle time periods. Figure 8 shows two example scenarios when using the idle-detector. In the
first scenario, there is not enough idle time in the system to enter the long-idle state. A foreground
request arrives while the system is still in the short idle state. The method we describe below
minimizes the impact on subsequent foreground requests.

In the second scenario, a foreground request arrives after the system enters the long idle time
state. During the time in this state, the scheduler may generate requests that are geometrically far

14

15

time [ms]

scenario
one

scenario
two

fore. request
completes

short idle
state

long idle
state

fore. request
arrives

interference

fore. request
completes

short idle
state

fore. request
arrives

30 45 60 75 90 105

idle time detection and utilization

Figure 8: Idle-time activity. This figure shows the sequence of events that lead to idle time detection and utilization.
When the last request at the disk completes, a short-idle timer is started. When the timeout of that timer expires, we
have detected short idle time. In the first scenario, a foreground request arrives during the short-idle state and the idle
time utilization completes. In the second scenario, after the short-idle state completes, the long-idle state begins. The
next foreground request that arrives signals the end of the long-idle state.

away from the position the disk would have been to, if no freeblock tasks were satisfied. There-
fore, the arriving foreground request may have to wait for the freeblock request currently at the
disk to complete (concern #3) and then pay a locality penalty (concern #2). In practice, we ob-
serve minimal impact on foreground requests (less then 0.5%), given a reasonable idle detection
threshold [10].5

Short idle time usage: During short idle time periods, the scheduler promotes parts of free-
block tasks that fall into the same track as the one on which the disk head currently resides. Most
disk drives prefetch data during idle time, and this approach allows clean interaction with such
prefetching. Specifically, we can read data from the prefetch buffer after it has been fetched, with-
out causing any mechanical delays. Further, data moved from the disk’s buffers can be cached in
the freeblock subsystem, avoiding concerns about displacement by use of idle time.

Figure 9 shows an example of the interaction of work done during idle time and foreground
read requests. The Seagate 36ES disk performs aggressive whole-track prefetching after detecting
that the first two foreground read requests are sequential. An idle time period of 60ms follows,
after which 8 more foreground requests arrive wanting blocks on the same track. Because the
whole track has been prefetched, the service time for these requests is very small as shown in
Figure 9(a). Figure 9(b) and Figure 9(c)shows the impact of doing freeblock reads and writes on
the same track during the idle time. The service time of the next 8 requests is not affected.

Long idle time usage: During long idle time periods the scheduler promotes parts of freeblock
tasks that are either heavily fragmented or have been pending in the system for too long. Like
previous research [15], we find the innermost and outermost cylinders are often difficult to service
in rotational latency gaps. Therefore, the scheduler preferentially uses long idle time periods to
service freeblock fragments that fall in those areas.

Integration with rotational latency gaps: Figure 10 shows the efficiency of the freeblock
subsystem as a function of disk utilization using the default microbenchmark. The callback fn

5The threshold we are using is 20ms

15

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

ordered requests

re
q

u
es

t
ac

ce
ss

 t
im

e
(m

s)

60 ms of idle time

foreground request

(a) Foreground reads on a
track.

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

re
q

u
es

t
ac

ce
ss

 t
im

e
(m

s)

ordered requests

foreground read request

freeblock read request

60 ms of idle time

(b) Foreground and free-
block reads on a track.

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

re
q

u
es

t
ac

ce
ss

 t
im

e
(m

s)

ordered requests

foreground read request

freeblock write request

60 ms of idle time

(c) Foreground reads and
freeblock writes on a track.

Figure 9: Impact of freeblock activity during short idle times. Two sequential foreground requests trigger whole-
track prefetching. After 60ms of idle time, 8 more foreground requests arrive, wanting blocks on the same track. In
Figure 9(a) these 8 requests are served from the cache. In Figure 9(b) three freeblock read requests are serviced on
the same track, due to idle time detection. In Figure 9(c), three freeblock write requests are serviced on the same
track, due to idle time detection. In all cases, the freeblock requests do not impact the service time of the subsequent
8 foreground requests.

re-registers each block as it is read. This guarantees that, at all times, there is a constant number of
blocks wanted.

