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ULTRASHEAVES AND DOUBLE NEGATION

STEVE AWODEY AND JONAS ELIASSON

Abstract. Moerdijk has introduced a topos of sheaves on a cat-
egory of �lters. Following his suggestion, we prove that its double
negation subtopos is the topos of sheaves on the subcategory of
ultra�lters - the ultrasheaves. We then use this result to estab-
lish a double negation translation of results between the topos of
ultrasheaves and the topos on �lters.

2000 Mathematics Subject Classi�cation. Primary 03G30

1. Introduction

In 1993 I. Moerdijk [10] introduced a model of constructive nonstan-
dard arithmetic in the topos Sh(F), of sheaves on a category of �lters
for a certain Grothendieck topology J . Further contributions to this
model were made by I. Moerdijk and E. Palmgren [11] and Palmgren
[13, 14, 15, 16]. A previous work by the second author [4] studies the
sheaves on the full subcategory of ultra�lters, U, henceforth called ul-
trasheaves. The resulting topos is Boolean, so its internal logic is no
longer intuitionistic, but it is a model of nonstandard set theory. In
fact it is a model of Nelsons internal set theory, see Nelson [12], an
axiomatization of nonstandard set theory.

The question arises what the exact relationship is between the topos
of ultrasheaves, Sh(U), and Sh(F)? The subcategory U is \large" in F,
in the sense that it is a generating family for F. We also know that
\many" sheaves (namely the representable ones) on F are still sheaves
when restricted to U. Moerdijk conjectured that Sh(U) is the double
negation subtopos of Sh(F) and in this paper we show that this is true.

Given a (intuitionistic) logic one can force it to become classical by
adding the law of excluded middle to the assumptions. For a topos
of sheaves there is a corresponding transformation, namely adding the
double negation topology to the underlying site. Not all of the origi-
nal sheaves will be sheaves with respect to the new topology, but the
internal logic in the resulting topos of sheaves will be classical.

Some previous work has been done on sheaves on �lters. In [6], D.
P. Ellerman treated ultraproducts as sheaves on the Stone space of ul-
tra�lters, and generalized the construction to other topological spaces.
The exact relationship between his work and ours will be investigated

The second author was partially supported by a grant from the Lennander
Foundation.
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2 STEVE AWODEY AND JONAS ELIASSON

elsewhere; brie
y, there is a connected covering of Ellerman's topos by
a slice of the topos Sh(F). Other work on �lter categories has been
done by M. Makkai [9], A. M. Pitts [17, 18, 19] and C. Butz [2]. Pitts
uses the �lter construction on coherent categories to prove complete-
ness and interpolation results. Makkai's topos of types is related to the
prime �lters in Pitts construction. The precise relation between the
two toposes is considered by Butz, who uses �lters to construct generic
saturated models of intuitionistic �rst-order theories.

In the second section of this paper we collect some de�nitions and
results we will need subsequently. Then, in the third section, we prove
that the topos Sh(U) is equivalent to a topos of sheaves on F for a �ner
topology than J , thereby showing that Sh(U) is in fact a subtopos of
Sh(F). This is, of course, also useful in a setting (e.g. constructive
mathematics) where you want to avoid using ultra�lters.

In the following fourth section we prove that this smaller topos on F

is in fact equivalent to the double negation subtopos of Sh(F). Finally,
in the �fth section we establish a double negation translation of results
between Sh(U) and Sh(F).

2. Preliminary definitions and results

De�nition 2.1. The category F has as objects pairs (A;F), where A

is a set and F a �lter on A. The morphisms � : (A;F) ! (B;G) are
equivalence classes of partial functions � : A! B such that

(i) � is de�ned on some F 2 F ,
(ii) ��1(G) 2 F , for all G 2 G.

Two such partial functions � : F ! B and �0 : F 0 ! B are equivalent
if there is E � F \ F 0 in F such that �jE = �0jE.

