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Abstract

When solvers have more than one strategy available for a
given problem, they must make a selection. As they select
and use different strategies, solvers can learn the strengths
and weaknesses of each. We study how solvers learn about
the relative success rates of two strategies in the Building
Sticks Task and what influence this learning has on later
strategy selections. A theory of how people learn from and
make such selections in an adaptive way is part of the ACT-R
architecture (Anderson, 1993). We develop a computational
model within ACT-R that predicts individual subjects’
selections based on their histories of success and failure. The
model fits the selection behavior of two subgroups of
subjects: those who select each strategy according to its
probability of success and those who select the more
successful strategy exclusively. We relate these results to
probability matching, a robust finding in the probability-
learning literature that occurs when people select a response
(e.g., guess heads vs. tails) a proportion of the time equal to
the probability that the corresponding event occurs (e.g., the
coin comes up heads vs. tails).

Introduction

People often have multiple strategies available for
approaching a given problem, but they must select just
one strategy to apply. Much research on this selection
process has focused on the influence of problem features—
how the “looks” of a problem can influence what strategy
solvers choose to apply to it (e.g., Atwood et al., 1980;
Reder & Ritter, 1992; Siegler & Shipley, 1995). Another
influence on strategy selection, however, is the knowledge
solvers have learned about the strategies themselves (e.g.,
how successful different strategies are or how costly they
are to apply). Itis clear that, all else being equal, solvers
should tend to select a strategy that is more successful,
less costly, etc. than the others, but little is known about
how solvers actually represent and use such strategy
information. In this paper, we describe a detailed,
quantitative study of how solvers’ histories of success
with different strategies impact selection.

While this focus has not received much attention in the
problem-solving literature, the influence of success rates
on an analogous selection task has. This is the two-
choice selection task studied in probability-learning
experiments (e.g., Estes, 1964; Humphreys, 1939; Jones,
1971). The basic paradigm of these experiments is to ask
subjects to predict which of two outcomes will occur
(e.g., a coin coming up heads or tails), where one
outcome (say, heads) has probability p and the other (tails)

265

John R. Anderson
Psychology Department
Carnegie Mellon University

Pittsburgh, PA 15232
ja+@cmu.edu

has probability 1-p. In these experiments, the success rate
p is varied within or between subjects, and selection
tendencies (e.g., guessing heads vs. tails) are studied as a
function of p. A common finding is that, with multiple
trials, subjects exhibit probability matching—they select
each response a proportion of the time equal to its
probability of occurring (Estes, 1964). For example, if
heads comes up with probability 0.8, subjects will tend to
guess heads 0.8 of the time. (Notice that this does not
maximize one’s expected number of correct guesses.)

Many models have been developed that predict
probability matching in such contextually sparse
situations (Atkinson & Estes, 1963; Gluck & Bower,
1988; Lordahl, 1970). An interesting question, however,
is whether people will exhibit probability matching when
the selection task is embedded in the larger context of
solving a problem. One might expect that the learning
mechanism underlying probability matching is
fundamental and applies in a variety of contexts, but it is
possible that, when making selections in service of a
larger goal, solvers will be more likely to maximize their
expected number of solutions by selecting the more
successful strategy all of the time.

To gain a better understanding of the role of strategy-
success information in strategy selection and to test the
generality of probability matching, we studied how
solvers select between two problem-solving strategies in a
novel task, the Building Sticks Task (BST) (Lovett,
1994). This provided us with two important
opportunities. First, it allowed us to record every success
and failure a solver experienced while using the two
strategies. We used these trial-by-trial, individual
histories to compare an ACT-R model of strategy
selection with the class of models that predicts asymptotic
probability-matching behavior. Second, it allowed us to
manipulate the strategies’ success rates from the start of
subjects’ experience. Thus, we could study the effects of
strategy information as it is acquired. Note that, for all
the problems we asked subjects to solve, the two
strategies appeared equally appropriate and equally likely
to lead to a solution; this focused our study on how
subjects’ history of success with the various strategies
influenced their selections, and it made the analogy to
probability-learning experiments clearer.! A major goal

