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This work is a step toward developing a logic for types and computation that includes
both the usual spaces of mathematics and constructions and spaces from logic and
domain theory. Using realizability, we investigate a configuration of three toposes, which
we regard as describing a notion of relative computability. Attention is focussed on a
certain local map of toposes, which we study first axiomatically, and then by deriving a
medal calculus as its internal logic. The resulting framework is intended as a setting for
the logical and categorical study of relative computability.

1. Introduction

We report here on the current status of research on the Logic of Types and Computation
at Carnegie Mellon University (Scott et al., 1998). The general goal of this research
program is to develop a logical framework for the theories of types and computability that
includes the standard mathematical spaces alongside the many constructions and spaces
known from type theory and domain theory. One purpose of this goal is to facilitate the
study of computable operations and maps on data that are not necessarily computable,
such as the space of all real numbers.

Concretely, in the research described here we use the realizability topos over the graph
model PN of the (untyped) lambda calculus, together with the sub-graph model given
by the recursively enumerable subsets, to represent the classical and computable worlds,
respectively. There results a certain configuration of toposes that can be regarded as
describing a notion of relative computability.! We study this configuration axiomatically,
and derive a higher-order, modal logic in which to reason about it. The logic can then be
applied to the original model to formalize reasoning about computability in that setting.
Moreover, the resulting logical framework provides a general, categorical semantics and
logical syntax for reasoning in a formal way about abstract computability, which it is
hoped could also be useful for formally similar concepts, such as logical definability.

In somewhat more detail: Section 2 begins by recalling the standard realizability

1 Not to be confused with the standard notion of computability relative to an oracle.
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toposes RT'(A) and RT'(Ay) resulting from a partial combinatory algebra A and a sub-
algebra Ay. We then identify a third category RT(4, Ay) which plays a key role; very
roughly speaking, it represents the world of all (continuous) objects, but with only com-
putable maps between them. This category RT'(4, Ay) is a topos, the relative realizability
topos on A with respect to the subalgebra Ay.

The toposes RT(A) and RT(Ay) are not particularly well-related by themselves; the
purpose of the relative realizability topos RT'(4, Ay) is to remedy this defect. The three
toposes are related to each other as indicated in the following diagram, in which the three
functors on the left leg constitute a local geometric morphism, while the right leg is a
logical morphism.

RT(A4, Ay)
7
RT (4, RT(A)

The local geometric morphism on the left is our chief concern and the focus of Section 3,
which also mentions some examples and properties of these fairly well-understood maps
of toposes. When we first encountered it, we were pleased to recognize our situation as an
instance of one that F.W. Lawvere has already called attention to and dubbed an adjoint
cylinder or, more colorfully, a unity and identity of opposites (Lawvere, 1991; Lawvere,
1989).

In Section 4 we present four sound and complete axioms for local maps of toposes.
Actually, since the situation we are mainly interested in—i.e., realizability—forces the
local map to be localic, we give the axioms in a form that implies this condition. We
simply mention here that a modification of axiom 2 about generators will accomodate all
(bounded) local maps. More information concerning the abstract axiomatization of local
maps (covering not only localic but also more general bounded local maps) can be found
in (Awodey and Birkedal, 1999; Birkedal, 1999) — here we just recall the definitions and
results needed in this paper. The axiomatization has been found useful in working with
the particular situation we have in mind, but its general utility for local maps of toposes
remains to be seen.

One application, of sorts, of the axioms for local maps is the investigation of their
logical properties. These are given in Section 5 in the form of a logical calculus involving
two propositional operations, written $ and by, with § left adjoint to b. It turns out
that § satisfies the S4 modal logic postulates for the box-operation. We here term the
f-calculus a modal logic for computability, since that is the interpretation we have in
mind; but of course, this modal logic can be interpreted in any local topos. We intend
to use it to investigate the logical relations that hold in the relative realizability topos;
however, this aspect of our work is only just beginning.

In Section 6 we define and study local triposes, which are triposes that model the modal
logic for computability. Any localic local map arises from a local tripos and any local
tripos gives rise to a local map of toposes.

Note that any local map also induces a closely related pair of adjoint operations on logi-
cal types (objects), in addition to the ones on formulas (subobjects) studied here, relating
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our work to (Benaissa et al., 1999; Benton, 1995). The idea of a modal “computability”
operator § is due to the senior author (January 1998) and was the original impetus for
this work, parts of which are from the second author’s doctoral thesis (Birkedal, 1999).
The final brief section of the paper spells out the intended interpretation of the §-calculus
in the relative realizability topos RT (A, Ay).

