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Dynamic Quarantine of Internet Worms
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Abstract

If we limit the contact rate of worm traffic, can we al-
leviate and ultimately contain Internet worms? This paper
sets out to answer this question. Specifically, we are inter-
ested in analyzing different deployment strategies of rate
control mechanisms and the effect thereof on suppressing
the spread of worm code. We use both analytical models
and simulation experiments. We find that rate control at in-
dividual hosts or edge routers yields a slowdown that is lin-
ear in the number of hosts (or routers) with the rate lim-
iting filters. Limiting contact rate at the backbone routers,
however, is substantially more effective—it renders a slow-
down comparable to deploying rate limiting filters at every
individual host that is covered. This result holds true even
when susceptible and infected hosts are patched and immu-
nized dynamically. To provide context for our analysis, we
examine real traffic traces obtained from a campus comput-
ing network. We observe that rate throttling could be en-
forced with minimal impact on legitimate communications.
Two worms observed in the traces, however, would be sig-
nificantly slowed down.

1. Introduction

Since the original “Internet worm” [3] in 1988, computer
worms continue to wreak havoc on the Internet. The recent
SQL Slammer worm infected over 90% of the vulnerable
hosts on the Internet within ten minutes [10]. With such
voracity, the manual patch-’em-as-they-go approach simply
does not work. We need automated detection and response
to defend against worm outbreaks.

One class of techniques that seems promising is rate
control—schemes that aim to limit the contact rate of worm
traffic [5, 17]. Since worms typically spread at a rapid speed

∗ This work was partially supported by the National Science Foundation
under Grant No. CCR-0208853 and ANI-0326472.

† This research is partially sponsored by the Air Force Research Labo-
ratory, under agreement number F49620-01-1-0433.

from host to host, restricting the contact rate of a worm con-
strains how fast the infection can spread in the network.
Previous proposals of rate control consider deploying such
mechanisms primarily at the individual host level. In this
paper, we investigate rate control at individual end hosts and
at the edge and backbone routers, for both random propaga-
tion and local-preferential connection worms. Our analysis
shows that both host and edge-router based rate control re-
sult in a slowdown (in the spreading rate of the worm) that
is linear to the number of hosts (routers) implementing the
rate limiting filter. In particular, host-based rate control has
very little benefit unless rate limiting filters are universally
deployed. Rate control at the backbone routers, however, is
substantially more effective. Our results hold true for both
random propagation worms (e.g., Code Red I) and worms
that spread via a preferential connection algorithm such as
those that target local hosts within a subnet.

Results are similar when dynamic immunization is taken
into account. As the worm spreads and the knowledge of
the worm disseminates, an increasing number of hosts (both
infected and susceptible) will be patched, immunized and
consequently removed from the susceptible population. In
an effort to study realistic worm attacks, the models in this
paper incorporate dynamically changing the immunization
rates. This is in contrast to the traditional models for which
the rate of immunization remains constant throughout the
infection outbreak [7, 16, 2, 6, 15].

To provide context for the models, we examine traffic
traces obtained from a sizable campus computing network.
We observe that limiting the rate of unique IP addresses
contacted (as in [17]) from the edge of the departmental net-
work to no more than 16 (total contacts) per five-second pe-
riod would almost never affect legitimate traffic. Individual
host rates can be kept to under four per five-second period.
Limiting only non-DNS-translated IP address contacts [5]
can reduce the contact rate by another factor of 2 – 4. Our
traces also captured the behavior of machines infected by
two worms: Welchia and Blaster. The results confirm that
infected machines exhibit much higher contact rates and
could be dramatically slowed by rate limiting.

Combining practical rate limits with our models allows
us to estimate how well such approaches might work in
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practice. For instance, to secure an enterprise network from
worms that propagate using a local-preferential connection
algorithm, our study shows that unless rate limiting filters
are deployed at both the edge routers and a certain percent-
age of the end hosts, little benefit will be gained.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 gives a brief back-
ground in epidemiological models. Sections 4 and 5 study
deployment strategies of rate limiting schemes. Section 6
incorporates dynamic immunization with rate control, and
Section 7 presents a case study of real network traces. We
summarize in section 8.