1See Lovett & Anderson (1995) for a discussion of how
history of success and apparent appropriateness of various
choices jointly influence sclections in problem solving.




of this research was to capture, in a computational model,
how people leam from and make strategy selections.2

A model of how people select between
strategies in the BST

A theory of how people do this in an adaptive way is part
of the ACT-R architecture (Anderson, 1993). We
developed a computational model within ACT-R that
predicts individual subjects’ strategy selections in the
BST. Inthe BST, the goal is to build a current stick that
is equal in length to the desired stick by adding and
subtracting multiple building sticks (see Figure 1). This
goal can be achieved either by selecting a building stick
that is smaller than the desired stick and subsequently
building up to the desired stick’s length (the
UNDERSHOOT strategy) or by selecting a building stick
that is longer than the desired stick and subsequently
cutting down to the desired stick’s length (the
OVERSHOOT strategy). In the model, each strategy
corresponds to a single production whose actions are
executed only when its conditions are met in the current
situation. Since both strategies can be executed in the
initial problem state, the model must select between them
on the first step of each problem. Solvers make the same
selection implicitly as they solve each problem, and these
selections are easily identified (to the experimenter) by the
first step.

UNDERSHOOT

desired:
current: Ml

building:

| ) e——— | S

INITIAL STATE OVERSHOOT

desired:
current:

desired:
current: ERERR

building: | building:
 mon || S— } S— | o | S—  —

UNDERSHOOT

desired: B
current: 1EEE

building:

o | E—  —

Figure 1. Initial and successor states in the BST.

To select between the two strategies, the model
attempts to choose the step that will lead to the highest
probability of success (where success is defined as
achieving the goal). Since the actual probability of
success resulting from a particular step cannot be known
in advance, the model estimates the predicted probability

?:Our mod;ling goals differ from those of related
machine-learning work (e.g., Sutton, 1988).
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of success (PPS) for each move as a function of the
history of success of the production involved in the move,
The more often a strategy (i.e., production) has led to
success in the past, the higher the model’s PPS for moveg
using that strategy.3 The PPS of strategy j is estimated

as a Bayesian posterior probability of success,
a;+s;

PPS; -

Ny R R
i~ “i*pi“i*fi 4
and fj the number of failures experienced with that

where 5j is the number of successes

a; . N .
strategy and W is the model’s prior for the success of

that strategy. Note that the more one uses a particular
strategy, the less its PPS depends on the prior and the
more its PPS depends on the number of successes and
failures experienced with the strategy. We should
emphasize that, while this updating formula for PPS is
meant to model a part of the process by which people
make strategy selections, we do not propose that people
are actually calculating these Bayesian updates per se.
Rather, this formula is meant to capture the changes in
knowledge that people learn through experience—changes
that are presumably “computed” at the neural level.

When the model is selecting among multiple moves, it
tends to select the move with highest PPS. To include a
stochastic component in this selection process, Gaussian
noise is added to each PPS value before the selection is
made. Thus, the model can be thought of as selecting
each move with a particular probability that is a function
of its PPS value, relative to the other moves, and the
amount of noise in the system. Note that our ACT-R
model can exhibit probability-matching behavior, but it
can also model other selection tendencies as long as the
more successful strategy is selected more often than its
competitors.

Method
Subjects

Subjects in this experiment were 68 Carnegie Mellon
University undergraduates; of these, 49 received course
credit for participating, and 19 received $5.00.

Design

There were eight experimental conditions that differed
according to three factors: (1) which strategy (UNDER-
SHOOT or OVERSHOOT) was designed to be mor¢
successful, (2) the relative success rate of the more
successful strategy to the less successful strategy (high of
low), and (3) whether or not the two strategies were
complementary (i.e., whether failure of one impli
success of the other). Analyses revealed that the
assignment of UNDERSHOOT vs. OVERSHOOT to th¢
more successful strategy did not affect the results, $0 W¢
collapse this factor and label the four remaining conditions
comp-hi, comp-lo, noncomp-hi, and noncomp-lo.

3n ACT-R, the estimate of PPS can be influenced by .
other factors as well, but here it is relatively well modeled 88
monotonic function of success rate alone.