2. Realizability toposes for computability

Let (4,-,K,S) be a partial combinatory algebra (PCA); often we just denote it by its
underlying set A. The binary operator - is the (partial) application and combinators K
and S are taken to be part of the structure and not just required to exist.

Let Ay be a sub-PCA of A, that is Ay is a subset of A containing K and S and closed
under partial application. Intuitively, we are thinking of the realizers in A as “continuous”
realizers and of those in Ay as “computable” realizers. This intuition comes from the main
example, where A is PN, the graph model on the powerset of the natural numbers, and
Ay is RE, the recursively enumerable sub-graph-model. Note that the model PN has a
continuum of (countable) sub-PCA’s. As another example, one may consider Kleene’s
function realizability with A = NY and with Ay the set of total recursive functions. One
may also consider van Oosten’s combinatory algebra B for sequential computation and
its effective subalgebra B.g, see (van Oosten, 1999; Longley, 1998).

The PCA’s 4y and A give rise to two realizability toposes RT(4y) and RT(A) in
the standard way (Hyland et al., 1980). One may think of RT'(A) as a universe where
all objects and all maps are realized by continuous realizers. Likewise, RT'(4;) may be
thought of as a universe where all objects and all maps are realized by computable
realizers. Unfortunately, these two toposes are not very well related; in particular, it is
not clear how to talk about computable maps operating on continuous objects, which is
what one would like to do for the purposes of, e.g., computable analysis (Pour-El and
Richards, 1989). Thus, one is led to introduce another realizability topos, RT(4, 4;),
where, intuitively, equality on all objects is realized by continuous realizers and all maps
are realized by computable realizers.!

The topos RT(A, Ay) is constructed by modifying the underlying tripos for RT(A)
in the following way. The non-standard predicates ¢, 1 on a set I are still functions
I — P A into the powerset of A and the Heyting pre-algebra operations are the same as
in the tripos underlying RT'(A). The modification is in the definition of the entailment
relation: we say ¢ I 1) over I iff there is a realizer a in Ay (not just in A) such that for
alliin I, all b € (i), a - b is defined and a - b € (). In the terminology of Pitts (Pitts,
1981), we have changed the “designated truth values” to be those subsets of A which
have a non-empty intersection with Ay. Denote this new tripos by P : Set°® — Cat.
Then RT(A, Ay) is the topos Set[P] represented by P.

Explicitly, objects of RT(A, Ay) are pairs (X, ~x) with X asetand xx: XxX — PA

1 We first learned about the topos RT(A, Ay) from Thomas Streicher in February 1998, but the con-
struction has actually been known for a long time; see (Pitts, 1981, Page 15, item (ii)).
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a non-standard equality predicate with computable realizers for symmetry and transitiv-
ity. Morphisms from (X,~x) to (Y,~y) are equivalence classes of functional relations
F: X xY — P A with computable realizers proving that F is a functional relation. Two
such functional relations F" and G are equivalent iff there are computable realizers show-
ing them equivalent. We now see that intuitively, it makes sense to think of objects of
RT(A, Ay) as objects with continuous realizers for existence and equality elements, and
of morphisms f = [F] as computable maps, since the realizers for the functionality of F
are required to be computable.

3. Geometry of the realizability toposes for computability

Let Q: Set®® — Cat be the standard realizability tripos on Ay, i.e., the tripos underlying
RT(Ay). We now define three Set-indexed functors between Q and P:

A:Q—P and T:P—>Q and V:Q— P
These are defined as follows. Over a set I, we have
Ar(p: I = PA)GE) = 9(i)
Tip: I PAYQ) = AyNe()
Vi I PAYE) = Ugera (0A (41002 9@)),

where A and D are calculated as in P(1).

It is easy to see that Ay and I'y are well-defined functors; to show this for Vj suppose
that 7 l-? 9, where we write I—? for the ordering in Q(I). Then there is a realizer c € 4y
such that

ce ) (G >v¥'®).
icl
Let

d= Az (rz, \y. (7' (2) (y)))-
Then d € Ay (since ¢ € Ay) and it is easy to verify that

de () (V)& > V1)),
icl
as required.
Recall from (Hyland et al., 1980; Pitts, 1981) that a geometric morphism f from a
tripos P to a tripos () is a pair of indexed functors (f*, f.) with f* indexed left adjoint
to fi such that with f; is left exact, for all I in the base category.

