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Abstract. This paper presents a class of design optimization problems where
an outer optimization is constrained by an inner one. In the first part of
the paper, ve show that a major subclass of this type of problem is the mul-
tiple criteria (vector-valued) decision making problem. This subclass was
the requested review topic for this paper; we discuss it extensively. The
paper concludes by discussing the more general problem, Indicating its im-
portance to design and exploring its potential very unpleasant nonconvex
behavior. We introduce a single level solution algorithm that shows promise
for finding a local optimum very quickly.

INTRODUCTION

This paper is the result of a tactical error
made by the second author when writing a re-
view paper (Westerberg, 1980) on design op-
timization for the FOCAPD meeting held in
Henniker, NH. Included in that paper was a
brief summary of some interesting Ph.D. work
(Lightner, 1979) on solving multiple crite-
ria decision making problems. That work was
just completed in the Electrical Engineering
Department/Design Research Center at Carnegie-
Mellon University. It was particularly in-
teresting because it gave an approach that
allowed the design engineer to locate a so-
lution to this class of problems close to a
desired solution by using parameters that
had intuitive meaning for him. With that
demonstration of a small and probably dan-
gerous amount of knowledge of the area, the
organizers for this conference selected this
topic for us to review. Seeing no reason
not to explore the area, the challenge was
accepted, but it was indeed a challenge.

It appeared for some time that the multiple
criteria decision making problem was related
to another problem we Identified three years
ago and have been working on for the last 18
months at CMU, the class of design optimiza-
tion problems which are constrained by an
inner optimization problem. Indeed the con-
nection can be made directly because the
multiple criteria decision making problem is
a special case of this more general class of
problems, albeit one with a "fuzzy11 outer
objective function that is known only intu-
itively by the design engineer. Therein lies
its peculiar flavor, and the task at hand is
to provide a convenient means to extract the
designer's optimum point from him in the most
painless manner.

This work was funded in part by NSF grant
ENG-7801809.

We vill show that the inner problem, one
with many competing but not comparable ob-
jectives (apples versus oranges) has its own
mathematical difficulties that have been the
theme of many papers. Its solution is a
family of points, each with the characteris-
tic that no objective can be improved with-
out a loss being incurred in one of the com-
peting objectives. Only these so called
"noninferior" points are presented to the
designer. This inner problem is usually re-
cast as a single objective (that is, a tra-
ditional) optimization problem to be solved
in terms of a set of "weights11 that param-
eterize it. The weights are varied systen-
1atically to locate the noninferior point
most preferred by the designer. How to vary
them based on fuzzy responses froc the de-
signer is one of the Interesting aspects to
this problem.

A variation on this approach is to get the
designer to agree that some of the objectives
need not be optimized but simply brought to
a satisfactory level, in which case they can
be recast as constraints and the problem size
reduced accordingly.

Special problem structures, particularly lin-
ear ones, give rise to clever solution algo-
rithms. We shall explore briefly a few of
these also.

The last part of the paper will consider the
more general problem of an outer optimiza-
tion problem constrained by inner ones, i.e.
an embedded or multilevel optimization. We
shall first describe an important engineer-
ing design problem with this structure. This
problem unfortunately does not have to be
well-behaved. We will show that it can pos-
sess multiple local optima, in the usual
tradition of believing that most real prob-
lems are usually veil behaved, ve present an
algorithm that appears to locate a local
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optimum with the efficiency of the recent
successive quadratic approximation algorithms
(Wilson (1963), Han (1975)).

The Embedded Optimization Problem

We shall start by defining the following
general problem which is the theme of this
paper.

Problem PI: Min ^(x^.x^)

s.t. ) * 0

!^ "2.
arg min ^(x

This problem has an inner optimization prob-
lem which constrains the outer one. The
variables x_ are constrained to be the value
or values of £ that minimize <L(Xi »Z) sub-
ject to the inner problem inequality and
equality constraints. They are implicitly
then a function of x. which parameterizes
the inner problem.

We shall now show that the multiple criteria
(multiple objective, vector valued, multiple
attribute) decision making problem (MCDM) is
a special case of (Pi). The normal state-
ment of the MCEM problem is as follows.

Problem P2 (MCDM) :

s.t. £(£) £ <)

h(z) - 0

Clearly a dilemma exists here as we are ask-
ing that several objective functions, f, (£)
to f (z) , be simultaneously minimized. If
the same point z_ simultaneously minimized all
objectives, the problem would be solved.
This event will rarely happen.

The "solution" to P2 is a family of solutions
called a "pareto" optimal surface or the set
of "noninferior11 or "efficient" solutions.
Each such solution has the property that it
is not possible to improve any one of the
objectives without simultaneously degrading
the value of another. Figure 1 illustrates
this idea for two objectives. Note the co-
ordinates for the space are f. and f , not
z_. The encircled area R is all points (f. ,
f ) reachable by all feasible choices of z_.
Point "a" is not noninferior since both f.
and f2 can be reduced, such as by moving to
point "b". Point "b" on the other hand is
noninferior because, to reduce either f, or
f_, one would have to increase the other ob-
jective. All points from "c" to "d" along
the lower edge of R are noninferior; they
are the pareto optimal surface which "solves"
this problem.

Fig. 1 Noninferior surface from point "c"
to "d". "u" is the Utopia point.

The surface of noninferior solutions, (f ,
f2...,f) implicitly defines a function

t,f2 fq) - 0

in f-,fo....f space.
l Z q

These points as found are shown to the de-
signer, known in MCDM problems as the "de-
cision maker" (DM) , who must select his pre-
ferred point according to his internal "util-
ity" function. The outer problem is there-
fore as follows.

Problem P3:

Min

s.t. G(flff2....fq) - 0

As the CM (decision maker) can change his
mind or forget past preferences, his utility
function is a fuzzy one.

Solving problem (P2) to find a solution (f ,
f2> £ ) satisfying l

is always done by converting problem (P2) to
a scalar optimization problem. Examples of
the form of problem solved are as follows.

Problem P4:

Min

S.t. 0

h(z) - 0



Problem P5 (Min Max):

Min

Y.£

convex function G(f.

s.t.

v 2f 2^Y

w f * Y
q q

&<*) * o
- o

Problem P6 (Variation of the c-Constraint
Formulation)•

Min f,(z)

v f * 1
q q

« 0

,f ) in the

2. When (P2) gives rise to a nonconvex
function G(f, f ).

1 q
The main issues are three

1. How to solve problem (P2) to find dif-
ferent noninferior solutions. Even
formulations (P4), (P5) and (P6) have
their problems.

2. How to elicit from the DM (decision
Baker) information on his utility
function.

3. How to use the information elicited in
step 2 to find the noninferior solution
preferred by the DM.

To place the problem in perspective, we pro-
vide Fig. 2 which illustrates the component
parts of a programming system for solving
MCDM problems. We need to examine the con-
tents of the top two "boxes" labeled 1 and
2, respectively.

