








Figure 5. Flow chart of cognitive study protocol.

(two or more lead to a continuous system, less than two leads to intermittent
behavior).Whether a system is continuous or intermittent has profound effects on
parameter sensitivities essential for effectively searching the design space (§A.2).

Users are then provided one of the learning interfaces based on their
assigned condition before solving their next set of learning tasks with functional
requirements provided in Table 1. The maximum number of myosins in each
design is reduced to 30, which means that the system is much more likely to
become intermittent. Afterward, users’ ability to describe inter-level causalities is
assessed a second time by asking several multiple-choice questions about a system
presented according to their study condition.

These questions are shown in Table 2, and present the user a system either in
the intermittent or continuous regimes and ask how the time-average filament
velocity should change based on perturbing a system from an initial state of
being continuous or intermittent; design perturbations in the questions were
designed to have an obvious effect on a user who understands the inter-level
causal mechanisms of the system. In Table 2, the design input values in the table
reflect the slider value in the GUI for the myosin design variables and how many
myosins were present in the system. At this point in the experimental design, users
who demonstrate an understanding of the inter-level causality are assumed to
have also had that knowledge for their final design task (completed just before
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Table 2. Four qualitative reasoning assessment phases

Qualitative
reasoning
phase

Question
presented via

Global system
behavior is
initially

Design inputs
are initially

Applied
system
perturbation

Time-average
filament
velocity should

Lev kon koff # Myo

Assessment (I) Textual
description

Continuous x x x 100 Reduces
number of
myosins

Decrease
notably

Continuous x x x 100 Increases
myosin
attachment
rate

Stay about
the same

Assessment (II) GUI condition Intermittent 1 1 1 10 Increases
number of
myosins

Increase notably

Continuous 3 3 1 30 Increases
myosin
attachment
rate

Stay about
the same

Assessment (III) GUI condition
and parametric
relationship
given (hint)

Intermittent 5 2 4 10 Increases
number of
myosins

Increase notably

Continuous 5 5 1 10 Increases
number of
myosins

Stay about
the same

Assessment (IV) GUI condition Continuous 3 5 1 20 Increases
number of
myosins

Stay about
the same

Intermittent 3 1 5 10 Increases
myosin
attachment
rate

Increase notably

the second assessment of inter-level understanding). This assumption enables an
examination of how inter-level causal knowledge affects design task proficiency
(which is necessary for answering the third hypothesis from Section 3.1). A
third qualitative assessment was then conducted in which users were given a
hint through provision of the correct parametric answer to the multiple-choice
questions prior to demonstrating their reasoning in support of that answer. This
hint enables the determination of whether improved parametric knowledge may
support proper description of inter-level causalities (second hypothesis from
Section 3.1).

Questions were designed as in Table 2 for a balance in difficulty across each
assessment, but questions varied in specifics to avoid users becoming familiar
with specific questions being asked. All questions were tuned to test a user’s
inter-level causal reasoning through asking how a change in system design may
result in a change in filament velocity, although the precise variables for each
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question changed. Balancing of questions was controlled through having one
question in each assessment require knowledge that the time-average filament
velocity should change notably, while the other question in each phase required
knowledge that the design perturbation would not significantly alter filament
velocity. Additionally, users were not provided feedback concerning whether
their answer was correct or not at the end of each assessment, which further
promotes the independence of measurements gathered from each phase. The
purpose of having multiple assessment phases is to determine the growth in user
understanding of inter-level causalities throughout the course of the experiment,
and to specifically address the second hypothesis of the study.

Additionally, as a control, parametric questions were asked during the second
and fourth assessment phases to determine whether users properly understood
whether changes in attachment rate or numbers of myosins affected system
outputs. Including such questions enabled an assessment of whether students
misunderstood inter-level causal mechanisms due to the non-obvious nature of
the emergent behavior, or because they did not understand parametrically how
changes in design inputs affect design outputs. Examples of questions for these
controls are ‘Does adding more myosins to a system increase the average number
of attached myosins in a system?’ and ‘Does increasing the attachment rate of
each myosin increase the average number of attached myosins in a system?’ Users
answered these questions through checkboxes to indicate ‘yes’ or ‘no’ answers.