2. Related work

Several documented studies investigated computer
worms and the ways in which they propagate. Stani-
ford et al. presented a study of different types of worms
and how they can cause damage on the Internet [13].
Zou et al. [19] analyzed the propagation of the Code Red
worm and presented an analytic model for worm propa-
gation; Moore et al. [10] analyzed the propagation of the
Slammer worm and its effect on the Internet. These stud-
ies have not analyzed defense mechanisms in great depth.

Moore et al. [11] explored the design space for worm
containment systems. They studied the efficacy of address
blacklisting and content filtering with various deployment
scenarios. They concluded that detection and containment
must be initiated within minutes for such systems to be ef-
fective. Singh et al. [12] proposed a system for real-time de-
tection of unknown worms using traffic analysis and content
signatures. Zou et al. [18] proposed to monitor unused ad-
dress space on ingress and egress routers to detect worms at
their early propagation stage.

Our work differs from previous works in that we focus
on analysis of rate control. As we demonstrate in Sections 5
and 6, rate control mechanisms can be extremely effective
in curtailing worm spread if deployed correctly.

The primary contribution of our work is the analysis
of different deployment strategies for rate control mecha-
nisms. Williamson [17] proposed the idea of host-based rate
limiting by restricting the number of new outgoing connec-
tions. Ganger et al. [5] proposed a scheme that analyzes and
limits network traffic based on abnormal DNS lookup pat-
terns. Both of these schemes are host based and did not ex-
plore other deployment options.

3. Background—epidemiological models

In this section we briefly introduce one class of epidemi-
ological models, namely homogeneous models. Homoge-
neous models are widely used in the studies of human infec-
tions. A homogeneous model assumes homogeneous mix-
ing among the individuals in the population [1, 8]; that is,

every individual has equal contact to every one else in the
population. This assumption is similar to the ways in which
random propagation worms spread in computer networks.
This model is described in more detail in [1]. A homoge-
neous model assumes a connected network with N nodes. It
also assumes an average infection rate β across all links. If
we represent total number of infected nodes at time t as I t, a
deterministic time evolution of I (infected hosts) can be ob-
tained as below,

dIt

dt
= βIt(N − It/N) (1)

The solution to Equation (1) is I/N = eβt

c+eβt , where c
is a constant. c is determined by the initial infection level.
c → N − 1 when the initial infection level is low, since the
fraction of infected hosts will be small.

From this we can see that the infection grows exponen-
tially initially and reaches saturation after a certain point.
The time takes to reach a certain infection level α is

t
.
= lnα/β (2)

The analytical models described in the later parts of this
paper are derived from the basic homogeneous model and
share the same assumptions.

4. Rate Limiting

In this section, we present a study on rate limiting mech-
anisms as a defense to combat the propagation of Inter-
net worms. Rate limiting is a mechanism by which an el-
ement in the network can restrict the rate of communication
with other elements. Since worms spread rapidly via fast
connections to uninfected machines, rate limiting can help
suppress the propagation of the worm. A number of rate
limiting schemes have been proposed in the literature, in-
cluding Williamson’s virus throttle [17] and Ganger’s DNS
based scheme [5]. However, it is not known precisely how
and where rate control mechanisms should be deployed in a
network. Clearly, instrumenting rate control on every indi-
vidual node in a network is expensive administratively and
hence not feasible. The question then becomes: are there al-
ternative deployment strategies that can yield a more desir-
able effect than others?

We believe that the answer to this question is yes. In
this section we illustrate the effect of different deployment
strategies using a star graph topology. Consider a star graph
where a central hub node is connected to all the leaf nodes.
We analyze two deployment scenarios: a) rate control at a
certain percentage of the leaf nodes, and b) rate control at
the center hub node only. Note that a star topology is very
different from the Internet’s topology and the study of a star
topology is mainly for demonstration of the difference from
deployment at leaf and hub nodes.