To find different solutions, one selects dif-
ferent values of w..,w . ...w 2 0. If we use
inner problem formulation ($5) as our exam-
ple, the complete MCDM can be stated in the
form

Min

0
S«W« C(f (v)) "0 for F gives v

Flad "Efficient"

Folat «V)

s.t.

«.t. Y

v ̂  0

" Arg Min y

.t. w

Calculate

I CD

vqfq(z) t t»t of

where now ve should be able to recognize this
problem to be a special case of the form of
problem (pi) by. identifying

2«nk Orderlnf (Ordinal Iafornatloa)
• ~ or —

0(1 ( I ) ) . 0(f (2)) 0(C (I)) . . .

— and/or —
Gradient £stiaatcs at gurrcae

Preferred Soluslo* X (M

Y <-> *2

Y ,z <-> x2 .

We shall now consider the MCDM (Multiple Cri-
teria Decision Making) problem in depth.
After this review we shall return for a more
detailed look at the general problem (Pi) to
observe its characteristics.

The Multiple Criteria Decision Making (MCDM)
Problem

We shall consider two special cases for the
MCDM problem:

1. When the inner problem (P2) gives a

Fig. 2 Structure of a Programming System
for MCDM Problems

Several excellent review articles exist to
cover a literature on this subject that is
already extensive. One of the easiest to
read is by Hwang etal (1980), a tutorial
paper referencing 61 earlier works. This
paper in turn points to an earlier review by
the same authors (Hwang et al (1979)) where
over 400 papers and 26 books are cited.

Zlonts (1979), a name which appears repeat-
edly in this literature, gives his views on
the subject in a paper referencing 46 arti-
cles. Lightner (1979), in Chapter 2 of his
Ph.D. thesis, cites 61 references. These



three references alone will point one to much
of the relevant literature and indirectly to
almost all of it prior to 1979 or 1980. For
the hardy among you, the review by Stadler
(1979) gives a "interesting" view of the
papers prior to 1970 on the subject.

Within the chemical engineering literature,
the first paper found was by Seinfeld and
MacBride (1970), who applied ideas developed
in earlier work by Geoffrion (1967) to set
up and solve a process example.

The Inner Problem (P2)

As Illustrated in Fig. 1, the problem (P2)
is to minimize a vector of "q" competing ob-
jectives, £ (z) , f2(£) , f (z) . As we
said earlier, not all can usually be mini-
mized at the same point, and we are thus led
to the concept of noninferiority (also known
as efficiency, pareto optimality, minimality,
and nondominance — see Lightner (1979)).
The problem is to provide an algorithm to
locate noninferior points.

If the region R in Fig. 1 is convex then the
most common approach taken is to formulate a
scalar optimization problem of the form (P4):

q

Min

s.t. £(£) £ 0

where w axe selected to satisfy w 2* 0 for
all i and ) Vj-1. Geoff rion (1967J has

shown that all noninferior points can be
found by a suitable choice of the weights w.
Figure 3 illustrates.

Even if R is*convex, this algorithm can lo-
cate points which are not noninferior (Lin
(1976), Gearhart (1979), Benson (1979)) as
Fig. 4 illustrates. One can avoid finding
these points by requiring all w. ^ e > 0
(Geoffrion (1967)). x

Geoffrion (1967) defines the subtle concept
he terms "proper efficiency" to exclude any
point from being noninferior if one can in
the limit improve one objective infinitely
quickly while degrading another a finite
amount. Consider the example

Fig. 3 Finding noninferior points using
problem formulation P4. Lines of
the form v-f.+ v-f** k shown for
different values of k. Direction of
decreasing k shown. Point "a" is a
noninferior point found for w., w
chosen.

Fig. 4 A problem with formulation P4. Ver-
tical lines are of form 1 f.+ 0 f»
- k. Direction of decreasing k
shown. All points indicated by "*"
solve problem P4 with w • 1, w * 0,
but only "a" is noninferior. Z

g(z) - -z * 0 .

We can ask if the origin z-0 is a point with
proper efficiency. If z is small and posi-
tive, the gain in f.(z) with respect to the
loss in f«(z) is in the ratio 1/z, which in
the limit as z tends to zero becomes arbi-
trarily large. The origin is not a point
with proper efficiency. The point z - c > 0

for any given c is however properly effi-
cient — i.e. noninferior. The points
marked with an "*" in Fig. 4 except point
"a" are not properly efficient.

If region R is not convex in Fig. 1, then
problem formulation (P4) can miss whole
stretches of noninferior points as indi-
cated by Fig. 5. Illustrated are curves of
the form v.f.+ w-f,, for different w^t v0
values. Problem (P4) moves each curve to



problem.

Fig. 5. Missing noninferior points using
problem formulation P4. The entire
cross hatched region cannot be found
using formulation P4.

the left and down as far as possible, such
that the curve just supports the region R.
The support point is the sought after non-
inferior point, and clearly the crosshatched
segment of the lower left edge of R can
never be supported.

To locate points in the crosshatched area of
region R in Fig. 5, Lightner (1979) has sug-
gested searching using a weighted p-th norm
as die objective (1 <£ p £ •)

Problem P7:

£<!) * £s.t.

While this norm with p*2 has been proposed
earlier by others (e.g. Huang (1972),
Salukvadze (1974)), Lightner seems to be the
first to use it expressly to find the non-
inferior points for a nonconvex region R.
Figure 6 illustrates hov the choice of p af-
fects the shape of the "support" surfaces
used to locate the noninferior points. Prob-
lem (P7) is equivalent to moving the shape
function selected to the left and down as
far as possible until it just touches region
R. Using a surface that bends as illustrated
will permit more noninferior points to be
found than the~"~Tinear case when p=l. In the
limit of p1", all noninferior points can be
located. 7~ , ^--

The Utopia Point

To use the above approach all f.(z) must be
guaranteed to be non-negative. We can ac-
complish this by first finding the so-called
**utopia" point. The coordinates of the
otopia point are^shgwn in gig- 1; the co-^
ordinates are (f.,f' ....f ) where each f.
solves the following seala? optimization

Fig. 6 The Shape of Different Support Sur-
faces for the p-norm objective.

Problems P8:

Min

* 0

" 2

We must therefore solve q optimization prob-
lems of the form (P8), for i*l,2,...q, to
locate the coordinates of the Utopia point.
The objectives can then be modified so each
is always non-negative by making the Utopia
point the origin of the (f.,f.....f ) space,
,i.e. by letting each objective f bi replaced
byC^f*) 1

The Infinite Nora

When p« is used in problem (P7), the problem
is a min max problem where the objective can
be rewritten

Min {Max w.f.(z)}
z i l l ""

a problem which is usually solved by rewrit-
ing in the form of problem (P5).

Even for this problem formulation, points can
be found which solve (p5) that are not "non-
inferior." For example the points marked
with an "*" in Fig. 4 will solve (P5) for a
suitable choice of weights w^.

