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TOPOLOGY AND MODALITY:THE TOPOLOGICAL INTERPRETATION OF FIRST-ORDER MODAL LOGICSTEVE AWODEY AND KOHEI KISHIDAAbstrat. As MKinsey and Tarski showed, the Stone representation theorem for Boolean algebrasextends to algebras with operators to give topologial semantis for (lassial) propositional modallogi, in whih the �neessity� operation is modeled by taking the interior of an arbitrary subset of atopologial spae. In this paper the topologial interpretation is extended in a natural way to arbitrarytheories of full �rst-order logi. The resulting system of S4 �rst-order modal logi is omplete withrespet to suh topologial semantis.It has been known sine the work of MKinsey and Tarski [10℄ that, by extending the Stonerepresentation theorem for Boolean algebras, topologial spaes provide semantis to propositionalmodal logi. Spei�ally, a neessity operator obeying the rules of the system S4 an be interpretedby the interior operation in a topologial spae. This result, however, is limited to propositionalmodal logi, and the interpretation by topologial interior has never been extended to �rst-ordermodal logi. The aim of this paper is to show how suh an extension an be ahieved.1. Topologial Semantis for Propositional Modal LogiLet us review the topologial semantis for propositional S4.1.1. The System S4 of Propositional Modal Logi. Modal logi is the study of logi in whihthe words �neessary� and �possible� appear in statements suh as� It is neessary that the square of an integer is not negative.� It is possible that there are more than 8 planets.The history of modal logi is as old as that of the study of logi in general, and an be traed bakto the time of Aristotle. The ontemporary study of modal logi typially treats modal expressionsA grateful aknowledgment goes to the inspiring disussions with and helpful omments by Horaio Arló-Costa,Nuel Belnap, Johan van Benthem, Mark Hinhli�, Paul Hovda, Ken Manders, Eri Pauit, Rohit Parikh, Dana Sott,and espeially Guram Bezhanishvili.Philosophy Department, Carnegie Mellon University; awodey�mu.edu.Philosophy Department, University of Pittsburgh; kok6�pitt.edu.1



as sentential operators, in the same way as : is treated. That is, for eah formula ' of propositionallogi, the following are again formulas:�' �It is neessary that '.�^' �It is possible that '.�Formulas are reursively generated from propositional letters p, q, r, . . . using the propositionaloperators >, ?, ^, _, !, : as usual, in addition to � and ^. Hene the formulas of the languageinlude ones suh as �(�p ! ^(�q ^ :r)).Among various axiom systems providing inferene rules for modal operators, the system S4of propositional modal logi onsists of the rules listed below, in addition to those of lassialpropositional logi. Here ',  are any sentenes, and > is a propositional onstant standing fortruth (or it stands for any theorem of propositional logi if the language is not assumed to have thepropositional onstant). Also, de�ne ^' = :�:'.�' ` '�' ` ��'�' ^ � ` �(' ^  )> ` �>'�' `  ` � 1.2. Topology. The S4 rules in Subsetion 1.1 have been known, sine MKinsey and Tarski [10℄,to be exatly the rules of the interior operation on topologial spaes. Given a set X, reall that asubset O(X) � P(X) of its powerset P(X) is said to be a topology on X if it satis�es the following:� ?; X 2 O(X).� If U;V 2 O(X) then U \ V 2 O(X).� If Ui 2 O(X) for all i 2 I then[i2I Ui 2 O(X), for any index set I.Suh a pair (X;O(X)), or often X itself withO(X) in mind, is alled a topologial spae. TheU � Xlying in O(X) are alled open sets of X, and an open set U suh that a 2 U is alled a neighborhoodof a. On the other hand, F � X suh that X � F = f x 2 X j x < F g is an open set is alled a losed2



set. Now, given a topologial spae (X;O(X)), de�ne an interior operation int on P(X) as follows:for any subset A � X: int(A) = [U�AU2O(X) U:Note that int(A) is open beause the union of open sets is open. Thus int(A) is the largest of allopen sets U ontained in A. It follows that any open set U is a �xed point of int and an be writtenas an interior, i.e. U = int(U). Moreover, int obeys the following rules. For any A; B � X,int(A) � Aint(A) � int(int(A))int(A) \ int(B) � int(A \ B)X � int(X)A � B =) int(A) � int(B)Here, if we read A, B for sentenes and replae X, \, � with >, ^, `, we an see these rules arejust the rules of S4. In a similar manner, the losure l(A) = X � int(X � A) of A, i.e. the smallestlosed set ontaining A, obeys the orresponding S4 rules of ^.1.3. Topologial Semantis for Propositional S4. Let us now formally de�ne how a language ofpropositional modal logi is interpreted in a topologial spae. Suppose we are given a languageL of propositional modal logi and a topologial spae (X;O(X)).Propositional S4 ///o/o/o/o/o/o/o/o/o/o (X;O(X))' ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o ~'� � XAn interpretation ~�� of L is a mapping from the set of sentenes of L to P(X). It assigns anarbitrary subset ~p� of X to eah atomi sentene p, and moreover satis�es the onditions below foronnetives and operators. Here ',  , > are the same as before, while ? is either the propositionalonstant for falsity or any sentene whose negation is provable in propositional logi.~:'� = X � ~'�;~' ^  � = ~'� \ ~ �;~' _  � = ~'� [ ~ �;3



