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Abstract

In this paper, we examine the components of dynamic skill
acquisition using a data set collected by Ackerman (1988)
with the Kanfer-Ackerman Air-Traffic Controller Task®.
Our analysis indicates that subjects are improving in both
the strategies they use to solve the task and the speed with
which they execute the task. One strategy that subjects
develop reduces the number of overt actions required to land
a plane. Another strategy that subjects develop enables
them to land more planes simultaneously. A satisfactory
mode] of this task must include both an improved strategic
component and an improved speed component. The ACT-R
theory (Anderson, 1993) is well suited to model these
components as it is able to separately learn over trials
which strategies are better and how 1o execute each more
efficiently.

Keywords: Dynamic skill acquisition, Cognitive models
of problem solving, Strategy learning

Introduction

Thought and action in the real world are embedded in
dynamic environments, but past research in problem solving
and skill acquisition has focused primarily on tasks in static
environments. In static tasks, changes in the problem state
can only occur through people’s actions, while in dynamic
tasks, changes can occur independent of people's actions.
An example of a static task is the Tower of Hanoi puzzle,
where disks of different sizes must be moved from one peg
to another according to simple rules. In this task, the disks
move only if a person moves them. Driving, on the other
hand, is a dynamic task: between any Lwo conseculive
actions in driving (e.g. turning the steering wheel and
stepping on the accelerator), changes in the problem state,
such as a decrease in fuel or a dog running in front of the
car, occur independently of the driver's actions.

We have gained important insights from previous rescarch
in static task domains. The legacy of past problem solving
research in static task domains includes, the identification of
search heuristics in problem solving (Newell & Simon,
1972), the discovery of the differences between novices and
experts in problem solving in physics (Chi, Glaser, & Rees,
1982; Larkin, McDermotl, Simon, & Simon, 1980) and in
programming (Anderson, Corbett, & Conrad, 1984), and the
isolation and the quantification of the clements of skill
transfer (Singley & Anderson, 1989). However, 1o

.completely understand and appreciate the domain of problem
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solving and skill acquisition, we muysgt m‘e v
investigations to dynamic tasks.

The Kanfer-Ackerman Air Traffic Controller@! AT
task is an ideal vehicle for studying dynamic fER
acquisition. It simulates dynamic aspects of rea] air trafi
control (e.g., planes lose fuel and weather conditlg
change), yet is simple enough to be tractable for study,
addition, Ackerman (1994) has collected data from over 3
subjects on the ATC task and has made them available
CD-ROM (Ackerman & Kanfer, 1994) 1o the Office
Naval Research (ONR). ONR intends to use this lask
testbed to compare a number of cognitive architeclureg
including our own, ACT-R (Anderson, 1993). i

Ackerman has extensively analyzed the predicti
measures of performance in the ATC task using a battery of 3
psychological tests that measure cognitive, percepluale
motor, and psychomotor ability (Ackerman, 1988, 1990).
Ackerman found that while cognitive ability best prediets
performance in early trials, psychomotor ability best predicts
performance in later trials.2 We take a different approach to
the study of dynamic skill acquisition. Instead of looking in
from the outside - that is, instead of using task-external tests
to predict individual performance in the ATC task - we
propose to go inside and see what subjects are actually doing
in order to illuminate the components of dynamic skill
acquisition in the ATC task.

In this paper, we use a data set from Ackerman’s study
(study #6 in the Kanfer-Ackerman CD-ROM, as published
in Ackerman, 1988) to examine the cognitive components
of dynamic skill acquisition in the ATC task. We will
briefly review the ATC task. We will then analyze the role
of strategics and speed in the ATC task through correlational
and regression analyses of different variables. We argue that,
even after taking subjects’ increase in motor speed into
consideration, their strategy use contributes significantly 10
performance.

The Air Traffic Controller Task

The ATC 1ask is composed of the following elements
displayed on the screen (see Figure 1): (a) 12 hold patiern

1K anfer-Ackerman Air Traffic Controller Task® program is
copyrighted software by Ruth Kanfer, Phillip L. Ackerman, and
Kim A. Pcarson, University of Minnesota.