Theorem 3.1. Under the foregoing definitions it follows that

— (A, T) is a geometric morphism of triposes from P to Q.
— (I, V) is a geometric morphism of triposes from Q to P.
—- For all I € Set, Ay and V; are both full and faithful.

Proof. 1t is easy to see that A is (indexed) left adjoint to I' using that Ay is closed
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under the partial application of A. Further, it is clear that A preserves finite limits and
is full and faithful since the ordering in P and @) are defined in the same way (requiring
computable realizers).

It remains to show that

eFP VY = Tp 9 o,

for all p € P(I) and all 9 € Q(I) (where, of course, ¥ is the ordering in P(I) and I—?
is the ordering in Q(I)). To this end, suppose ¢ Ff¥ V4, via a realizer ¢ € Ay. Let

d = dz. (c(z)) (7' (c(z))) € Ay

It is easy to verify that d is a a realizer for I'p I—? .
For the other direction, suppose d € Ay is a realizer for 'y I—? 1. Then

c=Az.(z, \y.d(y)) € Ay

is a realizer for ¢ F¥ V1.
Since A is full and faithful and since A 4T 4V, also V is full and faithful, completing
the proof of the theorem. ‘ 1

By Proposition 4.7 in (Pitts, 1981), these geometric morphisms lift to two geometric
morphisms between the toposes, as in

A
— T

RT(Ay) <—— RT(A,4;), AATHYV.
~— T
v

(Here we do not distinguish notationally between the functors at the tripos level and
at the topos level). In particular, A preserves finite limits. Moreover, A, V: RT(Ap) —
RT(A, Ay) are easily shown to also be both full and faithful. The resulting geometric mor-
phism (A,T): RT(A, Ay) — RT(A) is therefore a (connected) surjection, while the one
given by (I', V): RT(Ay) — RT(A, Ay) is an embedding. Note that ToV = 1=ToA. It
then follows by standard results that there is a Lawvere-Tierney topology j in RT(4, 4y)
such that RT(Ay) is equivalent to the category Sh;(RT'(A, Ay)) of j-sheaves. We remark
that one can show that in general the geometric morphism (A,T'): RT (A, Ay) — RT (4y)
is not open (Birkedal, 1999).

The following theorem was known to Martin Hyland but apparently has never been
published. We include a proof here.

Theorem 3.2. Let C be a finitely complete category and let P and Q be C-triposes.
Suppose f = (f*, fu) : P — Q is a geometric morphism of triposes. Then C[P] is localic
over C[Q] via the induced geometric morphism f = (f*, f.): C[P] — C[Q].

Proof. We want to prove that C[P] is equivalent to the category of C[Q]-valued sheaves
on the internal locale f.(Q¢ipy) in C[Q], where Qgp is the subobject classifier in C[P).
As usual (Johnstone, 1977) it suffices to show that, for all X € C[P], there exists a
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Y € C[Q] and a diagram

S>—>f*Y

i

X

in C[P] presenting X as a subquotient of f*Y for Y an object of Cl@). Write Vp: C —
C[P] for the functor I ~ (1,3, (T)), where &;: I = I x I is the diagonal map (the
“constant objects functor” (Pitts, 1981)).

By a familiar property of realizability toposes, we have that for all X € C[P], there
exists an object I € C and a diagram

S VP(I) = (I7351(T))
ey
X

in C[P] presenting X as a subquotient of a constant object Vp(I). Now since f* is the
inverse image of a geometric morphism of triposes, f* preserves existential quantification
(as an indexed left adjoint), so f*(Vq(I)) = V p(I), and the diagram in (1) is the required
diagram. l

We summarize the consequences of Theorems 3.1 and 3.2 in the following:

Corollary 3.3. RT (4, Ay) is localic over RT(Ay) via the geometric morphism (A,T) :
RT(A, Ay) — RT(Ay), which is a localic local map of toposes, since T has a right adjoint
V, for whichT oV 22 1.