The major advantage to the infinite norm
formulation (P5) is that the weights v have
physical meaning for the DM. They can be
set to the reciprocal of the values for each
objective that the DM would like the sought
after noninferior point to be most like. For
example suppose the DM has discovered that
maximizing profit yields a solution of
$250,000/yr at a production rate of 5000
units per year. He also discovers that



maximizing production rate yields a profit
of $150,000 when producing 6500 units per
year. He would like the next solution to be
a compromise most like a profit of $225,000/
yr. By choosing w« 1/225,000 and w »
1/6000, he will find the solution (ulually
noninferior) most like that sought.

He can see why this occurs by examining Fig.
7. The origin is the Utopia point. The

-sow.

!

| - 5 * .

•I -4000.
•<•

-«soo

/

/

R

a

V -.V..
-250 -200 -ISO

tx (- profit la UOOO/yr)

Fig. 7 Physical meaning to weights for
problem formulation (P5). "a" is
point found using formulation (P5).
"b" is point found using formula-
tion (P6).

rectangular shape support function will grow
along the line passing from the origin
through the desired compromise point. Where
it just supports region R at point "a" is
the solution found, which in this sense is
most like the one sought.

The c Constraint Method (Haiines (1970))

particular formulation will find only non-
inferior points, but has the disadvantage
that one must discover a sequence of points
f within region R. Figure 8 illustrates the
idea. The points found will be support
points for the feasible region, as we argued
earlier. Because all wi are greater than
zero, only noninferior points will be found.

Fig. 8 Finding noninferior points using
formulation (p4) with constraints
and equal weights. Crosshatched
area is constrained area, "a" is
support point for reduced feasible
region. 45° support lines are for
0.5 (f.+ f2) - k for different k.
Direction of decreasing k shown.

A Fix

Formulation (P6) given earlier also allows
one to generate noninferior solutions for
nonconvex regions R. It too can find solu-
tions such as those marked by an "*" in Fig.
4 which are not noninferior. Here the
weights can also be chosen to locate a de-
sired solution. Let us refer back to our
example of the last two paragraphs. Suppose
the DM would like the noninferior solution
such that profit is maximized while keeping
the production at no less than 6000 units
per year. Choosing w- equal to (-1/6000)
and solving formulation (p6) will locate the
solution marked "b" on Fig. 7.

Another formulation is possible which com-
bines several earlier ideas (Wendell and Lee
(1977)). By adding constraints to formula-
tion (P4) of the form

where the point
inside region R

,1^ 1 ) is a point
solving ?P4) with all

w^- 1/q (so ) w^ 1), one can also dis-

i-l
cover all noninferior points. This

There appears to be an expedient "fix" for
preventing formulations (P5) and (P6) froa
locating points which are not noninferior.
This "fix11 was found in an article by
Shimizu (—) . It is to augment the objective
with the term

(all M± > 0, t± s 0)

For example, the objective for (P5) becomes

where c is a very small number (say 10" the
size expected for Y) • Y will still domi-
nate in selecting the solution point. The
points marked with an "*" in Fig. 4 all re-
sult in the same V value. However, the ex-
tra term will then come into play and se-
lect the one with least value to the sun of
the weighted objectives, i.e. the nonin-
ferior point labeled "a".

While the "fix11 is interesting it is not
without risk. It too will find points
which are not noninferior if Y can he. in-
creased while decreasing the tern c > w.f

t—t I i

by exactly the same amount or a bit more.



One could consider the odds in ones favor
here, however. The exactly vertical line is
to be expected; the above is unlikely. It
oust be the case that many problems will al-
low one objective to reach a minimum for a
range of values for the other objective. For
example the minimum heating and cooling util-
ity usage of a process is a fixed quantity
under appropriate assumptions. Several dif-
ferent heat exchanger configurations can usu-
ally be developed that feature this minimum
usage, each differing in investment cost.
Thus if one chose utility usage as one ob-
jective and investment cost as the other,
then one would discover several different
investment costs will yield the same minimum
for utility usage. This is exactly the type
of problem giving the vertical part of the
curve in Fig. 4.

A Decomposition

Takama and Umeda (1980) suggest that the in-
terior problem of locating noninferior points
can be solved by decomposing it for typical
engineering problems. They partition the
variables z_ into the disjoint sets (z ,z ,
. ...z ,v) such that the MCDM problem can be
writtin:

WLn ^ . v ) , f2(!2,v)

s.t. g1(2±,v) £ 0

Mix.Z) * 0

Their approach relies on the assumption that
most engineering problems will have this
structure. The suggested approach to solving
is illustrated in Fig. 9.

S*b*roble»

2
Sttbfroblci

2

Fig. 9 Decomposition Scheme of Takama and
Umeda (1980)

Being suggested is that the top level ad-
justs v, passes v to each^lower level prob-
lem which finds its own f^(£.sv) as a sca-
lar optimization, over z.. "it adjusts v
again and continues until the DM likes the
solution.

The decomposition idea is intriguing. How-
ever a problem not discussed is how to

select variables v such that all the sub-
problems will remain feasible. Passing
back an infinite value for f? (£. .v) when
subproblem i is infeasible is possible but
forces one into using rather inefficient
pattern search optimization algorithms.

The MCDM Executive

So fax we have been examining the problem of
finding a noninferior solution given a set
of weights. The next aspect of solving MCDM
problems is to consider how the weights are
selected, a job of the box we labeled the
MCDM executive in Fig. 2. As can be seen in
that figure, the executive must interact
with both the subsystem that locates non-
inferior points and the decision naker.
Several approaches exist for constructing
the executive. The nature of the overall
problem (is it linear, is region R convex,
etc.) affects what will be in the executive.

The simplest algorithm in concept is to gen-
erate a sufficient scattering of noninferior
points so as to define the entire noninfe-
rior surface completely. Clearly this ap-
proach is likely the one maximizing the work
done. For more than two objectives, it also
is likely far too much work because the prob-
lem size grows as n^"1, where n is the nun-
ber of points over which each of the objec-
tive functions is "gridded". For example if
10 different values of each f are desired
and there are q=4 dimensions, one would be
required to generate on the order of 103

noninferior points. For only two objectives,
a total search is feasible and frequently
used.

If problem formulation (P4) is used (objec-
tive is 2,vifi)» o n e difficulty is choosing
the weights w so as to distribute the non-
inferior points evenly throughout the (f1,
f2) space. Thus formulations (P5) and (P6)
are likely superior for this task.

Once the entire surface is generated, it can
be presented to the DM who can decide for
himself which of all the points generated he
prefers. Clearly an advantage is that he
can change his mind as he looks at the re-
sults, or even from one day to the next.

All other approaches must in some sense seek
solutions in a sequential manner, by gen-
erating a few noninferior points, asking the
DM for his preferences, generating a few
more points, asking again, etc. We now con-
sider this interaction with the DM.

Interaction with the Decision Maker

In scanning through several articles, it
would appear interaction with the decision
maker can take several forms which are
listed here.