2Ackerman has used multiple measures to gauge performance,
including cumulative score, number of planes landed, number of
errors made, and reaction time to wind change.
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Figure 1. The Air Traffic Controller task. (Note: This fi

Kanfer-Ackerm

positions, (b) 4 runways, numbered 1 through 4, (c)
feedback information on subject's current score and penalty,
conditions of the runways, wind direction and speed, (d) a
queue stack with planes waiting to enter the hold pattern,
and (¢) 2 message windows, one for notifying of weather
¢hanges (shown) and one for providing feedback on errors
(not shown). The 12 hold pattern positions are divided into
I levels corresponding to altitude, with hold level 3 being
the highest and hold level 1 being the lowest.
Six rules govern this task: (1) Planes must land into the
wind, (2) Planes can only land from hold level 1, (3) Planes
ne hold level at a time, but 1o any opcn
vel, (4) Ground conditions and wind speed
dtermine the runway length required by different plane types
(747's always require long runways, DC10's can use short
Runways only when runways are dry or wet, and wind spced
1§ less than 40 knots, 727's can use short runways only
the runways are dry or wind speed is 0-20 knots, and
OP's can always use short runways), (5) Plancs with less
3 minutes of fuel left must be landed immediately, and
nly one plane at a time can occupy a runway. A
er cha.nge Occurs approximately every 30 seconds;
enler into the queue approximately every 7 seconds.
¥ principal actions are used in this task: (1) accept
from the queue into a hold pattern, (2) move planes
the three holg levels, and (3) land planes on a
». All three actions can be accomplished by using the
®ys: T, 1, F1, and . The T and keys move the
Up and down between the different hold positions and
» 8nd the F] key accepts the planes from the qucue

Olding pattern, The ) key can select a plane in the
from the queue or from

l a sels:gted plane (either
h Posttion) into an empty hold position, or land a
S cumulative score is

¢ runway, A subject’
for landing a planc, b)

mas follows: a) 50 points
poi ane, ¢) minus 10 points
at govern the task.

nis for crashing a pl
one of the gjx rules th
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gure is a reconstructed representation of the
an ATC task.)

Method and Analysis ‘

We used data from 58 subjects in Ackerman's ( 1988) study.
We excluded data from S subjects who had not completed at
least eighteen (10-minute) trials and data from 2 subjects due
to an error during their decompression from the Kanfer-
Ackerman CD-ROM (Ackerman & Kanfer, 1994).

We used cumulative score (Score) as dependent measure of
performance.  Figure 2 plots mean score and standard
deviation of the 58 subjects across trials,
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Figure 2: Mean Score and standard deviation.

As can be scen in Figure 2, subjects’ cumulative scores
grew [rom almost nothing in the first 10-minute block to an
average of over 3000 points in the Jast block, while the




standard deviation tended to decrease, indicating a reduction
in inter-subject variability. The increase in Score closely
follows a power function: f(x) = -2024.04 + 2791.40 *
x-241 with R2 = 954,

To help understand the basis for this improvement, we
looked at strategy change over trials. One strategy that
many subjects developed, which we call the hold 1 strategy,
involved bringing planes directly into hold level 1, thereby
skipping hold levels 2 and 3. On average, 6 keystrokes (1 .J
key to select a plane, 4 | keys to move down to the next
level, and 1 J key to place the plane) are needed to move a
plane down one hold level. If we assume that the average
number of keystrokes to land a plane from hold lcvel 1 is
equal to C, then the average number of keystrokes needed to
land a plane from hold levels 1, 2, and 3 are C, C + 6, and
C + 12, respectively. By bringing planes directly into the
hold level 1 from the queue, subjects eliminate the need to
use 6 to 12 additional keystrokes per plane. Using this
strategy therefore increased subjects' keystroke ef] ficiency by
reducing the number of keystrokes needed 1o land a plane.