A �lter F on a set A is a non-empty collection of subsets of A which
is closed under intersections and supersets. A maximal �lter is called
an ultra�lter, these �lters F are distinguished by the property that for
any subset B of A, either B or the complement of B is in F . This
category of �lters F was introduced by V. Koubek and J. Reiterman
[7] and studied further by A. Blass [1].

Note that for almost all equivalence classes � : (A;F) ! (B;G)
there is a total continuous function f : A ! B representing �. The
only exception is if B is the empty set. Then there is a morphism � :
(A;F) ! (;; f;g) only if the �lter F contains ; (i.e. if F is improper).
In this case, � is the unique such morphism and an isomorphism F �=
(;; f;g). The �lter on the empty set, (;; f;g), is the initial object 0 in
F. Terminal object 1 is (f0g; ff0gg).

From Koubek and Reiterman [7] we have the following useful char-
acterizations:

Proposition 2.2. For morphisms � : (A;F) ! (B;G) we have:
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(i) � is monic if and only if there is an F 2 F such that � is injective
on F ,

(ii) � is epic if and only if �(F ) 2 G, for all F 2 F .

These characterizations hold true also in U, but the situation is fur-
ther simpli�ed by the fact that all morphisms in U are epi, as the reader
can check.

Moerdijk (in [10]) de�ned a subcanonical Grothendieck topology J

on F as follows:

De�nition 2.3. A �nite family f�i : Gi ! Fgni=1 is a J-covering if the
induced map

G1 + : : : + Gn ! F

is an epimorphism.

Over the resulting site he studied, in particular, the representable
sheaves

of the form �S = HomF(�; (S; fSg)). At any �lter
F , �S(F) is the reduced power of S over
F (for more on reduced powers, and their use in model theory, see

for instance C.C. Chang and H.J. Keisler [3]). Thus restricting the un-
derlying category to the full subcategory U one can study ultrapowers
as sheaves.

For the ultra�lters in F we have the following result from
Palmgren [14]:

Theorem 2.4.

(i) Any morphism from a proper �lter to an ultra�lter is a covering
map.

(ii) Any cover of an ultra�lter contains a single map covering
the ultra�lter.

The topology induced on U by (F; J) is the atomic topology. In Elias-
son [4] it is proved that all representable sheaves on F are still sheaves
when restricted to U. Thus the atomic topology is subcanonical.

We now turn our interest to the internal logics of the toposes Sh(F)
and Sh(U). Since we want Sh(F) and Sh(U) to really be toposes, we
have to make the category F into a set. Formally, this is done by
introducing a universe of sets into set theory, e.g. V�, where � is an
inaccessible cardinal. We will write product and coproduct in Sets
instead of small product and small coproduct in V�. For more details
see Palmgren [14] and Eliasson [4].

Let L be a �rst order language and I = hS;R1; R2; : : : ; f1; : : : ; c1; : : : i
an L-structure. Let �I, the �-transform of I, be the L-structure in
Sh(U) de�ned as follows:

� Set S: �S the representable sheaf previously de�ned.
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� Constant s 2 S: �s constant function

�x:s 2 �S(U):

� Relation R � S: �R subsheaf of �S given at U by

� 2 �R(U) () (9U 2 U)(8x 2 U)�(x) 2 R:

� Function f : T ! S: �f representable natural transformation
from �T to �S given at U by

�fU(�) = �x:f(�(x)):

We also de�ne what it means to be standard for a 
 2 �S(U):

� St(
) if and only if 
 is constant on some U 2 U .

Thus every L-structure I (in Sets) gives rise to an L[fStg-structure
�I in Sh(U). With the standard predicate we can use Sh(U) to model
non-standard theories such as Nelsons [12] (see Eliasson [4]).

We have the usual interpretation of the the logical symbols in the
two Grothendieck toposes. Below we give the sheaf semantics for Sh(U)
in full detail. For the more complicated case Sh(F) we refer the reader
to Palmgren [14].