Deployment at leaf nodes: Assume we deploy rate lim-
iting filters at q percent of the leaf nodes. Let x1 = I(1− q)
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Figure 1. Plots showing the differences between vari-

ous rate-limiting deployment mechanisms on a 200-node

star topology

be the number of infected nodes that are not confined by
the filtering mechanism, x2 = Iq the number of infected
nodes with the filter mechanism, β1 the contact rate of the
infected host without the filter, and β2 the contact rate al-
lowed by the filter, with β1 >> β2.

We obtain the time evolution of the infection as below,

dI

dt
= x1β1(N − I)/N + x2β2(N − I)/N (3)

Solving Equation (3) gives us I/N = eλt

c+eλt , where λ =
qβ2 + (1 − q)β1. When β1 >> β2 and eλt is small,
λ

.= β1(1 − q). From this, we can derive that the time t
to reach a certain infection level α is t = lnα/(β1(1 − q)).
That is, the rate of infection is proportional to 1−q, the per-
centage of nodes that do not have rate limiting filters. Com-
paring to Equation (2), we can see that deploying rate lim-
iting filters at the leaf nodes yields a linear slowdown that
is proportional to the number of nodes that have rate con-
trol.

Deployment at hub: When deploying rate control at the
center hub node, we need to consider both node-level and
link-level rate limiting. Assume we deploy rate limiting at
the hub node with rate β and link rate limiting with rate γ.

When β ≥ γI — the contact rate at the hub node is greater
than the combined contact rate of infected leaf nodes —
then γI is the primary limiting factor for infection propaga-
tion. Otherwise, the propagation is limited by the hub node
contact rate, β.

For link-level rate limiting (this is when the contact rate
at the hub node is higher than the combined contact rates of
all the infected leaf nodes), we have

dI

dt
= γI(N − I)/N, when γI ≤ β (4)

Solving Equation (4) gives us

I/N =
eγt

c + eγt
, when γI ≤ β

For node rate limiting (this is when the combined contact
rates of the infected leaf nodes exceeds the hub node con-
tact rate), we have

dI

dt
= β(N − I)/N, when γI > β (5)

Solving Equation (5) gives us

I/N = 1 − ce−βt/N , when γI > β

From the solution to Equation (4), we can derive that the
time t to reach an infection level α is t

.= N(ln(α))/β.
Compared to rate control at the leaf nodes, this suggests a
slowdown that is comparable to installing rate control filters
at all of the leaf nodes — in which case t = ln(α)/β2. In-
deed, the graph in Figure 1(a), which plots both leaf-node
and hub-node rate control on a 200-node star topology, in-
dicates exactly that. Figure 1(b) shows simulated propaga-
tions on the same topology.

In our simulation, we limited the links to 10 packets per
second with the hub rate limit β = 0.01. The simulation re-
sults are an average of ten simulation runs. For leaf-node
rate control, we simulated rate limiting at 10% and 30% of
the leaf nodes. As shown in Figure 1(b), rate limiting at 10%
of the leaf nodes has neligible impact. Rate limiting at 30%
of the leaf nodes results in a slight slowdown of the infec-
tion rate. Rate control at the hub node is significantly more
effective. For instance, reaching a level of 60% infection
with rate limiting at 30% of the leaf nodes is approximately
three times quicker than rate limiting at the hub. These re-
sults confirm our analytical model.

This simple but illustrative example shows that deploy-
ment strategies have a significant impact on the effective-
ness of rate control schemes. On the Internet, we can de-
ploy rate control at end hosts, edge routers, and backbone
routers. In the next section we investigate each of these de-
ployment cases.



5. Deploying rate control on the Internet

In this section we investigate three different ways of de-
ploying rate limiting schemes on the Internet: on individual
hosts, edge-routers, and at backbone routers. We develop a
mathematical model to reason about each deployment strat-
egy’s effectiveness, and conduct simulation experiments to
confirm the model’s predictions.

5.1. Host-based rate limiting

Deploying rate limiting filters at individual hosts is sim-
ilar to rate limiting at the leaf nodes of a star topology as
described in Section 4. Again, let q be the percentage of
nodes that install the filter mechanism. x1 = I(1− q) is the
number of infected nodes that are not confined by the filter
mechanism, and x2 = Iq is the number of infected nodes
with the filter mechanism. β1 is the contact rate of the in-
fected host without the filter, β2 is the contact rate allowed
by the filter, and β1 >> β2.