We measured hold 1 strategy as the percentage of planes
brought directly from the queue into hold level 1. Figure 3
plots mean hold 1 strategy use and standard deviation for the
58 subjects across trials. As can be seen, hold 1 strategy
increases over the first half of the experiment and then
asymptotes. However, variability in the hold 1 strategy
remains high, indicating that hold 1 strategy is an important
source of individual differences.
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Figure 3: Mean hold 1 strategy and standard deviation.

Another strategy that many subjects used involved
maximizing the number of plancs landing simultancously.
A special opportunity for this occurs when the wind
direction changes. This allows subjects to use the runways
in a new direction, while plancs are still taxiing on runways
in the former direction. For instance, while landing planes
on the north-south runways, a subject can respond to a
change in wind direction to cast or west by landing planecs
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on the east-west runways. These "crossover land;
when a subject lands a plane while at least one
occupying an orthogonal runway. Crossover lapd
possible only if subjects quickly respond 1o a wing ¢
change during a brief period after the change, We daitt
runway efficiency as the percentage of crossover ', v
achieved by the subjects out of the maximum ¢
landings possible within a trial. Figure 4 plots™
runway efficiency and standard deviation for the 58 &
across trials. As can be seen, runway efﬁciency ine
throughout the experiment and maintains 3 fair degres
inter-subject variability, E
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Figure 4: Mean runway efficiency and standard deviation,

We wanted to assess the contribution of these strategy
variables to Score, controlling for psychomotor factors. We
defined two such psychomotor variables. One is total
keystrokes, the total number of the relevant keys (T, i, Fl,
and 1) used per trial. The other measure is mean reaction
time to orthogonal wind direction change.3 Figure 5 plots
mean total keystrokes and standard deviation, and Figure 6
plots mean RT to wind change and standard deviation for the
58 subjects across trials.

As can be scen, total keystrokes increased across trials,
while maintaining a fair degree of inter-subject variability.
This is to be expected, given high inter-subject variability in
the use of hold 1 strategy. Subjects who use hold 1 strategy
require fewer keystrokes to achieve performance comparable
to that of subjects who do not use hold 1 strategy .

Mcan RT to wind change decreased steadily, with a
corresponding rcduction in inter-subject variability.
Nevertheless, the ratio between the standard deviation and the
mean RT 10 wind change remains relatively constant.

3 Ackerman (1988) used mean reaction time to wind change,
as the dependent measure of performance. However, we chose 10
use cumulative score as the dependent measure of performance,
because that is what subjects are trying to optimize in this task.
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Figure 6: Mean reaction time to wind change and standard
deviation.

Correlations between strategy
sychomotor variables, and Score

€ txamined the Pearson r corrclations between the four
g fClor variables and Score. We used the 18 trials for cach

38 subjects as data, for a total of 1044 obscrvations.
lists the correlations between the five variables: hold
Slrategy (HS), runway efficicncy (RE), total keystrokes
Rer i'emean RT to wind change (MT), and Score. Runway
otlo fcy correlated most strongly with Score, r = .839,
ROO%ed by mean RT 10 wind change, r = -.668. In
“v Tunway efficicncy is fairly strongly but negatively
ed With mean RT 10 wind change, r = -.552, and hold

8Y 1s strongly but ncgatively correlated with total

variables,

keystrokes, r = -.604. This supports our assertion that hold
1 strategy reduces the number of keys necessary to land a
plane. By breaking down the eighteen trials into halves (1-
9 and 10-18), we sce a striking decrease in the correlation
between (otal keystrokes and Score: r dropped from .575 in
the first half of the trials to .107 in the last half of the trials.

Table 1: Correlations between Score, hold 1 strategy (HS),
runway cfficiency (RE), total keystrokes (KS), and mean
rcaction time to wind change (MT).

