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This paper presents a class of design optimzation probl ens where
an outer optimzation is constrained by an inner one.

In the first part of

the paper, ve show that a nmajor subclass of this type of problemis the mul-

tiple criteria (vector-val ued) decision naki ng probl em

Thi s subcl ass was

the requested review topic for this paper; we discuss it extensively. The
paper concl udes by discussing the nore general problem Indicating its im
portance to design and exploring its potential very unpl easant nonconvex

behavi or.

| NTROCDUCTI ON

This paper is the result of a tactical error
made by the second author when witing a re-
vi ew paper (Westerberg, 1980) on design op-
timzation for the FOCAPD neeting held in
Henni ker, NH. Included in that paper was a
brief sunmary of sone interesting Ph.D. work
(Lightner, 1979) on solving multiple crite-
ri a decision making probl ens. That work was
just conpleted in the El ectrical Engineering
Depart ment / Desi gn Research Center at Carnegi e-
Mellon University. It was particularly in-
teresting because it gave an approach that
al l oned the design engineer to locate a so-
lution to this class of problens close to a
desired solution by using paraneters that
had intuitive neaning for him Wth that
dermonstration of a small and probably dan-
gerous anount of know edge of the area, the
organi zers for this conference selected this
topic for us to review Seeing no reason
not to explore the area, the chall enge was
accepted, but it was indeed a chall enge.

It appeared for sone tine that the nultiple
criteria decision nmaking problemwas rel ated
to another problemwe Identified three years
ago and have been working on for the last 18
months at OMJ, the class of design optimza-
tion probl ens which are constrained by an
inner optimzation problem Indeed the con-
rection can be made directly because the
multiple criteria decision naking problemis
a special case of this nore general class of
probl ens, albeit one with a "fuzzy™ outer
objective function that is known only intu-
itively by the design engineer. Therein lies
its peculiar flavor, and the task at hand is
to provide a convenient neans to extract the
designer's optimumpoint fromhimin the nost
pai nl ess manner.

lThi s work was funded in part by NSF grant
ENG- 7801809. i

W introduce a single Ievel
for finding a local optimmvery quickly.

solution algorithmthat shows pronise

W vill show that the inner problem one

wi th many conpeting but not conparable ob-
jectives (apples versus oranges) has its own
nmat hematical difficulties that have been the
theme of many papers. Its solutionis a
famly of points, each with the characteris-
tic that no objective can be inproved wth-
out a loss being incurred in one of the com
peting objectives. Only these so called
"noninferior" points are presented to the
designer. This inner problemis usually re-
cast as a single objective (that is, a tra-
ditional) optinzation problemto be sol ved
interms of a set of "weights' that param
eterize it. The weights are varied systen-
atically to locate the noninferior point

nost preferred by the designer. How to vary
them based on fuzzy responses froc the de-
signer is one of the Interesting aspects to
this probl em
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A variation on this approach is to get the
designer to agree that sone of the objectives
need not be optimzed but sinply brought to
a satisfactory level, in which case they can
be recast as constraints and the probl em size
reduced accordingly.

Speci al problemstructures, particularly lin-
ear ones, give rise to clever solution al go-
rithms. We shall explore briefly a few of
these al so.

The last part of the paper will consider the
nmore general problemof an outer optin za-
tion probl emconstrai ned by inner ones, i.e.
an enbedded or multilevel optimzation. W
shall first describe an inportant engineer-
ing design problemwth this structure. This
probl emunfortunately does not have to be
wel | -behaved. W will show that it can pos-
sess multiple local optima, in the usual
tradition of believing that nost real prob-
lens are usually veil behaved, ve present an
algorithmthat appears to locate a |ocal
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"optimumwith the efficiency of the recent
successi ve quadratic approximation al gorithns
(Wlson (1963), Han (1975)).

The Enbedded Optim zation Problem

W shall start by defining the follow ng
general problemwhich is the theme of this
paper .
ProblemPl: Mn ~(x". x")
x5y

st Ep(Xpsxy) * Q
bzl A2
X, "arg nin " (30D
X

s.t. 32(351,1) £0
hy(x.0 =90

This probl emhas an inner optinization prob-
| emwhi ch constrains the outer one. The
variables x_are constrained to be the val ue
or values of £ that minimze <L(X »Z) sub-
ject to the inner problemineqiali‘ty and
equality constraints. They are inplicitly
then a function of x. which paraneterizes
the inner problem ™

W shall now show that the nultiple criteria
(multiple objective, vector valued, miltiple
attribute) decision making problem (MDV is
a special case of (Pi). The nornal state-
ment of the MCEMproblemis as follows.