Similarly, we can use Equation (3) to model the time evo-
lution of infection. The solution to Equation (3) gives us

I/N =
eλt

C + eλt
, where λ = qβ2 + (1 − q)β1

When β1 >> β2, λ
.= β1(1 − q). The analysis in Sec-

tion 4 on rate limiting on leaf nodes also holds here. Figure 2
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Figure 2. Analytical model for rate limiting at individ-

ual hosts with β1 = 0.8 and β2 = 0.01

shows the time evolution of I with β1 = 0.8 and β2 = 0.01.
As we see in Figure 2, the deployment of host-based con-
finement mechanisms yields a linear slowdown in the infec-
tion rate of the worm. Note the difference between 80% de-
ployment and 100% deployment of rate limiting, this shows
that rate limiting has very little benefit unless all end hosts
implement rate limiting.

5.2. Rate limiting at edge routers

Edge-router based deployment is similar to the host-
based rate limiting scheme. From the set of networks that
install the filter, we can calculate the effective q (percent-
age of nodes that install the filter mechanism) and the rest
of the calculation is the same.

When filters are installed at edge routers, worms propa-
gate much faster within the subnet than across the Internet.
We denote the contact rate within the subnet as β1 and the
contact rate across the Internet as β2. Clearly, β1 ≥ β2. For
a random propagation worm, the infection growth within
the subnet has the form x = eβ1t

C1+eβ1t , where x is the num-
ber of infected nodes within a particular subnet. The number
of subnets infected has a similar growth form y = eβ2t

C2+eβ2t ,
where y is the number of infected subnets.

For worms that use a preferential targeting algorithm
(i.e., those that target nodes within the same subnet), the
growth formula stays the same except for that the infection
rate within the subnet, β1, could be substantially larger than
that of a random propagating worm. Consequently, the ef-
fectiveness of rate control at edge routers diminishes when
a worm employs an intelligent targeting algorithm such as
subnet preferential selection.

Figure 3 depicts the analytical models for both local pref-
erential connection and random propagation worms with
rate limiting filters at the edge routers. It shows the time
evolution of the percentage of hosts infected with β1 = 0.8
and β2 = 0.01. In the base case with no rate limiting, the in-
fection grows exponentially before it reaches its maximum
limit. With rate control there is a slight slowdown in the
rate of infection. As shown in Figure 3(a), our model indi-
cates that edge router rate limiting is more effective for the
random propagation model. To verify this, we created sim-
ulations to compare edge router rate limiting for both local
preferential and random propagation models. The results of
the simulations are shown in Section 5.4

5.3. Rate limiting at backbone routers

In this section we investigate rate limiting at the back-
bone routers of the Internet. In order for a worm to propa-
gate from one network to another, the worm packets need to
go through backbone routers on the Internet. Therefore, de-
ploying rate limiting mechanisms at the backbone routers
can help throttling worm propagation. We perform an ap-
proximate analysis of rate limiting at backbone routers be-
low.

If we deploy the rate limiting mechanism on the core
routers that cover α percent of the total IP-to-IP paths, then

dI

dt
= Iβ(1 − α)(N − I)/N + δ(N − I)/N, (6)
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Figure 3. Analytical models for random and local pref-

erential worms

where β is the contact rate of one infected host, δ =
min(Iβα, rN/232), and r is the average overall allowable
rate of the routers with the rate limiting control. When r
is relatively small, the right hand side of Equation 6 can
be approximated by only the first term. We can thus obtain
I/N = eλt

c+eλt , where λ = β(1 − α) and c is a constant.

5.4. Simulation Results

The simulator that is used to conduct our experiments
is built on top of Network Simulator (ns-2) [4]. All exper-
iments in this section are conducted using an 1,000 node
power-law graph generated by BRITE [9]. The graph shares
similar characteristics to an AS topology such as the Ore-
gon router views. Unless specified otherwise, each simu-
lation is averaged over 10 individual runs. In addition, the
time units in all our simulations are simulation ticks as de-
fined by ns-2.

