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Abstract. Simulation of tunnelling spectra obtained from semiconductor surfaces permits 
quantitative evaluation of nanoscale electronic properties of the surface. Band offsets 
associated with quantum wells or quantum dots can thus be evaluated, as can be electronic 
properties associated with particular point defects within the material. An overview of the 
methods employed for the analysis is given, emphasizing the critical requirements of both the 
experiment and theory that must be fulfilled for a realistic determination of electronic 
properties. 

1.  Introduction 
The scanning tunneling microscope (STM) enables direct imaging of structures on semiconductor 
surfaces with lateral resolutions on the order of 0.3 nm and vertical resolution of 0.01 nm or better [1]. 
It is well known however that the images actually reveal the electronic charge density (integrated over 
an energy window with width on the order of an eV on either side of the Fermi energy) [2,3]. Hence, 
deriving atomic structures and/or compositions is challenging. Comparison of the measured results to 
theoretical predictions, over a range of sample-tip bias voltages, has proven to be an effective means 
of determining structural models. Spectroscopic measurements, i.e. scanning tunneling spectroscopy 
(STS), provide important additional input for this type of analysis [4,5,6]. For semiconductor surfaces 
with complex reconstructions, the aforementioned methods provide a powerful means of determined 
the structure of the surfaces. (For elemental semiconductors, structures can sometimes be deduced 
directly from STM images, but for compound semiconductor the added complexity demands the use of 
theoretical predictions of structures [7]). 

A somewhat different class of problems that can be investigated by STM/S is associated with 
surfaces for which the arrangement of surface atoms is quite simple and for which there is not a high 
density of surface states throughout the band gap, e.g. the nonreconstructed (110) surfaces of cleaved 
III-V semiconductors [8] or passivated surfaces such as H-terminated Si(001) [9]. In many cases, large 
well-ordered regions of such surfaces can be prepared, and then the presence of isolated defects, often 
intentionally introduced into the structure, can be achieved. Also, heterostructures of e.g. III-V 
semiconductor can be cleaved and viewed in cross-section, thus revealing quantum wells, quantum 
dots, or other similar nanostructures [10]. 

In these sort of surfaces with relatively simple structure and low density of surface states, an 
important effect that occurs in STM/S is tip-induced band bending – the extension of the electric field 
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across the vacuum gap into the semiconductor as illustrated in figure 1. This tip-induced band bending 
can have dramatic effects on the spectra, not only producing shifts in the position of spectral lines or 
edges, but also greatly affecting the magnitude of the tunneling current or conductance over certain 
voltage ranges. In order to obtain accurate energy values from spectra (e.g. for spectral lines, band 
offsets, etc.) it is necessary to quantify the effects of tip-induced band bending on the spectra. 
 

 
Figure 1. (a) Schematic diagram of energy bands with tip-induced 
band bending, showing the valence band maximum EV and the 
conduction band minimum EC. The sample Fermi level is denoted 
by EF with the tip Fermi level at EF + eV where V is the applied 
sample-tip bias voltage. The band bending at the surface is 
denoted by 0U . Quantum effects within the semiconductor are 
illustrated in (b) and (c) for wavefunction tailing (arrow) through a 
depletion region and for localized accumulation state formation, 
respectively. 

 
Early studies of semiconductor surfaces permitted computation of tip-induced band bending in a 

qualitative or semi-quantitative manner [8,11-13]. In the past decade a realistic method for obtaining 
the band bending in three dimensions (3D) [14] has been developed, and associated computer codes 
are available [15]. With those electrostatic potentials, computations of tunnel current are relatively 
straightforward within an effective mass (envelope function) treatment. Two methods have been 
developed for such computations, one employing a planar tunneling geometry [16] and the other 
treating a nonplanar tip with a plane wave expansion method [17]. The former yields a detailed 
spectrum of states with arbitrarily fine energy spacing, although energy levels are approximate since 
the planar geometry has been assumed (a proper nonplanar tip is used in computing the potential, but 
not for the current). The latter method permits a correct treatment of the tip geometry, but because of 
computational limitations in the plane wave expansion, only a small (≈10 nm on a side) region in the 
semiconductor around the point opposite the tip apex can be treated. Nevertheless, the results of the 
two methods are in good agreement for situations where the radial dependence of the potential is not 
too large (i.e. when no region of laterally localized potential exists in the semiconductor). 

