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Augmented Lagrangian Line Searches for
Successive Quadratic Programming

by

. J.E. Cuthrell and L-T. Biegler

! Carnegi e-Kel l on University

Department of Chem cal Engineering
Pittsburgh, PA 15213 *

" Abstract

Successive Quadratic Programming (SQP) algorithnms have been effective
and efficient in solving nonlinearly constrained optimnmzation problems. To
guar ant ee gl obal convergence, however, a line search nust be perfornmed after
solving the quadratic program The line search termnates when a step size is
found that causes a suitable decrease in sone nmerit function. Because of sone

problenms with previously suggested nerit functions, a line search that uses an
‘augnented Lagrangian is proposed.

This function follows quite naturally from the derivation of SQP
met hods and exhi bits superior convergence properties conpared to an exact
penal ty function. First, global and local convergence results are presented
which are valid for penalty paraneters that allow descent directions. W
then present an algorithm that chooses penalty paraneters that allow good
performance. Finally, a numerical study on 15 test problems is presented
that compares the proposed line search to existing strategies.

1. 1 NTRODUCTI ON

The nonlinear progranmi ng problem can be witten as

(1.1) Min f(x)
< _

s.t. g £0
hx) =0

for f:R' - R
g:R“-- Rm
h: R" - R

To solve this problem successive quadratic programing (SQP) )
al gorithms were first proposed as the SOLVER net hods ‘of WIson (1963) and

Beal e (1967). However, these require second derivatives of the constraints
and objective function and initial estimtes of the Kuhn-Tucker nultipliers.
’ UNIVERSTY LIBRARIES

A significant improvement was made with the results oMIftgff£4|E[sLON UNIVERITY
Palomares and Mangasarian (1976). Here local convergence prflffggfjifce® KNNSYLVANIA 15213
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Froven even if the Hessian in the guadratic program is approximated by
some positive definite updating scheme.

Kan (1977) was able to show global convergence properties by conduct-
ing an inexact minimization on an exact penalty function, {n the search
direction found by the quadratic procram.

The algorithm proposed by BHan and later modified by Powell (1977) is
the following:

1) Solve the QP:

Q & ,BY)  min vil(x')d + 1 aTpl4

d 2

s.t. g(xl) + Vg(xl)Td <0

h(x') + vh(xHTa = o

i i

i - A . . . i
where B is a positive definite quasi-Newton approximation to VxxL(x ,u V).

T T
Here, L(x,u,v) = £(x) + u'g(x) + v'h (X), and the multipliers (u, v)

are found from the QP.

‘ iy T, - it i, . i iT i
2) 1f I vi(x") “d I + 1 un g(x") l +:| v h(x") | < Z, stop. Here Z> 0 is some
smajl Kuhn-Tucker tolerance.

3) Else, find a stepsize A such that

P(x" + Ad) < P(xY) + BAP' (xb)

where
, m k ,
ug) P(x) = £(x) +zrffﬂ+ + Xﬂhﬁuyl ,
=1 j=1 =
8;(), = max (g,(x),0) :

P'(xi) = Vf(xi)Td —z “rj gj (xi)_*_‘? Sj]hj (xi}l
J=i J=1i




is an approximation to the directional derivative of P(x),

and 6 e (0,1/2)

Wth Han's line search function, the vectors r and s have constant scal ar

el ements, c¢, given by:

c >Tulrr

00

where u,v are the multipliers at the K-T point of (1.1).

Powel | "s inplementation, which is not as restrictive on the penalty
terms, defines the vectors r and s to be

i S S P\ T,
SJ—WHX§/|_\<]g JI,Z_\/’J-J.V ] +js|'j\J. )= 4

However, Powell's inplenmentation does not have the gl obal convergence
properties shown by Han.

Chanberlain (1979) gave two exanples where Powell's algorithm
cycled between two vertices of the |inearized constraints. Continued
cycling in the second problem even caused the Hessian approximtion
matri x to become unbounded. However, Chanberlain et al. (1982) showed
that use of Han's penalty function causes convergence to be too slow in
some cases. :

To resolve sonme of these difficulties, Chanberlain et al (1982)
proposed the watchdog technique. Here the nmethod alternates between
an exact penalty line search and full steps in the search direction. |If
the exact penalty function decreases ir.onotonically, then usually full steps
will be chosen. This method is harder to inplement because the convergence
proof may require a restart froma previous point. Thus, all the information
at this point nust be stored. ’




The next section discusses the use of the augmented Lagrangi an |ine
search function. To notivate the discussion we show that this follows quite
naturally from the devel opnent of earlier quasi-Newton and augnented
Lagrangi an algorithns. It should be nentioned that our I|ine search function
differs fromthe recent work of Yamashita (1982) and Schittkowski (1981) be- _
cause our function is nondifferentiable at certain points and our penalty para-
neter is chosen adaptively.