We begin each simulation with a random set of initial
infections. At each time unit each infected node will at-
tempt to infect everyone else with infection probability β.
The infection packet is routed using a shortest path algo-
rithm through the network. Links that have the rate limiting
mechanism will only route packets at a rate of γ.

In order to experiment with the different deployment
cases, we designate the top 5% and 10% of nodes with the
most number of connections as backbone and edge routers
respectively. The remaining nodes are end hosts. Rate lim-
iting is implemented by restricting the maximal number of
packets each link can route at each time tick and queuing
the remaining packets. In order to ensure that normal traf-
fic gets routed, we assign each rate-controlled link a base
communication rate of 10 packets per second. We then com-
pute a link weight that is proportional to the number of rout-
ing table entries the link occupies. We multiply this weight
to the base rate to obtain the actual link rate simulated for
each link. We believe that this simulated routing will allow
most normal traffic to be routed through since the most uti-
lized links will have a higher throughput.
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Figure 4 shows the simulation results for random prop-
agation worms, for the cases of no rate limiting, rate lim-
iting at 5% of the end hosts, edge routers and backbone
routers. As shown, the simulation results confirm our an-
alytical models in Sections 5.1 and 5.2. More specifically,
there is negligible difference between no rate limiting and
rate limiting at 5% of end hosts. While rate limiting at the
edge routers shows a slight improvement, rate limiting at the
backbone routers renders a substantial improvement. Com-
pared to the case of end host and edge router based rate lim-
iting, it takes approximately five times as long for the worm
to spread to 50% of all susceptible hosts if rate limiting is
implemented at the backbone routers.

Figure 5 shows the simulated propagations for rate lim-
iting at the edge router for both local preferential and ran-
dom propagation worms within subnets. The dotted lines
are the base cases (with no rate limiting) for local prefer-
ential and random worms respectively. As our simulations
show, there is very little perceivable benefits for implement-
ing rate limiting at the edge routers if worms propagate
using a local preferential algorithm. For random propaga-
tion worms, however, rate control at the edge routers still
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yields a 50% slowdown. Clearly, edge router based rate lim-
iting is more effective in suppressing random propagation
worms as opposed to worms that propagate via local prefer-
ential connections. These results also confirm our analytical
model described in Section 5.2. Figure 6 shows the simu-
lated propagation for local preferential worms for both host-
and backbone-router-based rate limiting across subnets. As
shown, even with a 30% deployment of rate limiting mech-
anisms at the end hosts there is negligible difference when
compared to no rate limiting. Deploying rate limiting filters
on the backbone routers, as shown in Figure 6, is substan-
tially more effective.

6. The effect of dynamic immunization

Thus far in our analysis we have ignored the effect of
patching and dynamic immunization. Clearly, the infection
progress will be hampered when the exploited vulnerabili-
ties are patched (immunized) dynamically. In this section,
we examine dynamic immunization and its effect on rate
limiting.

6.1. Delayed Immunization

The immunization model we consider here assumes that
the immunization process starts at time d, after a certain per-
centage of hosts are infected. Thereafter, in each time inter-
val, each susceptible host will be patched with probability
µ. The following differential equations model the dynam-
ics of the worm propagation in the presence of immuniza-
tion:

dI

dt
= Iβ

N − I

N
, when t ≤ d

dI

dt
= Iβ

N − I

N
− Iµ, when t > d

dN

dt
= −µN, when t > d

Solving the above equations gives us,

I

N0
=

eβt

c + eβt
when t ≤ d

I

N0
=

e(β−µ)(t−d)

c0 + eβ(t−d)
, when t > d

where N0 denotes the initial number of susceptible hosts.
Figure 7(a) shows a plot of the equations. We also con-

ducted simulations of delayed immunization on a synthetic
1000-node power-law graph with d = 20%, 50%, and 80%
infection (nodes infected) with β = 0.8 and µ = 0.1. The re-
sults are shown in Figure 8(a). Clearly, the earlier immu-
nization takes place, the more effective it is. In Figure 8(a),
immunization starting at 20% infection yielded a total in-
fected population of 80% of the nodes, as opposed to 90%
infected when immunizing at 50% and 98% infected at
80%.