In this paper we provide an example of computed tunneling spectra for a semiconductor system, 
namely InAs quantum dots in GaAs. We demonstrate how, through fitting of the computed spectra to 
experiment, the tip-related parameters such as tip radius, tip-sample separation, and tip-sample contact 
potential (work function difference) can be determined. Furthermore, additional features in the 
observed spectra, discrete states in quantum dots in the present case, can be derived from the observed 
spectra. We also briefly discuss limitations in the computational methods, particularly those associated 
with non-equilibrium occupation of carriers in the semiconductor. 



 
 
 
 
 
 

2.  Experimental Methods 
In addition to the usual requirements in any STM/S experiment of stable operation of the microscope 
and clean metallic probe tips, comparison of experiment to theory for detailed semiconductor 
spectroscopy has several additional experimental requirements. First, it is crucial that the spectra have 
high dynamic range, i.e. extending over 3 – 4 orders of magnitude at least, in order to permit a 
comprehensive comparison with computed results. As illustrated many years ago, band edges are in 
general not well defined for spectra that extend only over 1-2 orders of magnitude [8]. One convenient 
means of achieving this high dynamic range, and simultaneously acquiring the data in a short period of 
time (a few seconds), is to employ variable tip-sample spacing during the measurement [18]. The 
separation is varied as sss Δ+= 0  with Vas =Δ , using a value for a of about 0.1 nm/V.  For 
comparison of theory to experiment, the data is normalized to constant separation using a 
multiplicative factor of )2exp( sΔκ , where a voltage-averaged value of κ obtained from experiment is 
employed. Ideally the κ  value would be close to a theoretically ideal value of ≈10 nm-1, although in 
some cases lower κ  values are found in the experiments. One possible reason for this nonideality are 
transport limitations in the current, further discussed in section 4. In any case, so long as the κ  value 
does not deviate too much from an ideal one, then this method of normalization seems to be adequate. 
(A normalized conductance of the form )//()/( VIdVdI  is very convenient for qualitative display of 
experimental data [6,18], but this normalization itself can somewhat distort the data so that for detailed 
quantitative analysis we find that the conductance at constant separation to be a better quantity). 

A second important requirement for the experimental data is that spatially resolved spectra must in 
general be acquired, both at some typical location of the bare semiconductor surface and at specific 
locations near the region of interest on the surface. The former spectra are needed in order to enable 
determination of the tip-related parameters – tip radius, tip-sample separation, and tip-sample contact 
potential. With those, then spectra acquired near the region of interest can be used to determine values 
of additional parameters associated with that region. The simultaneous need for high dynamic range 
and spatially resolved spectra is a significant demand in STM/S work, since thermal drift in the 
instrument and/or unintentional changes in the tip structure can lead to incomplete data sets (use of a 
low temperature STM can aid in minimizing these instrumental difficulties). 

3.  Computational Methods 
The geometry of the problem consists of a tip-vacuum-semiconductor junction. To obtain the 
electrostatic potential a finite-element method has been developed that can efficiently solve the 3D 
problem including possible occupation of electronic states on the surface or in the bulk of the 
semiconductor [12]. The solution is found iteratively, thus permitting evaluation of Poisson's equation 
including a possible high degree of nonlinearity in the charge density. In the absence of any 
electrostatic potential in the semiconductor, the charge density for a bulk band is denoted by ( )FEρ  
and for a surface state by ( )FEσ  where FE  is the Fermi energy (the temperature dependence of ρ , 
σ , and FE  are fully included in our computations but are not indicated here for ease of notation). In 
the presence of an electrostatic potential energy ),,( zyxU  (i.e. e−  times the electrostatic potential 
where e  is the fundamental charge), the charge densities are given in a semi-classical approximation 
simply by ( )),,( zyxUEF −ρ  for a bulk band or ( ))0,,( yxUEF −σ  for a surface band. The 
electrostatic potential energy is given by Poisson's equation  

( )
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where 0ε  is the permittivity of vacuum, ε  is the relative permittivity (dielectric constant) of the 
semiconductor, and with 0=ρ  in the vacuum. The boundary condition at the surface is given by  
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with the semiconductor spanning the half-space 0<z . For the finite-element evaluation, in the 
vacuum a generalization of prolate spheroidal coordinates ( )ηφξ ,,  are used so as to match the shape 
of the probe tip [19], and in the semiconductor cylindrical coordinates ( )zr ,,φ  are used. In both cases 
the spacing between grid points is not constant but increases both with the radius r  in the 
semiconductor (or with ξ  in the vacuum) and with the depth z  into the semiconductor. In this way, 
solutions out to very large (effectively infinite) values of those coordinates can be obtained, with 