The third section presents global convergence results that, parallel
the work of Han (1977) and |ocal convergence properties that use the recent
work of Schittkowski (1981). The fourth section discusses an adaptive stra-
tegy for choosing the penalty paraneter and presents the line search al -
gorithm Qher enhancenents to the SQP algorithmare al so nentioned. This
section is followed by an extensive nunerical conparison that includes the
sl ow convergence effects of Chanberlain et al (1982), the cycling probl ens of
Chanberlain (1979) as well as nunerical results for fifteen well-known test
pr obl ens.

Finally, we summarize the results of the paper and state conclusions in
the last section.

2) AUGMENTED LAGRANG AN LI NE SEARCHES

To notivate the presentation of this line search function, let us first
consider the equality constrained problem

(2.1) Kin f(x)
s.t. h(x) =0~

Necessary - optimality conditions can be written as:

VE(x) + Vh(X) v =0

h(x) = O

which are sinply stationary points with respect to x and v of the Lagrange
functi on:

L(x,v) = f(X) + h(X)'v

If we augnent this function with a penalty term:

(2-2) La <, v,cf') = f (x) + h(x)™v + % h(x) Th(x)

we find that the augnented Lagrangi an has the same stationary point as the
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Lagrange function, regardless of the value of o , the penalty parameter.
The stationary point can be found by applying Newton's method to

vL, vi@a ).=0.

Expanding La (X,v,o ) formally in a Taylor series with respect to x

ana v about a point (x1, vl) eR" yields?

i i T i
L‘a (X:V'O') = La (xl ’ vl » a) + VLa (xl ’ Vl 'a) X=X
: i
v-v
. T .
1 [ x-x* i i X-x" -
+ 2 v La(x W,V o, 0 ) i
v-v v=v
.
X-X 3
‘0 . ‘
i
v-v .

Truncating the series after three terms and finding a stationary point with
respect to x and v, yields:

i F %-x1

. . 2 ]'_
(2.3) VJ%(xl,vl,a ) + VLau , v, ) |- =0

- i .
Let (x-x 7 ) be defined by the vector d. Since

VLa(x,v,or) = “Vf(x) + Vvh(x)v + a Vh(x) h(x) .

h(x)




V2L (x,v,a) = {9v L (x,v,o) Vh( x)
a XX a

, and

Vh(x) T 0

Vo la(xov,a) = sz(x) + V?h(x)v + a Vh(x)vh(x)"

+a Vzh(x) h( x) ’

we can sinmplify (2.3) to:
i - i i T
L i i -
Vx El(x Lv,a) + VxxLa(x Vv ,a)'d o

h(xY) + Vvhcx!) Td = 0

If the constraints are not highly nonlinear we can neglect ovzh(x)h(x),

the last terminv L (X,V, a)- The above equations can then be ex--
* XX a :
panded t o:

(2.4) VE (xD) + Vh(xHV + a vh(x*) h(x’)

1
o

( . . »
+ 7% (x}) + V?h(x"') v.+ a vh(x") Vh(xi)T) d

(2.5) n(xl) + Vvh(x!) d = 0 .

Because of equation (2.5) it is clearly seen that the truncated

Newt on step for La (x,v,or ) can be found b'y solving the follow ng quadratic
program g

(2.6) Kin VE(xY) Td +\ dV L(x* ,v)d
deR, ' " XX

: C . j_'I'
s.t.. h(x*) + Vh(x ) d = 0.




and obtaining d and V.

Note that the solution to (2.6) is independent of of (Han 1978) |
FJetcher (1974)). Si nce \Qx Mx' . v!) involves calculation of second

derivatives we approximate this matrix by Bf which is constructed by quasi-

Newt on updates to V L(Xx,V).
XX

The result is the famliar SQP algorithm for equality constrained
problems. Since this method follows from nininization of an augmented La-
grangi an function, it is quite natural to choose this function to deternine
the stepsize X along the di rection,.f.d[ iV ]] chosen by the QP.

Inequalities can be included by allowing the QP to determi ne the
active set fromlinearizations of all the constraints. After solving the

QP:
i‘ x. T 1 T
Qx *,B) Kin Vi (x) Td + -, dTBd
gx¥) + vatx)Ta < o
’ iy 4 vh(xi)Td =0

the stepsize al ong [d_ ul% can be found by mninizing a nodified
L]\:—v1 J
augment ed Lagrangi an function
(2.7) . L*(x,u,v,0r) =1f(x) +u'g(x)s+ + v'h(x)

s 2 2
2 1] scoy v ) 1

wher e

g. (x

; (0, - mx (g ()
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u, v - multipliers for
g and h, respectively

'l . l, - the Euclidean norm
The formof (2.7) ignores the inequality constraints unless they are violated
during the line search.

(2.7) is simlar to classical differentiate augmented Lagrange functions
(BertseKas, 1976):

m
1 ’ 2 2
f(x) + EQ’-X [(agj(x) + uj) + " uj]
i=1

It

+vTh(x) +f || h(x) [|?