Theorem 2.5. Let U be an ultra�lter, � and 	 arbitrary formulas and
� 2 �T (U). Then

(i) U 
 �(�) ^	(�)
if and only if
U 
 �(�) and U 
 	(�),

(ii) U 
 �(�) _	(�)
if and only if
U 
 �(�) or U 
 	(�),

(iii) U 
 �(�) ! 	(�)
if and only if
U 
 �(�) implies U 
 	(�),

(iv) U 
 :�(�)
if and only if
U 6
 �(�),

(v) U 
 (9x 2 �S)�(�; x)
if and only if
for some � : V ! U and Æ 2 �S(V)

V 
 �(� Æ �; Æ);

(vi) U 
 (8x 2 �S)�(�; y)
if and only if
for all � : V ! U and Æ 2 �S(V)

V 
 �(� Æ �; Æ):

As is evident in the theorem above, the internal logic in Sh(U) is
classical, i.e. the topos is Boolean.
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We think of the ultrasheaves as generalized ultrapowers. This is
justi�ed by the following generalization to ultrasheaves of  Lo�s's theorem
for ultrapowers.

Theorem 2.6 (Moerdijk). Let F be a �lter, � an L-formula and � 2
�S(F). Then

F 
 ��(�) if and only if (9F 2 F)(8x 2 F )�(�(x)):

This result is proved by Moerdijk in [10] for Sh(F) and by the second
author in [4] for Sh(U). That  Lo�s's theorem follows from it is proved
in Eliasson [5].

3. Sh(U) is equivalent to a topos of sheaves on F

We will study the topos Sh(U) of ultrasheaves and its relation to
sheaves on the category F of �lters. For clarity let A be the atomic
topology on U. We �rst de�ne a new topology J1 on F.

De�nition 3.1. A basis for the J1-topology are small families f�i :
Fi ! Fgi2I (for any set I) such that the induced morphisma

i2I

Fi ! F

is epic.

Note that from Blass [1] we know that the category F has all coprod-
ucts. Now the following theorem holds:

Theorem 3.2. Sh(U, A) �= Sh(F; J1).

To prove the theorem we will need three lemmas.

Lemma 3.3. (F; J1) is a subcanonical site.

Proof. Any epi in F is regular [10, Lemma 1.2]. Hence the covering
map

`
i2I Fi ! F is regular, and the topology subcanonical.

Lemma 3.4. The collection of ultra�lters in F generates F.

See Eliasson [4, Prop. 2.2] for a proof, the details of which also imply
the following.

Lemma 3.5. Every object in F is covered (in the sense of J1) by
objects in U.

Now the theorem follows by the Comparison Lemma (see, for in-
stance, Mac Lane and Moerdijk [8]). It gives that the restriction
SetsF

op

! SetsU
op

induces an equivalence of categories Sh(U, A) �=
Sh(F; J1).
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4. Sh(U) is the double negation subtopos of Sh(F; J)

In this section we prove that Sh(U) is the double negation subtopos of
Sh(F; J). Instead of working with sheaves for the Grothendieck topol-
ogy J we will work with the (equivalent) Lawvere-Tierney topology j

on SetsF
op

.
A presheaf F in SetsF

op

is a j-sheaf, with respect to a topology j,
if for every dense monomorphism m : A ! E in SetsF

op

, every map
A! F extends uniquely along m to a map E ! F .

We will prove that the j::-sheaves are the same as the j1-sheaves in
two steps. First we prove that a subpresheaf of a representable sheaf
is dense with respect to the topology j:: if and only if the ::-closure
of it is j-dense. Then we prove that the latter are exactly the dense
subobjects with respect to j1. Note that it is enough to prove this for
subobjects of representable sheaves.

We will prove both lemmas working with sieves on a �lter, rather
than in the Heyting algebra of subobjects. So, we will list some sieve
formulations of topological and algebraical concepts.