Last, users in both groups are presented contrasting animations before a final
qualitative reasoning assessment. The animations show users the systems side
by side in the intermittent and continuous emergent behavioral regime, thus
providing a clear distinction to the user for how systems designed in two different
ways produce two different global patterns of behavior. Users are also provided
the engineering heuristic that if about two myosins are attached on average, the
system will remain continuous while systems with much fewer myosins attached
on average have intermittent behavior (and therefore lower time-average velocity).
The purpose of the contrasting animations is to determine what percentage
of users are able to correctly learn and explain these crucial inter-level causal
mechanisms from a learning interface with reduced cognitive load and salient
characteristics highlighted. The question details for this final assessment are
also provided in Table 2. The complete sequence of scenes for the two study
conditions provides an opportunity for testing each proposed hypothesis, through
comparison of effects of each learning interface, as well as how users learn and
apply parametric and inter-level causal knowledge of the system.

5. Cognitive study results
Cognitive study results are reported in three sections that reflect the three
hypotheses proposed in Section 3.1, with the first focusing on the extent that
learning supports from the GUI improve user design proficiency. Ameasurement
of how many users demonstrated proper understanding of inter-level causal
relationships is then provided. Last, the design proficiency of users who
demonstrated understanding of inter-level causalities is compared to those who
did not. These results are aimed to specifically address and decouple different
aspects of the Figure 3 cognitive-based model, particularly with respect to the
extent that each interface enables learning of parametric and inter-level causal
relationships, and how such understanding translates to improved design.
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Figure 6. Average user solution quality in each learning condition for all tasks.

5.1. Both types of learning improve design proficiency
The first hypothesis was learning via charts or interactive simulations will improve
user design task performance. The hypothesis was analyzed by aggregating data
from each optimization task separately, and then averaging the solution quality
of a user’s best solution for that task with all other users in their condition.
Solution quality was determined by first comparing a user’s goal output value to
the global optimum for a task and providing it a relative score between 0 and 1
(all designs that did not meet constraints had a score of 0; the global optimum has
a score of 1). The solution quality was then calculated by finding the difference
between the user average relative objective function and the average score found
by a random solver (Table 1) to facilitate absolute evaluation and performance
comparison across problem types. Each problem type is defined by the number
of outputs/constraints that describe its design space. Tasks were generated such
that those of the same type are representative of similar search difficulties (Egan
et al. 2015a), thus providing a means of comparison on pre-/post-learning tasks.
The average solution quality of users is presented in Figure 6 for each task and
learning condition.

In comparing baseline and post-learning tasks, the average solution quality
improved post-learning for all tasks, which supports the hypothesis, as
demonstrated by Figure 6 pair-wise comparisons with p-values reported. When
p 6 0.05, it is suggested that the error rate in reporting a false positive is less than
5%, which is generally considered as statistically significant. The results suggest
that the information conveyed by each GUI resulted in nearly equal improvement
in design proficiency. Improvement of users increased as task complexity grew,
thus motivating an ever increasing need for software tools as systems grow
increasingly more complex, which remains consistent with previous findings for
myosin GUI studies (Egan et al. 2015a). Interestingly, the charts and animations
did not appear to support design performance by changing design strategies, at
least not on the strategies previously shown to improve performance on these tasks
(e.g., only changing one input at a time, searching near their current best design,
minimizing/maximizing inputs), which were assessed through post-processing of
user input data in relation to their received output (Egan et al. 2015a). Thus, the
benefit may occur through the knowledge used in existing strategies rather than
via changing strategies. The difference in performance among those in different
chart/animation conditions is not significant for any pair-wise measurement.
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These results demonstrate the overall influence of each GUI for improving
design task proficiency. They demonstrate that agent-based models, which past
studies have shown to improve user understanding of systems (Vattam et al. 2011),
can also improve user design proficiency of the systems. The relatively equal
impact of each method on design quality has limited theoretical importance, as
it does not imply that the two methods have equal influences on users since it is
possible that different underlying cognitive mechanisms of users are affected by
each interface (such as performing better due to gains in parametric relationships
or qualitative understanding). Further analysis of the user performance with
regard to the Figure 3 cognitive-based model is required to determine how gains
in design performance are attained by users in each of the study groups, despite
differing types of information being emphasized by each GUI.