However, classical techniques or nmultiplier nethods are |ess efficient
because they generally involve two nested iterations. The inner iteration
mnimzes the augnented Lagra.ngian for x with uiv, and or fixed, while the
outer iteration updates u and v to maxim ze the function. The penalty para-
neter is increased in the outer iteration only if there is no decrease in the
magni tude of the constraint violation.

The classical augmented Lagrangi an function was also used for an SQP line
search in the recent work of Yanmashita (198Z) and Schittkowski (1981). Though
they have substantially different inplenentations, both authors present de-
sirabl e convergence properties.

Al t hough our line search function (2.7) is not everywhere dif-
ferentiable, it has several advantages over the functions of Han and Powell. In
addition to pronoting convergence, the line search function should help main-
tain or approach feasibility. The function used by Han and especially the one
used by Powell may not suitably penalize constraint infeasibilities. The
vectors r and s are determined directly fromthe Kuhn-Tucker nultipliers of a
quadratic program that handles linearized constraints. Thus a violation of a
nonli near constraint at x+d may be ignored if the quadratic program does not
make this constraint active. Two exanples of this are given by Chanberlain
(1979). The augnented Lagrangian has simlar nultiplier-related terms but al so
contains a squared penalty term that enphasizes all of the constraint in-
feasibilities. Because the Q solution is independent of cy , we can adjust
this penalty paranmeter as needed to approach or maintain feasibility in the
sear ch. .

Anot her inportant feature is the nunber of derivative discontinuities
in the line search function. Wth P(x,r;s) each active constraint has a dis-

" continuous derivative at g(x) or h(x)=0. Wth L only the uxg(x)+' term con-

tains derivative discontinuities. During the line search, the stepsize can be
found efficiently by minimzing a quadratic function fitted by values of the
line search function at the two end points and the directional derivative.

If fewer derivative discontinuities are present, the quadratic fit and the
choice of stepsize will be nore accurate. For the augnmented Lagrangian func-
tion, this is especialy true if equality constraints are present.




3) CONVERGENCE OF AUGMENTED LAGRANG AN LI NE SEARCHES
Ve begin by showing that the search direction found by the quadratic
programis a descent direction of the augnmented Lagrangian function if a 1is

sufficiently large. This will be used later for the global and |ocal convergence
proofs. '

Lenmma 3.1 (Demyanov and Kal ozermov (1974), referred by Han (1977))

Ifq , i=l; I are continuously differentiate functions from

V(0 =mex fqe(x) )

then for any direction d, t he upper directional derivative Dd$(x)

exi sts and

Dy Y(x) = max (7q.(x)'d)
iel (x) X

wher e
1x) = Ci | g (x)»e (x)}
Theorem 3.1
Let f,g and h be continuously differentiable on x and B be a positive
definite, symetric matrix. Here x e R , d €R' u€R" v € R and B € R™".

If (d,°0", V) is a Kuhn-Tucker triple of Q (x,B) , d”O and

. y ; T .
. vf’“Td + [-la’ -2 _-ul' 2 T Bl.._,_ . :
I"" i 1" B . "
v v . h .
a> |

Hg+»h'y'?
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*

Then D, L (x,u,v,a) < O where p = .S_ .

Proof

~ We virite the upper directional derivative of L* (x,u,v¢i<y ) as:

. T
DL = viTd + ut

Td + vI Vh'T

vg_’; d

+ o vdTd) + oy(i™V )

+ @ - U@y + 07 - vty

Here = 0 ’ 5= fj ¢ ogix) <0}
T =(VgTd)- jeJ J - {j :agx) >0}
(Vg d) . 3 ' Y
]
T
=max {0, (Vo)) jeJ 5 = fj :g(x =0}

From the QP we have:
[ IT
-h = vh d
-g° = Vg d
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which gives

T '
p1* < vells +/15 -2 [ut gi+ - o |lgl ,hiHZ
P vi h1 *

*
Substituting for «o gives Db L < 0. =

<1

. We call the lower bound of o that gives the descent direction, add

Corollary 3.1

If the search direction p

then 3{ a A > 0 such that

*

L ( zi +Ap ,o) <L ( x. , u vi , ) + 8 f{ (zi)

*

N .
where z = x_ , o> %44 6 c(O and %&z =D L (z )

We continue with a perturbation lemma which is due tb Daniel (1973).

(See also Lemma 3.2, Han (1977))

Lemma 3.2 (Theorem 4.3, Daniel (1973))

‘A A A
Let d minimize q(d) = % dT Bd + b Td
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and let d minimize

q(d) = % aT8d + 514
s.t. Ad < a
Cd=¢c¢ .