1) The DM can be shown a single noninferior
point (and perhaps the coordinates of the



Utopia point for reference) and asked
one or more of the following

a) which objectives must still be re*
duced and which may be increased in
exchange

b) for those that can be increased, how
far can they be increased

c) for the objective that is to be de-
creased, what rate of trade is the
DM willing to accept in terms of de-
creasing f while increasing f (i.e.
-Af./Af.). An example would b* to
say a 51 decrease in f is allowed if
it can be had for no more than a IX
increase in f..

2) The DM can be shown two or more nonin-
ferior points and asked to do one or
more of the following:

a) rank order the points

b) suggest a desired solution

c) pick a "region11 within which to place
more points

d) for the best point, respond to the
questions asked in (1) above.

3) the DM can be asked apriori if some of
the objectives take precedence over
others. The purpose here would be to
permit the most important objectives to
be dealt with first, before considering
those of lesser importance.

Alternative MCDM Executives

We shall now examine several approaches to
the construction of the MCDM Executive block
of Fig. 2. We shall start with the most
widely covered problem type, the all linear
problem. For an all linear problem (linear
objective functions, linear constraints),
the region R in Fig. 1 is convex and problem
formulation (P4) is suitable for locating
noninferior solutions.

Perhaps one of the most interesting algo-
rithms is that of White (1980), which is a
variation of the method proposed earlier by
Wallenius and Zionts (1977). It is based on
solving a series of linear programs of the
form of (P4), specifically

Mln

S.t.

The MCDM executive directs the values of the
weights, Wff to be used when searching for
the decision maker's preferred solution.
The approach is to pick arbitrarily any w
which satisfies the current set of con-
straints on w. With each iteration a new
constraint is added to the set further re-
stricting the choice possible for the
weights. Termination occurs when one can

demonstrate that all the allowed w's yield
the same solution point. The algorithm,
very roughly, is as follows.

1. Define the constraint set on w to contain
at least the following constraints

- I

White reposes this constraint set by
listing the points in w space which
"generate" the constraint set. For ex-
ample feasible w's subject to the above
constraints are generated by the extreme
points

v(l) " (1.0,0 .... 0}

w(2) - {0,1,0 .... 0)

v(q) - Co,o,o .... 1}

All feasible w's are then convex combi-
nations of these extreme points. Figure
10 illustrates for a problem with q«2
objectives.

• 2(2> - (0.1)

Fig. 10 Method of Wallenius and Zionts
(1977) as implemented by White
(1979). Initial space of feasible
w's is W , the line joining w(l)
to w(2).

2. Choose a w from the set of extreme points
and generate a first noninferior point.
Call this point the current best solution.

3. Choose another w and generate another
noninferior point.

4. Show the latest noninferior point and the
current best point to the DM.

5. If the current point is better add the



constraint The range of f •

"new

values is the max-

point Current
best point

to the set restricting the choice of w.
Rewriting this constraint gives

If the current point is worse, add

and if deemed equal by the DM, add

Suppose in Fig. 9, the noninferior points
generated by w(l) give (f ,f )(1) - (10,20)
andbyw(2), (f ,f )(2) -(15,5). Suppose
the DM prefers point (2). Then the con-
straints

(15-10) wx + (5-20) w2 * 0

Is created. It is plotted in Fig. 10.

6. White shows that the new extreme point
set is easily found by finding the inter-
section of this new constraint with the
lines joining the disfavored point to
the other extreme points, here generat-
ing w(3). The disfavored point w(l) is
deleted from the set. ~~

7. Repeat from step 3 until all extreme
points for the space defining the fea-
sible region for w can be shown to yield
the same noninferior point.

Note that in this approach, the DM is asked
only to compare noninferior points and rank
order them.

The STEM method of Benayoun et al (1970,
1971, 1971) is another method developed for
a linear problem. The RESTIM method by
Shimizu (—) seems to be quite similar. The
approach would seem to extend directly to
nonlinear problems.

The algorithm starts by locating the Utopia
point. It then uses problem formulation
(P5), where the Utopia point is treated as
the origin in the (f^ff---..f ) space. The
weights w are set as follows **

where

| Range of fj

J
imum f^ value, f™**, among those found when
discovering the Utopia point less the mini-
mn f^ value, which is f* the value at the
Utopia point. (While Benayoun suggests
maximizing each f to define its range, it
seems more reasonable to use the maximum of
f. as above.)

Note that a large range, small cost coef-
ficients, and a small maximum cost, f^3*,
each lead to a larger weight. One detects
a smattering of reasonable arbitrariness
here.

Next the noninferior point (z(m)) is found
using the weights w.. The DM is asked how
he likes each of the objective function
values for that point. He can respond by
saying each objective function value is or
is not satisfactory. For each satisfactory
one f , he is asked how large an increase,
Af.t he would tolerate in f in order to
improve the unsatisfactory objectives. For
each satisfactory response, the following
constraint is then added to the definition
of the original problem:

For each unsatisfactory one, one adds

fj * ^(£(10)) .

Finally the weight w. for each satisfactory
objective is set to iero, and a new iteration
starts with the locating of the next nonin-
ferior point using the modified weights and
new constraints.

Mukai (1980) presents an algorithm for non-
linear problems which is related to the
above ideas. As above he also suggests ask-
ing the user which objectives can be com-
promised so as to improve the others. His
scheme also deletes them from the set con-
sidered, with a bound placed on the extent
to which these objectives can be compromised.

The next approach to be discussed is by
Srinivasan and Shocker (1973). The descrip-
tion here follows that given by Zionts
(1979). The approach is valid for both lin-
ear and nonlinear problems.

The idea is to locate a target set of "ideal"
objective function values as well as a set
of weights. Each actual noninferior point,
f , is characterized by the "distance11 from
the unknown ideal point, $:

<r



The noninferior points discovered so far are
presented to the DM pairvise for all pos-
sible pairs. The following constraint can
be written for each such comparison

d2 - d 2
dij dik

£ 0 if point j preferred

• 0 if no preference

i 0 if point k preferred

A little algebra rewrites (1) as

0

0

0

(2)

and the product
v • ( w l ) . Remember the f , f values
are known information about Aonifiterior
points j and k.

which is linear both in w
v • ( w l ) . Remember the

Because the DM is likely to give inconsis-
tent answers, each inequality has a slack
variable s . ^ 0 added which represents the
violation of the constraint. For example,
an equation of the form of (2)

would be written

Remember that the surface of noninferior
solutions (f-,f , ....f )* implicitly de-
fines the constraint fSnction G(f,, f >
• 0 in (f.,f2,....f ) space. He can vriSe
the Lagrange functi8n for (P3):

L(f., f ,H) - U - nG
1 3

Necessary conditions for optimality of (P3>
yield

As there is only one constraint G and as-
hG

Burning all rr=- exist at the point of in-
dfi

terest, we can first discover a value for •
based on f •

Substituting |i for f., j i1 1, gives

3L_ 3H_

or

The term on the left is called the "carginal
rate of substitution," the one on the rirht
the "trade-off ratio."