5.2. Animations support inter-level understanding
Throughout the cognitive study, user understanding of inter-level causalities was
assessed to address the second hypothesis: users exposed to animated renderings
of agent-based simulation behavior will demonstrate understanding of inter-level
causal relationships, while users exposed to chart GUIs will not demonstrate such
understanding. In each assessment phase, users were asked two questions of how
filament velocity of a system would change if redesigned, as presented in Table 2.
The questions were designed such that the perturbations would obviously have a
large effect or negligible effect on system velocity to a user with knowledge of how
inter-level relationships of the system affect its emergent behavior.

Users indicated their answer via amultiple-choice box (either filament velocity
increases notably or remains about the same) and typed their reasoning in a
free response box that was only analyzed for users who correctly answered the
multiple-choice question (with the exception of assessment phase one, where
no multiple-choice question was given). Free response answers were tagged as a
correct demonstration of understanding inter-level causality if users referred to
the stopping/starting behavior of the filament being related to having at least one
myosin attached. Examples of user responses that were tagged as correct were The
increased number of myosins results in more time during which at least 1 myosin is
attached and therefore the filament is being pushed forward and Average filament
velocity increases because when there are more myosins there is less of a chance the
filament will not be moving as a result of no present myosins. These were deemed
as correct because both answers relate the individual myosin level (that one must
be attached) to the emergent phenomenon of continuous or intermittent filament
motion. Some examples of answers tagged as incorrect, despite users indicating
the correct parametric relationship, were Since the amount of force is increased
and On average the filament is going to move at the rate at which the myosin pulls,
which is independent of how often it attaches. The first of these answers is incorrect
because the force of the system has no influence on its velocity in ourmodel where
time-average force among myosins equals zero. The second answer is incorrect
because it fails to take into account the average velocity of the filament, which
requires consideration of times when it is translating and static, despite it having
the same instantaneous velocity every time at least one myosin is attached.

Understanding of inter-level causalities was measured four times through
averaging the percentage of correct free response answers of users in each
condition during each phase. No users indicated a proper understanding during
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Figure 7. Percentage of correct responses from users in both learning conditions for
demonstration of inter-level causal understanding.

the baseline assessment phase prior to learning sessions. The next two assessments
occurred after the learning sessions (the first being directly after, and the second
occurring once users were provided the correct parametric relationship via the
correct multiple-choice answer but still had to provide an explanation). The
final assessment occurred immediately after the contrasting animations were
presented. The percentage of correct answers for users in each condition is
presented in Figure 7.

Users in the animation group correctly demonstrated understanding of
inter-level causality about 33% of the time directly after the learning tasks, thus
indicating that a significant number of users learned (p 6 .02) as a result of
interacting with the animation interface, when compared to none of the users
demonstrating an understanding during the baseline assessment. No users in
the chart condition demonstrated understanding at this point, thus supporting
the hypothesis that the agent-based simulation supports learning inter-level
relationships while the chart-based GUI does not support learning inter-level
relationships (p 6 .04). However, despite supporting the hypothesis, only a
small portion of users demonstrated understanding. After the parametric hint was
provided, there was no significant improvement; one user in the chart condition
explained the stochastic system behavior correctly, which suggests that it was not
entirely implausible for users in that condition to formulate theories in line with
correctly explaining the inter-level causal mechanisms. However, such a result
suggests that parametric reasoning processes are not sufficient to teach users
inter-level causal mechanisms.

After the contrasting animations were presented to users, approximately half
of the users in each condition correctly explained the inter-level causality, which is
a significant increase for both the chart (p 6 .001) and the animation condition
(p 6 .03). This pattern further supports the hypothesis that agent-based
simulation renderings are effective in teaching inter-level causality, and are more
effective when cognitive load is reduced via contrasting animations (Alfieri
et al. 2013). Because average user score was only about 50%, our findings
reinforce prior reports that emergent systems are difficult to understand (even
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for engineering students) and misconceptions about these systems are robust
to learning interventions. The growth of user understanding in both groups,
however, shows the success in the software interface’s capabilities for producing
a cognitive shift in how some users in each group understand and reason about
inter-level causal mechanisms essential to system performance.