~>� = X;~?� = ?;~�'� = int(~'�):We then write (X; ~��) � ' if the interpretation (X; ~��) models a sentene ', de�ned as(X; ~��) � ' () ~'� = X:(1)Although we an say �' is true in a model (X; ~��)� to mean this relation, we should note it is notin general the ase that one of (X; ~��) � ' or (X; ~��) � :' must hold. Also note that (X; ~��) � 'entails (X; ~��) � �'.As a simple example, onsider X = [0; 1℄ the losed unit interval, and ~p� = [0; 1) the half-openinterval. Then (X; ~��) � �(p _ :p) beause~�(p _ :p)� = int(~p� [ [0; 1℄ n ~p�) = int([0; 1℄) = [0; 1℄:But (X; ~��) 2 �p _ �:p, sine~�p _ �:p� = int(~p�) [ int([0; 1℄ n ~p�) = [0; 1) , [0; 1℄:With this notion of interpretation, the orrespondene between the rules of Boolean operationson sets and those of the propositional onnetives, and the rules of the interior operation and theS4 rules, immediately give us soundness:Theorem 1. For any pair of sentenes ',  of L,' `  is provable in S4 =) every topologial interpretation (X; ~��) has ~'� � ~ �:In partiular,S4 ` ' =) every topologial interpretation (X; ~��) has (X; ~��) � ~'�:The usual onverse statement of ompleteness an be derived as a orollary of the followingeven stronger result.Theorem 2 (MKinsey-Tarski, 1944). For any (onsistent) theory T inL ontaining S4, there exista topologial spae X and an interpretation ~�� suh that any pair of sentenes ',  of L satis�es4



the following: ' `  is provable in T () ~'� � ~ �:Corollary 1. For any pair ',  of sentenes of L,S4 proves ' `  () ~'� � ~ � for every topologial interpretation (X; ~��):In partiular,S4 proves ` ' () every topologial interpretation (X; ~��) has (X; ~��) � ~'�:2. Semantis for First-Order LogiThe goal of this paper is to extend the topologial semantis in the foregoing setion to �rst-ordermodal logi. In this setion we introdue some notation for the standard semantis of (non-modal)�rst-order logi, whih will be onvenient for our purposes.2.1. Denotational Interpretation. Suppose we are given a language L in �rst-order logi. L hasprimitive relation symbols Ri (i 2 I), funtion symbols f j ( j 2 J), onstants k (k 2 K). Then, asusual, a struture M = hD;RiM ; f jM; kMii2I; j2J;k2K for L onsists of the following.� A set D, the �domain of individuals�.� A subset RiM � Dn of the appropriate n-fold Cartesian produt of the domain D, for eahn-ary relation symbol Ri.� A funtion f jM : Dn ! D for eah n-ary funtion symbol f j.� An individual kM 2 D for eah onstant k.Given suh a struture and elements a1; : : : ; an 2 D, for any formula '(x1; : : : ; xn) with at mostthe displayed variables x1; : : : ; xn free, the relationM � '[a1; : : : ; an℄of modeling a formula is reursively de�ned as usual.Now we extend the �denotational� point of view to �rst-order languages. Whereas we gave aninterpretation ~'� to sentenes ' in Subsetion 1.3, here for �rst-order logi we give an interpreta-tion also to formulas ontaining free variables; so we extend the notation to inlude interpretations~ x; y j ' �5



of all formulas. Here it is presupposed that no free variables appear in the formula ' exept x, y,but not that x, y atually appear. To a sentene � with no free variables, we give ~�� as we didbefore. We also give interpretation ~ x̄ j t � to a term t(x̄) built up from funtion symbols, onstantsand variables. First-order logi ///o/o/o/o/o/o/o/o/o/o/o M'(x) ///o/o/o/o/o/o/o/o/o/o/o/o/o/o ~ x j ' � � DThe interpretation of a formula ' is essentially the subset of the model M de�ned by ':~ x̄ j ' � = f ā 2 Dn j M � '[ā℄ g � Dn:That is, the set of individuals satisfying '. Then the following properties are easily derived:~ x; y j x = y � = f (a; a) 2 D � D j a 2 D g;~ x̄ j R(x̄) � = RM ;~ x̄ j ' ^  � = ~ x̄ j ' � \ ~ x̄ j  �;~ x̄ j :' � = Dn � ~ x̄ j ' �;~ x̄ j 9y' � = f ā 2 Dn j (ā; b) 2 ~ x̄; y j ' � for some b 2 D g:These properties ould also be used as onditions to de�ne the interpretation reursively, skipping� altogether. Then we would need to de�ne ~ x̄; y j '(x̄) � � Dn+1 also for a formula '(x̄) whihdoes not ontain the free variable y, whih an be done simply by~ x̄; y j ' � = f (ā; b) 2 Dn+1 j M � '[ā℄ g= ~ x̄ j ' � � D:Similarly, when a term t(x̄) has n arguments, its interpretation ~ x̄ j t � is the funtion f : Dn ! Dreursively de�ned from f M, M in the expeted way.The de�nition of interpretation of formulas an be naturally extended to the ase of n = 0 forD0 = f�g, any one-element set. That is, while a subset ~ x̄ j ' � of Dn is given for a formula ', theinterpretation of a sentene � is in a similar manner given as a subset ~�� of D0 (a �truth value�)6