Probl emP2 (MDMV) :
Min (51(5).52(_8_).----!“(5))
]

Tst. £(£) £9
h(z) -9

Oearly a dilemma exists here as we are ask-
ing that several objective functions, f, (£)
tof (z), be similtaneously ninimzed *"If
the Zame point z_ sinmultaneously nininized all
obj ectives, the probl emwoul d be sol ved.

This event will rarely happen.

The "solution" to P2 is a famly of solutions
called a "pareto" optimal surface or the set
of "noninferior or "efficient" solutions.
Each such sol ution has the property that it
is not possible to inprove any one of the
obj ectives without sinultaneously degrading
the value of another. Figure 1 illustrates
this idea for two objectives. Note the co-
ordinates for the space are f.| and f ., not
z. The encircled area Ris all poi nt% (f.,
f.) reachable by all feasible choices of 2_
int "a" is not noninferior since both f.
and f, can be reduced, such as by noving to
point "b". Point "b" on the other hand is
noni nferior because, to reduce either f, or
f_, one would have to increase the other ob-
jéctive. Al points from"c" to "d" al ong
the lower edge of R are noninferior; they
are the pareto optinal surface which "sol ves"
this problem
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Fig. 1 Noninferior surface frompoint "c"
to"d". "u" is the Wopia point.

The surface of noninferior solutions, (fl’
f2...,f‘£ implicitly defines a function

G(E  f,.. ... fq) - O
in fl-,fz...fq space.

These points as found are shown to the de-

si gner, known in MCDMprobl ens as the "de-

ci sion maker" (DM , who nust select his pre-
ferred point according to his internal "util-
ity" function. The outer problemis there-
fore as foll ows.

Pr obl em P3:
M n I‘.l(fl,fz....f)
s.t. G(f\ffg....fq) -0

As the OM (decision maker) can change his
mnd or forget past preferences, his utility
function is a fuzzy one.

Solving problem (P2) to find a solution (f .,

f2_>_£q) sati sfying !
G“l’fz‘“'fq) =0

is always done by converting problem (P2) to

a scal ar optinization problem Exanples of

the formof problemsolved are as foll ows.

Pr obl em P4:
Mn Z"tfz‘-‘-)

st. K@DSQ
hz) -9




Probl emP5 (M n Max): convex function G f.

(_1,_'2. . fq) space.

,f)inthe

M n
Y £ Y 2. Wien (P2) gives rise to a nonconvex
' function G(f,..... f).
1
s.t. . E. =
nhty The nmin issues are three
N
vafatyY 1. How to solve problem (P2) to find dif-
ferent noninferior solutions. Even
wf * Y formul ations (P4), (P5) and (P6) have
qq their probl ens.
KX * & 2. Howto elicit fromthe DM (decision
h{= -9 Baker) information on his utility
or function.
3. How to use the infornmation elicited in

ProblemP6 (Variation of the c-Constraint

For mul ati on) s step 2 to find the noninferior solution

preferred by the DM

M n f,lg,z) To place the problemin perspective, we pro-
5.E. wi €1 vide Fig. 2 which illustrates the conponent
272 parts of a programm ng system for solving
vi *1 MCDMpr obl ens. W need to exam ne the con-
tents of the top two "boxes" labeled 1 and
aaq 2, respectively.
b(z) «Q

o

To find different soI utions, one selects dif-
ferent values of w .w 2 0. If we use