The objective is then

I
subject to the constraints written. Note
that variables w ̂  £ but v can be of any
sign. This problem can be solved as a
linear program. Once w and v are found,
the next point to be searched for is the
one that minimizes d for it. It appears
one would need to solve a quadratic pro-
gramming problem to find that next point if
the original problem is entirely linear.

An interesting variation might be to use f
as the target set of objectives and then
apply the ideas of Lightner (1979). As we
noted earlier, letting v^ 1/^. a n d formu-
lating the problem in the form of problem
(P5) would seek that solution.

Another of the approaches is called the
surrogate worth trade-off (SWT) method
(Halines and Hall (1974)). In this approach,
useful for nonlinear problems as well as
linear, one views the problem to be of the
form (P3) stated earlier:

,f2 fq)Min

• .t. G(flff2> fq) - 0

The marginal rate of substitution is knovn
only by the DM. It is the rate at vhich he
is willing to trade objective f for objec-
tive f-. The trade-off ratio is a result
of solving the model for noninferior solu-
tions and gives the rate at which the nocsl
suggests one can trade f for f.. Equation
(3) says that if the DM's marginal rate cf
substitution equals the problem's trade-off
ratio for each of the objectives 2 through
q against the first objective, then he has
satisfied the necessary conditions and thus
likely has found the optimum of his utiliiy
function. An algorithm based on this idea
in Haimes and Hall (1974) (see also
Nishitani et al (1980)) proceeds as follcvs

1) For each objective f., i»2 q, find a
sequence of noninferior solutions such
that each f , j * 1 and i, is being held
fixed and f^ is being exchanged for f..
Move along this "line" in (f^f^.-.f )
space showing each noninferior solution
found to the DM. Continue until the
trade of f. for f being found seens ia
be what he likes. At this point his nar-
ginal rate of substitution equals the
problem's trade-off ratio in the direc-
tion searched.

2) Repeat step 1 until no moves in any di-
rection are possible.



The above scheme is like a "univariate"
search in (f.,f2»....f ) space. It must
have similar characteristics, e.g. zigzag-
ging in small steps if a ridge is encoun-
tered. It would seem a clever move to adopt
conjugate search directions. How one deals
with fuzzy DM responses is of course an open
question when one attempts a fancier
algorithm.

Umeda et al (1980) suggest using a pattern
search method (e.g. the simplex method or
complex method) to find the optimum of the
DM's utility function. The major advantage
is that the DM need only rank order the cur-
rent set of noninferior solutions. Consistent
with their paper an approach can be as fol-
lows (see Fig. 11).

Search this

•w(3>

• w<*>

Fig. 11 Using a pattern search algorithm to
adjust the weights to find the DM's
optimal noninferior solution.

1) First find the Utopia point, (f.,f2>.

2) Choose a set of at least q+1 linearly
independent vectors of weights, w(i).

3) For each vector of weights w(i), find
the corresponding noninferior point
using formulation (P4) with the Utopia
point being the origin, (there appears
to be no reason formulations (P5) and
(P6) could not be used instead.)

4) Ask the DM to rank order the points, for
example, using a minimal number of pair-
wise comparisons.

5) Draw a line from the worst point in w
space through the centroid of the other
' The centroid is the point wc with

d ^ j l 2 hthe coordinates j*l,2,....q, where

i v

ijHtorst
Point

where n is the number of points w(i) in
the "complex11 of points being used.
Search along that line until a point is
found which is better at least than the
second worst point.

6) Toss out the weights w(i) corresponding
to the worst point from the current set
and add in the new point found in step 5.
(Test to be sure the set of vectors w(i)
stay linearly independent. If not, oc-
casionally restart the algorithm from
step 2.)

7) Repeat from step 3 until the DM is unable
to distinguish among the noninferior
points found.

The last approach we shall describe for the
MCDM Executive is the one suggested by Payne
and Polak (1980). It was developed for the
special case of precisely two competing ob-
jectives. Figure 12 illustrates the idea.
The approach is interactive and particularly
attractive for interacting with the DM
through a graphics display terminal.

Fig. 12 Payne and Polak (1980) rectangles
bounding the noninferior curve.
Only the noninferior points a,b,c
and d have been evaluated.

The DM is asked to establish a rectangle in
(f-,f2) space within which his preferred
solution will reside. The MCDM executive
algorithm then selects where to try to find
a set of a prescribed number of noninferior
solutions that will leave the maximum for
the least amount of area within vhich the
optimum could exist. That twisted state-
ment simply means they are applying an
area elimination scheme in (f.,f7) space.
See Fig. 12. Note that if points Ma"
through "d" are known to be noninferior so-
lutions, then all other noninferior solu-
tions can only exist within the rectangles
shown. They look for solutions along
lines passing diagonally from lover left to
upper right within the chosen rectangles.
When the noninferior solutions are located,
new rectangles are drawn. The DM chooses
which of these contains his optimum solu-
tion and the process repeats. It



terminates when the chosen rectangle is so
small that the DM no longer cares to dis-
tinguish among the noninferior solutions
residing within it.

Coal programming

Frequently the term goal programming appears
in papers discussing multiple criteria de-
cision making (MCDM) problems. Goal pro-
gramming is where one picks a set of target
values for the objectives and then seeks to
find a solution that in some sense comes the
closest to that target. If the target is $,
one can redefine the objectives to be of the
form

vhere the function d measures the distance
between f. and r . Examples would be

Using f as the i-th objective, we have con-
verted a goal program into an MCDM problem.

Using form (a) for d(f^,f ), one can write

and then

In this form, d. can be included within a
linear programming formulation.

Chemical Engineering Applications

Within the chemical engineering literature,
a number of papers exist which have applied
MCDM concepts to solving example process de-
sign problems. As mentioned before the
earliest found is by Seinfeld and MacBride
(1970). Others include those by Nishitani
and coauthors (1979, 1980, 1981), Shieh and
Fan (1980), Umeda et al (1980), Grauer et al
(1979a,b), and Grossmann and Jain (1981).

Other Issues to Consider in MCDM Problems

Of considerable importance for MCDM problems
are a few of the following questions. First,
one is faced with the issue of developing a
definition and then a means to model pro-
cesses so as to be able to characterize them
in terms of noncomparable objectives. For
example, how does one state, in terms of one
or two measures each, the safety of a pro-
cess, the flexibility of a process, process
reliability or process controllability?
These criteria open up whole new and impor-
tant modeling questions, ones whose answers
are the theme of much research currently

being performed. Certainly the papers in
this conference by Grossmann and Morari will
address this issue.

Another question which occurs is that most
designers identify which variables in their
problem they wish to select as objectives
only ̂ s they proceed. Indeed one has to
suspect significant mind changing occurs
throughout the design process. That would
suggest really flexible programs are needed
which allow virtually any variable to be an
objective or be constrained or be ignored
with frequent changes in the way a variable
is treated as the design proceeds.

A last point of interest is that the MCDM
problem is really in the class of embedded
optixadzation problems, (Pi), as ve shoved at
the start of this paper. This class of prob-
lems Is a difficult one which we shall now
discuss.

