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Multiple Balance Strategies

From One Optimization Criterion

Christopher G. Atkeson and Benjamin Stephens

Robotics Institute, Carnegie Mellon University

www.cs.cmu.edu/˜cga, cga@cmu.edu, bstephens@cmu.edu

Abstract—Multiple strategies for standing balance have been
observed in humans, including using the ankles to apply torque
to the ground, using the hips and/or arms to generate horizontal
ground forces, and using the knees and hips to squat. This
paper shows that multiple strategies can arise from the same
optimization criterion. It is likely that humanoid robots will
exhibit the same balance strategies as humans.

I. INTRODUCTION

This paper addresses two questions: 1) Will humanoid

robots show the same multiple strategies for standing balance

as seen in humans? and 2) If so, do these multiple strategies

arise from independent design and control processes, or a

single design and control process? This paper demonstrates

that it is likely that humanoid robots with backdrivable joints

will exhibit the same behavioral strategies seen in humans.

A design process using a single optimization criterion results

in a controller using multiple strategies. A small perturbation

is handled using one strategy, while a large perturbation is

handled using another strategy.

Studies of human standing balance have revealed several

strategies to compensate for perturbations: the ankle strategy,

in which torque about the ankle joints is used to balance

and the rest of the body is held in a fixed posture, the hip

strategy, in which torque about the hip joints is used to

generate horizontal ground forces moving the center of mass,

the squat strategy, in which the knees and hips are flexed

to lower the center of mass [1], and the step strategy, in

which a step is taken [2], [3]. These multiple strategies reflect

the mechanical constraints faced by humans and humanoid

robots. One question this paper addresses is whether each

strategy is controlled by a separate controller, as in human eye

movement control, or whether a single controller and design

process can be used to generate all strategies. In studies of

humans, the ankle strategy seems to be used for small and

slow perturbations on flat rigid support surfaces, while the hip

strategy seems to be used for large or fast perturbations and

on narrow or compliant support surfaces [4].

This paper focuses on two balance strategies that do not

involve stepping: the ankle and the hip strategies. A future

paper will attempt to include stepping. From a humanoid

robotics point of view, the ankle strategy turns the body into an

inverted pendulum, balanced upright using ankle torque. Hip

torque is applied only to keep the hip joint in a fixed position.

The hip strategy is that of a two link acrobot [5], where only

hip torque is applied and the ankle is unactuated. The acrobot

uses hip torque to generate horizontal ground forces, which

keeps the center of mass over the foot on average.

Hemami and colleagues analyze the ankle strategy [1]. Sev-

eral researchers provide examples of humanoid robot standing

balance implemented using two hand designed or optimized

controllers, one for the ankle strategy and one for the hip

strategy, including [6], [7]. Guibard and Gorce present a

classifier to select between ankle and hip strategies. Each

strategy is separately optimized using different criteria and/or

constraints [8]. Kudoh and colleagues choose between an

optimized strategy and a predesigned feedback control strategy

based on the current state. The optimization finds the best

acceleration on the current step (a local or greedy optimiza-

tion) rather than creating the best response over time [9].

Kuo designs Linear Quadratic Regulators for each perturbation

to generate controllers [10]. Different response strategies are

generated by changing the optimization criterion based on

the size of the perturbation. In Kuo’s work the system is

linearized. In our work we use a single optimization criterion

for all perturbation sizes. Thus, we do not need to “recognize”

a perturbation in order to select the appropriate response.

We also find that a nonlinear controller outperforms linear

controllers and linear controllers with constrained outputs.

Abdallah and Goswami explore a balance approach in which

two strategies are used in temporal sequence [11].

II. THE ONE LINK MODEL

Figure 1 shows a one link inverted pendulum responding to

a perturbation in the sagittal plane (fore/aft motion only). In

this simple model all joints except the ankle are held in a fixed

position. This model of standing balance has only one strategy

available to it, applying torque at the ankles. The amount of

ankle torque is limited by the size of the feet. We will use this

example to describe our optimization approach.

The model is facing to the right. The one link model is 2

meters high and has a total body weight of 70kg. The ankle

angle was bounded by −0.4 < θa < 0.8 radians. θa = 0 is
upright. We assume that in standing the center of pressure is

at the center of the foot. We therefore use a symmetric foot 0.2

meters long in our model. This results in a maximum ankle

torque of approximately ±70 Newton-meters.