as follows. ~�� = f � 2 D0 j M � � g = 8>>>><>>>>:1 = f�g = D0 if M � �;0 = ? � D0 if M 2 �:Note that as in (1) we then have, for any formula ' with at most x̄ free,M � ' () ~ x̄ j ' � = Dn:(2)Now, in terms of ~��, the usual soundness and ompleteness of �rst-order logi are expressed asfollows.Theorem 3. Given a language L of �rst-order logi, for any pair of formulas ',  of L with atmost x̄ free, ' `  () every interpretation M has ~ x̄ j ' � � ~ x̄ j  �:In partiular, ` ' () every interpretation M has M � ':2.2. Interpretation and Mappings. Some of the onditions whih reursively de�ne interpreta-tion an be onsidered in terms of images of mappings. We sum up this fat in this subsetionbeause it will be useful shortly. First let us introdue some notation for images. Given a mappingf : X ! Y and subsets A � X and B � Y , the diret image of A and the inverse image of B underf shall be written respetively as follows:f (A) = f f (a) 2 Y j a 2 A g;f �1(B) = f a 2 X j f (a) 2 B g:Next we de�ne, for eah n, the projetion pn : Dn+1 ! Dn to be (ā; b) 7! ā. In partiular,p0 : D ! D0 = f�g has p0(b) = � for all b 2 D. Then we have~ x̄ j 9y' � = f ā 2 Dn j (ā; b) 2 ~ x̄; y j ' � for some b 2 D g = pn(~ x̄; y j ' �);~ x̄; y j  � = ~ x̄ j  � � D = pn�1(~ x̄ j  �):7
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For example, ~ y j ' � and its image under the projetion p0, viz. p0(~ y j ' �) = ~9y'�, are in therelation illustrated as follows.~ y j ' � , ? ks +3KS�� p0(~ y j ' �) = ~9y'� = f�g , ?KS��M � '[b℄ for some b 2 M ks +3 M � 9y'Also, beause in general a mapping f : X ! Y always has f (A) � B () A � f �1(B), we have~ x̄ j 9y' � = pn(~ x̄; y j ' �) � ~ x̄ j  � () ~ x̄; y j ' � � pn�1(~ x̄ j  �) = ~ x̄; y j  �;whih orresponds to the rule 9y' `  () ' `  of �rst-order logi. Here the �eigenvariable�ondition that y does not our freely in  is expressed by ~ x̄ j  � making sense.1Moreover, the substitution of terms an also be expressed by inverse images. Given a formula'(z) and a term t(ȳ), with the obvious notation for substitution one has:~ ȳ j '(t(ȳ)) � = f b̄ 2 Dm j M � '(t(b̄)) g= f b̄ 2 Dm j ~ ȳ j t �(b̄) 2 ~ z j '(z) � g= ~ ȳ j t ��1(~ z j '(z) �):3. Topologial Semantis for First-Order Modal LogiWe now extend the topologial semantis reviewed in Subsetion 1.3 to �rst-order logi. Todo so, we require the notion of a sheaf over a topologial spae, whih ombines the topologialsemantis of propositional modal logi with the set-valued semantis of �rst-order logi in Setion2, and gives a very natural semantis for �rst-order modal logi.1The observation expressed here that the existential quanti�er 9 is left adjoint to inverse image under projetion isdue to Lawvere [7℄. 8



3.1. Sheaves. First, reall that a map f : X ! Y of topologial spaes is said to be ontinuous iff �1(V) � X is open in X for every open set V � Y . Moreover, f is alled a homeomorphism if fhas a ontinuous inverse map f �1 : Y ! X; and then X and Y are said to be homeomorphi. Fora homeomorphism f : X ! Y , open sets U = f �1(V) of X and V = f (U) of Y also orrespondbijetively.De�nition 1. A sheaf over a topologial spae X onsists of a topologial spae F and a loalhomeomorphism � : F ! X, meaning that every point a of F has some neighborhood U 3 a suhthat �(U) is open and the restrition �jU : U ! �(U) of � to U is a homeomorphism.2 F is alledthe total spae, and � is alled the projetion from F to X.
F
X��� (

(U
�(U)

�a
)
)

Taking a onrete example, R (with its usual topology) and � : R ! S 1 suh that �(a) = ei2�a =(os 2�a; sin 2�a) form a sheaf over the irle S 1 (with the subspae topology in R2). We maysay that R draws a spiral over S 1, so that, for every a 2 R, a neighborhood U small enough ishomeomorphi to its image �(U).
R
S 1��� (

(
)
)U

�(U)� 12123252 012(1; 0)(�1; 0) (0; 1)2The notion of a sheaf is sometimes de�ned in terms of the notion of a funtor, in whih ase the version used hereis alled an étale spae. The funtorial notion is equivalent to the version here (in the ategory-theoretial sense). Thispaper only onsiders sheaves over topologial spaes; but the de�nition using funtors enables one to de�ne sheavesmore generally over various ategories (see e.g. [9℄ for detail) and obtain more general models of modal logi.9



One of the properties of sheaves important for the goal of this paper is that a loal homeomor-phism � : F ! X is not only ontinuous but is also an open map, whih means that �(U) � X isan open subset of X for every open U � F.It is also important that we an onsider sheaves from the following viewpoint. Given a sheaf� : F ! X, take any point p of X and de�ne the �stalk� Fp � F at p as follows:Fp = ��1(fpg):Fp Fq Fr
p q r� � � F��� = Fp�� [ Fq�� [ � � �

X = fpg [ fqg [ � � �Fp is also alled the �ber of F over p; it is shown in the �gure above to be a single line over p.Beause �bers do not interset eah other, F is partitioned into �bers, so that the underlying set jFjof the spae F an be reovered by taking the disjoint union of all �bers. That is, we an writejFj =Xp2X Fp;whereX indiates that the union is disjoint. By the loal homeomorphism ondition, eah �berFp forms a disrete subspae of F. In the ontext of semantis for �rst-order modal logi, we maythink of the �bers as �possible worlds� whih �hange ontinuously� over the spae X.Let us mention maps of sheaves as well. A map f from a sheaf (F; �F) to another (G; �G) issimply a ontinuous map f : F ! G suh that �G Æ f = �F , i.e. suh that the following diagramommutes. F�F ��////////// f //= G�G������������X10