Past research has also found that inter-level causal understanding is
particularly difficult for learners (Chi et al. 2012). In that priorwork,most students
were able to learn about molecular diffusion using agent-based simulations along
with other instructional tools. The lower number of learners gaining proper
understanding from simulations in this study may be attributed to shorter overall
learning periods, in addition to the greater complexity of the myosin system in
design contexts when compared to diffusion systems.

Additionally, control questions (Section 4.2) were asked to determine whether
users understood parametric influences of the system, such that they knew
an increase in the number of myosins or their attachment rate resulted in an
increase in the average number of attached myosins in the system. User groups
scored between 73% and 94% correct on these types of questions, which further
demonstrates the difficulties in learning inter-level causal behaviors even when
correct parametric understanding of the system is achieved.

5.3. Inter-level understanding improves design performance
The final hypothesis tested was users who demonstrate an understanding of
inter-level causalities will perform better on design tasks. This hypothesis was
investigated by separating the users in the animation condition into those who
did and did not demonstrate an understanding during the second assessment.
Users in the chart group were ignored for testing this hypothesis because they
demonstrated no inter-level causal understanding immediately after the design
tasks and had access to differing information compared to users in the animation
groups, which would not enable a controlled comparison of how inter-level
understanding influences design task performance independent of a user’s gained
parametric knowledge. Group performance was then compared on the final
design task (Figure 8). Only the final design task was selected because the first
qualitative assessment immediately followed it and thus was the closest measure
of inter-level understanding during design. Performance on the baseline task was
also investigated to rule out variable differences among participants related to
design ability.

The results show that during the baseline, there was not a significant
difference (p 6 .47) in design performance among the two groups; thus when
no users understood inter-level causality their design task performance was
similar. Afterward, users who had demonstrated understanding of inter-level
causal relationships performed better and found designs very close to the global
optimum when compared to users who had not demonstrated understanding
(p 6 .01). This finding is statistically significant and supports the hypothesis that
users who demonstrate an understanding of inter-level causality perform better
in design applications related to that understanding. The result is particularly
important because it isolates the understanding of inter-level causal mechanisms
of the system as beneficial to the design process, in comparison to learning
parametric relationships among variables. This finding also highlights inter-level
causal relationships as an important form of information that can improve
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Figure 8. Design performance of users from animation condition who did/did not
demonstrate inter-level causal understanding.

engineers’ ability to design, as opposed to learning other types of information
about the system that improve a user’s understanding (e.g., learning the detailed
mechanochemistry of myosinmotors would improve user understanding, but not
necessarily translate into improvements in designing a system effectively).

6. Discussion
The discussion section focuses on the importance of inter-level causal reasoning,
the two routes for improving design proficiency conducted in this study, and the
support of contrasting animations in promoting inter-level causal reasoning.

6.1. Importance of inter-level causal reasoning
Complex systems are often characterized by multi-level relationships, and our
results demonstrate that when inter-level understanding of a system is isolated
from other forms of knowledge, such as parametric relationships, it has a
significant effect on design search success. It is possible that knowledge of inter-
level relationships was helpful in the case of myosin design because parameter
sensitivities are altered depending on the design of the system as a whole; for
instance, adding more myosins only increases the system velocity when the global
behavior is intermittent. This finding is important because it demonstrates that
through knowledge of how a complex system is organized, designers may become
more proficient. In other words, there are not just levels that make up the complex
system, but inter-level relationships that when identified and understood may
support designers in forming effective decisions in an otherwise intangible system.

These findings reinforce conclusions from other cognitive studies (Hmelo-
Silver et al. 2007; Chi et al. 2012), such that learning underlying behaviors and
connections in a system is beneficial in comparison tomore structure–function or
black-box presentations that obscure underlying information that designers could
use effectively. Such findings are important as they isolate the types of information
that directly aid users in designing complex systems effectively, as opposed to
information that aids in understanding other aspects of the complex system, such
as nuances in myosin biochemistry that may not translate to improving user
proficiency in parametric design contexts.
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6.2. Validity of cognitive-based model for improving design
proficiency