Local maps have been studied by (Johnstone and Moerdijk, 1989), and provide an in-
stance of what Lawvere (Lawvere, 1991; Lawvere, 1989) has called unity and identity of
opposites. The idea is that the full subcategories A(RT'(4y)) and V(RT(4;)) are each
equivalent to RT(Ay), and yet are “opposite” in the sense of being coreflective and re-
flective, respectively, in RT(A, 4y). We think of the objects in V(RT(4;)) as sheaves,
and here we think of those in A(RT(4y)) as “computable”.

Examples of local maps in addition to the basic ones mentioned in (Johnstone and
Moerdijk, 1989) include the following:

(1) Let RT(A) be a realizability topos, and let i: C4 — RT'(A) be a full subcategory
of partitioned assemblies of suitably large, bounded cardinality, so that C4 is a small
generating subcategory of projectives. The covering families in C4 are to be those which
are epimorphic in RT'(A). Then the Grothendieck topos Sh(Ca) is local; let us write its
structure maps as A’ 41" 4 V': Set — Sh(C, ). There is a restricted Yoneda embedding,

Y = RT(A)(i(-),~): RT(4) - Sh(Cy),
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for which the diagram below commutes, in the sense that T = oY, V/ &Y o V.

I‘vl
£« U Y
Set RT(A) ——— Sh(C,4)
v
VI

Thus we can regard I': RT'(A) — Set as what would be the direct image of a local map,
if only RT'(A) had enough colimits.

(2) Let C be a small category with finite limits and i: DC—C a full subcategory,
closed under the same. The geometric morphism € — D with direct image the restriction
i* along i is then a local map. The image of D under the full embedding 4, (where 4 + ¢*)
then consists of those presheaves P on C for which

PC = colim PD.
D,h:C—D

These are the objects that we are interested in as candidates for being “computable”,
when I represents the computable subcategory. They are the ones termed “discrete” in
the sequel.

Regarding the choice of terminology, we use the term “discrete” by analogy to topo-
logical examples. We would have liked to call these objects “cosheaves” since they are
the objects that are coorthogonal to the morphisms inverted by a, and sheaves are those
that are orthogonal. However, “cosheaf” has already been used to describe something
else, namely a “covariant sheaf”.

4. Axioms for localic local maps

In this section we present a set of axioms for localic local maps. The axioms are sound and
complete, in the sense that whenever a given topos satisfies the axioms then it gives rise to
a localic local map of toposes and, moreover, any localic local map of toposes satisfies the
axioms. See (Awodey and Birkedal, 1999; Birkedal, 1999) for more information about the
abstract axiomatization of (not only localic but also more general bounded) local maps.
Here we just recall the definitions and results needed in the following to describe a.modal
logic for computability. First we need a couple of definitions.

For the remainder of this section let £ be an elementary topos and j a Lawvere-Tierney
topology in £. We write V — V for the associated closure operation on subob jects
V — X. We say that j is principal if, for all X € £, the closure operation on Sub(X)

has a left adjoint U l—)LO/' , called interior, that is,
USV <= UV i Sub(X).

The interior operation is not assumed to be natural; that is, it is not assumed to commute
with pullbacks. It follows that in general the interior operation is not induced by an
internal map on the subobject classifier Q in the £, and in that sense is not a logical
operation (in the internal logic of £). ’
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The interior operation extends to a functor £ — &, since, whenever f: X — Y, we
have )%5 f*(}g). We say that an object X € £ is open if )%E X. An object is open iff
the interior of its diagonal equals its diagonal. An object C € £ is called discrete if it
is coorthogonal to all morphisms inverted by the associated sheaf functor a; that is, C
is discrete if for all e: X — Y such that a(e) is an isomorphism, for all f: C — Y, there
exists a unique f': C = X such that

commutes.

Recall, e.g., from (Johnstone, 1977), that a sheaf can be characterized as an object
which is orthogonal to all morphisms inverted by a, and that it suffices to test orthogonal-
ity just with respect to the dense monomorphisms. For discrete objects there is a similar
simplification: an object is discrete iff it is coorthogonal to all codense epimorphismes,
where an epimorphism e: X —» Y is codense iff the interior of its kernel is included in
the diagonal of X. We write D;& for the full subcategory of £ on the discrete objects.

Now we propose the following axioms for a localic local map on a topos £ with
topology j.

Axiom 1. The topology j is principal.
Axiom 2. For all X € £, there exists a discrete object C and a diagram

8§ >

!