Thus f respets the �bers; i.e., the underlying map f an be written as a bundle of maps fp : Fp !Gp from �bers to �bers: f =Xp2X fp :Xp2X Fp �!Xp2X Gp:It is an important fat that maps of sheaves are neessarily also loal homeomorphisms, and heneare open maps.Lastly, for a sheaf � : F ! X, the diagonal map � : F ! F �X F de�ned to be a 7! (a; a) is amap of sheaves, and hene is an open map.3 Therefore, in partiular, the image�(F) = f (a; a) 2 F �X F j a 2 F g � F �X Fof F is an open subset of F �X F. We note that, for any topologial spae F, if � : F ! X is anopen ontinuous map with open diagonal map � : F ! F �X F, then � : F ! X is a sheaf over X.3.2. Topologial Semantis in Terms of Sheaves. Speaking �guratively, the extension of topo-logial semantis using sheaves orresponds to taking the �produt� of topologial semantis forpropositional modal logi and denotational semantis for �rst-order logi. The topology, or the�horizontal axis,� on a spae X and a sheaf F gives interpretation to the modal operator �, andeah �ber, along the �vertial axis,� plays the role of a �possible world,� a set providing the �rst-order interpretation.Consider a language L gained by adding the modal operator � to a language of �rst-order logi.Here, in de�ning formulas reursively, the usual onditions oming from �rst-order logi do notdisriminate formulas ontaining modality from ones not (e.g., in the same way that (:')[t=z℄,whih is gained by substituting the term t for the free variable z in :', and :('[t=z℄), by applying: to '[t=z℄, are the same formula, we identify (�')[t=z℄ and �('[t=z℄) as the same formula �'[t=z℄).Then, in a similar manner to Subsetion 2.1, we de�ne a struture to interpret formulas of L asonsisting of the following.4� A topologial spae X and a sheaf � : D ! X over it.� An arbitrary subset ~Ri� � Dn of the �bered produt, for eah n-ary relation symbol Ri.� A map ~ f j� : Dn ! D of sheaves, for eah n-ary funtion symbol f j.3F �X F is the �bered produt of the sheaf F over the spae X. See Appendix A for the de�nition of produts ofsheaves.4See Appendix A for the de�nition of produts of sheaves.11



� A map ~k� : X ! D of sheaves from the sheaf D0 = X, for eah onstant k.Deomposing this struture into �bers, we an see that, for eah point p 2 X, the �ber Dp gets astandard L-struture hDp; ~Ri�p; ~ f j�p; ~k�pii2I; j2J;k2Kof �rst-order logi as we saw in Subsetion 2.1. (Here ~Ri�p � Dnip , ~ f j�p : Dn jp ! Dp, ~k�p 2 Dp.)Dnp Dnq Dnr
p q r� � �DnX���n ~ x̄ j ' �~�~�~� ~ x̄ j ' � � jDnj= =Xp2X~ x̄ j ' �p Xp2X Dnp~ x̄ j ' �p � DnpSo, as for the �rst-order part of the language, we have a �berwise denotational interpretation ~��p,eah as in Subsetion 2.1. We an extend the interpretation ~�� to all formulas ~ x̄ j ' �, �rst�berwise as in Subsetion 2.1 to get ~ x̄ j ' �p, and then by �summing over p�:~ x̄ j ' ^  � =Xp2X~ x̄ j ' ^  �p=Xp2X(~ x̄ j ' �p \ ~ x̄ j  �p)= 0BBBBBB�Xp2X~ x̄ j ' �p1CCCCCCA \ 0BBBBBB�Xp2X~ x̄ j  �p1CCCCCCA = ~ x̄ j ' � \ ~ x̄ j  �:Taking a sentene 9y' for example, its interpretation is~9y'� =Xp2X~9y'�p � f p 2 X j ~9y'�p , ? g = �(~ y j ' �) � X:As an be seen in this example, the interpretation of a sentene � with no free variables is given asa subset of D0 = X, the �worlds� p 2 X at whih � is true.12



Dp Dq Dr
? f�g f�g~ �DX��� ~ y j ' �

~9y'�~�~�EEEEEEEEEEFinally, we of ourse use the topology of X and D to interpret the modal operator �, i.e.,~ x̄ j �' � = intDn(~ x̄ j ' �) � Dn;~��� = intX(~��) � X:Sine sentenes are interpreted by subsets of X, we de�ne in a similar manner to (1) and (2) ofSubsetions 1.3 and 2.1 as follows.De�nition 2. A formula ' is true in an interpretationM = (� : D ! X; ~��) if ~ x1; : : : ; xn j ' � =Dn; i.e., M � ' () ~ x1; : : : ; xn j ' � = Dn:In partiular, a sentene � is true if ~�� = X; i.e.,M � � () ~�� = X:Note that this spei�ation does indeed agree with the �lassial� one of MKinsey and Tarskiat the level of propositional modal logi.3.3. The System FOS4 of First-Order Modal Logi. The topologial semantis given in theprevious subsetion is a very natural extension of the topologial semantis for the system S4 ofpropositional modal logi to �rst-order logi, whih an be seen from the fat that a system whihis sound and omplete with respet to it an be gained by simply taking the union of the axiomsand rules of �rst-order logi and S4.De�nition 3. System FOS4 onsists of the following axioms and rules.1. All axioms and rules of (lassial) �rst-order logi. In applying shemes, formulas on-taining the modal operator and ones not are not distinguished. Espeially in the following13



axiom of identity, ' may ontain the modal operator.x = y ` '(x) ! '(y):2. The rules of S4 propositional modal logi. That is, for any formulas ',  and for > asbefore, �' ` '�' ` ��'�' ^ � ` �(' ^  )> ` �>'�' `  ` � Listing some theorems of FOS4, not only do we have �9y�' ` 9y�' but also the followingproof is available. �' ` 9y�'��' ` �9y�'�' ` �9y�'9y�' ` �9y�'The last step satis�es the eigenvariable ondition that y does not our freely in the right formula.In terms of the topologial interpretation, this means that the image ~ x̄ j 9y�' � under pn of anopen set ~ x̄; y j �' � is a �xed point of int (sine int(~ x̄ j 9y�' �) = ~ x̄ j �9y�' � = ~ x̄ j 9y�' �),i.e., it is an open set. This tells us that projetions pn need to be open maps in order that thesemantis makes FOS4 sound.Similarly, ontinuity is required to model substitution so that, for any formula '(z) and term t(ȳ),we will have the required equality indiated by ! below:~ ȳ j �'(t(ȳ)) �gggggggggg WWWWW WWWWW~ ȳ j �('[t(ȳ)=z℄) � ~ ȳ j (�')[t(ȳ)=z℄ �int(~ ȳ j t ��1(~ z j ' �)) ! ~ ȳ j t ��1(int(~ z j ' �))14