Then for any fixed norm ll’ll , there exist s > 0 and some € such that

l‘ 3- Ell < s€
if ’ a) e<e
b) B is posit%ve definite

where - A — YA — —
¢ =max {|| 8-3l] , || -3l , llccll, ll3-all ,

l6-511 , 11e-<ll 3

Similarly, we can establish a tound on the mul&ipliers by applying this lemma
_» to the dual quadratic program:

Min % @ + ATu +¢T) T8 (b + ATu + CTv) - alu - clv

s.t. uz0
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The bounds on the multipliers are therefore:

@G Y - @l = te

whenever e f e and e =max (h-HIl L IF-TIH
AB'V Ag '’
where H=
cg AT cs '
3 J
AB "b-a
r =
¢ tb-c




"theorem 3.2 14
Let 'f, g and h be continuously diffcrentiable and assune sone fJg > 0

such that:

2 -
sllx 11 % = x"Bx <8 llIx11?, vx

and a is -always greater than or,, at each iteration.
dd

Then any sequence { x1, ui, v*] withwell-defined Quasi-New on

i . . .
updates [B ) either term nates at a Kuhn-Tucker point of (1.1) or any ac-
curmul ation point {x* ,u* , v* } satisfying the Mangasari an-Fromwi tz Constrai nt

Qualification (%FCO) 1

3 wec R"[7gr &%) "W <0, k eK

where K = { k|g (x) 0)

*

Vh(x) TW =0
*
and Th(x ) has full rank
is a Kuhn-Tucker point of (1.1).

Pr oof
If pt = 0, then (x* , u* , v* ) satisfies the Kuhn-Tucker conditions of
(1.1). Suppose pt!7* O then z'*1 = 28+ o\ p! exists for me X > O where

el s LF (z', a) +6\<f(2h)

* _ _ i _ _ ‘ o .
Let z be an accunul ation point of (z } satisfying tbe constraint quali -
- fication. Because B' is fornmed by well-defined Quasi-Newt on updates, then as

Z - zx BL - B .

From the definition of B' and the MRX it follows that Q (x* , B*)_has a Kuhn-

Tucker point, p’bc . If p"Jr = O then i* is a Kuhn-Tucfcer point of (1.1) and
-

/
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we are done. Supposé"p / 0. By Lenma 3.2 and the solution of Q(«* ,B*):

By Corollary 3.1 we can find X such that:

L (z-+Xp , or) - L (z ,or) -<:6X/)(z)<0

Si nce p*-’\ 0, ,-X*- O Here 3i sufficiently large that for somne Y>'1-

the steplength rule is violated:

F (zh+xEypl, @) - LT (A< ) > 6 XA T(ZY)

- ~The LHS can be expanded in X to yield; R,

YX*,A(zt) o+ yxrexh) > Y X6/ (zY
i .
and dividing by Y X gives:

S FEY ookt > ef((2Y

"From Theorem 3.1 , 6 (zi) < 0 and we have a contradiction since:

0 (dBYV ) j(Z) A (18) /(2 +0(X)> o
and 6 € (0O, 1)2)
Theorem 3.3

Based on the'assump_tions in Theorems 3.1 and 3.2, there exists a fin_ité or

such that or > max.. ofi ,
. dd
l.

From Theorem 3.1 '

- i - - .
o = VEYd + 4 T7g0Td + v 77 hed + LY Vh L

i 4112
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From the QP:
i T T - i T . iTI
Vf d = - dBd - uvg d - v Vvh d

weX)dd £ - g(x).

vh(x1)Tq = - nex')

-T I -T 1

UVgxik d - U g(x )4
I

Substituting for a.. gives :
dd

'w =T dTBd + 2 ((T-u') Tg (x}) . +2(%-vHTh (x)

: 7/t

Now, realizing that B is positive definite,

we take the norm of the nunerator
and write: .
i-u'
agg S - B Ild11?+2f| - af [l , ni]]
. Co 2
. d .
Mor eover, since p = i we wite:
T-u
vV

g = (e 112+ 270 [[gi, hill
Hogp , h* 12

For ”P”fﬂ , a remai ns bounded above even if | | gi+, hli ]-* 0,




KMWfIIrI 1=2;'O>t||CFC ithey:

i) “p”=0||R+th

‘i s -puPllt t2Kk|le!l* . 2L
7 ] - Rz
k™ {lpll
vihere K is a postive constant. Hence or.. has a finite upper bound
dd

i) 11 gs, Ml =o||p|ll - Here K = ©

dd <= 2KP  , _ o
K2
and any positive value of a gives a descent direction,
iii) [Ipll=0 |]9+ , h|]. Here K - 0
2n 2k 1 1
: 20lgg h112~ 2K llg, » b
"dd * -

Ilg, . nl12

(2-1K)K -0

and any positive a gives a descent direction.

Remark 3.1

To show that an accunul ati on point exists we require that: x and d be
bounded, that the gradi ént matrix of active constraints at each iteration has
full rank, and that each QPP is solvable. Thus (0,V,) is bounded, and because
the Armijo inequality is always satisfied for L* (zi ), an accumulation point

will be found. (see e.g. Ortega & Rheinboldt (1970)

Local Superlinear Convergence

W restrict the analysis to show that the Armijo inequality on this’
line search function allows full steps in the region about the solution of
(1.1). Once this can be shown we invoke the local results of Kan (1976) and
Powel I (1978). W also assume that the active set has been deternined. Mere
any inactive constraints nmay be discarded and the constraint set
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J=(] ] gj(x) >0 )

is at worst a subsel of the active constraints.