X

in £, presenting X as a subquotient of C.
Axiom 3. For all discrete C € &£, if X »— (' is open, then X is also discrete.
Axiom 4. For all discrete C,C’ € £, the product C x ¢’ is again discrete.
Let £ be a topos with a topology j satisfying the Axioms 1-4 for localic local maps. We
can then prove (Awodey and Birkedal, 1999; Birkedal, 1999):

Theorem 4.1. The category of discrete objects D;£ is coreflective in £, that is, the
inclusion A: D;EC——& has a right adjoint. Moreover, D;£ is a topos, A is left exact,
and (A,T): £ = D;€ is a localic local map.

Corollary 4.2. For any discrete C,C’ € € and any f: C' = C, and all open subobjects
U »— C, the pullback C' x¢ U indicated in:

c’ Xo —[

-

¢ —C
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is open.

Theorem 4.3. Every localic local map of toposes satisfies Axioms 1-4 for localic local
maps.

Proof. See (Awodey and Birkedal, 1999; Birkedal, 1999). |

5. A modal logic for computability

Let € be a topos with a topology 7 satisfying the axioms set out in the previous section.
In this section our goal is to describe a logic with which one can reason about both of the
two toposes £ and D;€. This will then apply to RT(4, 4y) and RT(Ay), see Section 7.

As a first attempt, one may consider the ordinary internal logic of £ extended with a
closure operator induced by the topology j and try to extend it further with a logical
operator corresponding to the interior operation. But since interior does not commute
with pullback in general, it is not a logical operation on all subobjects of objects of
&. However, since the interior of an object' X is the least dense subobject of X, one
may instead add a new atomic predicate Ux for each type X and write down axioms
expressing that it is the least dense subobject. This is straightforward. But, as yet, we
do not have a convenient internal logical characterization in these terms of the discrete
objects.

Instead we shall describe another approach where types and terms are objects and

morphisms of D;€ and predicates are all the predicates in £ on objects from D;£. More
Pred

precisely, we consider the internal logic of the fibration | obtained by change-of-base
D,&

as indicated in:

P]'eﬂ——> Su](é’)

Thus a predicate on an object X € D;£ is a subobject of AX in £. Since

Subg(AX) = E(AX, Q) 2 D;E(X,TQ), (2)
Pred

the internal locale I'Ql¢ is a generic object for the fibration | . Hence this internal logic
D;E

is many-sorted higher-order intuitionistic logic.
Note that, since £ is localic over D;£, we can completely describe £ in this internal logic
in the standard way (Fourman and Scott, 1979) as partial equivalence relations and func-

tional relations between such. In other words, applying the tripos-to-topos construction
Pred
to the tripos | results in a topos equivalent to &.
D;€
By Corollary 4.2, the interior operation is a logical operation on predicates; we denote it

by §. Note that the ordinary logic of D;€ is obtained by restricting attention to predicates
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of the form # — in fact it suffices to restrict attention to predicates with a § in front of
every D and V subformula. The topology 7 in £ induces a closure operator, which we are
pleased to denote b, on predicates in this internal logic.

We now describe how the {§ and b operations can be axiomatized. Logical entailment
is written IT' | I 4, where I is a context of the form z;: o1,... ,2,: 0, giving types o;
to variables z;, and where ¢ and v are formulas with free variables in I". There are the
usual rules of many-sorted higher-order intuitionistic logic plus the following axioms and
rules:

— (3 — 4
I‘Iﬂw'-so() F|ﬂ<p'-ﬁﬁso()
—(5) (6)
DT E(T) T | fo A (o Ae)
I'fpFy : (8

Tloros ) zoyolz=yriE=y)

One can then show that f| has the formal properties of the box operator in the modal
logic S4, i.e., for formulas ¢ and ¢ in context I':

Fip D
Fi(e D) D (e D #)
F e D ile
and
Feo
F o

We therefore refer to this logic as a modal logic for computability.
We remark that the following principles of inference for quantifiers can be derived from

(3)-(8):

(9)

T|TFiVe:X. o

= (10)
T|THVYZ:X. $p

(11)
T3z X. ¢ 4 Fo:X. o

One can also show that, for any formula ¢ in context T,
§(te D ) - to D . (12)
Quite generally, the modal logic of any local map of toposes
I':&—>F, AAT 4V

can be used to compare the internal logic of £ with that of F, since the types are then
the discrete objects F in £, i.e., those for which E = AT'E, and

Subr(T'E) = OpenSubs (E),
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where OpenSubg(E) C Subg(E) is the subposet of open subobjects of E in £. Observe,
e.g., that the natural numbers object N is among the discrete objects, and that the
identity relation on any discrete object is open.