Also, by substituting �x = z for '(z) in the �rst-order axiom x = y ` '(x) ! '(y) of identity,we have x = y ` �x = x ! �x = y;while ` �x = x is gained by the S4 rule from another axiom of identity, viz. ` x = x. Thereforex = y a` �x = y is provable. Thus the diagonal~ x; y j x = y � = f (a; a) 2 D �X D j a 2 D g = �(D) � D �X D;whih interprets identity, has to be open, and therefore the diagonal map � has to be an openmap. This, together with the neessity of projetions being open ontinuous maps, shows that thesoundness of FOS4 for topologial semantis atually requires the use of sheaves. Indeed, we havethe following.Theorem 4. For any formulas ' and  ,FOS4 proves ' `  =) ~ x̄ j ' � � ~ x̄ j  � for everytopologial interpretationM = (� : D ! X; ~��):Moreover we also have ompleteness in the strong form of Setion 1.Theorem 5. For any (onsistent) theory T of L ontaining FOS4, there exists a topologial inter-pretationM = (� : D ! X; ~��) suh that, for any pair of formulas ',  ofL with no free variablesexept x̄, the following holds.' `  is provable in T () ~ x̄ j ' � � ~ x̄ j  �:In partiular, for any sentene �, T ` � () M � �:Corollary 2. For any pair of formulas ',  of L with no free variables exept x̄,~ x̄ j ' � � ~ x̄ j  � for every topologial interpretationM =) FOS4 proves ' `  :Moreover, for any sentene �:~�� = X for every topologial interpretationM =) FOS4 ` �:The proof of Theorem 5 is beyond the sope of this paper, but we provide a sketh as an appendixfor the urious reader. 15



4. Examples of the InterpretationTo help understand how the ombination of topology and quanti�ation works in this semantis,let us take an example of a onrete interpretation.4.1. Neessary Properties of Individuals. Let us reall the example of a sheaf given in Sub-setion 3.1, i.e. the in�nite helix over the irle with projetion � : R+ ! S 1 suh that �(a) =(os 2�a; sin 2�a), exept that we now take D = R+ = f a 2 R j 0 < a g the positive reals instead ofR. Thus we have a spiral in�nitely ontinuing upward but with an open, downward end at 0; thisis also a sheaf. So letM = (�; ~��) interpret the binary relation symbol 6 by the �no-greater-than�relation of real numbers on this sheaf, as follows:~ x; y j x 6 y �p = f (a; b) 2 R+2 j a 6 b and �(a) = �(b) = p g:I.e., in eah �ber R+ p, the order is just the usual one on the reals.Then onsider the truth of the following sentenes under this interpretation:9x8y:x 6 y �There exists x suh that x is the least.�(3) 9x�8y:x 6 y �There exists x suh that x is neessarily the least.�(4)Now ~ x j 8y:x 6 y � = f a 2 R j 0 < a 6 1 g = (0; 1℄ is the set of points of R+ that are the least intheir own �bers. Thus we have ~ 9x8y:x 6 y � = �((0; 1℄) = S 1 and (3) true inM. On the otherhand, ~ x j �8y:x 6 y � = int(~ x j 8y:x 6 y �) = int((0; 1℄) = f a 2 R j 0 < a < 1 g = (0; 1):So ~ 9x�8y:x 6 y � = �((0; 1)) = S 1 � f(1; 0)g , S 1, i.e., (4) is not true.R+
S 1��� )Æ()Æ0[(�1

�2�3
(1; 0)

~ x j �8y : x 6 y �= ~ x j 8y : x 6 y � � f1g~ 9x�8y : x 6 y �In this way, 1 2 R+ is �atually the least� in its �ber (or �possible world�) R+(1;0) = f1; 2; 3; : : :g,but not �neessarily the least.� Intuitively speaking, 1 is the least in the world R+(1;0), but any16



neighborhood of this world, no matter how small a one we take, ontains some world (f"; 1+"; 2+"; 3 + "; : : :g for " > 0) in whih 1 is no longer the least. Note that here we used the notion �1 inworlds near by� for explanation. Even though 1 only exists in R+(1;0), this notion still makes sensebeause the loal homeomorphism property of the sheaf allows us to �nd an assoiated point inany other world in a suÆiently small neighborhood.Finally, note that, beause ~9x8y:x 6 y� = S 1, we have ~�9x8y:x 6 y� = int(~9x8y:x 6 y�) =int(S 1) = S 1, and so: M � �9x8y:x 6 y;M 2 9x�8y:x 6 y;M 2 �9x8y:x 6 y! 9x�8y:x 6 y:wheneI.e., this example provides a ounter-model for a so-alled �Baran formula� of the form ��9 !9��.Also, note that ~ x; y j x 6 y � is the union of the open diagonal ~ x; y j x = y � and ~ x; y j x < y �,whih is open as the restrition of the open half-plainf (a; b) j a; b 2 R and a < b gto the �bered produtR+2. Thus ~ x; y j x 6 y � is open, i.e., ~ x; y j �x 6 y � = int(~ x; y j x 6 y �) =~ x; y j x 6 y �. It follows that ~9x8y:�x 6 y� = ~9x8y:x 6 y� = S 1, and soM � 9x8y�x 6 y;M 2 9x�8y:x 6 y;M 2 9x8y�x 6 y! 9x�8y:x 6 y:wheneI.e., M is also a ounter-model for the Baran formula of the form �8� ! �8�. (In ontrast,�onverse Baran� ��8 ! 8�� and �9� ! �9� are provable in FOS4 in a similar manner to theproof in p. 14, and are valid in the topologial semantis.)4.2. De�ning funtions and names. In �rst-order logi, when a strutureM satis�es 8x̄9!y'(x̄; y)(�eah x̄ has a unique y suh that '(x̄; y)�) a new funtion symbol f' an be introdued into thelanguage and interpreted inM so thatM � 8x̄8y( f'(x̄) = y$ '(x̄; y)). Does a orresponding fathold in FOS4? 17