In addition we assume thet the Hessian approximaticn, B, is always
positive dGefinite and setisfies the property:

a’( v, L 25y - Bd =o (|l dll? .

as it ccnverges. This is characteristic of several gquasi-Newton updating
formulas (see Boggs, et al., 1982),

Thecrem 3.4

1f V i sufficiently large, we have:

D vilpllsa Tsa =<v 1lp |l
for some y , y > 0O

2) The active set of inequality constraints is dGetermined and

jed=1{3j| gj(x) >0} belongs to this set.

2 . . 3
3) Vv h; and Vzg; are finite, V x-

) aT (v 1(z) -8Ya =o(|la]|D) asi ~w

where z * is the Kuhn-Tucker triple of (1.1)

5) and 4 » [- (1-26)d Td + 2 (G-u')g(x)), + 2(=vHynexh) ]

ey, . neb |12
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— , T 2 i
where €> - min ( 0, % u.d "V B.(Xl)d )
~nl J
jed

(1-28)d ‘Bd
A
3= (iler<ol.
Then
Lz +p) s1° () + 84 (D)
and the Armijo inequality is satisfied with a stepsize of unity.

Proof

We first relate the modified augmented Lagrangian functions to the
Lagrangian.

L“( zt ) = f(xl) + ung(xl)+ + v1 Th(xl)
o i i 2
+3 g «H, , neh ||
i iT 4 o i i 2
= Lz ) -we)_ + T llee, , heh I
where
. T . .
1 1 i .
cut g = ) ulg
_ . JgJ )
jeJ

3={jl%<£><o}

B

L(z0 +p) = f(x" +d ) +Tgx +da)+5h(x +d)

+Z1l et +ay, net +a |12

i o =T i A i :
Lz  +p) - uglx +d)_+ % llgx™ + 4 ), hix' +d) ||?
T i

i i T iT i
Tug(x)d 4+ v vh(x1)Td

vE(xY) Td 4w

gt
+ ( G-uiirg(xi)+ + ( G-vi )Th(xi)
- olleeh, L nexH]?

=vieH -t veehT a - (st ) eeh)

-ollexty, , nexH]?

but since all constraints are active (by 2))
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- . T . . ’ -
() = LE s+ 2 vt Taedy - olleeahy, L hehIN?

Now v;e need to show t hat:

(A H *(Zh+p ) - L* (z}) - 6 & (z9)

is nonpositive. Substituting the above quantities in (A) gives: '

FL(Z'+p) - L(z) - 6VL(ZVpJ
-uTg (xt+d) A+ (1 g(x*+d) ., hOxt+d) |7

fulTg(x"). - f 1 goxh)r hext) |12 - 6 (2 u'-9)Tg(xY)s.

hexh) |12

+6 o ‘Ig(xi)+ ’

Froma Tayl or series expansion and the solution of the @ we know

. . R T . '
. 1 i
gi( X +d ) = gi(x*) + Vg(x*)Td+] d V Zgi(x)d +O([ld]]?)

-
=\ d VZg (x}) d +0 ( [|dII?)

. . . T .-
Ej x*+d ) = hj (xH +VhJ.(x1)Td +]d VZhJ.(XX)d +O(]1d]]?)

aTy 2hj oy d +o ¢ a1

N3 |t

so (Al) becones

TL(Z'4p) - L(ZY - 6VMzVpJ- | (udV% (x) _d)
£ O (HAI1M) + (1-26)uiTg(x) - | (126 ) Mgk, , mix V12

+ 6 TT Tg(x*). ( by 3))
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The bracketed quantity above is:

(-6 VL (Z2)Tp +\ pVW)p +0 (Il )]

where
. I

' : i
VLEZ ) p Vi(x") d +u*tvgcx) *d + v V.h(x) T4

0T T
+ (uu Hogx ) + (v-v)h(x)

T - T . - T )
-d Bd* +2 (J-uh) g (x) +2 (v-vHh(xH)

(by the QPF)

T T

-

2 - - . . i
p V Mzh)? =d v LCZH d +2 (TG-u")"vg(') 'd

.T
+ 2 (v-v') Vv hcxh) 'd

. T
=d" V" (*) ¢ " 2(G-u')g(xh)

. T N
- 2CV-VW)riaxh) (from 2))

Thus (Al) becomes:

T . .
q : TT o= T
-(2-86)d Bd + j d (Vu(z)-B)d

- LT
+ (1:26) [(G-uvVgCx) + (V-v')h(xl) + uli:] (xl)_jl.