We now describe two example applications of the modal logic.

(1) As in (Awodey and Birkedal, 1999) call a formula ¥ stable if it is built up from
atomic predicates (including equations) and first-order logic and if for every subformula,
of the form ¢ O o, the formula ¢ has no V or D. For any sentence ¥, we write F = ¥ to
mean that ¥ holds in the standard internal logic of F with basic types o interpreted by
objects X, of F and atomic formulas R on type o interpreted as subobjects Sg = X,.
We then write £ F 4 to mean that o holds in the standard logic of £ with basic types ¢
interpreted by objects AX, and atomic formulas R interpreted by ASg — AX,.

Proposition §.1. For any stable sentence 19,
FEY iff EED.

Proof Sketch There are the interpretations [—]# and [—]¢ for which one shows by
induction that for any stable formula ¥

ALl = [19]e,

using the fact that I' preserves V along maps between discrete objects. Thus for any
stable sentence :
FEY iff 1=[]r
iff 1=A1=A[dr=[89]¢
iff EE#Y
iff £E4.

a

The proposition can be used to show that, e.g., if F has choice for functions from N to
N in the external sense, then so does £. Indeed, let R by any relation (not necessarily
open) on N in £ and suppose that

& EVn:N.3m:N. R(n,m).
Then we reason informally as follows

€ EVn:N.Im:N. R(n,m)

€ EiVn:N.3m:N. R(n,m) by (9)

£ EVn:N.§3m:N. R(n,m) by (10)

£ FVn:N.Im:N.§R(n,m) by (11)

F EVn:N.3m:N.§R(n,m) by stability

F EVn:N.AR(n, f(n)) for some f: N - N by ACin F
E EVn:N.4R(n, f(n)) by stability
E EVn:N. R(n, f(n)) by (3)

(2) As in (Birkedal, 1999), we show that if the topos of discrete objects satisfies the
arithmetic form of Church’s Thesis (in the sense of, e.g., (Troelstra and van Dalen, 1988;
Troelstra, 1973)), then a #’ed version is satisfied by &.
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Observe that £ has a natural numbers object if and only if D;£ does, because both
A:D;€ = £ and T': £ — D;E& are inverse images of geometric morphisms, which preserve
the natural numbers object (Johnstone, 1977, Proposition 6.12). Let N be a natural
numbers object in D;€£.

Recall from Kleene’s Normal Form Theorem that the basic predicates of recursion
theory can be defined from Kleene’s T-predicate and output function U: N — N, see,
e.g., (Troelstra and van Dalen, 1988). The predicates T — N x N X N and U(=) = (=)
are both primitive recursive. Hence their interpretation is preserved by the inclusion
D;E——E& (see (Birkedal, 1999) for a detailed argument).

Recall from (Troelstra and van Dalen, 1988, Section 4.3), that the arithmetical form
of Church’s Thesis is the schema

CTy Vn. 3m. o(n,m) D Ik.Vn.Im. (cp(n, Um) A T(k,n,m)),

where all the variables range over the type of natural numbers N and where ¢ is a formula.
For a first-order formula ¢, we denote by || the formula which is like ¢ except that
there is a § in front of every V and D subformula.

Proposition 5.2. Let ¢ be a formula and suppose that the ¢ instance of CTy holds in

SubD; & Pred
1 . Then the following formula holds in | :
D; & D; &
#(vn. Im. || (n,m)) D Fk. Vn. 3Im. (|| (n, Um) A T (k,n,m)).