The Qeneral Two-Level Programing Problem

The recent availability of effective tech-
niques for solving constrained nonlinear op-
timization problems, particulars the Vilson-
Han-Povell algorithm (Wilson (1963), Han
(1975), Powell (1977)), has created consid-
erable interest in using these methods for
optimizing chemical processes. >!uch of this
work has been oriented towards using the
rigorous models in conventional, "sequential
modular11 simulators to evaluate the coeffi-
cients for an approximate (and perhaps re-
duced) process model, then applying an op-
timizer to this simpler model (Parker and
Hughes (1978), Jirapongphan, et al (1979),
Biegler and Hughes (1981)). One important
problem, however, seems to have been over-
looked: when evaluating the behavior of
units exhibiting phase and chemical equi-
librium, the simulator must make discrete
decisions (based on feed composition, tem-
perature and pressure) about the number and
nature of the phases present. This causes
nondifferentiabilities in the approximate
model seen by the optimizer and can lead to
erratic behavior — perhaps even failure to
converge. We will show how this problem can
be formulated naturally as an embedded op-
timization of the form (Pi) and discuss the
inherent difficulties in solving this type
of problem. We will then discuss possible
algorithms for obtaining a local solution of
problem (Pi) by solving a sequence of tra-
ditional "single-level" nonlinear programs.

The Embedded Equilibrium Calculation

The most general way of performing the equi-
librium calculation for multiphase, reacting
chemical systems is to solve the following
constrained optimization problem (Gautam
and Seider (1979), Castillo and Grossmann
(1980)):

NC IMP

m m J^_ 2>^ n »,,c - 3T In f •



IMC NP

j=l_NE
k=1

i=1~NC;

where HC - number of components in the
system

HP • number of phases in the system

HE * number of elements in the system

n m number of gram atoms of compon-
ent "i" in phase "k"

^ - chemical potential of "i" at
system temperature and unit
pressure

f . * fugacity of component "i" in
phase "k"

a.. • gram atoms of element "j" in
* component "i"

b. - gram atoms of element "j" in
J the system

outer one. These are not adjusted by the
inner problem vhile minimizing the Gibbs
Free Energy. Second, the problem is not a
conventional max-min problem, since there
are two distinct objective functions. Nor
is it a multiobjective optimization, be-
cause the inner problem is a constraint for
the outer one and it involves minimization
over a subset of the variables.

An E le Illustrating Problem Difficulties

To understand more clearly what it neans for
the inner minimization to be a constraint
for the outer one, consider the following
simple example:

min (x - 2 ) 2 + (x - 5 ) 2

X 1 ' X 2
it 0 i xt i 5

x € arg min (x + 1)2 * (y - 5) 2

y
s.t - 3 X i + 2 y ^ 2

f • 3y £ 14

The first constraint is the conservation
equation: it states that the gram atoms of
element "j" in the feed must end up distrib-
uted among the phases present at equilibrium.
The second constraint merely states that the
mole numbers must be non-negative, and the
objective function is the Gibbs Free Energy.

In the context of optimizing a chemical pro-
cess, the above problem is actually a param-
etric program: given the feed flows, tem-
perature and pressure for the unit at equi-
librium, the minimization can be performed.
The question that we wish to ask is how to
adjust these "parameters11 so that the over-
all process is optimal in some sense. Thus,
the problem is of the form (Pi) where we
identify

4. « measure of process optimality

x. - feed flows, temperature and pres-
sure for the equilibrium unit
and other variables describing
other processing units

g.,h. • constraints other than those for
the equilibrium calculation —
conservation equations for other
units, design specifications,
etc.

rf2 - Gibbs Free Energy

X- • mole numbers n for the equi-
librium calculation

g2,h • atom balances and non-negativity
constraints for the equilibrium
calculation

There are two important points to be noted
concerning this problem. First, the "param-
eters" of the inner problem (i.e. feed flows,
temperature and pressure) are really vari-
ables being adjusted to accommodate the

Figure 13 shows the inner problem constraints
and the contours of the outer problem ob-
jective function. Note that the inner prob-
lem essentially says "get x^ as close as
possible to 5, subject to tne constraints."
As shown in the figure, when x, £ 2 the
first constraint is binding, while for x.^
2 the second constraint takes over. Thus,
the X. that solves the inner problem for a
given xt, which we will call X ^ x ^ , is

1.5x. • 1

-0.33xi • 4 67

and the overall problem can be written

tx t - 2 ) 2 + (x2 - 5 ) 2

s-t 0 ^ x t ^ 5

" X2ta,| = 0

Two difficult features of this problem are
now apparent: nondifferentiability and non-
convexity. Kondifferentiability neans that
a gradient-based algorithm will probably
have trouble solving the problem, since ve
cannot guarantee that the solution lies at
a point where the Karush-Kuhn-Tucker con-
ditions will hold. Nonconvexity rneans that
we should expect multiple local optima.
Both arise because we require x? to solve
the inner problem for a given value of x^.



Fig. 13 The Inner problem constraints and
outer problem objective contours
for the example. The arrow shows
the direction of decreasing 6-.

Let us see what happens if we try to solve
. this example using the "most obvious11 strat-
egy. That is, given an x., solve the inner
problem for x2- Then, calculate the grad-
ient of its solution (i.e. the gradient of
XjCxp - x2» 0) by differencing and the
gradients of the outer problem constraints
and use a gradient-based algorithm to solve
the outer problem. This strategy is sketched
in Fig. 14.

1

OUTER
OPTIMIZER

INNER
OPTIMIZER

Fig. 14 The "most obvious" strategy for
solving the problem: an inner op-
timizer is used explicitly to cal-
culate X 2(x 1).

Assume we start with an x^ greater than 2,
so the inner optimizer computes X-(x_) *
-0.33 x- + 4.67. The outer optimizer can
then reduce its objective function by de-
creasing x. and moving x_ along X7(x..) un-
til it reaches the point (2,4). At this
point, the outer optimizer will see ^(x
- X2(x )) as shown by the vector 7X* in
Fig. li and the negative of its objectictive
function gradient as -v/ . This suggests
that further improvement can be made by re-

inner
ducing x_, since -v4. does not lie along
vXj. However, reducing x. causes the inne
optimizer to calculate X2(x.) - 1.5 x^ + 1
with gradient VX^ — suggesting improvement
by Increasing x.. Thus, the algorithm would
bounce back and forth between the two con-
straints. Assuming that the outer optimizer

has a test on the gradient of the Lagrangian
involved in termination, simply attempting
to reduce the step size when it notices 6.
go up by moving from (2,4) will not help.
The problem is that the equality constraint
introduced by the inner problem has no gra-
dient at that point. Note that if -*6 lies
anywhere within the cone defined by 7X± and
vx| the point (2,4) is optimal. This region
is the cone of subgradients of x - X.(x.)
at that point. 2 2 1

i.t

l.t

4.fl

t.t

l.t

l.f

t.t

vx/

/

/

/
/

vx2'

f

t.t l.t l.t t.t 4.t l.t

Fig. 15 The gradients at the point (2.4).