We note that the assumption of a constant probability of
immunization, denoted by µ, is not completely realistic. In
reality, the probability of immunization may increase as the
worm spreads and as the vulnerability it exploits becomes
widely publicized. Similarly, the probability of immuniza-
tion may decrease as the infection becomes a rarer occur-
rence, i.e., on its way to extinction. We believe that the rate
of immunization observes a bell curve. However, the exact
shape of such a curve is not easily obtainable and we lack
data to confirm the rate of immunization. Therefore in this
paper we use the simple assumption of immunization at a
constant rate.

6.2. Rate control with dynamic immunization

In this section we examine the effect of delayed immu-
nization with rate limiting. We focus on the case of rate
limiting at backbone routers (since that is the most effec-
tive strategy according to the analysis in Section 5). Assum-
ing the first instance of immunization occurs at time d, the
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growth of the infection with delayed immunization and rate
control at the backbone routers is as follows:

dI

dt
= Iβ(1 − α)(N − I)/N + δ(N − I)/N, when t ≤ d

dI

dt
= Iβ(1−α)(N−I)/N+δ(N−I)/N−µI, when t > d

dN

dt
= −µN, when t > d

where β is the contact rate of one infected host, δ =
min(Iβα, rN/232), r is the average overall allowable rate
of the routers with rate limiting control and α is the per-
centage of paths that have rate limited links. When r is rel-
atively small, the solution can be approximated as

I

N0
=

eγt

c + eγt
when t ≤ d,

I

N0
=

e(γ−µ)(t−d)

c0 + eγ(t−d)
, when t > d, where γ = β(1 − α)
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Figure 8. Simulations of delayed immunization (with

and without rate limiting) on a 1000-node power-law

graph

We also conducted simulations of delayed immuniza-
tion with rate limiting on a synthetic 1000-node power-law
graph with β = 0.8 and µ = 0.1. Since the goal here is
to identify the benefits of rate limiting, the timeticks cho-
sen in both analytical and simulation are the timeticks at
which immunization started in our analytical model for de-
layed immunization without rate limiting (e.g. for immu-
nization starting at 20%, our analytical model shows that it
should happen around the 6th timetick). Figure 7(b) plots
the analytical model and Figure 8(b) plots the simulated re-
sults of delayed immunization with rate limiting. The plots
show exactly how immunization delays in combination with
rate limiting at the backbone affects the infection propaga-
tion. Recall that in Figure 8(a), immunization at 20% with
no rate limiting results in a total infected population of 80%.
Figure 8(b) shows a similar experiment with the same sim-
ulation parameters but with rate limiting, which results in
a total infected population of 72%, a 10% drop from the
case where no rate limiting was implemented. The same re-
sults hold for other values of delay period d. In summary,
rate limiting helps to slow down the spread and as a result



buys time for system administrators to patch their systems
and ultimately minimize the damage of worm outbreaks.

7. Rate Limiting in Practice

This section presents an analysis of real network traces,
with a goal of identifying rates at which connections can be
throttled in practice. Specifically, we wish to identify rate
limits that an enterprise network can realistically implement
that will significantly slow worms while having minimal
impact on legitimate communications. Using these rates in
our models produces a corresponding propagation predic-
tion that might be viable in practice.

We focus on two recently proposed techniques for rate
limiting. The first, proposed by Williamson [17], restricts
the number of unique IP addresses with which a host com-
municates in a given period of time; the default discussed
in that paper was five per second (per host). The second,
proposed by Ganger et al. [5], restricts the number of un-
known IP addresses (those without valid DNS cache entries
and that did not initiate contact) to which a host can initi-
ate connections in a given period of time; the default dis-
cussed was six per minute (per host). The second technique
focuses on the common approach used by self-propagating
worms to identify target hosts: picking pseudo-random 32-
bit values to use as an IP address (thus performing no DNS
translation).