Pred
Proof. By the fact that D;€ F ¢ iff |p] holdsin | we get that
D;€

§(vn. 3Im. |¢|(n,m)) D k. §¥n. Im. (|lo|(n, Um) A T (k,n,m))

Pred
holds in | . The required then follows by the modal logic using (11) and (12). (I

D;E
Thus, in particular, if all geometric instances (i.e., with ¢ built up using only atomic
relations, and T, A, L, V, 3) of CTy hold in D;E&, then all geometric instances of

CTg $(¥n. Im. p(n,m)) O Ik.Vn.Im. (p(n, Um) A T'(k,n,m))

Pred
holdin | .
D; &

6. Local Triposes

In this section we introduce the notion of a local tripos, assuming familiarity with the

basic theory of triposes as set out in (Pitts, 1981).
Pred
The model of the modal logic for computability given by the fibration | defined
D; €&
above is in fact a tripos, namely the standard tripos on the internal locale I'Q¢, see (2)
above. Indeed, we can give the following general definition.
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Definition 6.1. Let P = F(—, ) be a canonically-presented tripos on an object ¥ in a
topos F. The tripos P is said to be local if it comes together with maps I, J: ¥ — ¥ in
F satisfying:

1 p:¥|Ipkp

2 p:X|Ipkllp

3 Q| THI(M

4 p,q:X|IpAIgkI(pAgq)

5
p,q: X |Iptq
p,g:X|pk Jg

all in the logic of P.

The axioms and rules that have to hold for I and J are of course just as for § and b in
the modal logic for local maps in Section 5.5 In other words, a local tripos models the
modal logic for local maps. The following proposition is clear:

Proposition 6.2. Let P = F(—,X) be a local tripos qua I,J: ¥ — . Then J is a
Lawvere-Tierney topology on P (as defined in (Pitts, 1981)).

Let P = F(—,X%) be a local F-tripos qua I,J: £ — X. We define a new canonically
presented F-tripos Py as follows (in the following we prove that Pr so defined indeed is
a tripos). Let I3 be the image of I in F. Tripos Py is canonically presented on IX. The
ordering is defined as in P, that is, for ¢, € F(X,IX) (Pr’s fibre over X € F), we have
@ FP1 o iff o FP 9.

Since J is a topology by Proposition 6.2 we have a well-defined F-tripos Py as in (Pitts,
1981, Chapter 5). We recall that Py is canonically presented on ¥ and that entailment
is defined as ¢ F7 o iff p FP Jop.

It is easy to verify that composing with I: ¥ — ¥ gives an indexed functor, also
denoted I, from P; to P over F. Likewise, composing with J: ¥ — ¥ gives a fibred
functor, also denoted J, from P; to Py over F.

Lemma 6.3. Functor I is a fibred left adjoint to J and the triposes P; and P; are
equivalent, as indexed categories over I, via the functors I and J.

Proof. Straightforward. l

By the lemma it follows that Py has all the first-order structure required in the definition
of a tripos (since it is defined categorically and thus preserved by equivalence functors).
It is clear that id: IX — IX is a generic object for P; and thus Py is indeed a tripos as
claimed.

§ The only exception is that we in the definition of local tripos have left out the rule for equality - the
rule for equality follows since equality in a tripos is given using existential quantification and truth T
and I commutes with existential quantification as a left adjoint and with T by item (3).
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Theorem 6.4. Let P = F(—,X) be a local F-tripos qua I,J: ¥ — ¥. Then P gives
rise to a localic local map of toposes from F[P] to F[Py].

Proof. We define three indexed functors over F, as in

A
T T

Pr<—-—r P AAIAJ

J

Functor A is simply the inclusion functor. Functor I is induced by composing with
I:¥ — ¥ and functor J is induced by composing with J: £ — 3. It is easy to see that
all three functors are indexed, since P and Py are canonically presented, and that A is
left adjoint to I and that [ is left adjoint to J. The functor A is left exact since IY is
closed under finite limits in ¥ by items (3) and (4) in the definition of a local tripos.
Hence (A, I) is a geometric morphism of triposes, as is also (I, J). Functor A is clearly
full and faithful and thus also J is full and faithful (it is also straightforward to verify
directly that J is full and faithful).

It follows now, in the same way as in Section 3, that the geometric morphism from
F[P] to F[Q] induced by (A, I) is a localic local map. 1

Conversely, one can easily see:

Theorem 6.5. Every localic local map of toposes arises from a local tripos (in the way
given by the proof of Theorem 6.4).

Example 6.6. The relative realizability tripos P from Section 2 is a local tripos. The
maps [ and J are given by AT and VT respectively, see Section 3.