- f (1-26)]] ox)s , h (x) ]I + 6 G'g(X)_

S\ (@ Vv g (xh). d )+ 0 (lIpll®)




2

Now because :

a7 [c v L@l oy (D) + (VL (z) - B)] a=o 1M}
XX J

6 < %‘ LTTg (x)_ < 0 , u-g(x) £uTg(x)+

and using assunption 4) we have:

(A) £ ( b - 6) [ dBd + 2 (Tj-ui)Tg(xi)+

. .
+ 2 (Vv ) 11(xi) - ol g(xi)+ , h(x") ||2
T j 2 i 2
- UdJVg(XI)_d +o ( |lpllD

( 1-26 )

Usi ng assunption 1) and 5) gives
(M) s (V-6 ) ¢y HPIIE + o ( [el1®
and for i sufficiently |arge:

(A1) * (" -6) cvirpii +o([[pl]*) = - (5i -6)" lell? =0

Thus the Armijo Inequality is satisfied for a stepsize of one and the theorem
is proved.
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Kcmark 3.2

In-practice, assunption ]) of Theorem 3.4 is not really required. |If
for exanple, [Tall = o ¢ H -ub) , (v-vhil)y =o (||pll),
then the algorithm still converges superlinearly if K (||plj 2) I |lg h ||2

(for some K> O) is added to the right hand side of assunption 5). As wll be
seen in the next section, our algorithmcovers this case as well. Note that

even here a” a,
da

4. An al gorithm for choosing the penalty paraneter.

From the convergence results of the previous section we can state the
follow ng conditions for the penalty paranmeter,

1) If a 1is large enough to give a descent direction at every iteration,
then an SQP algorithmw th this augnented Lagrangian line search is
gl obal Iy convergent.

2) If a is larger than Q@ " and l|large enough to conpensate for any
active inequality constraints that remain feasible as the algorithm

. ) . T ]
converges, (since d \Fg_d < 0, these will be locally _concave),then the
al gorithm h’as‘ | ocal superlinear convergence. T ' -

These two statenents suggest an adaptive strategy for updating a .
This contrasts our work fromthe a priori updating algorithnms of SchittkowsXi
(1981) and Yanashita (1982).

Here, it is straightforward to calculate the |ower bound a and
(upper or lower) bounds on a that satisfy the Armijo inequality for a
given stepsize. Thus, instead of explicitly fixing or for the line ,

search, we nmerely deternmine if a region exists for a that satisfies the
Arm jo inequality and the descent condition. This prevents any unnecessary
stepsi ze restriction during the line search.
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We consider two quantities at each iteration

) iT o g '
o, v i) Ta 4 ( §-2 uljrg(xi)+ + (@-25 1 xdy
{ 7
ex®, | h(x® |
o=, @ +aeoL, Y Ty 4 L, ="+ p)
v (X)

wher e

L, (2) =£(x) + uTg(x) .+ vTh(x)
T i . .
Vi () p = weix)Ta 4 (ﬁ-zulfé(x1)+ + F-2v8 hxdy

O e I P ! 2
2 st « xayo it yaayy + (7 - enllsedhy, | heh)))?




The above exprescion for o5 is derived from rearranging the

Ermijo inequality (AI). Here ULS can represent either an upper or lower
- bound which @ must satisfy for any given A . 1If ¥ ( XA ) is positive

then azny @ 2 OLs will automatically satisfy the (AI); conversely if ¢ (A) < O

then any ¢ < « satisfies the (AI).

LS

We can now replace step 3 of the algorithm presented in section 1
with the following L.S. procedure
a) set A =1

b) o = max ( 01—1 , 1.1 add)

c) calculate
“Ls

d =
) 1f o ¢ < max (0, o440 or ¥(A) 0, go to e.)
j i _ LS
If o g > m§x ( %44 ) set o = o

(the (A1) is autoﬁatically satisfied at the current A go to f.)

e) Test the (RI) for ai from b)

Yeap Lo -UGH, o) seagd @t dh

*
L (z
V(At this point we know that

i '
1 since Q. < < o

o _
LS can not be used as a basis for changing o' because this will

destroy the certainty of a descent direction

2) if dLS happens to be a lower bound, either postive or negative,

. i
then since o 2 aLS the (EI) will be satisfied on the

first try. This will be the case if +(Q)> O




3) if V¥7)\) is non-positive then (Al) is not satisfied for y(A) <O,

(A1) does not depend on o for t(QA) = 0)

1f now the (Al) is satisfied go to f.). Otherwise reduce A using

*
quadratic interpolation of L (z) and go to c.)

f. upéate according to

x1+1 =x" + Ad
i+l i ~ i
u = u + A (u - u))
v1+1 =v + 2 (v - vi)
i=i+1 :

Go to Step 1) of the algorithm in section 1

The next section presents a comparison of our stepsize strategy
with those of both Powell (1977) and Schittkowski (1981) on fifteen well-
known test problems. It will be seen that our strategy never required more
function evalgations than the other two and sometimes required less.