0→U  at those large values. On the surface of the probe tip UeVU Δ+=  where V  is the sample-tip 
voltage and  

)( FCm EEU −−−=Δ χφ       (3) 
is the contact potential (work function difference) between tip and sample, where mφ  is the tip work 
function, χ  is the semiconductor electron affinity, and FC EE −  is the separation of conduction band 
(CB) edge deep inside the semiconductor from the Fermi energy.  

The iterative method that has been developed permits solution of equations (1) and (2) for any 
specified set of bulk and/or surface bands. Also, solutions are possible not only for the semi-classical 
case described in those equations but also for a fully quantum mechanical treatment of particular 
states, as needed e.g. for a self-consistent treatment of accumulation or inversion situations in the 
semiconductor [20] (in which case the bulk charge density is expressed as functional of ),,( zyxU ). 

An example of a computed electrostatic potential is shown in figure 2, for the case of an InAs 
quantum dot (QD) embedded within GaAs [17]. The presence of the QD does not affect the potential 
(assuming equal dielectric constants for the InAs and GaAs), but it does affect the tunnel current by 
introducing electron and hole states within the GaAs band gap. The tip apex in figure 2 is positioned 4 
nm from the center of a lens-shaped QD (shown in grey), and a strip of charge density associated with 
a surface step is located 6 nm on the other side of the QD (the physical step is not represented in the 
theory, only the charge density associated with the step). A constant state-density throughout the 
bandgap arising from the step is assumed, with value 2.5 nm-1eV-1 and charge-neutrality level 0.25 eV 
above the VB maximum [17].  

 
Figure 2. Electrostatic potential energy for 
a 2-nm radius-of-curvature probe-tip 
located 1.0 nm from a semiconductor 
surface. The sample-tip voltage is set at 
+1.0 V and the contact potential between 
tip and sample is -0.87 eV, so the 
electrostatic potential energy of the tip 
relative to a point deep inside the 
semiconductor is +0.13 eV. Contours are 
shown for potential energies (eV) of 0.155 
(red), 0.232 (green), 0.310 (cyan), 0.388 
(blue), 0.465 (magenta). At distances 
further inside the semiconductor the 
potential falls gradually to 0 eV. (From Ref. 
[17]).  

 
The above method for evaluating the electrostatic potential provides an exact solution. In contrast, 

evaluation of the tunnelling current requires some approximations. It should be noted that quantum 
effects within the semiconductor as illustrated in figures 1(b) and (c) can be very important in 
determining the current, so a treatment of the problem using e.g. only a transmission factor for the 



 
 
 
 
 
 

tunneling through the vacuum would be very unrealistic. It is necessary to compute the wavefunctions 
through both the vacuum and the semiconductor region where the potential is varying. From the 
wavefunctions, the current can be obtained using the Bardeen formalism [21], written for the case of a 
sharp tip by using the Tersoff-Hamann approximation [3,17], 

[ ]∑ −−=
μ

μμμ ψπ 22 ),0,0()()(8 seVEfEfkR
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eI F
h      (4) 

where m is the free-electron mass, R is the tip radius-of-curvature, Fk  is its Fermi wavevector, μE  is 
the energy of an eigenstate of the sample, )( μEf  is the Fermi-Dirac occupation factor for that state, 

)( eVEf +μ  is the occupation factor for the corresponding state in the tip, and ),0,0( sμΨ  is the 
wavefunction of the sample state evaluated at the position of the tip apex: 0=x , 0=y , and sz =  
where s is the tip-sample separation. The wavefunctions are evaluated within an effective mass 
(envelope function) approximation, writing Schrödinger's equation for a CB as 
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for a valence band (VB) as 
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for the probe tip as 
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and for the vacuum as 
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where VE  and CE  are fixed locations of the band edges (i.e. corresponding to their values deep 
inside the semiconductor), em  and hm  are effective masses, and W is the width of the metallic band 
in the semiconductor below its Fermi energy. In a typical computation, a single CB and three VBs 
(light-hole, heavy-hole, and split-off) are used. At the semiconductor surface, the wavefunctions are 
taken to be continuous and their derivatives with respect to z are related by 
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where im  equals em  or hm , as appropriate. At the surface of the probe tip, both the wavefunctions 
and their derivatives are continuous.  