� A sieve on F is a subpresheaf A� y(F).
� The j-closure of A, which is the shea��cation of A, is the set:

A
j

=fh : G ! F j h�A 2 J(G)g
=fh : G ! F j 9fgi : Gi ! Ggni=1 2 J(G)

such that h Æ gi 2 A; i = 1; : : : ng:

� A is j-dense if and only if A is a J-covering sieve of F .
� If B is also a sieve on F then

A) B = fh : G ! F j 8g : H ! G
h Æ g 2 A) h Æ g 2 Bg;

which is a sieve on F .

We know that the double negation closure of a subpresheaf A, ::A,
is (A) 0) ) 0 and this can be calculated as

::A = fh : G ! F j 8g : H ! G 9f : H0 !H such that h Æ g Æ f 2 Ag:

Moreover, from Mac Lane and Moerdijk [8, VI Lemma 1.2], we have

that the double negation (in Sh(F; J)) of a j-sheaf E is (E ) 0
j
) ) 0

j
.

Here 0
j

is the shea��cation of the empty presheaf which is isomorphic
to y(0), the initial object in Sh(F; J). To be precise, as a subobject of
y(F):

0
j
(G) =

�
f!F Æ fg if G is improper (i.e. isomorphic to 0);

; if G is proper:

Here f : G ! 0 is an isomorphism.
We will prove that, for a subpresheaf A ! y(F) of a j-sheaf y(F)

we have:

(A
j
) 0

j
) ) 0

j
= 1y(F) if and only if (A) 0) ) 0

j
= 1y(F):
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Assume that F is proper.
The righthand side then says that for all h : G ! F we have h 2

(A) 0) ) 0
j
. Hence 8h : G ! F 9fgi : Gi ! Ggni=1 2 J(G) such that

h Æ gi 2 ::A for all i = 1; : : : ; n.
Hence we get the following condition:

8h : G ! F 9fgi : Gi ! Ggni=1 2 J(G) such that, for any i 2 f1; : : : ; ng;

8fi : Hi ! Gi 9ei : H0
i !Hi such that h Æ gi Æ fi Æ ei 2 A: (1)

We illustrate this in a commutative diagram:

H0
i

..................................

2 A

R

Hi

9ei

?

Gi

8fi

?

9gi
- G

8h
- F

Remember that fgi : Gi ! Ggni=1 is a J-cover of G and that F is proper.

If F is proper the lefthand side is equivalent to A
j
) 0

j
� 0

j
. We

will study it pointwise, at a �lter G, i.e. (A
j
) 0

j
)(G) � 0

j
(G). We

see that (A
j
) 0

j
)(G) = fh : G ! F j 8g : H ! G h Æ g 2 A

j
(H) )

hÆg 2 0
j
(H)g. If the �lter G is proper, then 0

j
(G) is empty, and hence

(A
j
) 0

j
)(G) is also empty.

For proper G we then have that:

8h : G ! F 9g : H ! G such that h Æ g 62 0
j
(H)

and 9ffi : Hi !Hgni=1 2 J(H) such that;

for any i 2 f1; : : : ; ng; h Æ g Æ fi 2 A: (2)

We illustrate this case too, with a commutative diagram:

Hi ..................................

2 A

j
H

9fi

?

9g
- G

8h
- F

Here we assume that G and F are proper.
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Lemma 4.1. For a subpresheaf A! y(F) of a j-sheaf y(F) we have:

(A
j
) 0

j
) ) 0

j
= 1y(F) if and only if (A) 0) ) 0

j
= 1y(F):

Proof. If the �lter F is improper then y(F) is isomorphic to its subsheaf

0
j
. But both (A

j
) 0

j
) ) 0

j
and (A) 0) ) 0

j
are j-sheaves and,

thus, greater than or equal to 0
j
. Hence both sides of the equation are

true, and therefore equivalent.
Now assume F is proper. Then we have the descriptions ((1) and (2)

above) of the left- and righthand sides of the relation, and the scene is
set for proving the equivalence:

\=)": Note that it is enough to �nd a cover on F (because of
the stability of the topology J). Let F be covered by the identity
1F : F ! F . Take any f : G ! F and prove that there is an e : H ! G
such that 1F Æ f Æ e 2 A.