Schittkowski's strategy is less efficient because O increases monotonically

and may even be unbounded. Also, Schip:kowhkifshlipe search function may reward

feasibility rather than just penalizing 1nf€asigi1ity. This function contains

the terms [o gj' +'uj]zk‘where: g; is _
the constraint value, u, the Lagrange multiplier and « the penalty term.
]

A\J

Notice here that, for any gj <0 (feasible), the term [d gj + uj]+
will be positive, unless o > - fj_ , thereby providing a contribution to the
8.
J

penalty function for a feasible constraint. No provisions are made to prevent
this condition in Schittkowski's algorithm although in practice o does tend

to become very large.

Initially we set (v° , v° ) =0 and o° = 13

(some small positive number, e.g. 10—3 ).

hgain, we note that as long as @44 gives a descent direction for
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all iterations j, the algorithmis globally convergent. Since, from Theorem

3.3t we know this quantity is bounded, we use the (heuristic) updating

strategy in step d) to determine a - From Theorem 3.4 we know that near the

solution 3 cy * a4 that allows full steps along the search direction

generated by the QP. This a is given by a in step d) of the algorithm.
LS :

Thus we have an adaptive strategy for choosing c¢* that exploits the .pro-

perties determined in Section 3.

5. NUMERI CAL RESULTS

This section is divided into two parts. In the first, we illustrate
hew two shortcom ngs of the line search strategy of Powell (1977) are re-
nmedi ed by the approach described in the previous section. Here we present
detailed results of our strat egy’alnd expl ai n why -the slow convergence

and cycling problems encountered with Powell's |line search are avoi ded.

A. lllustrations of the Line Search

i) Sl ow convergence with exact penalty function line search
(see Chanberlain et al. (1982)].

Consi der the problem M n F(x) = -x + j (xT + x= -1
This is simlar to the exanple used by Maratos(1978) to discuss the slow
convergence effect. .

The solution can be seen by inspection as: X =

'Let Xk -] cos 9
and assune

sin 8
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no errors are made in approximating the matrix

.2
cos0O + sin G

* * k
Vo L(x ,vy)= 1 . >I<<+1 is therefore =x +d
XX
sin9 (I-cos8)
As nentioned by Chanberlain et al. (1979) , it follows that for any small
positive nunber e '
k%
"= x| and the ratio LXK e 17X - )|
can be mede less than € if 9 is chosen sufficiently small.
Fan the definition of P(x)
K _
P(x ) = -cosQ
k+1 _ " . 2
P(x*) = -cose* sine+ ( T+s) sin6 .
But for a reduction to occur in P(x " 9 .,
(4.1) T+S < 1 -
Here, since s ™~ 0 , the algorithmcan not take full steps for 731 .

The Lagrangi an and augnented Lagrangian functions are given by:

=
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L(xk,v) = -cos9

L(XK+1>W( = cos - sin D + k/COSS\SinLS }

* k
L X ,wv) = -cos9
* A - - . 2 @9 isz Q) + sinaa
F k) 2 -coso - rin e 4 e T f
\ 7
~and the multiplier on the constraint c1 is:
- c_058 -
Y
* T T 2
Al so: VL. ,, =VL = - 5sin0
So a descent direction is guaranteed . = Vcr > - =

The Armijo inequality for L (x,v) is

sin‘e + C0S9 sin®_ . a_(sin"S) A - 6 51:129

2 2
2 cosf
d = - - ——2Y
an aLS . {1 5 ) 2
sin 9
Heres fromthe nature of the functions, or, . is bounded by: (1-26) £ or__"«, YO0
1 . *

and 6 € (0, 2-) =+ Thus the augnented Lagrangian function will take

full steps to the solution because f (1) <0 and a £ a_ |

Here, even the Lagrange function takes full steps because. a = 0
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(ii.)ce'ine with Powell's line search function
(Chanberlain (1979))

The Probl em Mn X,
s.t. ¢j () = a(=yx) - x, = 0
cx(x) = ad-") - X2 €0
wher e a(x) = 2x2 —.x3
cycl es between x? = Ol and &' = 1 _if Powell's line search
function is used. 0 0
Let .
0
xo = (0 B =1
0
- 0
c, =0 £°-0

r h ]
The solution to the quadratic program gives TT =1 0 I,

I
o =[;,] Ur lo J
1

L

T
d=xl = | 1
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P( x ,r(g- =1 p'(X°,r0)= -1
L(x°,u®) =0 VL(z) p = 1/(z°) =0
* *eo ~
L (xo ,uo, a) = ia VL*( szTp = L (z") =- (ff-1
wher e ’;f- is the directional derivative V -Td .

The Armijo inequality holds for P(xo ,ro) and L(x0 fuo ) for the step-

size, X =1
PCx!,r°) £P(x°,1°) +6P (x° ,x%
0 =1-68
L(x*,u) ~AL(x°,u°) +6L(x°,u)
0O”~0 + 6
v:here 6 is set to O 1 by Powell (1977). The augmented Lagrangi an |ine search
does not satisfy the inequality for \' =1 . Her e

L* (x*, U, a) £L* (x°,u°,,) +6L*" (x°,u°,oV) ,

, : o
(WhICh is 3 = - 6(or - 1)) , is satisfied
only if oo <@ o =1 However, or nust also be greater than or,, =-1.
. dd

( Note that the Lagrangi an functi‘on L(x,u) "cycles because here a =0 < a,,
. . dd




' o
Setting B° to I, v° to O andx to 0 and using the algorithm in
Section 4, with gquadratic line search interpolation, this optimization problem

converges to the optimum xT = [ 0.5, 0.275 },in 4 iterations.