The freeblock subsystem ensures that background applications make forward progress, irre-
spective of the disk’s utilization. As expected, the progress is fastest when the disk is mostly idle.
The amount of free bandwidth is lowest when the system is 30-60% utilized. There are two reasons
for this. First, there are few long idle periods in the system and yet there is also less rotational la-
tency to exploit. Short idle times are less useful than these others. Second, an interesting scenario
happens when the disk is under-utilized. In all previous experiments, we have assumed that there
is at least one foreground request (A) being serviced at the disk. Then, another one (B) comes
and a freeblock request may be squeezed in-between. The scheduling algorithms only search until
the disk head arrives at A’s location. In the under-utilized scenario, the disk queue is empty and a
request (C) comes in. We can obviously search at most until the disk head arrives at C’s location.
Notice, though, that the more time we spend searching, the less freeblock opportunities we can
consider, since the disk head is moving while we are searching. In our implementation, we only
search at most for the time it takes the disk head to pass over a single region and we only consider
freeblock opportunities that lay after that region. Hence, our chances of scheduling something for
free are limited due to the limited search time and limited search space.

Finally, Figure 11 shows how long idle times can be used to improve the efficiency of the
freeblock algorithms by more then 20%. Smart utilization of idle time significantly reduces the
overall time to finish the disk scan, because during idle time the most difficult cylinders are picked
up.

4.7 Scalability with disk size

Our algorithms scale well with increasing disk sizes, as shown in Figure 12. This graph shows
three artificial size doublings of the original Seagate Cheetah 36ES disk (18GB): doubling linear

16

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

Disk utilization (%)
fr

ee
 b

an
d

w
id

th
 (M

B
/s

)

from idle time from rotational gaps

Figure 10: Freeblock subsystem efficiency.This diagram illustrates the instantaneous free bandwidth extracted for
a background disk scan as a function of the disk’s utilization. When the foreground workload is light, idle time is the
main source of free bandwidth. When the foreground workload intensifies, the free bandwidth comes from rotational
latency gaps.

density, doubling track density, and doubling the number of surfaces. The performance was eval-
uated with the DiskSim [5] simulator. It is interesting to observe that, if the increase in capacity
results from an increase in linear density only (36GB, 2 heads, X cyls), then a 36GB disk can be
read in approximately the same time as the original 18GB disk. If the increase comes solely as
a result of an increase in cylinder density (36GB, 2 heads, 2X cyls) or increase in the number of
disk platters (36GB, 4 heads, X cyls), the increase in reading the whole disk for free is only 1.5x
higher then the time it takes to read the 18GB disk. This is because of the efficient region search
described above, which skips searching for blocks in regions on the other heads, if wanted blocks
cannot be satisfied on the current head.

4.8 Difficulties with the outside-the-disk implementation

Most difficulties that arise from the outside-the-disk implementation are previously mentioned
in [15]. We briefly report the main ones here for completion, together with new issues we have
encountered (and some potential solutions).

Internal disk activities : Disk firmware must sometimes execute internal functions (e.g. ther-
mal calibration) that are independent of any external requests. These activities will occasionally
invalidate the scheduler’s predictions.

In-drive scheduling: An external scheduler that needs to maintain control over the order
requests are executed must make sure the disk does not re-arrange the order of requests. We use
limited command queuing (keeping at most 2 requests at the disk at the same time) to prevent the
disk from doing any scheduling of its own.

Non-constant delays and coarse observations: An external scheduler sees only the total re-
sponse time for each request. Deducing the component delays from these coarse observations
is made difficult by the inherently intricate ways bus and media transfer overlaps differ. We
choose to be conservative in predicting seek times to address this variance. By conservatively
over-estimating seek times, the external scheduler can avoid the full rotation penalty associated
with under-estimation. A “fudge factor” is added to the predicted seek time for that. This factor
adaptively changes and attempts to closely track the true seek time for a request.

17

2000 6000 10000 14000 18000 22000 26000

5000

4000

3000

2000

1000

6000

0 1 2 3 4 5 6 7 8 9 10

100% utilized disk

cylinders

7000

0

30% utilized disk (idle-SPTF)

30% utilized disk (idle-SMART)

ti
m

e
(s

ec
s)

Figure 11: Efficiently utilizing the long idle time This diagram illustrates the time to pick up the last block of each
of the 11 zones of the Seagate 36ES disk when the disk is 100% and 30% utilized. When the disk is 30% utilized there
are 2 ways of using idle time. The first one (idle SPTF) simply attempts to satisfy freeblock units close to the current
disk head position. The efficient way (idle SMART) attempts to satisfy units that fall into the innermost and outermost
cylinders. By doing so, it reduces the overall running time from approximately 5000s to approximately 4000s, a 20%
improvement.