If G is improper then f : G ! F is already in A, and you can take e
to be the identity. If G is proper then by assumption, given f : G ! F ,
there is g : H ! G and f1 : H1 ! H such that f Æ g Æ f1 2 A. Hence,
let e = g Æ f1.

\(=": Take any h : G ! F . If G is improper prove that (A
j
)

0
j
)(G) � 0

j
(G). Note that (A

j
) 0

j
)(G) contains at most one map,

since there are only one map h : G ! F . But this map !F Æ f : G ! F

(where f : G ! 0 isomorphism) is in (A
j
) 0

j
)(G) since, for any

g : H ! G, (!F Æ f) Æ g =!F Æ (f Æ g) 2 0
j
(H).

If G is proper then �nd a g : H ! G and a cover ffig of H such that
h Æ g Æ fi 2 A. By assumption there are g1 : G1 ! G and e1 : H1 ! G1
such that h Æ g1 Æ 1G1 Æ e1 2 A. Let g = g1 Æ e1 and the identity
1H1

: H1 !H1 be a covering. Then we have h Æ g Æ 1H1
2 A.

Our second lemma proves that the righthand side in the lemma above
is equivalent to being j1-dense.

Lemma 4.2. A subpresheaf A of a j-sheaf y(F) is j1-dense if and
only if ::A is j-dense.

Proof. If the �lter F is improper then y(F) is isomorphic to its subsheaf

0
j
. But both A

j1
and (A) 0) ) 0

j
are j-sheaves and, thus, greater

than or equal to 0
j
. Hence both conditions stated in the lemma are

true, and therefore equivalent. Now assume F is proper.
\=)": Take f�i : Gi ! Fgi2I a J1-covering in A. Prove that the

induced map f :
`

i2I Gi ! F is in ::A. Take any g : H !
`

i2I Gi.
Consider � : G1 !

`
i2I Gi (observe that we have f Æ � = �1).

Next take the pullback of g : H !
`

i2I
Gi and � : G1 !

`
i2I

Gi.
Call the pullback H0 and the projection on H, h : H0 !H as indicated
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in the diagram.

H0
�1 - G1

@
@
@
@
@

�1

R

H

h

?

g
-
a
i2I

Gi

�

?

f
- F

Then we have f Æ (g Æ h) = (f Æ �) Æ �1 = �1 Æ �1 2 A, since A is a
sieve and �1 2 A. But f :

`
i2I Gi ! F is an epimorphism, and hence

a J-covering of F .
\(=": Take ffi : Gi ! Fgni=1 a J-covering in ::A. We know that

for every Gi there is a J1-covering of ultra�lters fgij : U i
j ! Gigj2Ii

(Lemma 3.5).
Now since fi is in ::A there are hij : Hi

j ! U i
j , for i = 1; : : : ; n,

j 2 Ii, such that fi Æ g
i
j Æ h

i
j 2 A. But the families ffig and fgijg

are jointly epimorphic and the hij's are epimorphisms (since U i
j is an

ultra�lter) and, hence, the family ffi Æ g
i
j Æ h

i
j : Hi

j ! Fg is jointly
epimorphic and a J1-covering of F .

The proof is illustrated in this commutative diagram.