We evaluated these techniques using a 23-day trace from
the edge router for CMU’s Electrical and Computer En-
gineering (ECE) Department. The traces recorded in an
anonymized form all IP and common second layer head-
ers of traffic (e.g., TCP or UDP) entering or exiting the ECE
network from August 15th until September 7th, 2003. The
contents of all DNS packets were recorded and anonymized.
In addition to the regular activity of the department, this pe-
riod includes two major worm outbreaks: Blaster [14] and
Welchia.

Through examining the traces, we were able to partition
the ECE subnet (1128 hosts total) into four types of hosts:
normal “desktop” clients, servers, clients running peer-to-
peer applications, and systems infected by worms. Each
type of hosts exhibited significantly different connectivity
characteristics. The 999 “Normal Clients” exhibited traf-
fic patterns driven by client-server communication, such
as HTTP, AFS, and FTP traffic. 17 “Servers” provide net-
work services, such as SMTP, DNS, or IMAP / POP. The
33 clients running peer-to-peer applications (in these traces
Kazaa, Gnutella, Bittorrent, and edonkey) were placed in
their own category because they exhibit greater connectiv-
ity than normal hosts. This can be attributed to the nature
of peer-to-peer systems; packets must be exchanged period-
ically in order to establish which hosts are on the network
and the content they serve. Finally, 79 systems were ob-

served to have been infected by the Blaster and/or Welchia
worms. Both these worms exploited the Windows DCOM
RPC vulnerability. Blaster scanned subnets for other vul-
nerable hosts by attempting to send itself to TCP destina-
tion port 135. Welchia was a “patching” worm which first
scanned subnets for vulnerable hosts using ICMP ping re-
quests. If a host replied, Welchia attempted to infect the
system, make further attempts to propagate, patch the vul-
nerability, and reboot the host. We were able to differenti-
ate between the two worms by looking for a large amount
of ICMP echo requests intermixed with TCP SYNs to port
135. We found that although Welchia’s intention was be-
nign, its peak scanning rate was an order of magnitude
greater than Blaster’s.1
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Figure 9. CDF of Contact rates in a five second interval

for normal and infected clients

Figure 9 shows the observed aggregate contact rates for

1 We discovered an instance of Welchia that scanned 7068 hosts in a
minute. By contrast, Blaster’s peak scanning rate was only 671 hosts
in a minute. Blaster, however, was much more persistent in its propa-
gation attempts.



(a) normal clients and (b) worm-infected clients. As shown,
they are very different. In addition to the solid lines, which
indicate the number of distinct IP addresses contacted in a
5-second period, two other lines are given to indicate the
effect of possible refinements on rate limiting. The dashed
line shows the number of distinct IP addresses contacted
from within the network. The dotted line shows the num-
ber of distinct IP addresses contacted from within the net-
work and not counting those for which valid DNS transla-
tions are obtained. Clearly, these refinements may be use-
ful in limiting contact rates to lower numbers while having
less impact on legitimate communications. For instance, to
avoid having impact 99.9% of the time, inside-to-outside
contact rate could be limited to 16 per five seconds for all
contacts at the edge router, 14 per five seconds for contacts
to hosts that did not initiate contact first, or 9 per five sec-
onds for contacts to hosts for which a valid DNS translation
did not exist or did not initiate contact first. The tightness of
the three lines in the worm-infected graph support this state-
ment, showing that worms traffic spike all three metrics.

The P2P and server systems are less well-behaved than
normal systems and less ill-behaved (in terms of contact
rate) than worm-infected systems. But, the contact rate lim-
its would have to be greatly increased in order to avoid im-
pacting regular traffic. Specifically for P2P clients, the net-
work could be limited to 89 per five seconds for all contacts,
61 per five seconds for contacts to hosts that did not initiate
contact first, or 26 per five seconds for contacts to hosts for
which a valid DNS translation did not exist or did not ini-
tiate contact first. Alternately, an administrator could cate-
gorize systems as we have done, and give them distinct rate
limits. This would tightly restrict most systems (those not
pre-determined to be special), while allowing special others
to contact at higher rates. Of course, performance penalties
will be faced by new P2P users, until they convince the se-
curity administrator to deem them ”special”. Many admin-
istrators would prefer this model to the unconstrained load
spikes that they currently face, and have to diagnose, as new
P2P applications are introduced to their environment.