Consider the �odisrete� topologial spae onsisting of two points, i.e. X = fp; qg, O(X) =fX;?g. Moreover, onsider the sheaf over X onsisting of two opies of X, i.e.,D = X � f0; 1g = f(p; 0); (p; 1); (q; 0); (q; 1)g; O(D) = fD; X � f0g; X � f1g;?gwith � : D ! X de�ned as (u; i) 7! u. On this sheaf, let us set the interpretation of an (n + 1)-aryrelation symbol R so that~ x̄; y j R(x̄; y) �p = Dnp � f(p; 0)g; ~ x̄; y j R(x̄; y) �q = Dnq � f(q; 1)g:Call the modelM = (� : D ! X;RM). It follows for eah u = p; q, beause ~ x̄ j 9!yR(x̄; y) �u =Dnu, thatM � 8x̄9!yR(x̄; y).Then, however, we annot de�ne a funtion symbol f satisfyingM � 8x̄8y( f (x̄) = y$ R(x̄; y)),whih entailsM � 8x̄8y�( f (x̄) = y$ R(x̄; y)). This is implied by the fat thatM does not satisfythe onsequent of the theorem 8x̄8y�( f (x̄) = y $ R(x̄; y)) ` 8x̄9!y�R(x̄; y) of FOS4, where8x̄9!y�R(x̄; y) is short for 8x̄9y8z(y = z $ �R(x̄; z)). The same thing an be expressed in termsof the interpretation as follows. The interpretation ~ f � : Dn ! D of suh f must satisfy~ f �(a) = 8>>>><>>>>:(p; 0) if a 2 Dnp;(q; 1) if a 2 Dnq;i.e., suh ~ f � yields ~ f ��1(X�f0g) = Dnp < O(Dn) for the open subset X�f0g of D, whih means ~ f �would not be ontinuous, and hene not a map of sheaves. The same thing an be said about nameswith n = 0. That is, even whenM � 9!y'(y) holds, a name  suh thatM � 8y( = y $ '(y))annot be de�ned in general. For example,M in the previous subsetion has 9!x8y:x 6 y true, butannot have a name for suh x.On the other hand, not only in this sheaf but in any interpretationM, a funtion symbol f' anbe de�ned so that M � 8x̄8y( f'(x̄) = y $ �'(x̄; y)) if M � 8x̄9!y�'(x̄; y). To sum up: InFOS4, a neessary desription de�nes a name, whih then has a ontinuous denotation, whereas aontingent desription need not have a orresponding denotation.5. Historial RemarkLet us ompare the topologial semantis to other preeding semantis for quanti�ed S4. Toprepare ourselves for the omparison, it is very helpful to �rst review the relation between thefollowing three semantis for propositional S4: 18



(1) Kripke semantis in whih possible worlds are preordered (i.e., onneted by re�exive andtransitive aessibility relation R). Propositions are subsets of the possible worlds.(2) Topologial spaes. Eah point an be onsidered to be a possible world. Propositions aresubsets of the spae (as in (1)), and � is interpreted by the interior operation int.(3) Topologial Boolean (or topo-Boolean) algebras, i.e., Boolean algebras equipped with anoperation int satisfying the S4 rules. Eah point x is a proposition, and the relation x 6 ymeans x implying y.(2) and (3) are both alled topologial semantis. (3) is also sometimes alled an algebrai seman-tis. (1) is (properly) subsumed by (2) by taking the Alexandro� (right) topology: let f y j xRy gbe a basi open set for eah world x, and generate topology with unions of suh basi open sets.(Of ourse, not every spae is of this kind.) (2) is in turn subsumed by (3): The Boolean algebraof subsets of a spae with int forms a topo-Boolean algebra, whereas MKinsey and Tarski [10℄showed that any topo-Boolean algebra an our as a subalgebra of the algebra of a spae.5Several ideas have been proposed to extend the semantis above to quanti�ed modal logi. Oneis to extend (3) by ompleting the algebra, so that it is equipped with arbitrary meet (for 8) andjoin (for 9). This ompletion was shown by Rasiowa and Sikorski [11℄ to give a semantis withrespet to whih �rst-order S4 is omplete.Another idea is to extend (1) or (2) by equipping eah possible world with a domain of individ-uals. The urrent notion of a Kripke sheaf derives from early work in topos theory [7, 8℄, and isde�ned to be a presheaf over a preorder (W;R) (S4 Kripke frame), viz. a funtor from (W;R) to theategory Sets of sets. That is, a Kripke sheaf D over an S4 Kripke frame (W;R) assigns a �domainof individuals� D(x) to eah world x 2 W, and funtorially provides a mapping Dxy : D(x) ! D(y)for eah x; y 2 W suh that xRy; then for a 2 D(x) we an read Dxy(a) to be �a in the world y.�6Suh a �bration of preorders an be equivalently written as follows:7 a Kripke sheaf onsists of
5MKinsey and Tarski [10℄ showed the dual result for losure algebras.6Suh a funtorial (presheaf) de�nition of Kripke sheaves is found e.g. in [13℄. Note that Dxy need not be aninjetion, whereas eah Dxy is an inlusion map in a onventioanl Kripke frame with a domain of individual.7See Shehtman and Skvortsov [12℄. 19