In this realizability example, the topos £ is the topos RT (4y) and the topos D;£ is the
topos RT (A, Ay): Note that if we were just given the topos RT (4y) with the internal
locale I'Qgr (4,4y) = (PA,~) with (p = q) = (p 3C q) N 4y, it would be quite hard
to recognize the canonical tripos on this locale as being local, because it is complicated
to calculate with internal adjoints etc. in RT (4y). That is one reason why it can be
advantageous to describe a localic local map of toposes via a local tripos (rather than
just in terms of internal locale theory).

Example 6.7 (Extensional Realizability). Let A be a PCA and let P be the standard
Set-realizability tripos over A. Let PER(A) denote the category of partial equivalence
relations over A. Define a tripos R over Set by taking predicates over sets I to be elements
of PER(A)’, that is, I-indexed families of PER’s. For two such families ¢ and 1, we
define the ordering over I to be ¢ I ¢ iff there is an @ € A such that, foralli € I ,aisin
the domain of the PER (i)¥() (the exponential in the category of PER’s). See (Pitts,
1981, Section 1.6) and (van Oosten, 1997) for more details. Then the tripos R is local
over P, since the forgetful functor mapping a PER to its domain has both left and right
(fibred) full and faithful adjoints. Over 1, the left adjoint maps a subset of 4 to the
discrete PER on the subset and the right adjoint maps a subset of 4 to the PER with
only one equivalence class. See (Pitts, 1981, Example 4.9(iii)) and (van Oosten, 1997) for
more details. We denote the topos resulting from the tripos R by Ext(A).
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This example is special in the sense that the inclusion of RT (4) into Ext(4) is an
open inclusion by Proposition 3.6 of (van Oosten, 1997). That means that the principal
topology j in Ext(A4), for which RT (A) is equivalent to the category of sheaves, is of the
form j = (u D —) for some u: 1 — Q. As a consequence, j has an internal left adjoint,
namely (u x —): @ — Q. This left adjoint induces the interior operation in Ext(A4), so
the interior operation does commute with pullback in this example.

7. Interpretation of the modal logic in RT(4;) and RT(4, 4))

Finally, we briefly describe in concrete terms how the modal logic for computability is
interpreted in RT(4y) and RT(A, 4y).

Types and terms are interpreted by objects and morphisms of RT(Ay) in the standard
way. A predicate ¢ on an type (X,~x) € RT(4y) is an equivalence class of a strict,
extensional relation in P(X x X) (recall P is the tripos underlying RT(4, 4;)), that
is, ¢ is an equivalence class of set-theoretic functions X x X — P A which are strict
and extensional via computable realizers, two such functions being equivalent 1ﬂ' they are

- isomorphic as objects of P(X x X).
On such a predicate ¢ on an object (X, ), i is just  — @(z) N Ay and by is

s | @A @04 D pz) N 4y)).
wEPA

Thus we can think of f as ¢ being computably true, i.e., realized via computable
realizers.

Objects of RT'(A, Ay) are then described as pairs (X, ~), ¢) with (X,~) € RT(Ay) and
¢ a partial equivalence in Pred on (X, ~) X (X, ~). Likewise, morphisms are described
as functional relations in the standard way.

In this realizability model, we have the following further principle for #:

because the types are the objects of RT(A4y). From this it follows that
L e

which accords with the intuition that double-negation closed formulas have no compu-
tational content.

Note also that since I': RT(4y) — Set has a right adjoint, the same is true for the
global sections functor I': RT(A, Ay) — Set. Thus in RT(4, 4y) too, 1 is indecomposable
and projective; so RT'(A, Ay) has the logical disjunction and existence properties.

Example 7.1. Let A = PN be the graph model and let Ay = RE be the recursively enu-
merable sub-graph-madel. The arithmetical form of Church’s Thesis holds in BT (RE),
but not in RT (PN) (since arithmetic in RT (PN) is classical). Since there is a logical
functor from RT (A4, Ay) = RT (PN, RE) to RT (A) = RT (PN), see (Birkedal, 1999),
Church’s Thesis does not hold in RT (4, 4;) = RT (PN, RE) either. However, using the
modal logic for computability, we can express that a form of Church’s Thesis does hold
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in RT (PN, RE): by Proposition 5.2, for every arithmetical formula ©,
$(vn. Im. |¢|(n,m)) D Fk.Vn. Im. (lel(n,Um) A T(k, n,m))
holds in the modal logic.

More information about the relative realizability topos RT (4, Ay) can be found in the
second author’s PhD-thesis (Birkedal, 1999).
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