A cognitive-based model for improving user design proficiency was proposed via
Figure 3, which suggested that presenting information emphasizing parametric
and inter-level relationships to users could promote learning and understanding
that translates to improved design proficiency. Two contrasting GUIs were
proposed as methods for testing and supporting the model. Both GUIs were
demonstrated to improve user design proficiency equally on pre-/post-learning
tasks; however, they emphasized different aspects of learning parametric and
inter-level relationships. Results demonstrated that only users with the animation
GUI learned inter-level relationships; therefore, results imply that all of the
pre-/post-learning benefits from the chart condition occurred through increased
parametric knowledge.Users in the animation conditionwere then assessed as two
separate groups: those who demonstrated knowledge of inter-level relationships
and those who did not. The results suggest that users in the animation condition
who only learned parametric relationships did not improve asmuch as those in the
chart condition, and users who may have learned both parametric and inter-level
relationships improved the greatest.

These results support the Figure 3 cognitive-based model and suggest that
the chart GUI leads to a large effect on parametric relationship learning, which
improves design proficiency but has little influence on user learning of inter-level
relationships. The animation GUI on the other hand has a smaller effect than the
chart GUI for parametric relationship learning and about one third of users gain
the benefit of inter-level relationship learning. Therefore, these results suggest that
the equal overall design performance improvements provided by each interface
(Figure 6) are achieved through differingmagnitudes of cognitive-based pathways
illustrated in Figure 3. These findings are also supported by previous study reports
that parametric knowledge supports design proficiency (Egan et al. 2015a), but
these new results now demonstrate that parametric knowledge by itself does not
provide inter-level reasoning (as demonstrated by the third assessment phase),
which is beneficial in complex systems design tasks. Most importantly, both types
of knowledge are important for improved design proficiency and engineers should
learn both parametric and inter-level relationships when confronting complex
multi-level design challenges. Further research could consider whether the fidelity
of interfaces influences user learning and affects design outcomes, such as the
agent-based model demonstrating more realistic representations of the system
when compared to the chart interface. Such investigations would require new
hypotheses and questions that isolate such considerations, and future studies
could also investigate GUIs that are hybrids of the two approaches or convey
information beyond the GUIs considered in this study.

6.3. Support of contrasting animations
Because learning of inter-level relationships is beneficial to the design tasks
beyond what is easily learned through parametric relationships, it is essential to
have effective ways of conveying such information to designers. Such learning can
be facilitated by communicating salient inter-level causal relationships in a system
via contrasting animations. When users were exposed to contrasting animations,
nearly half of all users in the study regardless of their condition were capable
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of demonstrating inter-level system knowledge. Such findings demonstrate the
effectiveness of the contrasting animation approach and also the difficulty for
human designers to learn salient and necessary complex system characteristics.
Future work could consider more effective tools for teaching engineers inter-level
causal mechanisms of complex systems, possibly through reducing the cognitive
load in methods presented in this paper or through teaching important system
characteristics in multiple phases that are easier to understand.

7. Conclusions
This study aimed to determine how different forms of information presented
via GUIs may support engineers’ learning and understanding of parametric
relationships and inter-level causalities that influence emergent system behavior,
and whether such understanding leads to improved design proficiency for
complex multi-level systems. Users consisted of mechanical engineering
undergraduates and their design proficiency was assessed through completion of
myosin optimization taskswith a designGUI. The supports of learning parametric
relationships and inter-level causalities were decoupled by having users exposed
to either a GUI that emphasized learning of parametric relationships through
interactive charts or learning of inter-level causalities through agent-based
simulations rendered in real time as animations. Qualitative assessment tests were
utilized to determine whether users had identified and understood inter-level
causal mechanisms crucial to the design space. The experimental design
enabled inferences regarding cognitive-based learning of individuals through a
combination of selective exposure to different GUI interfaces and the resulting
effects on measured performance.

The results for pre-/post-learning tasks demonstrated that both GUIs improve
user design proficiency nearly equally, although about a third of the users in
the animation condition also demonstrated a correct understanding of inter-level
causalities while no users in the chart group demonstrate such understanding.
The users in the animation group that correctly identified inter-level causalities
also had greater improvement on pre-/post-learning tasks, thus suggesting that
learning of inter-level causal system mechanisms supports multi-level design
tasks. Contrasting animations of the system designed in two different behavioral
regimes were provided to users in both conditions to conclude the study,
which resulted in about 50% of users in each study condition demonstrating an
understanding of inter-level causal mechanisms.

