Carnegie Mellon University

Research Showcase @ CMU

Department of Psychology Dietrich College of Humanities and Social Sciences

11-18-2008

A Connectionist Implementation of the ACT-R
Production System

Christian Lebiere
Carnegie Mellon University

John R. Anderson
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/psychology

Recommended Citation
Lebiere, Christian and Anderson, John R., "A Connectionist Implementation of the ACT-R Production System" (2008). Department of

Psychology. Paper 33.
http://repository.cmu.edu/psychology/33

This Conference Proceeding is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research
Showcase @ CMU. It has been accepted for inclusion in Department of Psychology by an authorized administrator of Research Showcase @ CMU. For

more information, please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fpsychology%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/psychology?utm_source=repository.cmu.edu%2Fpsychology%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hss?utm_source=repository.cmu.edu%2Fpsychology%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/psychology?utm_source=repository.cmu.edu%2Fpsychology%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/psychology/33?utm_source=repository.cmu.edu%2Fpsychology%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

A Connectionist Implementation of the ACT-R Production System

Christian Lebiére & John R. Anderson
Department of Psychology

Carnegie-Mellon University
Pittsburgh, PA 15213

cl+@cmu.edu, jals+@andrew.cmu.edu

Abstract!

This paper describes a connectionist
implementation of the ACT-R production
system. Declarative knowledge is stored as
chunks in separate associative memories for
each type. Procedural knowledge consists of
the pattern of connections between the type
memories and a central memory holding the
current goal. ACT-R concepts such as adaptive
learning and activation-based retrieval and
matching naturally map into connectionist
concepts. The implementation also provides a
more precise interpretation for issues in ACT-R
such as time of memory retrieval and
production firing, retrieval errors and partial
matching. Finally, the implementation
suggests limitations on production rule structure.

Introduction

Anderson (1993) describes a production system
model of cognition called ACT-R. ACT-R, as its
predecessor ACT* (Anderson, 1983) involves a
distinction between declarative memory
(defined by elements called chunks) and
procedural memory (defined by productions), a
goal structure for coordinating productions, an
activation-based retrieval system, and a
scheme for learning new productions. ACT-R
differs from ACT* in that both its principles for
activation computation and for conflict

IThis research was supported by ONR grant
number N00014-90-}-1489,

635

resolution have been explicitly guided by the
rational analysis of cognition (Anderson, 1990).
It also differs in that it is a fully implemented
computer simulation.

As ACT*, ACT-R claims to be a theory of both
the symbolic level of cognition and of a neural-
like implementation of that symbolic level.
While there are some things with clear neural
interpretation, such as the activation-based
computation, the claim of neural
implementation is more promissory than real.
We have now begun what would be involved in
developing a detailed connectionist
implementation of the ACT-R theory.

The system we describe here can be viewed as
one of a number of new hybrid models that have
been described which involve both
connectionist and symbolic components. These
systems have attempted to combine the
modularity and generality of symbolic systems
with the generalization capabilities and
homogeneity of representation and learning of
neural networks. There have been a number of
attempts to specifically implement production
systems in connectionist terms (e.g. Touretzky &
Hinton, 1988; Dolan & Smolensky, 1989).
These have Dbasically started with
connectionist principles and tried to derive
symbolic capabilities. Our attempt is different
in that we are starting with an existing
symbolic system (with a great many
correspondences established with behavioral
data) and exploring how it might be
implemented.

We do not expect that ACT-R will remain
totally unchanged in this effort. We have
already found some aspects of the ACT-R
theory which are both unnecessary and

difficult to translate. In general one might say
that the ACT-R theory has too many degrees of
freedom, and one consequence of this effort will
be a reduced and more constrained version of
that theory.

It is also the case that the ACT-R theory
lacks an adequate theory of partial matching
and so has difficulty in emulating certain
aspects of human behavior, particularly those
concerned with slips that involve errors of
commission. Partial matching is something
that connectionist networks do particularly
well.

The system which we are building is
tentatively called ACT-RN, for ACT-R in a
Neural network. We will describe in this
paper its current state of development. In
summary, the motivations for developing ACT-
RN are to increase the plausibility of ACT-R
by showing how it might be mapped in detail
onto a neural implementation, to explore how
connectionist systems can achieve symbolic
capabilities, to find further constraints on ACT-
R, and to provide ACT-R with a theory of
partial matching.

Declarative Memory

The fundamental distinction in ACT-R is
between declarative and procedural
knowledge. Declarative knowledge is
represented by means of structures called
chunks. A chunk consists of a unique identifier,
together with a number of slots each containing
a value, which can be either another chunk, or
an external object or a list. Since the power and
generality of list structures and Lisp functions
might be excessive, and for the sake of
simplicity and uniformity, in ACT-RN we will
constrain the slot values to be chunks.