An Insight into Solving

How, then, should we solve our problem? We
wish to use a gradient-based method if pos-
sible, since all the truly effective algo-
rithms for nonlinear programming fall in
this class, but X«(x.) stands in our way.
Therefore let us consider X? more closely,
with the hope of discovering a way of ap-
plying a gradient-based method to our
problem.

Assuming that an appropriate constraint
qualification is met, the Karush-Kuhn-Tucker
conditions must hold in order that x« solve
the inner problem for a fixed x. (Bazaraa
and Shetty (1979)): i

m p

3x * ̂ ~ 9x *2.i ^- ~"d*2 i=1 2 i=1

y21 1 2

'i.. g2.,(xrx2> =

X2. - °

(4)

i = 1_m (5)

j = 1_p (6)

i = 1...m (7)

i = 1.-m (8)



where X- and p2 are the vectors of Lagrange
multipliers corresponding to the constraints
%~ a n d ^' Thus, given an x., equations (4)
tRrough (8) implicitly define X2(x ). We
will subsequently refer to Eq. (4) as the
"stationarity relationship" and Eq. (7) as
the "complementarity condition."

The equation of primary interest to us is the
complementarity condition. It states that
the indices of the inequality constraints g_
can be partitioned into two sets:

A = { k I 92> (V X2 ) = 0 )

I = < k | 92_k(x,.x2) < 0 }

such that multipliers, p>2 ̂  for the con-
straints with indices in 1 are zero, and
only those corresponding to constraints with
indices in A can be nonzero. Thus, if ve
knew what the proper partition of the in-
equality constraints was, X-(x.) could be
evaluated by solving Eqs. (£), (6) and the
elements of (5) corresponding to constraints
with indices in A. This observation is the
basis of "active set strategies" for solving
conventional nonlinear programs.

It is important to note that the interaction
of the "on/off" nature of the complementarity
constraint with the stationarity relation-
ship is exactly the cause of the nondiffer-
entiability of X^x ) . That is, nondiffer-
entiabilities in X_ occur at those points
where the partitions change, which means
gradients are available if we stay within a
fixed partition. Thus, one way of solving
the overall problem is to examine each pos-
sible partition of the inner problem in-
equalities, solving the nonlinear program
corresponding to each partition with a
gradient-based algorithm.

Solution Algorithms

In a very recent paper, Bard and Falk (1982)
also discuss the two-level programming prob-
lem. They suggest replacing the inner prob-
lem with Karush-Kuhn-Tucker conditions and
solving the resulting single-level problem.
Realizing that this problem is nonconvex,
they propose solving it with a special-
purpose algorithm for nonconvex program-
ming (Falk (1972)). Since this algorithm
requires the functions involved to be sep-
arable, the paper is devoted to solving the
case where both the inner and outer problems
are completely linear.

However, even when all the functions are lin-
ear, the usual forms of the complementarity
conditions are not separable. Thus, the
authors make use of some clever insight to
convert the standard complementarity form

into the equivalent relations

m

y i min (O.w) + ft } = 0

i=1

w • g<x) • ,i = 0 i= 1 ...m

which makes the resulting single-level prob-
lem separable and piece vise linear. They
can then apply their algorithm, vhich is a
branch-and-bound technique, to the single-
level problem and obtain its global solu-
tion. Since the problem is piecevise linear,
they note that the naximum number of sub-
problens that will be solved for an inner
problem with "n" inequalities is Z1*"1 - 1.

In the nonlinear case, trying the various
partitions for a problem with "a" inner
problem inequalities is still a combinatorial
problem of size 2m, but each element now re-
quires solving a conventional nonlinear pro-
gram. Thus, it is irnportant to find a way
of examining only a few of the possible par-
titions. We propose the following algorithm:

Step 1. Choose an initial partition of the
inner problem inequalities into A
and I.

Step 2. Solve the single-level nonlinear
program:

, X2»

S 0

W - °

lfr~ £- 3x, ^2> X-
2 k6A 2 j=1

Sx, 2.j
X. = 0

X />, 9,W = 0

k G A

k 6 I

k € A

(Note that the last three constraints
ensure that we remain in the se-
lected partition.)

Step 3. If the solution to the above prob-
lem lies in the interior of the
current partition (i.e. ^ t > 0
for all k c A, and g ^e^for all
k c I) go to Step 5; dthervise go
to Step 4.

Step 4. We are at a partition boundary.
Check the adjacent partitions to



Step 5.

see if a feasible descent direction
can be found. If one can, reparti-
tion the inner problem inequalities
into A and I as appropriate and go
to Step 2; otherwise go to Step 5.

The current point is a local optimum
satisfying the Karush-Kuhn-Tucker
conditions for both the inner and
outer problems. STOP.

Assuming a method is available for solving
the conventional nonlinear program in Step
2, the difficult parts of this algorithm
are choosing the initial partition in Step 1
and testing the adjacent partitions for a
feasible descent direction in Step 4. We
will first discuss the second point and re-
turn to the problem of choosing the initial
partition later.

Testing for Descent at the Boundaries —
The Degeneracy problem

If there were no inner problem, the infor-
mation required to test for a feasible de-
scent direction could be obtained by eval-
uating the Lagrange multipliers, X, , for the
tight constraints as follows (Westerberg and
DeBrosse (1973)):

Step 1. Let f be the vector of tight con-
straints at the current point.
Perform the LU factorization

on its Jacobian matrix, splitting

x into y and z so that Q |̂  } is

invertible. (This is a natural
consequence of the LU factoriza-
tion.)

Step 2. Solve

for the Lagrange multipliers.

We prefer to calculate the multipliers in
this way, rather than using a generalized
inverse of the Jacobian, because it results
in

(it)
s=0;

objective function; this means we are test-
ing all the constraints independently. If
X. ^ O for all inequalities g , then the
current point is optimal.

For the two-level programming problem, how-
ever , we have an additional complication
associated with maintaining feasibility; the
inner problem must remain at a minimum.
Avoiding mathematical rigor (but see Robinson
.(1974), for instance), we state that if the
multipliers for the tight inner problem in-
equalities are positive at the current point,
and m hold the same constraints tight when
we move, then we will remain at an inner
problem minimum for a small step in the
outer problem variables.

This suggests computing both the Lagrange
multipliers for the inner problem (hence-
forth called sinply "inner multipliers") and
those for the nonlinear program solved in
Step 2 of the algorithm ("outer multipliers"}
We can then ask if there are any tight inner
inequalities that the inner problem will al-
low us to drop (those with zero inner multi-
pliers) and which the outer problem can re-
lease to reduce its objective function
(those with negative outer multipliers). If
none exist, then the current point is op-
timal* Otherwise, we place the indices for
all the tight inner problem constraints that
can not be dropped in the active set A and
continue the algorithm at Step 2.