two S4 Kripke frames (W;R), (D; �) and a p-morphism8 � : (D; �) ! (W;R) satisfying�(a)Rx =) 9!b[a�b ^ �(b) = x℄:(�)Then ��1(x) � D orresponds to D(x). �(a) is �the world where the individual a lives,� and b in(�) is D�(a)x(a). QS4= (quanti�ed S4 with equality) is known to be omplete with respet to Kripkesheaves (see e.g. [12℄).The topologial semantis of this paper is the extension of (2) analogous to Kripke sheavesextending (1). In other words, the relation between (1) and (2) is preserved in the relation betweenKripke sheaves and topologial semantis: any Kripke sheaf � : (D; �) ! (W;R) beomes a loalhomeomorphism by taking the Alexandro� topology both at (W;R) and at (D; �).9 More preisely,indeed, the ategory of Kripke sheaves over a preorder P and monotone maps respeting �bers isexatly the topos of all sheaves over the spae P with the Alexandro� topology. The approah ofthis paper also extends the Kripke-sheaf approah by extending the interpretation to funtions andnames, whih have been ignored in the existing semantis in terms of Kripke sheaves;10 hene thesemantis is for �rst-order, but not just quanti�ed, modal logi.It is well known that loal homeomorphisms over a topologial spae (as in (2)) are ategoriallyequivalent to funtorial sheaves over a spae onsidered as a omplete Heyting algebra (similarlyto (3)), i.e. funtors from the algebra to Sets satisfying ertain onditions. By virtue of this fat,8A map � : (D; �)! (W;R) of Kripke frames is alled a p-morphism whena�b =) �(a)R�(b);�(a)Rx =) 9b[a�b ^ �(b) = x℄:andare satis�ed.9The parallelism is even deeper than mentioned here. With the ondition (�) dropped, any p-morphism � : (D; �)!(W;R) is alled a Kripke bundle (see [12℄). If semantis inludes not only Kripke sheaves but also Kripke bundles,the substitution of terms is lost. In parallel to this, the substitution is lost if topologial semantis inludes not onlysheaves (loal homeomorphisms) but also bundles in general (any open ontinuous maps or any ontinuous maps).10In the Kripke framework, Dragalin's [3℄ semantis dealt with funtions and names, but for intuitionisti �rst-orderlogi. This logi does not require the general sheaf struture (whih FOS4 or even QS4= does); instead Dragalin usedKripke frames with inreasing domains (with whih FOS4 and QS4= are inomplete). In suh a semantis, the identityof individuals aross worlds is given, or in other words, we need not (and Dragalin did not) make expliit the fat thatfuntions and names have to be interpreted by maps of sheaves or monotone maps.20



the semantis of this paper in terms of loal homeomorphisms an also be formulated as algebraisemantis in terms of funtorial sheaves, as brie�y reviewed shortly in Subsetion 6.Historially, extending (3) by funtorial sheaves is already suggested in [12℄.11 Also, Hilkenand Rydeheard [5℄ formulated the sheaf extension of (2), and stated its ompleteness as an openproblem. The ompleteness of �rst-order S4 with respet to the topologial semantis is �rstshown by the authors of this paper [1℄, but in the strong form of Theorem 5, i.e., the existene of aanonial model for every theory ontaining FOS4.One oneptual di�erene between the loal-homeomorphism formulation and the funtorialone is that, in the former, � is interpreted by topologial interior, as it was originally in MKinseyand Tarski [10℄. In this sense, the loal-homeomorphism semantis an be properly alled theextension of MKinsey and Tarski's topologial semantis. In the same way that (2) onnets thethree approahes (1)�(3), the topologial semantis of this paper (extending (2)) subsumes Kripkesheaf semantis (the extension of (1)) on one hand, and an be seen to ategorially subsume thealgebrai topologial semantis ([11℄, extending (3)) on the other hand,12 thereby giving uni�ationto these three approahes to �rst-order modal logi.6. Bakground and ProspetsThe topologial interpretation of this paper was originally formulated in terms of ategory andtopos theory; this paper has served to reformulate it purely in terms of elementary (point-set)topology. In the original expression, we onsider the geometri morphism from the topos Sets=jXjof sets indexed over a set jXj to the topos Sh(X) of sheaves over a topologial spae X indued bythe (ontinuous) identity map id : jXj ! X. The modal operator � is interpreted by the interioroperation int that the omonad id� Æ id� indues on the Boolean algebra SubSets=jXj(id�F) � P(F) ofsubsets of F. See [2℄ for more detail, where the equivalene between this formulation and the onein this paper is also shown. int A //���� id�id�A����id� Æ id� :: Sets=jXj id� //? Sh(X)id�oo id�F id��F // id�id�id�F11[12℄, pp. 109f. There is no mention of what logi is given by the extension.12See [4℄ for how suh subsumption an be formulated.21



Although the topologial formulation presented here is more elementary and perspiuous, thetopos-theoreti one is more useful for generalizations. For example, we see from it that any geo-metri morphism of toposes (not just id� a id�) indues a modality on its domain. This immediatelysuggests natural models for intuitionisti modal logi, typed modal logi, and higher-order modallogi. Appendix A. Produts of SheavesHere we review the standard de�nition of (�bered) produts of sheaves (f. [9℄). We �rst needto reall some basi de�nitions in general topology.Given �nitely many topologial spaes X1, . . ., Xn, we an introdue a topology on the artesianprodut X1 � � � � � Xn by delaring produtsU1 � � � � � Un � X1 � � � � � Xnof open sets U1 � X1, . . ., Un � Xn to be basi open sets, and thereby de�ning the union of anynumber of those basi open sets to be an open set. This topology is alled the produt topology.Given a topologial spae (X;O(X)) and any subset S � X, we an de�ne another topologialspae (S ;O(S )), alled a subspae of (X;O(X)) by setting:O(S ) = fU \ S j U 2 O(X) g:Now let us de�ne the produt of sheaves. The produt of sheaves �F : F ! X and �G : G ! X isin general not the produt spae F �G of topologial spaes F and G; instead we take the produt�over X,� written F �X G. In the same way that the underlying set of a sheaf is a bundle of �bers,the underlying set of a produt of sheaves is given as a bundle of produts of �bers. Thus, givenjFj =Xp2X Fp and jGj =Xp2X Gp;we set jF �X Gj =Xp2X(Fp �Gp) = f (a; b) 2 F �G j �F(a) = �G(b) g:This is alled a �bered produt. Sine this set jF �X Gj is a subset of F �G, we an then de�ne thetopology on F �X G to be the subspae topology of the produt topology on F �G.The projetion � : F�XG ! X (i.e., from the total spae to the base spae) maps (a; b) 2 Fp�Gpto p. One an show that this projetion � : F �X G ! X is a loal homeomorphism if both �F and22