Each chunk is of a particular type. A typeis
defined by its name and list of slots. Whereas
in ACT-R all chunks were stored in a common
declarative memory, for a number of reasons we
decided here to define a separate memory for
each type.

The first considerations regard neural network
capacity. It is widely believed that the
capacity of associative memories grows
linearly with their size. (Hopfield, 1982) If
full connectivity is used, however, the number
of connections grows with the square of the

636

3
%
m chunks

000] |
-

4 QN

000 000] [000[1000

header 5
»
Figure 1: Type Memaories

number of units. By breaking up declarative
memory into type memories, we preserve
capacity while considerably decreasing the
number of connections necessary. Separate type
memories can also learn better the
representational structure of each chunk type
without being perturbed by the other types.
Finally, since various types have different
numbers of slots and therefore different lengths,
having separate memories for each type
improves memory efficiency.

An associative memory for chunks should,
given a chunk name or some slot values, retrieve
the corresponding chunk. To implement
associative memories, we use a simplified
version of real-valued Hopfield networks
(Hopfield, 1984). Each slot as well as the
chunk name is represented by a pool of units.
The unit pool for the chunk name is called the
header. Instead of having complete
connectivity between all pools, the slots are
only connected to the header and vice versa.
Therefore retrieval works not by energy
minimization on a recurrent network but
through a forward-backward mapping
mechanism (Figure 1). First, the slot values are
mapped to the header units to retrieve the
chunk identifier which most closely matches
these contents (1). Ther, the header is mapped
back to the slots to fill the remaining values
(5). If the header is specified then step (1) is
omitted.

To insure optimal retrieval, we found it
necessary to "clean"” the header. This can be
achieved in a number of ways. One would be to

]

implement the header itself as an associative
memory. We have chosen instead to connect the
header to a pool of units in which each unit
represents a chunk (2). The connections between
the header and a particular unit are set to that
unit's representation. By assembling these units
in a winner-take-all network (3), the chunk
with the representation closest to the retrieved
header ultimately wins. That chunk's
representation is then copied back to the
header (4). We also use that mechanism to
output to the user the name of the chunk which
has been retrieved. A similar mechanism is
described in (Dolan & Smolensky, 1989). The
initial activation level of the winning chunk is
related to the number of iterations needed to
find a clear winner. This maps onto retrieval
time in ACT-R.

Currently, only external events can modify or
create memory chunks. This is a substantial
difference from ACT-R where productions can
directly change declarative memory. So far,
we have not found this restriction to be
seriously limitative. Every time a new chunk is
created, a new representation appears in the
header pool, and a new unit is initialized in
the localist network with the proper
connections. Hebbian learning is then used to
add the correlation between header units and
slot units to the connections between header and
siots. If chunk r‘epresentations are orthogonal,
such one-time learning should be sufficient.
(Hinton & Anderson, 1981) A special case of
orthogonal representations which are
particularly easy to generate ar€ localist
representations. If rather than using
orthogonal representations we use random
representations we will get interference
between representations that decreases with
the size of the representation.

The other possibility is to allow
representations to be correlated to the extent
they are similar, This would both increase
interference and promote generalization. To
learn this type of representation, an iterative
supervised learning algorithm such as the
Delta Rule (Rumelhart & McClelland, 1986} is
necessary.

For those chunks which we regard as symbolic
we use either random or orthogonal
representations for their identifiers. For those
chunks which we regard as analog we encode
their similarity in the patterns of correlations
among their identifiers. For instance, in the

637

addition model described below, we have
symbolic chunks representing the addition
columns but we specify for the integers and the
addition facts a representation encoding their
magnitude. That allows the addition table to
be represented compactly and to generalize
well. We will refer to such representations as
semantic,

Procedural Memory

ACT-R is a goal-oriented system. To implement
this in ACT-RN we have created a central
memory, which at all times contains the current
goal (Figure 2), with connections to and from
each type memory. With this system we can
implement productions which retrieve
information from a type memory and deposit it
in central memory. Such a production might
retrieve from an addition table the sum of two
digits held in central memory. For example,
given the goal of adding 2 and 3, a production
would copy to the addition-fact type memory
the chunks 2 and 3 in the proper slots, let the
memory retrieve the sum (5} and then transfer
that chunk to the appropriate goal slot.