In this case we model perturbations as impulses applied to

the middle of the torso (1.5 meters above the ankle). In this

example we present only perturbations that push the model

forwards, to simplify our figures. For this model perturbations
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Fig. 1. Configurations every quarter of a second of a simulated one link inverted pendulum response to an impulse of 15 Newton-seconds forward (to the
right) The black rectangle indicates the extent of the symmetric foot.
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Fig. 2. Optimized trajectories from different starting points.

in the other direction lead to symmetric responses. The pertur-

bations instantaneously change the joint velocities from zero

to values appropriate for the perturbation:

∆θ̇ =H−1JT
Z

f orce ·dt (1)

where elements of the inertia matrix H(θ) are the coefficients
of angular accelerations in the rigid body dynamics (ττ =Hθ̈θ+
...), J(θ) is the Jacobean matrix, and

R

f orce ·dt is the impulse

applied (measured in Newton-seconds). We assume no slipping

or other change of contact state during the perturbation.

The one step optimization criterion is a combination of

quadratic penalties on the deviations of the joint angles θa

from zero (straight up) and on the joint torques τa: L(x,u) =
T∗θ

2
a+0.002∗T∗ τ

2
a where 0.002 weights the torque penalty

relative to the position error and T is the time step of the

simulation (0.01s). There are no costs associated with joint

velocity. The one step criterion is summed over each step of

a trajectory to find the total trajectory cost, and the optimal

trajectory minimizes the total trajectory cost.

Any trajectory or control law optimization method can be

used to find optimal trajectories. To generate control laws for

the balancers discussed in this paper, we generate optimal

trajectories from either many randomly selected starting points

(Figure 2) [12] or a grid of starting points. Each trajectory

is locally optimized using Differential Dynamic Programming
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Fig. 3. Ankle angle trajectories for a range of perturbation sizes (2.5, 5, 7.5,
10, 12.5, and 15 Newton-seconds).

(DDP) [13], [14], [15], [16]. Information is exchanged be-

tween trajectories to enable convergence to globally optimal

trajectories [12].

Figure 3 shows ankle trajectories for a variety of pertur-

bation sizes, and Figure 4 shows the corresponding torques.

Note that the torques saturate for larger perturbations, and that

the joint angle motion roughly scales with perturbation size.

For this one link system there is only one strategy, so the

maximum joint displacements are grow almost linearly with

perturbation size (Figure 5).

We have designed a Linear Quadratic Regulator (LQR)

that optimizes the same criterion on the one link model. For

perturbations of 10 Newton-seconds and higher, this LQR

controller saturates the ankle torque as does the controller

presented here. For perturbations of 17.5 Newton-seconds and

higher, the LQR controller falls down, as does the controller

presented here.

III. THE TWO LINK MODEL

In contrast to the one link model, the two link model

shows multiple strategies. Figure 6 shows a two link inverted

pendulum responding to a perturbation in the sagittal plane.

This multi-link pendulum is a useful model for standing

balance of a human and a humanoid robot. The bottom link is
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Fig. 4. Ankle torque for the same range of perturbation sizes.
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Fig. 5. Maximum joint displacement versus perturbation size.

the leg, and the top link is the torso. Each link is 1 meter long,

and is modeled as a thin rod of 35kg for a total body weight

of 70kg. We assume that in standing the center of pressure is

at the center of the foot. We therefore use a symmetric foot

0.2 meters long in our model.

The model is facing to the right. We model perturbations as

impulses applied to the middle of the torso (the top link). In

this example we initially present only perturbations that push

the model forwards. We summarize results for perturbations

in the other direction in a later figure.

Perturbations instantaneously change the joint velocities

from zero to values appropriate for the perturbation, as de-

scribed in Equation 1. The states were bounded by −0.4 <

θa < 0.8 radians and −1.5 < θh < 0.1 radians where θa is

the ankle angle, θh is the hip angle, and θi = 0 is upright.
The ankle torque was bounded by ±70Nm to keep the center

of pressure within the foot. The hip torque was bounded by

±500Nm which approximately matches human capabilities

and our humanoid robot. The one step optimization criterion

is a straightforward extension of the one link optimization cri-

terion: a combination of quadratic penalties on the deviations

of the joint angles from zero (straight up) and on the joint

torques: L(x,u) = T ∗ (θ2a+ θ
2
h) + 0.002 ∗T ∗ (τ2a+ τ

2
h) where

0.002 weights the torque penalty relative to the position error.

and T is the time step of the simulation (0.01s). There are no

costs associated with joint velocities.

Figures 7 and 9 show the optimized joint angle trajectories

for the ankle and knee for a variety of perturbation sizes,

and Figures 8 and 10 show the corresponding joint torques.