These findings suggest that successful design of complex systems may
benefit from reasoning processes that extend beyond knowing the parametric
relationships in a system, namely that engineers may benefit from considering the
complex organization of the system they are attempting to design. Here, our study
suggests that methods for teaching inter-level causal mechanisms to engineers are
crucial to consider when promoting human understanding for effective complex
systems design. Our results demonstrated that the most proficient engineers may
have learned both parametric and inter-level relationships and outperformed
users who only benefited from parametric design knowledge. Therefore, the
most effective route to engineering complex systems may be a combination
of traditional engineering approaches for teaching parametric relationships
bolstered by considerations of how a complex system’s unique organization
influences the search of its design space.
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As a whole, these findings demonstrate the challenges in user understanding
and reasoning about inter-level causal and parametric relationships in complex
multi-level systems, and that software tools can promote learning of these
relationships. Particularly, agent-based simulations may support users in
discovering behaviors of a system that are often hidden in parametric
representations of design spaces. Gains in understanding can then promote better
human performance in complex systems design applications, where non-obvious
emergent behaviors that were demonstrated in myosin-based systems are
common to many complex systems that are challenging for designers.
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Appendix
Appendices A.1 and A.2 provide quantitative modeling details, for recreating
the GUI and understanding the parameter search space, that are not essential
for following the primary findings of this paper, but offer readers a chance
to explore nuances in myosin design. Appendix A.1 details the mathematical
equations necessary for predicting the performance of designed myosin assays
in both continuous and intermittent emergent regimes. Appendix A.2 provides
a sensitivity analysis of how each design input affects system velocity when
perturbed from continuous and intermittent regimes.

A.1. Multi-level mathematical model
The model used in this paper is an extension of our past myosin models for
GUI implementation (Egan et al. 2013), which was influenced by well-established
myosinmathematicalmodels (Howard 2001). Design inputs are considered at two
levels of organization (individualmyosins and a collection ofmyosins) and predict
the average local and global system behavior. The mathematical model is based
on assumptions that no external force is applied to the filament and that the actin
filament stays within a defined distance of interaction with all myosins during
times when no myosins are attached.

Individual myosins have three parameters that can be altered as design inputs:
(1) a myosin’s lever arm length l , (2) a myosin’s attachment rate kon, and (3) a
myosin’s detachment rate koff . Myosins are assumed to behave as linearly elastic
elements that attach to actin and have a linear power-stroke distance of δ+ =
l · sin(θ), where θ (30◦) represents the rotation of a myosin lever arm. The power
stroke is followed by a drag stroke of distance δ− = vfil/koff , where vfil represents
the instantaneous velocity of a translating actin filament when at least onemyosin
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is attached. vfil is determined by

vfil =

√
2

2
· δ+ · koff (A 1)

and is dependent on only two of the three myosin design variables. The total
distance a myosin remains attached to a filament is δon = δ+ + v/koff . The
total distance an actin filament travels on average for each myosin cycle is
∆c = xd/(1− exp(kon · xz/v)), where a complete derivation exceeds the scope
of this paper, but includes variables of the distance between binding sites on actin
xd (36 nm) and the proximity of binding sites to myosin that is required for
attachment to occur xz (1 nm). The calculation of the myosin duty ratio is given
by

rmyo =
δon
∆c
, (A 2)

which represents the proportion of time a myosin spends attached to actin on
average. The duty ratio is dependent on all threemyosin design inputs, although at
high velocities it is no longer influenced bymyosin lever arm length l . The average
rate at which a myosin utilizes the energy of ATP is then given by

emyo =
vfil

∆c
(A 3)

and is dependent on all three myosin design inputs; however, at high velocities it
is primarily influenced by the myosin attachment rate kon.