This central memory system allows all

stack O O O O
result
O O]
|00 O O
gates

type memorie

OO0 000

Figure 2: Procedural Memory

memory types to communicate with each other
with a cost in connections that is linear in the
number of types rather than the square of the
number of types. These connections can be set by
a production compiler and/or learned with a
Hebbian learning method similar to the one for
declarative knowledge, to record the patterns
of transfer between central memory and type
memories.

To provide a degree of control over production
firing, we need a way to decide not only what
gets transferred where, but also when. That is
the role of the production evaluation and
selecHon mechanism in ACT-R. In ACT-RN,
that task is achieved by gating units. Each unit
stands for a particular production and has
incoming connections from central memory
which reflect the constraints on the left-hand
side of that production. For example, if goal
slot S is required to have as value chunk C in
production P, then the connections between 5
and the gating unit for P will be the
representation for C, with an appropriate
threshold. At each epoch, all the gating units
are activated by the current state of central
memory, and a winner-take-all competition
selects the winner. Again, the relative
activation of the gating units determines the
number of iterations, which can be used as a
measure of production selection time.

Connections between central and type
memories describe the patterns of transfer to
and from central memnory. The winning gating
unit is used to select which of these connections
are used by that production. Each gating unit is
restricted to a particular type memory, which
is necessary to limit the number of gating
connections for each production to a constant
independent of the number of type memories.
That leaves two fundamental production types:

I I
p lookupfact p loadnewgoal

goal goal
fact o

==> newgoal
goal’

Type I looks up some fact and copies sormne slot
value(s) {or header) back into the goal. Type I
changes the goal to a new goal. That new goal
is a chunk that is retrieved from one of the type
memories. These severe limitations over the
unlimited complexity of ACT-R productions do

638

not appear to limit the expressive power of the
language, but serve to make more explicit the
cognitive steps involved.

Goal Stack

An important feature for the usability of ACT-
R is its goal stack. Although such a feature
could be left to the user to implement using a
type memory, its importance and specificity
warrants a special mechanism. This matches
its special treatment in ACT-R.

The goal stack is implemented in ACT-RN by
using a dedicated type memory. Both new goal
G and parent goal PG are represented among the
slots. The header representation is chosen at
random. To push the new subgoal, both G and
PG are copied in the appropriate slots, and the
correlation is memorized. When G is to be
popped, it is copied to the stack memory and PG
is retrieved, then restored back to central
memory. The association between G and PG is
erased from the stack memory through explicit
unlearning. Weight decay would be a less exact
but perhaps more psychologically plausible
technique to accomplish this.

We have made one modification to how ACT-
R handles goals: We have added a mechanism
to ACT-RN to return a result from a subgoal to
its parent goal. We have long felt that the
inability to do this led to rather awkward
production rules in past ACT theories. In
addition, this facility avoids a problem that
would otherwise arise in ACT-RN: When the
goal has been restored to its previous value, the
production which initially pushed the subgoal
would fire again and the system is caught in a
loop. The appearance of the result value
changes the goal and so naturally prevents the
old production from firing.

That goal stack mechanism has been added in
ACT-RN by introducing two commands. The
push command specifies a slot of the parent
goal in which the result returned by the subgoal
is to be copied. The pop command in turn
specifies a value (chunk) to be returned when
the subgoal is popped. That value is copied to
a result memory, which is then restored in the
proper goal slot after popping. These
commands modify the second production type
given above to add the push command and
introduce a third type for the pop command:

0 IT1

p pushgoal p popgoal
goal goal
31 ==
f push goalslot | pop value
subgoal

Application

In Table 1 is the ACT-RN code to solve the
multicolumn addition problem. This production
system was adapted for ACT-RN from the
ACT-R production system published in
Anderson (1993). It involves one significant
representational change which is that two
digit numbers like 12 are represented as a 1 in
the tens column and a 2 in the units column
rather than as an unanalyzed chunk. This
change, which we think is a step in the
direction of psychological plausibility,
eliminated the need for two productions in the
original set that extracted the ones digit from
the multidigit number. On the other hand it
requires a special production for carry when a
nine is present. This model has therefore four
productions instead of five.

In addition to the production rules we have
given fragments of the code to set the system up
to give a little of the flavor of what it is like to
write code in ACT-RN. All the commands are,
except for a few modifications, identical to
ACT-R's. WMEType declares a type by
specifying its name and list of slots. Types used
here are symbol (todo), number-integer,
addition-fact and column. AddWM adds a
list of chunks to declarative memory. Each
chunk is defined by its name, type, value for
(some of) its slots, and possibly the
representation option to specify which memory
representation is to be used for that chunk. To
keep the network small and improve
generalization, we have used semantic rather
than orthogonal or random representations for
the integers and addition facts. This
representation works because it reflects the
semantics of the numbers and addition facts.