Score HS RE KS
HS 291 - - -
RE .839 349 - -
KS 492 -.604 316 -
MT -.668 -.178 -.552 -.347

These results indicate that while using more keys raised
Score in the early trials, it had little impact on Score in the
later trials. If increase in Score was due to an increase in
motor speed, one would expect the correlation between total
keystrokes and Score to increase with repeated trials. The
opposite is true, however, which indicates that increase in
motor speed, as reflected by total keystrokes and mean RT to
wind change, was neither the sole nor the most important
determinant of Score. Indeed, what best predicted Score was
a combination of strategy and speed, as reflected by runway
clficiecncy. We explore this issue in more detail in the
following regression analyses.

Regressions with strategy and psychomotor
variables as predictors of Score

A multiple regression using all four variables to predict
Score accounts for 87.7% of the variance. The regression
cquation with the four variables is:

Score = - 307 + 1566 HS + 1524 RE + 1.43 KS - 22.1 MT

with the following t-ratios*: HS = 25.31, RE = 22.57, KS
= 30.72, and MT = -10.68. Mean RT to wind change
contributed the least to this four-variable model. A model
using only hold 1 strategy, total keystrokes, and runway
cfficiency still accounts for 86.3% of the variance. The
regression equation with the three variables is:

Scorc = - 843 + 1745 HS + 1676 RE + 1.60 KS

with t-ratios of 27.80, 24.11, and 34.73, respectively,
Deleting any of the other three predictor variables leads to
much bigger reductions in the prediction of Score. This
indicates that runway cfficiency is a better predictor of Score
than mean RT to wind change.

Our analysis indicates that subjects’ Score increased with
adoption of either the hold 1 strategy or the multiple-
landings stratcgy, as measured by runway efficiency.
However, overall speed also contributes to Score, especially

4 Al tratios in the regression analyses we present have 1
df. and are significant at p < .001.
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in the early part of the experiment. In the first half of the
experiment, the regression equation is:

Score = - 1237 + 1862 HS + 1619 RE + 1.95 KS

with t-ratios of 20.45, 12.10, and 28.09, respectively. In
the second half of the experiment, however, it changes lo:

Score = 632 + 879 HS + 1873 RE + 0.764 KS

with t-ratios of 10.54, 28.07, and 12.04, respectively. This
change indicates the increasing importance of the runway
efficiency across trials relative to other factors, such as total
keystrokes. The multiple runway strategy, as measured by
runway efficiency, allowed subjects 1o have more runways in
service at the same time. As subjects become more skilled,
the length of time required by planes to taxi down runways
(15 seconds) became the performance-limiting factor.

Taxiing time limits the utility of the hold 1 strategy.
When both runways are in use, the additional resources
afforded by hold 1 strategy are wasted. Increasing onc's key
efficiency is irrelevant when both of the runways are
occupied and no additional plancs can be landed. This is
indicated both by the reduction in the importance of hold 1
strategy in the second half of the trials compare to the first
in the regression analysis, and by the fact that subjects’ use
of hold 1 strategy reached an asymptote fairly quickly at
about the fifth trial (Figure 7 plots mean hold 1 strategy use
by low-third and high-third performers).

0.7
0.6
S 0.5-
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3 044
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0-1 d 00 e A ........ l ow 3rd
0

Figure 7: Hold 1 strategy use of low third and high third
subjects as measured by Score.

Runway efficiency, which mcasures opportunistic usc of
the opposing runways during wind change, docs not suffer
from this performance-limiting factor. This is indicated by
the continuing increase in subjects' runway clficicncy across
trials (Figure 8 plots mecan runway efficicncy of low-third
and high-third performers).
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Figure 8: Runway efficiency of low third and high third
subjects as measured by Score,