In the previous development we have assumed
that the inner multipliers were uniquely de-
fined. Unfortunately, there may be points
for vhich this is not true: a situation re-
ferred to as "degeneracy" in the optimiza-
tion literature. However, as opposed to its

, infrequent occurrence in conventional opti-
mization problems, degeneracy will arise in
the two-level programming problem each tine
the outer optimizer encounters a point with
more tight inner problem constraints than
there are inner problem variables.

We can see this in our simple example prob-
lem at the point (2,4). Here, both inner
problem constraints are tight, yet we have
only one inner problem variable. We cannot
place both constraints in the active set and
continue the algorithm at Step 2: to do so
would mean we were fixing the value of an
outer problem variable with an inner problem
constraint. Thus, we are faced vith a com-
binatorial problem of deciding which inner
problem inequalities to place in the active
set A.

Given an inner problem with "n" variables,
"p" equalities and "m" tight inequalities,
the maximum number of possible choices is

for an inequality rewritten as the pair
gk(x) + s - 0 and s * 0. Thus, if X < 0,
releasing the constraint g, and moving into
the feasible region (i.e. k3sk > 0) while
keeping all other constraints tight (s.
• 0 for J + k) produces a decrease in the

m !
(ra-n+p) ! (n-p)!

However, some of these choices may not be
allowed, since we must simultaneously sat-
isfy the stationarity constraint and



non-negativity of the inequality multipliers.
To illustrate, consider the two-variable
problem shown in Fig. 16. Here {1,2} and
{1,3} are possible choices for the active
set, but [2,3} is not, since -?4 does not
lie in the cone obtained from Vg and 7g .

-V,

Fig.

'Feasible
Region

16 Degeneracy and possible choices for
the active set.

(1982) to approximate the inner problem with
a penalty function. This has the effect of
relaxing the discrete behavior and removing
the nondifferentiabillties. To see why this
is the case, consider solving the problem

nun fix)
x

s.t g<x) * 0 i=1_.m

with the Interior penalty function

m

Ptx,r) = ̂ (x) - r

Computing an unconstrained minimum of P(x,r)
gives

m

i=1 *
Note that seeking inner multipliers satisfy-
ing stationarity and non-negativity at a
fixed point (x^x ) is simply a phase 1 Sim-
plex operation. (The solution of the non-
linear program from Step 2 provides us with
one valid set of multiplier values, though,
so our work is reduced.) Also note that the
basis in the Simplex Tableau defines the
current active set, so checking if a given
Inactive constraint could replace one in the
active set while maintaining non-negativity
Is essentially a Simplex "Min Ratio test."
Thus, if the number of possibilities is not
too large, the work required to check the
possible inner problem active sets should
not be excessive.

Once the inner multipliers have been deter-
mined for the current active set, the gra-
dients of the stationarity constraints in
the associated single-level nonlinear pro-
gram can be computed and the outer multi-
pliers obtained. We can then ask the same
questions as before. It is important to
realize that the only portions of the
Jacobian matrix used to calculate the outer
multipliers which are affected by changing
the inner problem active set are those rows
corresponding to the inner problem station-
arity constraints. Thus, if we have an
inner problem with many fewer variables than
the outer one (as is the case when the
equilibrium calculation is embedded in a
large flowsheet), considerable savings can
be achieved by using techniques for modify-
ing factorizations such as those of Gill et
al (1975).

A Problem Relaxation

As mentioned previously, the difficulties
associated with solving the two-level prob-
lem are caused by the discrete nature of the
complementarity relationship. Thus, it was
suggested in a conversation with Fiacco

which is identical to the stationarity
conditions

for the original problem if p.g.(x) • r for
all i. Thus, the penalty approach works by
achieving complementarity in the limit as r
approaches zero.

Rather than using a penalty approach direct-
ly (attempting to avoid its ill-conditioning
woes), and in the spirit of solving a single-
level nonlinear program at Step 2 of our
algorithm, we can solve

f ,<* ,.

st £ 0

h^x^ = 0

92U,.xa» S 0

h2lx,.x2» = 0

(9)

"'2
i = 1..m

for some "reasonably small", positive value
of r to obtain a good Initial estimate of a
local solution to the two-level problem.



In fact, ve can obtain a local solution to
the overall problem (Pi) by solving the
above program for a sequence of decreasing
r. This is illustrated in Fig. 17, which
shows the feasible region resulting from ap-
plying (9) to our previous example for vari-
ous values of r: as r is decreased, the fea-
sible region for the relaxed problem becomes
a better approximation to the true feasible
region of the tvo-level problem. Also,
since it relaxes the discrete nature of the
complementarity conditions, this approach
avoids the combinatorial problems associated
with degeneracy. In the limit as r ap-
proaches zero a valid set of inner multi-
pliers will be found, and ve are not forcing
the outer problem to satisfy a selected set
of inner problem inequalities as if they vere
equalities.

him.

An Issue vhich appears to have been given
little attention, but vhich is a natural
concern vhen ve regard the decision making
problem as an embedded optimization, is the
presence of multiple local optima. For in-
stance, consider a decision maker using
problem formulation (P4) to solve the exas-
ple shown in Fig. 18. Let us assume the
weights have been chosen so that the solu-
tion Co (P4) gives the support plane through
points "A" and "C". An increase in weight
v- results in possible solutions at both
"B" and "D", but "B" is only a local opti=u=i.
If v2 vere increased still more, the de-
cision maker might experience a "jump" frca
"B" to "E", hampering his choice of an
optimum.

ff.t
4.t I.*

Fig. 17 The effect of r on the feasible
region of (9). (The feasible re-
gion lies between the curves and
the inner problem constraints.)
The arrow indicates decreasing r.

While our computational experience is limited
to a number of small example problems, this
scheme appears to work quite well. For in-
stance, solving the relaxed problem for our
previous example at a single r value of 1 0 " ^
results in the proper solution — x.» 2 and
x * 4 — even though the inner problem is
degenerate there. We are continuing the work
by solving some examples involving the em-
bedded equilibrium calculation.

DICUSSION AND CONCLUSIONS

The multiple criterion decision making prob-
lem has been the subject of a large amount
of literature. The difficult aspects of this
problem are (1) developing effective models
for different criteria, (2) finding the non-
inferior points for the chosen models, and
(3) Interacting with the decision maker in a
way that allows him to discover his problem
trade-offs without annoying or overwhelming

Fig. 18 Local optima in the multiple
criterion decision ciaking
problem.

The general tvo-level programming problem
has only recently begun to be studied. The
difficult features of this problem are its
nondifferentiability and nonconvexity; these
arise from the discrete nature of the com-
plementarity conditions for the inner prob-
lem. We have discussed two approaches that
address this problem. One is based on an
active set strategy for the inner problem
and the other on a relaxation of the com-
plementarity conditions. The active set idea
suffers from a severe deficiency, however,
vhich the relaxed formulation does not: de-
ciding which constraints to place in the
active set at a degenerate point is a com-
binatorial problem. Our limited computa-
tional experience suggests that the relaxed
formulation is a very effective way to solve
the embedded optimization problem.
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