Without soft-updates With soft-updates
Benchmark ON/ON ON/OFF OFF/ON OFF/OFF ON/ON ON/OFF OFF/ON OFF/OFF
Postmark 1016 1021 1016 1022 886 897 884 897
TPC-C 1155 1161 1156 1142 1162 1145 1166 1144
SSH-build 63 73 63 73 49 49 49 49
CP-DIFF 34 34 34 34 36 36 36 36

Table 3: Performance of four benchmarks as a function of the disk cache policies.This table illustrates the total
time of completion for Postmark, SSH-build and CP-DIFF and the transactions per minute for TPC-C as a function of
the metadata update policy (synchronous or using soft-updates) and on-disk cache policy. CP-DIFF is a benchmark
that copies two large (100MB) trace files to the partition and diffs them line by line. The disk cache policy is described
by the (read cache policy / write cache policy) tuple. For the write cache policy, ON means the policy is write-back
whereas OFF means the policy is write-through. The disk used is Seagate Cheetah 36ES. The disk has a 4MB on-board
cache.

On-board caching and prefetching: The main difficulties with the outside-the-disk imple-
mentation of freeblock scheduling stem from on-board read and write caches present in modern
disk drives. These caches store disk blocks according to often-complex vendor-specific policies.

Figure 13 illustrates what happens to the access predictions for write requests when the disk
cache uses the write-back policy. The prediction accuracies deteriorate and freeblock scheduling
is no longer possible. In our implementation, we disable the write-back policy of the disk. It is
not in the scope of this paper to evaluate the exact impact on the performance of the system when
the write-back policy is off. However, we believe the impact is often minimal. Most importantly,
many hosts already do write-back caching, hence the benefit of having write-back at the disk cache
is minimized. Also, some critical applications disable write-caching in order to ensure integrity
constraints.

Table 3 shows our experiences with this issue for four benchmarks. Postmark [13] and TPC-

18

2000 6000 10000 14000 18000 22000 26000

5000

4000

3000

2000

1000

6000

0 1 2 3 4 5 6 7 8 9 10

18GB disk (2 heads, X cyls)

 36GB disk

cylinders

7000

0

(4 heads, X cyls)
36GB disk (2 heads, X cyls)

8000

36GB disk (2 heads, 2X cyls)

ti
m

e
(s

ec
s)

Figure 12: A comparison of the algorithm efficiencies for different disks. This diagram illustrates a simulated
comparison of the main freeblock algorithm for an 18GB and 36GB disk. The 36GB disk is scaled in these three ways:
by doubling the linear density of the disk, by doubling the number of disk heads, or by doubling the number of disk
cylinders.

C [7] exhibit fairly random IO workload and it is unsurprising that the disk cache policy does not
have a noticeable impact on their performance. When using soft-updates, SSH-build [22] and CP-
DIFF (a program that copies two large traces on a partition and diffs them line by line) also do not
experience any advantage or disadvantage when the disk cache policy changes. However, in the
case when the partition does not use soft-updates, the performance of SSH-build degrades by more
than 13% when the write policy is write-through. This is because synchronous metadata writes
are able to return immediately after placing their buffers in the on-disk cache and the disk cache is
effectively de-coupling the application writes and disk writes. CP-DIFF does not experience this
degradation mainly because the large number of IOs when the traces are copied to the partition
keeps the disk busy with doing writes (because the write buffer continuously fills itself) and the
effect of the write-back cache is reduced.

In our current outside-the-disk implementation, the prediction accuracies are 90–99% accurate
for the disks we are using. The scheduler uses dynamic conservative factors when appropriate
to increase the prediction accuracy when it detects that mispredictions have been made. If the
mispredictions persist, the freeblock subsystem does not attempt to schedule background tasks.
Also, we are working on extending DIXtrac to report on a variety of features relevant to freeblock
scheduling, such as disk aggressiveness on prefetching when two requests are issued on the same
track.

Complex scheduling decisions: Because of limited command queuing (mentioned above) the
scheduler must never allow more then two requests at the disk. This restriction has the drawback
that in some cases it may result in sub-optimal scheduling decisions. Consider the case when three
requests A, B and C come at the same time (approximately) at the device driver. Using FreeBSD’s
original scheduler they are all sent to disk and the disk starts with A, but then has the option to
choose which of B or C is closest to the disk head when A completed. Thus the disk does SPTF
scheduling. When using our scheduler, A and B are sent to the disk and C is left in the foreground

19

0%

10%

20%

30%

40%

50%

60%

70%

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

Error [usecs]

4KB Foreground Scheduler Prediction Errors

(a) Prediction accuracy with write-through
policy

4KB Foreground Scheduler Prediction Errors

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

Error [usecs]

0%

5%

10%

15%

20%

25%

30%

35%

(b) Prediction accuracy with write-back policy

Figure 13: Outside-the-disk scheduler prediction accuracies.These graphs show the error in prediction accuracy
defined as error = actual - predicted time The outside-the-disk access predictions deteriorate if the on-disk write policy
is write-back.

pool. Effectively, we have a FIFO-like behavior, where we cannot choose whether B or C are
closest to the disk head when A completes, since we have to do B next. This inefficiency could be
solved by waiting until the disk head is close to A and then sending B down to the disk. But, this
solution would require a timer be kept, similar to the one that is used to detect short and long idle
times. This timer would have to be very precise and wake up the necessary code that sends B at
the disk at exactly the right time.