SAW« C(L'(y)) "0 for E givesy

i nner probl em form}I atl on ($5) as our exam Flad " Efficiont” 2
ple, the conplete MCDMcan be stated in the ieent [tarata Caleulate
form Fdat «V)
EE]
*
Mp Uz ))
¥,E -
st vAO o 1CD.
*
«.t.VY ,2 "ArgMny @
Yoz b
' Ixvoutive
8. t. vvlflii) £y
2<<nk Orderlnf (Ordlna] I afor natloa)
Vof o(2) = ¥ tt»t of —
£0 "'"“"'h Lor 0(1(I)) o(f (2)) O(Q ) .. .-
| 4 'l““- — d/or —
i(-') - f‘“"— .., Gradient Esti:;tczrat gurrcae
h(z) = 0 Preferred Soluslo* X (M
where now ve should be able to recognize this tecinion
problemto be a special case of the form of Holay
problem(pi) by. identifying
v {-)$,
w {=} x, Fig. 2 Structure of a Progranming System
for MCDM Probl ens
Y< =%,
<-> . . .
Y.z X2 Several excellent review articles exist to

cover a literature on this subject that is
al ready extensive. One of the easiest to
read is by Hvaang et al (1980), a tutorial
paper referencing 61 earlier works. This
paper in turn points to an earlier review by
the sane authors (Haang et al (1979)) where
over 400 papers and 26 books are cited.

We shall now consider the MCDM (Miltiple Oi -
teria Decision Making) problemin depth.
After this reviewwe shall return for a nore
detailed look at the general problem (Pi) to
observe its characteristics.

The Miltiple Criteria Decision Mking (MXDV

Problem Zlonts (1979), a nane whi ch appears repeat -
W shall consider two special cases for the edly i n.th' s .I Iterature, gives .h' S VI ews on
RSO pr obl em the subj ect in a paper rgf erencing 46 arti-
cles. Lightner (1979), in Chapter 2 of his
1. \Wen the inner problem (P2) gives a Ph.D. thesis, cites 61 references. These




three references alone will point one to nuch
of the relevant literature and indirectly to
alnost all of it prior to 1979 or 1980. For
the hardy among you, the review by Stadler
(1979) gives a "interesting" viewof the
papers prior to 1970 on the subject.

Wthin the chem cal engineering literature,
the first paper found was by Seinfeld and
MacBride (1970), who applied ideas devel oped
inearlier work by Geoffrion (1967) to set
up and solve a process exanpl e.

The | nner Probl em (P2)

As Illustrated in Fig. 1, the problem (P2)
is tomnimze a vector of "q" conpeting ob-
jectives,-El(;), faol£) , —F (2) . As we
said earlier, not all can usﬂally be mni -
mzed at the same point, and we are thus led
to the concept of noninferiority (also known
as efficiency, pareto optinality, mninality,
and nondoni nance —see Lightner (1979)).
The problemis to provide an algorithmto

| ocate noninferior points.

If the region RinFig. 1 is convex then the

nost common approach taken is to formulate a
scal ar optinization problemof the form (P4):

M n iwifl(i)
1=1
s.t.  £(£) £0
=0

k® ’
where w, axe selected to satisfy w,2* 0 for
all i and ) Vj-1. Geoff rion (1967J has

shown that iall noni nferior points can be
found by a suitable choice of the weights w
Figure 3 illustrates.

Even if R is*convex, this algorithmcan |o-
cate points which are not noninferior (Lin
(1976), Gearhart (1979), Benson (1979)) as
Fig. 4 illustrates. e can avoid finding
these points by requiring all w ~ e >0
(Ceoffrion (1967)). X

Geof frion (1967) defines the subtle concept
he terns "proper efficiency" to exclude any
point frombeing noninferior if one can in
the limt inprove one objective infinitely
qui ckly while degrading another a finite
amount. Consider the exanpl e

fl(z) - -32

tz(z) - =3

g(z) - -z* 0

W can ask if the origin z-0 is a point with
proper efficiency. |If z is small and posi-
tive, the gainin f.(z) with respect to the
loss in f«(z) is intthe ratio 1/z, which in
the linit®as z tends to zero becones arbi -

trarily large. The origin is not a point

with proper efficiency. The point z - ¢ >0

Fig. 3

f

Fi ndi ng noni nferior points using
probl em fornul ation P4. Lines of
the formv-f.+ v-f** k shown for
different Valtues?of k. Direction of
decreasing k shown. Point "a" is a
noni nferior point found for Woo Wy
chosen.

I

Fig. 4

A problemwith formulation P4. \Ver-
tical lines are of form1l f.+ 0 f»
- k. Direction of decreasihg k
shown. Al points indicated by "*"
solve problemP4 with we 1, w.* 0O,
but only "a" is noninfetior. 2

for any given c is however properly effi-
cient —i.e. noninferior. The points
marked with an "*" in Fig. 4 except point
"a" are not properly efficient.