Figures 7 and 9 clearly show the difference in strategy

between the responses to the smaller perturbations (2.5, 5,

7.5, 10, 12.5, and 15 Newton-seconds) shown with solid lines

and the responses to the larger perturbations (17.5, 20, 22,5,

and 25 Newton-seconds) shown with dashed lines. For the

small perturbations the ankle angle is entirely negative and the

hip movement is small. For the large perturbations the ankle

initially moves in a positive direction, and the hip movement

is large. In all cases the ankle torque is similar: initially

saturating at 70Nm if that torque is reached, and then smoothly

decreasing to zero. The hip torques are small and initially

positive for small perturbations, but large and initially negative

for large perturbations.

Figure 11 shows the maximum ankle and hip displacements

for perturbations in both directions (positive perturbations push

forwards, negative perturbations push backwards) for a normal

size foot and a half sized foot (equivalent to standing on a

narrow platform). For smaller perturbations the responses are

linearly related to the perturbation size, and are independent

of the size of the foot. These responses are associated with the

ankle strategy. At some point, the hip strategy is chosen and

the ankle and hip perturbations rapidly increase with perturba-

tion size. The location of the strategy transition depends on the

size of the foot, which is related to the maximum torque the

ankle can apply. The asymmetry of this figure is generated by

the angle limits on the hip. The back cannot bend backwards

very much (0.1 radian), limiting the use of the hip strategy

for backwards (negative) perturbations. Instead the model falls

down for these perturbations.

We have designed an LQR controller that optimizes the

same criterion on the two link model with the full sized foot.

For perturbations of 10 Newton-seconds and higher, the LQR

controller saturates the ankle torque, as does the controller

presented here. For perturbations of 20 Newton-seconds and

higher, the LQR controller falls down, while the controller

presented here is able to handle larger perturbations. For

the half sized foot, the LQR controller saturates the ankle

torque at 5 Newton-seconds, and falls for perturbations of 10

Newton-seconds or more. Our controller for the half sized foot

saturates at the same level but can handle perturbations up to

15 Newton-seconds in the forward direction (taking advantage

of large hip flexing).
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Fig. 6. Configurations every half second of a simulated two link inverted pendulum response to an impulse of 25 Newton-seconds forward (to the right)
The black rectangle indicates the extent of the symmetric foot.
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Fig. 7. Ankle angle trajectories for a range of perturbation sizes (2.5, 5, 7.5,
10, 12.5, 15, 17.5, 20, 22,5, and 25 Newton-seconds).
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Fig. 8. Ankle torque for the same range of perturbation sizes.
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Fig. 9. Hip angle trajectories for the same range of perturbation sizes.
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Fig. 10. Hip torque for the same range of perturbation sizes.
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IV. THE FOUR LINK MODEL

To explore more complex and human-like strategies, we

created a four link model that included a knee, shoulder, and

arm by subdividing the two link model (Figure 12). Each link

is modeled as a thin rod, with a calf and thigh length of 0.5

meters, and 17.5kg each. The torso is 1 meter long with a

weight of 26.25kg, the arm is 1 meter long with a weight

of 8.75kg. The 0.2 meter symmetric foot remained the same.

Impulse perturbations were applied horizontally to the middle

of the torso as described in Equation 1.

The states were bounded by −0.4 < θa < 0.8 radians,

−0.01 < θk < 2.5 radians, −1.5 < θh < 0.1 radians, and

−0.5< θs < 2.5 radians where θa is the ankle angle, θk is the

knee angle, θh is the hip angle, θs is the shoulder angle, and

θi= 0 is upright with the arms hanging down. The ankle torque
was bounded by ±70Nm to keep the center of pressure within

the foot. The knee and hip torques were bounded by ±500Nm.

The shoulder torque was bounded by ±250Nm. The one step

optimization criterion is a combination of quadratic penalties

on the deviations of the joint angles from zero (straight up), the

joint velocities, and the joint torques: L(x,u) = T∗ (θ2a+θ
2
k+

θ
2
h+θ

2
s )+T∗(θ̇2a+ θ̇

2
k+ θ̇

2
h+ θ̇

2
s )+0.002∗T∗(τ2a+τ

2
k+τ

2
h+τ

2
s )

where 0.002 weights the torque penalty relative to the position

and velocity errors. and T is the time step of the simulation

(0.01s). In the four link case we introduced a penalty on joint

velocities to reduce knee and shoulder oscillations.