At the systems level, only one design variable is introduced, the number of
myosins Nmyo that are present. Systems level behavior is dependent on how often
at least one myosin is attached to an actin filament, since the filament has no
velocity and myosins are not expending energy during periods when no myosins
are attached. The probability that at least one myosin is attached is determined
as

Patt = 1− (1− rmyo)
Nmyo , (A 4)

and Patt is generally about 0.9 when at least two myosins are attached to actin on
average. The average number of attached myosins, Natt , is calculated as

Natt = Patt · Nmyo · rmyo, (A 5)

and is important in determining whether a system has continuous or intermittent
emergent behavior. The time-average global filament velocity can be calculated as

Vsys = Patt · vfil , (A 6)

and the total ATP energy use of the system is determined by

Esys = Patt · Nmyo · emyo, (A 7)

which is the last of the equations necessary for predicting global performance
metrics considered in optimization tasks for this study.
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Figure A.1. Sensitivity analysis when global behavior is (A) continuous and (B) intermittent.

A.2. Sensitivity analysis
Each design input has unique effects on system behavior, and the sensitivities
among parameters depend on whether the system is in the continuous or
intermittent emergent behavioral regime. In this section, the effects that input
variations have on global velocity are consideredwhen perturbations fromdesigns
with a high number of attached myosins (a continuous system) and a low number
of attached myosins (an intermittent system) are compared.

For the continuous system, parameters were set to the maximum design input
value for lever arm length, attachment rate, and number of myosins (l = 20 nm,
kon = 4000 s−1, and Nmyo = 30), while the detachment rate is set to its minimum
design input value (koff = 800 s−1), providing the chance of at least one myosin
being attached, Patt , of about 1.0 (therefore the filament moves 100% of the
time) and a global velocity of about 5.7 µm s−1. The opposite set of conditions
leads to a low number of myosins attached, where the parameter values are set
to the minimum for lever arm length, attachment rate, and number of myosins
(l = 4 nm, kon = 800 s−1, and Nmyo = 10), while the detachment rate is set to
its maximum value (koff = 4000 s−1), leading to a chance of at least one myosin
being attached, Patt , of about 0.13 (therefore the system translates about 13%of the
time) and a global velocity Vsys of about 0.7 µm s−1. This is quite different when
compared to its instantaneous filament velocity of vfil being 5.7 µm s−1 (meaning
both systems have the same value of vsys but contrasting values of Vsys).

To perform the sensitivity analysis, each design variable was then perturbed
across its five possible discretized values as constrained by the GUI, while all
other parameters were held constant for each condition. Therefore, two plots were
generated by normalizing to unity each global velocity to the maximum recorded
for a given perturbation. All design inputs are considered independent variables
and were normalized to unity based on their maximum value, as demonstrated in
Figure A.1.

The graphs demonstrate that when global behavior is continuous (i.e., a
large number of myosins are attached such that Patt ≈ 1) the global filament
velocity increases linearly with myosin lever arm length and the detachment rate
of myosins, which is expected because they have a linear relationship with the
instantaneous unloaded velocity of the system (Eq. (A 1)). However, perturbations
in the myosin attachment rate and the number of myosins in a system have no
effect on instantaneous velocity. The slight increase in velocity on the plots occurs
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because when they are at their minimum value, the probability that at least one
myosin is attached is slightly less than unity.

When global behavior is perturbed from being intermittent (i.e., a low number
of myosins are attached and in this case Patt ≈ 0.13) all variables have a positive
correlation with velocity except for the detachment rate, which levels off because
the increase in instantaneous velocity is canceled by the decrease in the average
number of attached myosins. The increase in the attachment rate and the number
ofmyosins added occurs because there is a larger probability of at least onemyosin
being attached in the system. Lever arm increases tend to have little influence
on the probability of one myosin being attached, but still cause a linear increase
in global filament velocity due to their positive correlation with instantaneous
filament velocity.

Although these figures demonstrate linear and null relationships among
changes in myosin inputs to effects on outputs, they represent a small subset
of the design space. Highly non-linear relationships emerge when considering
designs perturbed from other starting locations in the design space or outputs
such as energy use of the system and the number of attached myosins. These
non-linear relationships are evident from the equations presented in §A.1,
particularly through considering Eqs. (A 2) and (A 4) due to exponents included
in the analytical formulation. Additionally, non-linear effects may emerge among
parameters when considering a system transitioning from a regime that has
intermittent transport of filaments to continuous transport. Such non-linear
effectsmay occur when the detachment rate parameter is significantly influencing
both the unloaded filament velocity and the probability of at least one myosin
being attached simultaneously.
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