Table 1. Solution probabilities as manipulated across conditions.

solves; P(N)

Subjects were assigned to one of these four
“environments™ that determined how likely each strategy
was to solve problems. The ratios of success were chosen
as 80/20 (high) and 60/40 (low). In the complementary
conditions, these ratios represented the observed solution
rates for the two strategies (e.g., in comp-hi, the more
successful strategy solved 80% of the problems and the
less successful strategy 20%). In these conditions,
whenever the strategy chosen first on a given problem did
not lead to a solution, the other strategy would. In
contrast, in the noncomplementary conditions, some
problems were not solvable. Each strategy had its
designated probability of solving the problem (e.g., 80%
and 20% for the more and less successful strategies in
noncomp-hi). But, if the strategy selected first did not
solve the problem (according to that probability), the
other strategy only had a chance of solving (according to
its designated probability). So, the probability that a
problem would be solved by a particular strategy depended
on which strategy was selected first.

Table 1 presents the probabilities of success for each
strategy in terms of which strategy was selected first.
Note that these values are different for the complementary
and noncomplementary conditions. In particular, for the
latter, the ratios of the two strategies’ solution rates are
not fixed at 80/20 and 60/40: When solvers select the
more successful strategy first, the ratios become more
extreme (80/4 and 60/16; see * in Table 1), and when
solvers select the less successful strategy first, the ratios
become less extreme (64/20 and 36/40; see ** in Table 1).

Apparatus

Subjects worked individually on Macintosh Ilci
computers. A cT program (Physics Academic Software,
1992) ran the BST interface, provided initial instructions
1o subjects, and collected data. Each rectangle in Figure 1
is a sketch of the interface subjects saw.

Procedure

At the beginning of the experiment, a computer tutorial
provided subjects with instructions and practice on how to
use the mouse to build sticks. Then, it automatically
solved two sample BST problems (one by
UNDERSHOOT and the other by OVERSHOOT). The
experimental trials included 90 BST problems. In the
complementary conditions, subjects were required to work
on each problem until they solved it or had taken at least

= probability unsolvable. Text refers to * and **,
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P(MS) | P(LS) | PAN) | Condition PMS) | PALS) | PAN)
omp Noncomp-hi
MS selected first .80 20 .00 MS selected first * .80 .04 .16
LS selected first .80 .20 .00 LS selected first ** .64 .20 .16
omp-lo Noncomp-lo
MS selected first .60 40 .00 MS selected first * .60 .16 .24
LS selected first .60 40 .00 LS selected first ** .36 .40 .24
Note: MS = more successful strategy; LS = less successful strategy; P(MS) = probability MS solves; P(LS) = probability LS

20 steps. In the non-complementary conditions (because
some problems were unsolvable), subjects had the
additional option of clicking on a “next problem” button
that activated after they took six steps. After the
experimental trials, subjects were asked if the experiment
had reminded them of any experiments they had learned
about in class. One subject was reminded of Luchins’s
(1942) water jars experiment and the Einstellung effect and
so was removed from the analysis.

Stimuli

All problems were designed so that the two strategies
would appear equally appropriate and equally likely to lead
to a solution. This neutrality was measured according to a
hill-climbing metric tested by Lovett & Anderson (1995).
In addition, all problems had three, nearly identical
versions: one solvable by UNDERSHOQOT, one solvable
by OVERSHOOT, and one unsolvable. The three
versions of a given problem had the same desired stick but
slightly different building sticks (they varied by one or
two pixels on the screen). Thus, the three versions
allowed a single problem to be switched from being
solved by one strategy to the other or neither, merely by
adjusting the building sticks sizes ever so slightly.
Performing these adjustments with specified probabilities
enabled us to manipulate the success rates of the strategies
according to the values in Table 1. Adjustments only
occurred in how the building sticks added to or subtracted
from the solver’s current stick. No subject noticed these
adjustments or was suspicious about how the interface
worked.