Figures 12 and 13 show responses to the largest pertur-

bations that could be handled in each direction. Figure 14

shows the optimized shoulder angle trajectories for a variety

of perturbation sizes, Note how the maximum shoulder angle

grows suddenly only for the largest perturbation sizes. The

shoulder angle is softly constrained to a lower limit of -0.5

radians, which affects the trajectories for the three largest

perturbations. The red dashed line in Figure 14 shows a change

in arm strategy for the largest backward perturbation (shown

in Figure 13). The arm is initially moved backwards rather

than forwards, as was done in the next smallest backwards

perturbation (top green line in Figure 14).

Figure 15 shows how the joint maximum deviations initially

grow linearly with perturbation size, until an impulse size of

approximately 15 Newton-seconds. At this point the strategy

changes, and all joints rapidly increase their maximum devia-

tion with perturbation size. This movement is a generalization

of the two joint hip strategy, involving the shoulder and knees

as well as hips and ankles. Figure 16 shows the effect of

reducing the size of the foot (or equivalently standing on a

smaller platform). Comparing Figure 16 to Figure 15, we see

the hip strategy is used for impulses of 10 Newton-seconds or

more for the smaller foot, and that the hip strategy is not

effective for backwards perturbations. Interestingly, we see

an example of the squat strategy (bent knee and hip) in the

response to the largest perturbation in the forward direction

(Figure 17).

We have designed an LQR controller that optimizes the

same criterion on the four link model with the full sized foot.

For perturbations of 12.5 Newton-seconds and higher, the LQR

controller saturates the ankle torque. The controller presented

here saturates at 10 Newton-seconds. For perturbations of 17.5

Newton-seconds and higher, the LQR controller falls down,

while the controller presented here is able to handle larger

perturbations. For the half sized foot, the LQR controller

saturates the ankle torque at 5 Newton-seconds, and falls for

perturbations of 10 Newton-seconds or more. Our controller

for the half sized foot saturates at the same level but can

handle perturbations up to 15 Newton-seconds in the forward

direction (taking advantage of large hip flexing).

V. SUMMARY AND FUTURE WORK

This paper shows that a single (and rather simple) optimiza-

tion criterion can be used to generate the multiple balance

recovery strategies. It appears as if the strategies arise from

the mechanical constraints of a jointed structure standing in

a gravity field. If possible, the less expensive ankle strategy

is used for recovery. If that will not be sufficient, the more

expensive hip strategy is used. We expect the same strategies

for standing balance will be seen in humanoid robots as

are seen in humans, due to the similarity of the mechanical

constraints.

This work needs to be extended in several ways. The first

is a detailed comparison to human experimental data. In this

work simple body models were used to facilitate comparison

of models with different numbers of joints. Future work will

use a more detailed and accurate model of the human body,

including models of the soft foot tissue and floor compliance.

Delays will be implemented between sensing and actuation.

Imperfect sensing will also be implemented. The location

and direction of the perturbation will be varied. Under these

conditions, the behavior generated by various optimization

criteria will be compared to human experimental data.

The second extension is to actually implement this algo-

rithm on a robot. This will require state estimation based on
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Fig. 12. Configurations every quarter second from a simulated four link inverted pendulum response to a forward impulse (to the right) of 22.5 Newton-seconds.
The black rectangle indicates the extent of the symmetric foot.
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Fig. 13. Configurations every quarter second from a simulated four link inverted pendulum response to a backward impulse (to the left) of 22.5 Newton-seconds

imperfect sensing and dealing with floor compliance. It also

requires coordinating the action of both legs and feet [17].

A third extension is to handle perturbations that take a

finite amount of time. In this work we avoided the issue of

recognizing and predicting the future course of perturbations

by applying them instantaneously. However, if a push lasts for

a second, it is possible to take that into account in generating a

response. If a push will last for an unknown time, the response

in the same state might be different depending on the beliefs

of the subject as to the future course of the perturbation.

It is also possible to recognize perturbations to assist this

prediction process. One way to handle this in optimization

is to incorporate information about the future course of the

perturbation in the state. For complex predictions this might

make the optimization much more complex. A simplification

is to assume the current perturbation will last indefinitely.

Another extension is to consider stepping as a possible

response. We hope to unify the ankle, hip, and step strategies

with a single optimization criteria in the future. It may be

the case that when stepping is possible it is chosen instead of

using the hip strategy. It may be the case that ankle and hip

strategies continue to occur during a step.
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Fig. 15. Maximum joint displacement versus perturbation size.
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Fig. 16. Maximum joint displacement versus perturbation size for the half
sized foot case.
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Fig. 17. Configurations every quarter second from a simulated four link inverted pendulum response to a forward impulse of 15 Newton-seconds. The black
rectangle indicates the extent of the half-sized foot.
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