The goal is always the column to be processed.
The production add performs the addition of
the two numbers =top and =bottom by
retrieving the relevant addition fact, then

639

Table 1: Multicolumn Addition Code

;; Type declarations

(WMEType column top bottom
answer carry status next)

;; Working Memory definitions
(AddWM

{two isa number-integer
representation (+ + (-)))

{twothree isa addition-fact
addend1 two addend? three
sumtens zero sumunits five
representation (+ + + + + (-)))

{column1 isa column
top two bottom three
carry zero status todo
next column?2)...)

5 Productons

(p add {(p cancel
=goal =goal

isa column isa column
top =top top =top
bottom =bottom top (- nine)
Carry zero carry one
status todo status todo
=fact =fact

isa addition-fact
addend] =top
addend? =bottom
sumitens =tens
sumunits =units

isa addition-fact
addend1 =top
addend2 one
SumMunits =units
"

= =goal
=goal isa column
isa column top =units
answer =units carry zero)
carry =f{ens
status (- todo)) (p nine-carry
=goal
isa column
top nine
(p next bottormn =bottom
=goal carry one
isa column status todo
status (- todo) ==
carry =carry =goal
next =next isa column
= top zero
=next answer =bottom
isa column carry one
carry =carry) status (- todo))

copying the answer, in the form of a units digit
=units and a tens digit =tens , into the answer
sfot and the carry slot respectively, then
marking the column as solved. The production
next focuses on the next column by retrieving it
from memory and copying the carry into it.

The production add has a condition requiring
the carry to be zero before performing the
addition. Should the carry be one , the
production cancel will first add it to the top
number =top by retrieving the sum of =iop and
one and copying it back and zeroing the carry,
therefore enabling the add production to fire.
The special case when the top number is nine
and a carry is present has to be handled by the
production mine-carry .

We also converted into ACT-RN the model for
the Tower of Hanoi problem. The initial ACT-
R solution (Anderson, 1993) had only three
large productions where the processing
complexity lay in complex matches involving
list matching and negation clauses. In contrast,
the ACT-RN model has to decompose these
productions into basic cognitive steps, which
result in a total of 17 productions. Preliminary
results indicate that the model closely reflects
the latency patterns of human subjects.

Conclusion

In this paper, we demonstrate how neural
networks can be used to implement the ACT-R
production system. Declarative knowledge is
stored as chunks in a separate associative
memory for each type.

To limit the number of connections necessary,
we introduce a central memory which holds the
current goal. Procedural memory consists of the
pattern of connections between central memory
and the type memories. Evaluation and
selection of productions is done through a
winner-take-all network of gating units
activated from central memory.

We are encouraged by the fact that we have
already been able to successfully convert into
ACT-RN several ACT-R models such as the
multicolumn addition example and the Tower
of Hanoi problem. This is evidence that the
system is succeeding in incorporating the
symbolic power of a real production system. We
plan to continue developing ACT-RN into a
general modeling tool and see how well it can

account for a wide range of psychological
phenomena.

References

Anderson, J.R. 1983. The Architecture of
Cognition. Cambridge, MA: Harvard
University Press.

Anderson, J.R. 1990. The Adaptive Character
of Thought. Hillsdale, NJ: Erlbaum.

Anderson, J.R. 1993. The Rules of the Mind.
Hillsdale, NJ: Erlbaum.

Dolan, C.P. & Smolensky, P. 1989. Tensor
Product Production System: a Modular
Architecture and Representation. Connection
Science (1): 53-68.

Hinton, G.E. & Anderson J.A. 1981. Paralle!
Models of Associative Memory. Hillsdale, NJ:
Erlbaum.

Hopfield, J.J. 1982. Neural Networks and
Physical Systems with Emergent Collective
Computational Abilities. In Proc. Natl. Acad.
Sci. LISA 79, 2554-2558.

Hopfield, J.J. 1984. Neurons with Graded
Response have Collective Computational
Properties like those of Two-state Neurons. In
Proc. Natl. Acad. Sci. LISA 81, 3088-3092.

Rumelhart, D.E. & McClelland, J.L. 1986.
Parallel Distributed Processing. Explorations
in the Microstructure of Cognition, Vol 1.
Cambridge, MA: MIT Press/Bradford Books.

Touretzky, D.S. & Hinton, G.E. 1988. A
Distributed Connectionist Production System.
Cognitive Science (12) 423-466.

	Carnegie Mellon University
	Research Showcase @ CMU
	11-18-2008

	A Connectionist Implementation of the ACT-R Production System
	Christian Lebiere
	John R. Anderson
	Recommended Citation