Two schemes have been employed for evaluating the wavefunctions. In the first, the tunnel current 
is written in a form appropriate for planar tunneling. It can be argued that this approximation is 
equivalent to a semi-classical treatment of the radial (and angular) components of the wavefunctions 
while maintaining a fully quantum-mechanical treatment of their z-component [16]. The z-components 
of the wavefunction are then obtained directly by numerical equation of the corresponding z-part of 
the Schrodinger equation. This approximation for the wavefunctions is valid so long as there are no 
regions of localized potential in the semiconductor and the probe tip is not too sharp (and actually it 
works quite well even for tip radii as small as 1 nm) [17].  

Regions of localized potential are what occur e.g. around quantum dots, so that in such cases the 
planar geometry is not suitable and one must employ a type of plane wave expansion method: Plane 
waves in the z-direction are matched to decaying exponentials in the vacuum, with the wavefunctions 
thus obtained also incorporating the boundary condition of equation (6) [17]. Solution of the 



 
 
 
 
 
 

Schrödinger equation is then accomplished with the usual eigenvalue method. Such methods are very 
computationally demanding, even for a modest number of plane waves (≈10) in each of the x, y, and z 
directions. Consequently, only a relatively small region of the semiconductor (≈10 nm in each 
direction) is sampled by the method. Nevertheless, this small region turns out to be sufficient for 
providing a reasonable description of a tunnelling spectrum, at least for temperatures that are not too 
low. Results using both of these methods, in the absence of a localized potential in the semiconductor, 
are in good agreement with each other [17]. 

Computations performed as described above yield self-consistency between the potential and the 
current for situations of semiconductor depletion, which is the usual case in most spectra. But, for 
situations of accumulation or depletion, the semi-classical charge density is not realistic. In those 
cases, a quantum-mechanical charge density must be formed from the wavefunctions, and the potential 
re-evaluated with this new charge density. A self-consistent solution is then obtained iteratively. This 
method provides a complete solution of the problem when planar evaluation of the current is used 
[20], but for the plane wave expansion method the new charge density is obtained only over a 
restricted region of the semiconductor. Some method to extend that charge density over the entire 
semiconductor would be needed, and a detailed formulation of that procedure has not been derived to 
date.  

4.  Comparison of theory to experiment 
It should be emphasized that all of the results obtained from the computational methods described in 
section 3 depend entirely on the input parameters. The basic parameters for any STS tunnelling 
computation on a semiconductor surface are tip radius-of-curvature R, tip-sample separation s, tip-
sample contact potential UΔ  (i.e. work function difference), and an effective tunnelling area of the 
apex of the tip. This latter parameter could be deduced from the tip radius for a perfectly spherical tip 
apex, but we take it to be an independent parameter (which affects only the overall magnitude of a 
spectrum), to allow for a small protrusion on the tip apex. In general the values of these parameters are 
not something that are of interest per se, but rather, their values are needed only to obtain a spectrum 
that agrees overall with experiment. Then, in a typical study, there will be one or more additional 
parameters (such as band offsets) whose values are quantities of interest. Comparison between 
experiment and theory therefore reduces to a curve fitting process, often involving several spectra 
acquired/simulated at different points. With the four tip-related parameters, together with additional 
parameters (such as band offsets) associated with the point of interest or other surface phenomena 
(such a surface charge), many thousands of evaluations of the theoretical spectra are required. 
Evaluation of a single current at one sample-tip voltage requires a time ranging from minutes to hours 
depending on the complexity of the problem, and typically there might be 30 such evaluation needed 
for a spectra (15 voltage points, and 2 evaluation at each in order to obtain the conductance dVdI / ). 
Hence, significant computational resources (multiple processors) are required. 