�G are. We an also onsider the projetions pF : F �X G ! F and pG : F �X G ! G (from theprodut to the omponents), whih map (a; b) 2 Fp �Gp to a 2 Fp and b 2 Gp respetively. Thenof ourse � = �F Æ pF = �G Æ pG. In sum, shematially, we have the situation:F �X GpF �� pG // G�G�� Fp �GppFp �� pGp // Gp�� Fq �GqpFq �� pGq // Gq��= + + � � �F �F // X Fp // fpg Fq // fqgThe n-fold produt F �X � � � �X F of a sheaf � : F ! X over X is written �n : Fn ! X. We writeFnp for the �ber (Fn)p = (Fp)n. When n = 0, F0 is X itself, beause the 0-fold produt of eah �berFp of F is a singleton F0p = f�g: F0 =Xp2Xf�g �Xp2Xfpg = X:Hene the projetion �0 : F0 ! X is the identity map.Appendix B. Sketh of a Completeness ProofHere we sketh a proof for Theorem 5, viz. the ompleteness of FOS4 with respet to the topo-logial semantis. See [1℄ for the details.Theorem 5. For any (onsistent) theory T in a �rst-order language L and ontaining FOS4, thereexists a topologial interpretationM = (� : D ! X; ~��) suh that any pair of formulas ',  of Lwith no free variables exept x̄ satis�es the following:' `  is provable in T () ~ x̄ j ' � � ~ x̄ j  �:To sketh our proof, it is illuminating to �rst review a proof for the topologial ompleteness ofpropositional S4, beause our proof extends the essential idea of that ase.Theorem 2. For any (onsistent) theory T in a propositional languageL and ontaining S4, thereexists a topologial interpretation (X; ~��) suh that any pair of sentenes ',  of L satis�es thefollowing: ' `  is provable in T () ~'� � ~ �:23



Proof of Theorem 2 (sketh). Consider the Lindenbaum algebra B of T, whih is a Boolean algebraequipped with the operation b : ['℄ 7! [�'℄. Next, take the setU of ultra�lters in B and the Stonerepresentation b� : B! P(U). That is,['℄ = f u 2 U j ['℄ 2 u g:The map b� is an injetive Boolean homomorphism. Next, topologize U with basi open sets d[�'℄for all formulas '. Then int(['℄) = d[�'℄ for the interior operation int of this topology.Bb �� // b� //= P(U)int��B // b� // P(U)Finally, give an interpretation in U to a sentene ' by ~'� = ['℄; this is then a topologial inter-pretation for whih we have the following:' `  is provable in T () ['℄ 6 [ ℄ () ~'� � ~ �: �Note that the topology de�ned in the proof above oinides with the usual Stone spae topologyon U if � is trivial, i.e. ' a` �'.More importantly, we should note that eah ultra�lter u in B an be onsidered a model of T,i.e. u � ' if T ` ', where we write u � ' to mean ['℄ 2 u. In other words, the essential idea ofthe proof above is to take the olletion of all (propositional) models of T and give it the topologywith basi open sets de�ned by extensions of all �'.Now, given any onsistent theory T in a �rst-order modal language L, our proof extends thiskey idea by �rst taking a suÆiently large setM0 of �rst-order models of T in the following way.Consider the non-modal �rst-order languageL = L [ f�' j ' is a formula of L ggiven by adding to L an n-ary basi relation symbol �' for eah formula ' of L with exatly nfree variables. Then Gödel's ompleteness theorem for �rst-order logi yields a lass M , ? ofstrutures M for L suh that, for any formula ',T ` ' () M � ' for all M 2M:24



While M may be too large to be a set, the Löwenheim-Skolem theorem implies that there is aardinal number � suh that the setM0 = fM 2M j jjMjj 6 � g still satis�esT ` ' () M � ' for all M 2M0:ThisM0, equipped with a projetion � : XM2M0 jMj !M0 for jMj the domains of models M, is our�rst approximation to the topologial interpretation of T required in Theorem 5.M0, unfortunately, annot in general be topologized so that � is a sheaf in the required way. Toseure the neessary sheaf ondition, we need to �label�M0 so that every a 2 XM2M0 jMj has a namein the language. So, let us extend the language L toL� = L [ f i j i < � gby adding �-many new onstant symbols. Then onsider the following olletion of strutures forL�: M = fM f j M 2M0 and f : �� jMj is a surjetion g;where M f is the expansion of M to L� with iM f = f (i) for all i < �. We then have the followingresult for the theory T� ofM: for every formula ' of L,T ` ' () T� ` ' () M f � ' for eah M f 2M:We an then show that, if we topologizeM and XM2M jMj with the extensions of � formulas as basiopen sets, then � : XM2M jMj ! M is a sheaf, and indeed is a topologial interpretation as laimedin Theorem 5. Referenes[1℄ S. Awodey and K. Kishida, �Topologial Completeness for First-Order Modal Logi,� in preparation.[2℄ S. Awodey and K. Kishida, �Modal Logi of Geometri Morphisms,� in preparation.[3℄ A. G. Dragalin, Mathematial Intuitionism: Introdution to Proof Theory, Nauka: Mosow, 1979 (in Russian);English translation by E. Mendelson, AMS, 1988.[4℄ M. P. Fourman and D. S. Sott, �Sheaves and Logi,� in M. P. Fourman, C. J. Mulvey, and D. S. Sott, eds.,Appliations of Sheaves: Proeedings of the Researh Symposium on Appliations of Sheaf Theory to Logi,Algebra, and Analysis, Durham, July 9�21, 1977, Springer-Verlag, 1979, pp. 302�401.25
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