Logical-to-physical mappings:: The set of disk makes and models with which we have
worked utilize a broad variety of algorithms for mapping blocks to sectors. The result, in our
code base, has been increasingly general functions for extracting model parameters and translating
between logical and physical, which results in significant computational cost. Profiling suggests
that specializing the system for any one disk type would provide substantial performance improve-
ments. Such a trade-off is probably appropriate for some appliance vendors (e.g., file servers or
TiVo boxes).

5 Summary

This paper describes a complete outside-the-disk freeblock subsystem, implemented in FreeBSD.
It introduces new space- and time-efficient algorithms to utilize available idle time and rotational
latency gaps in order to make freeblock scheduling useful in practice. The result is an infrastruc-
ture that efficiently provides steady disk access rates to background applications, across a range of
foreground usage patterns.

20

6 Future work

This paper provides a blueprint for an efficient design of a practical outside-the-disk freeblock
subsystem. Although our work illustrates that an implementation of such a system is indeed feasi-
ble, it also points out the difficulties and loss in efficiency when doing so outside-the-disk.

Most such difficulties would be almost entirely eliminated if the freeblock subsystem resided
within the disk’s firmware. Implementing freeblock scheduling inside the disk would also have
the benefit of increasing the free bandwidth by more than 35%, as reported in [15]. Unfortunately,
our implementation utilizes 2-8% of a 1 GHz CPU and 3-10MB of memory, which are hefty
numbers for a disk drive. But, we made several implementation choices based on expedience and
the resource-richness of host platforms. We believe that the CPU costs would go down by at least
a factor of 2–4 with “in-the-disk” disk modeling support, which would have none of the generality
overheads of our libraries. The memory requirements can also be reduced by more than an order of
magnitude by restricting the numbers of concurrent tasks and sessions, which would in turn reduce
CPU costs as well. We believe freeblock subsystem support is a valuable and viable feature for
future disk drives.

Acknowledgements

We thank Vinod Das Krishnan, Steve Muckle, and Brian Railing for assisting with porting of
freeblock scheduling code into FreeBSD. We thank the members and companies of the PDL Con-
sortium (including EMC, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft, Network Appliance,
Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights, feedback, and support.
This work is partially funded by the National Science Foundation, via grants #CCR-0326453 and
#CCR-0113660.

References
[1] Mohamed Aboutabl, Ashok Agrawala, and Jean-Dominique Decotignie. Temporally determinate disk access: an experimental approach. ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems (Madison, WI, 22–26 June 1998). Published as Performance
Evaluation Review, 26(1):280–281. ACM, 1998.

[2] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler, Jospeh M. Hellerstein, David Patterson, and Kathy Yelick. Cluster
I/O with River: making the fast case common. Workshop on Input/Output in Parallel and Distributed Systems (Atlanta, GA, May, 1999),
pages 10–22. ACM Press, 1999.

[3] Paul Barham. A fresh approach to file system quality of service. International Workshop on Network and Operating System Support for
Digital Audio and Video (St. Louis, MO, 19–21 May 1997), pages 113–122. IEEE, 1997.

[4] John Bruno, Jose Brustoloni, Eran Gabber, Banu Ozden, and Abraham Silberschatz. Disk scheduling with quality of service guarantees.
IEEE International Conference on Multimedia Computing and Systems (Florence, Italy, 07–11 June 1999), pages 400–405. IEEE, 1999.

[5] John S. Bucy and Gregory R. Ganger. The DiskSim simulation environment version 3.0 reference manual. Technical Report CMU–CS–03–
102. Department of Computer Science Carnegie-Mellon University, Pittsburgh, PA, January 2003.

[6] Scott C. Carson and Sanjeev Setia. Analysis of the periodic update write policy for disk cache. IEEE Transactions on Software Engineering,
18(1):44–54, January 1992.

[7] Transactional Processing Performance Council. TPC Benchmark C. Number Revision 5.1.0, 2002.

[8] Peter J. Denning. Effects of scheduling on file memory operations. AFIPS Spring Joint Computer Conference (Atlantic City, New Jersey,
18–20 April 1967), pages 9–21, April 1967.