B. RNumerical Comparison on Test Problems

In this section we compare three line search strategies embodied in
the following computer programs:

OPT - uses the line search sirategy described in Section 4.
OPTHP - uses the strategy given by Powell (1877)
OFTSCH - uses the stragegy proposed by Schittkowski (1981)
Otherwise, the three codes use the quadratic programming algorithm of
Gill and Murray (1278). This program has the desirable feature that
the minimum norm of the infeasibilities is returned if linearization
of the constraints is inconsistent. If this happens we merely resolve

the QP with the constraint tolerance set to 1.0l1x(min norm).

We find this device safer than the one suggested by Powell. His
strategy introduces a new parameter into the QP and transforms it from:

(or1) Min alga +.§. a T pa

to:
(QP2) Kin [;]T[:] + % [251‘-[2 .2] [:J
. | T d'
s, t. Cc. c. Y
[0 ] ¥ C+T <, [§ ]50
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where _ - .
c_ = cj€3 y J { 3 l Cj <0 ]
= = 3 2
€y = Sy , 3= (il c;20)

T 1is a large negative number (-106 in VF%ZAD (1977))

Incorporation of the E parameter will help correct the inconsistent
linearization. However, there is no guarantee that 4 from (QP2) is
'equivalent to d from (QP1) even if the linearized constraints have a feasible
region !

For example, if the QP solution is cqmpletely determined by the

eguality constraints (d = —(RT)_lr), it is easy to show that (QP2) will not

find this solution if:

a T@Hh -1 <1
r T R-IB(RT)-lr

The following table provides a listing of the fifteen problems solved;
N represents the number of independent variables, M the total number of con-
.straints and MEQ the number of equality constraints. Each problem is denoted
by a leiter and number.. The letter corresponds to the reference while the
number identifies the problem number in the reference. ’

Table 5.1 shows, firstly, that the augmented Lagrangian strategy in
OPT never required more function evaluations than either OPTHP or OPTSCH. In
addition, the cycling exhibited on some problems by the OPTHP algorithm is
always avoided as was shown by Theorem 3.2 and Remark 3.1.

The implementation of the Schittkowski line search function suffered
often from illconditioning. Both the QPP subproblem, where illconditioning was
measured by the Hessian condition number, and the line search subproblem, where

very large @ values (sometimes 1015 or more) were calculated, were re-
sponsible for the excessive number of function evaluations or failures shown.
Attempts were made at restarting the failed problems with an initialization
of the Hessian to I, but this did not always prove successful.

Conclusions

Based on theoretical considerations and numerical results we find
that our adaptive augmented Lagrangian strategy performs both more effectively
and reliably than previously implemented line search strategies. By exploiting
the descent property and the Armijo inequality our adaptive procedure provides

a more flexible way of choosing the penalty parameter when compared to other
methods. o
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TABLE 5.1: ALGORITHM COMPARISON

PRCBI . BVl DESCRI PTI ON oPT OPTHP OPTSCH
#FN fIFN #FN
N M  MEQ EVALS EVALS EVALS
A 2 2 0 4 CYCLES 4
A2 1 2 0 3 CYCLES 3
BB 5 10 0 5 5 5
B3 5 6 0 3 3 3
B4 4 0 0 52 52 52
B6 6 4 4 13 25 >77*
3 2 3 0 10 10 23*
G 3 2 2 9 9 15
C13 5 6 0 4 4 38
24 2 2 0 4 8 16
D 10 11 3 30 30 >112*
D5 10 3 3 30 30 30
@ 4 4 0 5 5 5
E 2 1 0 10 10 10
F+ 4 3 0 12 14 33
A, CHAMBERLAI N(1979) -
B. COLVILLE(1968) - a
C. H MKELBLAU{1972) '
D. BRACKEN & KcCORM CK(1968)
E. SCHULDT(1975)
F. ROSEN & SUZUKI (1965)

sconverged to a tolerance of io0"*®; other problens to 10~°
erequired resetting the hessian to |
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After introducing the current algorithmand describing its features, we
notivate the use of augmented Lagrangian |ine searches in section 2. This
section follows a simlar derivation for diagonalized nultiplier methods by
Tapia (1977).

Section 3 presents conditions for the penalty parameter that lead to
| ocal superlinear and gl obal convergence. Based on these conditions we present
a line search algorithmthat adaptively adjusts a. by using the A’bmjo in-
equal ity and descent conditions.

' Finally, section 5 presents a numerical conparison that denonstrates
~ * the benefits of this approach. Here we exam ne two problens that have
pl agued previous |ine searches and conpare results fromthe solution of 15
test probl ens. .
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