An example of a detailed comparison between experiment and theory is given in figure 3, showing 
spectra for the InAs QD already introduced in figure 2. A spectrum acquired 6 nm from the QD is 
shown in (a), revealing states associated with the bare GaAs surface. A spectrum containing features 
arising from the QD confined states is shown in (b), acquired 4 nm from the QD center (at distances 
nearer to the QD these confined-state features grow in size, but charging of the QD is a problem, so 
the analysis is restricted to only this QD spectrum for which the current through the QD states is 
relatively small) [17]. For the spectrum of the bare GaAs, this would normally be fit using four 
parameters, s, R, UΔ , and an overall magnitude for the spectrum. In the present case however, atomic 
steps existed on this cleavage surface (arising from strain in the heterostructure due to the QDs). Very 
little tip-induced band bending is apparent in the spectra of figure 3(a) (i.e. the apparent bandgap is 
close to the GaAs gap of 1.42 eV), revealing the influence of the states of the steps. These states are 
modelled using a energetically uniform state-density across the bandgap, with density σ  and charge 
neutrality level NE . Consequently, six parameters are used to fit the spectrum of the bare GaAs. This 
is a large number of parameters, so the model possibly overfits the experimental data, hence producing 



 
 
 
 
 
 

rather high correlation between the UΔ  and NE  parameters and values for the R parameter that are 
somewhat smaller than expected on the basis of other investigations [16]. But importantly, the added 
features found with the GaAs bandgap region for the QD spectrum are not at all dependent on these 
parameter values of s, R, UΔ , σ , or NE , so those parameters only serve to provide a "background" 
description of the bulk GaAs part of the spectra from which the QD features can then be separated. 
 

Figure 3. Tunnelling spectra, 
acquired (a) 6 nm from an InAs 
quantum dot (QD) and (b) 4 nm from 
the QD. Experimental results are 
shown by lines and theoretical fits by 
circles. The curves (a) and (b) are 
shifted from each other for ease of 
viewing. Values for the fitting 
parameters are listed. The location of 
states from the theory is shown at the 
bottom of the figure, giving the 
voltages at which the tip Fermi 
energy is aligned with QD states (for 
the VB, only light-hole states are 
shown) and with the hatched regions 
showing unconfined VB and CB 
states in the near-surface region. 
(From Ref. [17]). 

 
To describe the QD, a minimum of two additional parameters are needed: the offsets between the 

InAs and GaAs CBs and VBs, CEΔ  and VEΔ , respectively. With those two parameters the theory 
yields confined electron and hole states for the QD. However, it turns out that for the simple effective 
mass theory used here that the density of such states (i.e. number per unit energy) is significantly 
underestimated [22], so that even if the lowest energy state is correctly found in the theory then the 
next higher energy state would be incorrect. To account for this failing of the theory, one additional 
parameter was employed, a scale factor α  by which the overall size of the QD was increased. The 
larger QD then increases the density of states such that it can match the experiment. The final fit is 
shown in figure 3, where the values of all nine parameters (the eight listed there, plus one overall 
magnitude) is found by simultaneous fitting to both experimental spectra. In this way, the energies of 
the confined electron and hole states are determined, as schematically indicated in the lower part of the 
figure. These energies, in conjunction with the size, shape, and composition of the QDs determined 
from the STM images and considerations of elastic strain relaxation in the material [17], thus 
constitute a complete determination of the electronic and structural properties for this nanostructure. 
This information is useful since it can be used to distinguish between current predictive theoretical 
models for the confined state energies associated with QDs [17]. 

5.  Summary 
In summary, we have discussed in this work the application of computational methods to the 
quantitative analysis of tunnelling spectra from semiconductor surfaces. The electrostatic potential in 
the semiconductor, arising from the voltage difference between tip and sample as well as from 
occupation of electronic states on the surface or in the bulk of the semiconductor, can be obtained 
using an iterative finite-element method. Tunnel currents are then computed within the effective mass 
(envelope function) approximation by using either a semi-classical treatment of the lateral parts of the 



 
 
 
 
 
 

wavefunction or a completely quantum-mechanical treatment but one that is restricted to a relatively 
small region around the tunnel junction.  

A number of limitations of the present theory exist, as discussed elsewhere [22]. One limitation in 
particular arises the assumption assumed that the tunneling process is the rate-limiting step in the 
transport of carriers from the probe-tip to the semiconductor, so that an "equilibrium" situation exists 
in which the occupation of carriers in the semiconductor is simply described by a constant Fermi 
energy. But in actuality, situations arise (at low temperature, or low doping, or for confined states, 
etc.) in which transport in the semiconductor itself is somewhat limited. In those cases, a much more 
complicated theory is needed to describe the distribution of carriers and resulting charge densities on 
the surface and in the bulk of the semiconductor.  Such a theory could prove to be useful in enabling 
the determination of transport parameters for the carriers, even in nanoscale situations as occur in the 
STM geometry.  
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