Results and Discussion

In general, we present our results in terms of the
percentage of problems on which subjects selected the
more successful strategy first, with “more successful”
defined by their condition. Figure 2 presents these
averages for each block of 15 problems for each condition.
We can use these data to test whether subjects’ asymptotic
behavior approximates probability matching. The two
thin, horizontal lines in the figure represent probability-
matching behavior for the comp-hi and comp-lo
conditions at 80% and 60%. Although the comp-hi
selections are somewhat above 80%, observed percentages
for both of these conditions in the last three blocks are
within 95% confidence intervals of the matching values.
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Figure 2. Mean percentage of problems (per 15) on which
the more successful strategy was selected.

For the noncomplementary conditions, 80% and 60%
are not necessarily “matching” percentages because here
the proportion of problems solved by each strategy varies
with the strategies subjects select. Suppose a represents
the proportion of problems on which a noncomp-hi
subject selects the more successful strategy first.
Referring to Table 1, this subject should experience
success of the more successful strategy on .80a + .64(1-a )
of the problems, on average, and success of the less
successful strategy on .04a + .20(1-a) of the problems, on
average. A further complication in defining probability
matching here is that these two expressions do not add up
to 1 since some problems are unsolvable. In other studies
of choice, where not all trials lead to success, matching
has been defined by the matching law (Hermstein, 1961),
which claims that subjects match their ratio of responses
to the ratio of experienced reinforcements (reinforcements
= solutions in our case):4

#A_Responses __ #A_Solutions

#B_Responses — #B_Solutions ° (1)
Setting the left-hand side equal to a/(1-a) and the right-
hand side equal to (.80a + .64(1-a ))/(.04a + .20(1-a)), we
can obtain an equilibrium matching value by solving for
a. For noncomp-hi, a ~ .94, and, for noncomp-lo, a ~
.69. Thus, the almost exclusive selection of the more
successful strategy among noncomp-hi subjects and the
“above 60%” selection among the noncomp-lo subjects
both fit closely to these predicted values.

While these global results are consistent with matching,
analysis of individuals’ selection tendencies reveal some
important differences. For example, three of the comp-hi
subjects (18%), two of the noncomp-lo subjects (13%),
and one of the comp-lo subjects (6%) selected the more
successful strategy on 43 or more of the last 45 problems.
Under a probability-matching model, the probabilitics of
such extreme preferences for the more successful strategy

4Note that the RHS of this equation does not include
unsolvable problems but the LHS does. Thus, the equation
reduces to probability matching when all problems are
solvable (i.e., #A_Solutions + #B_Solutions = all trials).
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are very low. If we assume that subjects are selecting
with probability p equal to the maiching value of their
condition, the expected probabilities for the three
situations above are .003, .00001, and .0000000s
(computed from the binomial distribution). Thus, it is
very unlikely that these subjects are probability matching;
instead, they are likely using an “exclusive” approach—
selecting the more successful strategy almost exclusively,
Figure 3 presents individual subjects’ selection data
(proportion of last 45 problems on which the more
successful strategy was selected) against the average of
their solution experiences (proportion of solved problems
solved by the more successful strategy) preceding each of
those problems. The line y=x, R2=.60, represents the
matching law (and, hence, the prediction of any model that
leads to asymptotic probability matching), but the data
suggest that the majority of subjects are, in fact,
overmatching relative to their experience.

1_.

elections
O O O
0]
|

U)O.G—

1 T 1T T 71 1
0.2 0.30.4 0.50.6 0.7 0.80.9 1
Observed MS Solutions

(Matching Predictions)

Figure 3. Proportion of the last 45 problems on which
the more successful strategy (MS) was selected against the
prediction of the matching law, computed for each subject.

Our ACT-R model can be fit to subjects’ selection data
across all problems. As described above, our model
estimates the PPS of each move and then selects the move
with the highest PPS value, given some noise is added to
each. We set the variance of this Gaussian noise (0 b¢

0.052 and obtain the model’s predicted probability p of
selecting UNDERSHOOT for each problem for ¢ach
subject. This probability also depends on the individual
subject’s history of success with UNDERSHOOT E{"d
OVERSHOOT preceding that problem. We only varied
one model parameter to fit these data, the sum a+f. T
sum o+f is used in the model’s formula for updating 188
estimate of each strategy’s probability of success.
functions as a “learning rate” for PPS: the larger the sum,
the smaller the influence of one success or failure, and
smaller the sum, the larger the influence of one success of
failure. The same a+p was used for bo‘{
UNDERSHOOT and OVERSHOOT, with o sct t0 h3!
a+B. The value 255 for o+ minimized the sum of
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Figure 4. Observed and ACT-R predicted proportions more
successful strategy selected across all trials, all subjects.