21

[9] Zoran Dimitrijević, Raju Rangaswami, and Edward Chang. Design and implementation of semi-preemptible IO. Conference on File and
Storage Technologies (San Francisco, CA, 31 March–02 April 2003), pages 145–158. USENIX Association, 2003.

[10] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John Wilkes. Idleness is not sloth. Winter USENIX Technical Conference (New
Orleans, LA, 16–20 January 1995), pages 201–212. USENIX Association, 1995.

[11] Robert Y. Hou, Jai Menon, and Yale N. Patt. Balancing I/O response time and disk rebuild time in a RAID5 disk array. Hawaii International
Conference on Systems Sciences, January 1993.

[12] David M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational position. Technical report HPL–CSP–91–7. Hewlett-
Packard Laboratories, Palo Alto, CA, 24 February 1991, revised 1 March 1991.

[13] Jeffrey Katcher. PostMark: a new file system benchmark. Technical report TR3022. Network Appliance, October 1997.

[14] David Kotz. Disk-directed I/O for MIMD multiprocessors. Symposium on Operating Systems Design and Implementation (Monterey, CA),
pages 61–74. USENIX Association, 14–17 November 1994.

[15] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Freeblock scheduling outside of disk firmware. Conference on File and Storage
Technologies (Monterey, CA, 28–30 January 2002), pages 275–288. USENIX Association, 2002.

[16] Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger, David F. Nagle, and Erik Riedel. Towards higher disk head utilization: extracting
free bandwidth from busy disk drives. Symposium on Operating Systems Design and Implementation (San Diego, CA, 23–25 October 2000),
pages 87–102. USENIX Association, 2000.

[17] Alan G. Merten. Some quantitative techniques for file organization. PhD thesis. University of Wisconsin, Computing Centre, June 1970.

[18] Jeffrey C. Mogul. A better update policy. Summer USENIX Technical Conference (Boston, MA), pages 99–111, 6–10 June 1994.

[19] Chris Ruemmler and John Wilkes. UNIX disk access patterns. Winter USENIX Technical Conference (San Diego, CA, 25–29 January 1993),
pages 405–420, 1993.

[20] Jiri Schindler and Gregory R. Ganger. Automated disk drive characterization. Technical report CMU–CS–99–176. Carnegie-Mellon Univer-
sity, Pittsburgh, PA, December 1999.

[21] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited. Winter USENIX Technical Conference (Washington, DC, 22–26
January 1990), pages 313–323, 1990.

[22] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A. Smith, Craig A. N. Soules, and Christopher A. Stein. Journaling versus
Soft Updates: Asynchronous Meta-data Protection in File Systems. USENIX Annual Technical Conference (San Diego, CA, 18–23 June
2000), pages 71–84, 2000.

[23] Prashant J. Shenoy and Harrick M. Vin. Cello: a disk scheduling framework for next generation operating systems. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (Madison, WI, June 1998). Published as Performance Evaluation Review,
26(1):44–55, 1998.

[24] David C. Steere. Exploiting the non-determinism and asynchrony of set iterators to reduce aggreggate file I/O latency. ACM Symposium on
Operating System Principles (Saint-Malo, France, 5–8 October 1997). Published as Operating Systems Review, 31(5):252–263. ACM, 1997.

[25] Eno Thereska, Jiri Schindler, John Bucy, Brandon Salmon, Christopher R. Lumb, and Gregory R. Ganger. A framework for building unob-
trusive disk maintenance applications. To appear in the 3rd USENIX Conference on File and Storage Technologies (FAST ’04). Also filed as
Carnegie Mellon University Technical Report CMU-CS-03-192, 2004.

[26] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: flexible proportional-share resource management. Symposium on Operating
Systems Design and Implementation (Monterey, CA), pages 1–11. Usenix Association, 14–17 November 1994.

[27] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line extraction of SCSI disk drive parameters. ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems (Ottawa, Canada), pages 146–156, May 1995.

[28] Chi Zhang, Xiang Yu, Arvind Krishnamurthy, and Randolph Y. Wang. Configuring and scheduling an eager-writing disk array for a trans-
action processing workload. Conference on File and Storage Technologies (Monterey, CA, 28–30 January 2002), pages 289–304. USENIX
Association, 2002.

22

	Carnegie Mellon University
	Research Showcase
	12-1-2003

	Design and Implementation of a Freeblock Subsystem (CMU-PDL-03-107)
	Eno Thereska
	Jiri Schindler
	Christopher R. Lumb
	John Bucy
	Brandon Salmon
	See next page for additional authors
	Recommended Citation
	Authors