Rather than aggregate limits at the edge routers, as dis-
cussed above, another way to limit contact rates is per indi-
vidual host (e.g., in host network stacks [17] on smart net-
work cards or switches [5]). Our analysis of the traces in-
dicates that the resulting restrictions can safely limit a sin-
gle “normal desktop” system initiating contact to, for ex-
ample, four unique IP addresses per five seconds or one
unique non-DNS-translated IP addresses per five seconds.
Although these numbers are lower, however, the 1128 ma-
chines in the network could conceivably each use their full
slot when a worm infects them, meaning that the aggregate
contact rate from the intra-net would be much higher than
the rate limits discussed for the edge router case. This sug-
gests that per-host rate limits are a poor way to protect the

external Internet from internal worm traffic.

Per-host limits, however, are a much better at (in fact, the
only way) to protecting the internal network [5] once worms
get past the outer firewall. Section 5 quantifies this benefit.

A final observation from the traces relates to the choice
of a rate limit window size. We observed that longer win-
dows accommodate lower long-term rate limits, because
heavy-contact rates tend to be bursty. For example, for ag-
gregate non-DNS rates, 99.9% of the values are five for one
second, twelve for five seconds, and fifty for sixty seconds.
The downside to a long window, however, is that one could
face a lengthy delay after filling it, before the next connec-
tion is allowed. Visible disruptions of this sort may make
long windows untenable in practice. One option worth ex-
ploring is hybrid windows with, for example, one short win-
dow to prevent long delays and one longer window to pro-
vide better rate-limiting. Figure 10 illustrates the effect of
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Figure 10. Effect of rate limiting given the rates pro-

posed by our trace study.

different rate limits on worm propagation. We approximate
Williamson’s IP throttling scheme and Ganger’s DNS-based
scheme using Equations (4) and (5) in Section 4. Although
Equations (4) and (5) model deployment-at-hub, they can be
used to approximate edge router rate limiting in the case of
a single subnet. Recall β is the aggregated node contact rate
while γ is the contact rate per link. As the traces indicated
a lower aggregated rate for the DNS-based scheme, we
choose the ratio of γ to β as 1:2 to represent the DNS-based
scheme and the ratio of 1:6 for the IP throttling scheme. As
shown, the rate limiting method based on DNS queries gives
better results than the rate limiting method based purely on
IP addresses visited. The plots also indicate unmistakably
that aggregated rate limiting at the edge router performs bet-
ter than per-host limits.



8. Conclusions

Recent work in rate limiting schemes such as traf-
fic throttling [17] and secure NICs [5] show potential in
mitigating widespread worm attacks. However, it is not
known precisely how rate limiting filters should be de-
ployed throughout a network and what a reasonable rate
limit is in practice.

Our contributions in this work are twofold: First, we
showed through modeling and simulation experiments that
deploying rate limiting filters at the backbone routers is ex-
tremely effective. Rate control at the edge routers is help-
ful for randomly propagating worms, but does very little
to suppress local preferential spreading worms. Individual
host based rate control results in a slight linear slowdown
of the worm spread, regardless of the spreading algorithm.
A direct consequence of this analysis is that in order to se-
cure an enterprise network, one must install rate limiting fil-
ters at the edge routers as well as some portion of the inter-
nal hosts.

Second, through a study of real network traces from a
campus computing network, we discovered that there exist
reasonable rate limits for an enterprise network that would
severely restrict the spread of a worm but would have neg-
ligible impact on almost all legitimate traffic. This is espe-
cially encouraging since rate limiting filters can be easily
installed and configured at various strategic points through-
out a network. The result of the trace study confirmed that
per-host rate limiting by itself is not sufficient to secure
the enterprise network—aggregated rate limiting at the edge
router must be employed at the same time to minimize the
spread of worm attacks. This is the first study in this area
of which we are aware of that has studied rate limiting with
real traffic traces and has identified realistic rate limits in
practice.
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