squared differences between the model’s p and the
subject’s response (UNDERSHOOT or OVERSHOOT)
across all subject-problem pairs. Since subjects’
responses are a binary variable (UNDERSHOOT or
OVERSHOOT) and the model generates a probability, we
present the model’s fit by “binning” together problems for
which the p s are similar. Figure 4 plots the average of
the p s in each bin against the observed proportion of
UNDERSHOOT selections on the corresponding trials.
The line y=x, R2=.99, shows that, over all subject-
problems, the ACT-R model provides an excellent fit.

®)

T ] ] I I ] T f T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Predicted MS Selections

Figure 5. Observed and predicted proportions of more
successful strategy selections on last 45 problems, by
Subject.

Our model can also be compared with the predictions of
probability matching (cf. Figure 3) by fitting individual
subjects’ selections on the last 45 problems. In Figure 5,
we plot our model’s predicted proportion of selections of
the more successful strategy against the observed
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proportion of selections of the more successful strategy,
averaged over the last 45 problems for each subject. The
line y=x, R2=.66, shows that the model accounts for the
major trend in the data without systematically over- or
underpredicting, but there is still much variability. Note
that the major difference between Figures 5 and 4 is that
Figure 5 displays the model’s predictions subject by
subject whereas Figure 4 combines the predictions that
had similar values, allowing multiple subjects’ data to
contribute to each bin. A similar difference applies to
Figures 3 and 2: Figure 3 presents averages within
subjects, and Figure 2 presents averages across subjects.
The greater variability and model misfit in Figures 5 and 3
suggest that there are more factors influencing individual
strategy selections than most models take into account.
By aggregating over subjects, these factors tend to average
out.

Conclusions

The main result of this experiment is that, while group
data suggest that solvers are selecting between strategies
by probability matching, individual data suggest that there
are a variety of selection tendencies. Individualized
predictions based on the matching law showed that many
subjects tend to “overmatch” (use the more successful
strategy more often than its proportion of solutions) and
left 40% of the variance in subjects’ asymptotic selection
behavior unaccounted for. Our ACT-R model does not
necessarily predict matching behavior, but it does predict
that solvers will tend to prefer the more successful
strategy. This prediction stems from the claim that
solvers are choosing moves with the highest PPS, and
PPS is estimated by their past successes and failures with
each strategy. However, the model also assumes there is
some noise in this process. So, when one strategy’s
success rate is much higher than another strategy’s, the
“better” strategy will likely be selected, but when two
strategies’ success rates are very similar, one will be
selected essentially at random. Thus, according to our
model, the degree of preference for one strategy over
another depends on the relative number of successes and
failures experienced with each strategy and the amount of
noise in the system. This stochastic selection based on
the relative “strengths” of alternatives is similar to several
interactive competition models (Gluck & Bower, 1988;
Siegler & Shipley, 1995; McClelland & Rumelhart,
1981).

When the ACT-R model was fit to all subjects’
selections across the entire experiment, it provided an
excellent fit. This shows that the model is fitting
subjects’ overall selection tendencies as they develop
through the course of the experiment. Similar to the
“matching” predictions, however, our model left a large
portion of the variance unaccounted for when predicting
selections at an individual level. This suggests that there
are individual differences influencing selection beyond the
variability in individual subjects’ experiences. The free
parameters in our model may allow us to capture such
inter-subject differences.




We are currently investigating individual differences that
may be significant influences on subjects’ selection
behavior. One such difference is subjects’ learning rate—
how much of an impact one success or failure has on later
selections. Another is subjects’ assessments of the value
of exploration versus exploitation—how much utility is
attributed to solving the problem versus experimenting
with the various strategies. By incorporating these
differences into our model, we hope to gain an even better
understanding of the processes involved in strategy
selection.
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