H1
1 H1

2 � � � H1
2 H2

2 � � �

U1
1

h11

?
U1
2

h12

?
� � � U2

1

h12

?
U2
2

h22

?
� � �

A
A
A
A
A
A

g11
U ��

�
�
�
�
�

g12

A
A
A
A
A
A

g21
U ��

�
�
�
�
�

g22

G1 G2 � � �
Q
Q
Q
Q
Q
Q
Q
Q
Q

f1
s 	�

�
�
�
�

f2

F

By Lemma 4.2 we have that a subpresheaf A of a representable sheaf
is j1-dense if and only if its ::-closure is j-dense. By Lemma 4.1 we
have that the ::-closure is j-dense if and only if the j-closure of A
is ::-dense (in Sh(F; J)). Hence, maps from j1-dense subobjects of
a sheaf extends to F if and only if maps from j::-dense subobjects
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extends to F . This gives that Sh::(F; J) �= Sh(F; J1). Together with
the result from section 3 we get the desired result:

Theorem 4.3. A presheaf F is in Sh::(F; J) if and only if it is in
Sh(F; J1), and Sh(F; J1) is equivalent to Sh(U), thus

Sh::(F; J) �= Sh(U):

As was pointed out to us by an anonymous referee, there is the fol-
lowing elegant conceptual alternative to the foregoing pedestrian proof.
The topos Sh(F; J1) is Boolean, since it is equivalent to the Boolean
topos Sh(U), by Theorem 3.2. It thus suÆces to show that the inclu-
sion Sh(F; J1) ! Sh(F; J) is dense, i.e. that the direct image functor
preserves the initial object 0. But this can be checked directly from the
de�nitions of the topologies J and J1.

5. The double negation translation

In this section we show how the previous result can be used to trans-
fer the truth of formulas between the toposes Sh(U) of ultrasheaves
and Sh(F) of sheaves on �lters. Since the methods are standard we will
omit the proofs.

Between Sh(U) and Sh(F) there is a geometric morphism

Sh(U) �
a

i
- Sh(F)

consisting of the factors shea��cation (with respect to the topology
::) a : Sh(F) ! Sh(U) and inclusion i : Sh(U) ! Sh(F).

For any ultrasheaf F in Sh(F) we then have the corresponding maps

Sub::(F ) �
a

i
- Sub(F ):

The shea��cation of such subobjects now corresponds to closure with
respect to the double negation topology, previously written ::(�) :
Sub(F ) ! Sub::(F ). The inclusion map of course acts as the identity
on the closed subobjects of F .

Given a �rst order formula �(�), with a free variable � of a sort (in-
terpreted as) the ultrasheaf F , the interpretations of �(�) in Sub::(F )
and Sub(F ) will in general be di�erent, since the interpretations of the
logical symbols are di�erent in the two toposes.

The �rst translation is from classical to intuitionistic logic, and it
takes the form of a double negation translation. Let superscript (�)0

denote the usual double negation translation (see for instance [20]).
Then:
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Theorem 5.1. Let �(�) be a �rst order formula with a free variable
of a sort interpreted as an ultrasheaf F . Then, if �(�) is true in ultra-
sheaves Sh(U), its double negation translation �0(�) is true in sheaves
on �lters Sh(F).

In the other direction we have the following result:

Theorem 5.2. Let �(�) be a �rst order formula with a free variable of
a sort interpreted as an ultrasheaf F . Assume, moreover, that �(�) is
without universal quanti�ers and has double negation stable predicates.
Then, if �(�) is true in Sh(F), then �(�) is also true in ultrasheaves
Sh(U).

Of course, classically any formula is equivalent to a formula without
universal quanti�ers, so we have as an easy corollary:

Corollary 5.3. For every �rst order formula �(�) with a free variable
of a sort interpreted as an ultrasheaf F and with double negation stable
predicates, there is a classically equivalent formula �+(�) such that if
�+(�) is true in Sh(F) then �(�) is true in ultrasheaves Sh(U).

Theorem 5.2 cannot be extended to include universal quanti�ers, as
can be seen by considering the following fact. In Moerdijk [10] it is
shown that

Sh(F) j= :(8x 2 �
N)[St(x) _ :St(x)]:

Note that �
N is an ultrasheaf, and the standard predicate St is double

negation stable.
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