As previously noted, Ackerman found that task-external
measures of individual differences in both cognitive ability
and psychomotor speed predicted performance in the ATC
task. He also found that cognitive ability had a stronger
cflect early in the experiment, while psychomotor skills had
larger impact later in the experiment. This might seem to
contradict the results of our analysis of task-internal
variables (hold 1 strategy, runway efficiency, and total
keystrokes), which indicates that keying speed becomes less
significant in later trials. It is difficult to compare our
results with Ackerman’s, because Ackerman used mean RT
to wind change as the dependent measure for subject
performance, while we use Score. One might argue that
mean RT to wind change came to reflect psychomotor
factors towards the end of the experiment, which explains
Ackerman's conclusion that psychomotor factors best
predicted performance. However, psychomotor factors
themselves cannot be such a significant contributor to Score
given the relatively slow rate of planes taxiing on the
runway and the invention of the hold 1 strategy, which
relieves the need for keystrokes. Instead, runway efficiency
emerges as an important factor, allowing subjects to turn
psychomotor skill into useful actions for increasing Score.

Discussion

Our analysis of the ATC data indicates that skill improved
in a complex way across trials in the experiment. Subjects
improved both in the strategies used to solve the task and in
the speed with which they executed the task. This indicates
that any satisfactory model of this task will have to include
both a strategic improvement component and a speed
improvement component. There are currently many different
theorics of skill acquisition. It is useful to examine some of
them in light of the findings presented here. We examine
two in particular: Logan's (1988) instance theory of




automatization and the Soar (Newell & Rosenbloom, 1981,
Newell, 1990) chunking thcory of lcaming.

Logan (1988) proposed a theory of lcarning based on the
idea of retrieving "instances” from memory. An inslance is
composed of the stimulus, subjects’ goal during the
encounter with the stimulus, their interpretation of the
stimulus in relation to the goal, and their response 1o the
stimulus. Logan argued that subjects automatically encode
4 and store each encounter with a stimulus as an instance, and
retricve the instance when the stimulus is encountered again.
In this theory, although skills are initially acquired through
algorithmic processing, performance depends increasingly on
retrieving past instances of solutions from memory.,

The Soar (Newell & Rosenbloom, 1981; Newell, 1990)
theory of learning is based on chunking. In this theory,
skills are acquired by chunking together productions that
successfully solve a problem. For example, if subjects
encounter an impasse during a problem-solving episode,
they can set a subgoal to solve that impasse. If they arc
successful at finding a solution to the impasse, the
; individual solution steps taken are then chunked together as
| a single production. When subjects encounters the same
situation again, the newly chunked production can be used
automatically, eliminating the need to repeat the laborious
process of searching for a solution.

Both theories are capable of explaining why keystroke ratc
9 was related to improvement in Score. Logan's instance
& retrieval and Soar's chunking result in less "cognitive Lime"
" between actions. However, it is unclear how either of these
theories could predict the contribution of hold 1 strategy,
which requires a reorganization of behaviors and a shift 1o a
strategy that requires a different sequence of keystrokes. In
addition, subjects do not switch hold strategies (i.e. hold 3,
hold 2, and hold 1) in a step-like transition, as Logan's
theory and Soar's model would predict. Instead, the hold
strategies overlap by a fair amount during transition, and in
most cases subjects do not completely abandon the usc of
hold 2 and 3. Also, how these theories could explain the
important contribution of runway efliciency (multiple
runway use through crossover landings) 1o Score is unclear,
since this would depend on the particulars of the initial
algorithms used.

While we have yet to undertake the simulation effort, we
think that the ACT-R theory is well suited to model these
components, since it scparatcly learns over trials which
strategies are better and how to execute each stratcgy morc
successfully, For example, Lovett and Anderson (in press)
hav.c shown, in an artificial problem solving task, that
subjects lear in both dimensions of strategy and speed. In
particular, their subjects come to exccute the less successful
Strategy less frequently and yet more rapidly with expericnce.
They have modeled these phenomena successfully in ACT-

. ,muﬁﬂ

g T

- Skill acquisition in the ATC task involves a complex
Interaction between improvements in strategies and

Improvements in speed. We are currently working on an
R model 1o explain these phenomena, as a first step

ww{"g‘_extending the ACT-R thcory to dynamic skill
. MCquisition,
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