If region Ris not convex inFig. 1, then
probl em formul ati on (P4) can mss whol e
stretches of noninferior points as indi-
cated by Fig. 5. Illustrated are curves of
the formv. f.+ wf,, for different w'; vq

val ues.

PFobl enf'( P4) moves each curve to




Fig. 5. Mssing noninferior points using
probl em formul ation P4. The entire
cross hatched regi on cannot be found
using formulation P4.

the left and down as far as possible, such
that the curve just supports the region R
The support point is the sought after non-
inferior point, and clearly the crosshatched
segment of the lower left edge of R can
never be supported.

To locate points in the crosshatched area of
region RinFig. 5, Lightner (1979) has sug-
gested searching using a weighted p-th norm
as die objective (L s£Ep £ )

Kin (Z ("1"1)9 )UP

st fd)* £

h(z) =0

Wiile this normw th p*2 has been proposed

Pr obl em P7:

~earlier by others (e.g. Huang (1972),

Sal ukvadze (1974)), Lightner seens to be the
first touse it expressly to find the non-
inferior points for a nonconvex region R
Figure 6 illustrates hov the choice of p af-
fects the shape of the "support" surfaces
used to locate the noninferior points. Prob-
lem (P7) is equivalent to nmoving the shape
function selected to the left and down as

far as possible until it just touches region
R Wsing a surface that bends as illustrated
will permt more_noninferior points to be
found than the"~Tinear case when p=l. In the
limt of p'", all noninferior points can be

Fd

| ocat ed. T~ , N

-

The Ut opi a Poi nt R

To use the above approach all f.(z) nust be
guaranteed to be non-negative. v can ac-
conplish this by first finding the so-called
**utopia" point. The coordinates of the
otopi a point are“shgwn in gig- 1; the co-*
ordinates are (f.,f'.,....f ) where each f.
solves the foll ot né seal a? optinization
-

A

probl em

Fig. 6 The Shape of Different Support Sur-
faces for the p-normobjective.

Probl ens P8:
Mn £
z i
s.t. gz * 0
!‘_@ n 2

W nust therefore solve q optinization prob-
lems of the form(P8), for i*l,2,...q, to

| ocate the coordinates of the Wopia point.
The obj ectives can then be nodified so each
is always non-negative by making the Wopia
point the origin of the (f.,f.z...f ) space,
,.e. Aby letting each obj ecfi ve f1' bi repl aced

byCNE¥)
The Infinite Nora

When p« is used in problem (P7), the problem
is amnmx probl emwhere the objective can
be rewitten

Mno (M w (D)

a problemwhich is usually solved by rewit-
ing in the formof problem (P5).

Even for this problem fornul ation, points can
be found which solve-(p5) that are not "non-
inferior." For exanple the points narked
with an"*" inFig. 4wll solve (P5) for a
sui tabl e choice of weights w\.

The maj or advantage to the infinite norm
fornulation (P5) is that the weights vy have
physi cal neaning for the DM  They can be ,
set to the reciprocal of the values for each
objective that the DMwould |ike the Sought
after noninferior point to be nost |ike. For
exanpl e suppose the DM has discovered that
maxim zing profit yields a solution of

$250, 000/ yr at a production rate of 5000
units per year. He also discovers that




maxi m zi ng production rate yiel ds- a profit
of $150, 000 when produci ng 6500 units per

year. He would like the next solution to be
a conpronise nost like a profit of $225, 000/
yr. By choosing w« 1/225,000 and w_»
1/6000, he will find the solution (ulually

noni nferior) nost like that sought.

He can see why this occurs by examning Fig.
7. The originis the Uopia point. The

-SOW.

ty (- profit la UOCOO yr)

Fig. 7 Physical nmeaning to weights for
problemfornulation (P5). "a" is
poi nt found using fornulation (P5).
"b" is point found using formla-

tion (P6).

rectangul ar shape support function will
along the line passing fromthe origin
through the desired conpronise point. Were
it just supports region Rat point "a" is
the solution found, which in this sense is
nost like the one sought.

grow

The c Constraint Method (Haiines (1970))

Formul ation (P6) given earlier also allows
one to generate noninferior solutions for
nonconvex regions R It too can find sol u-
tions such as those marked by an "*" in Fig.
4 which are not noninferior. Here the

wei ghts can al so be chosen to locate a de-
sired solution. Let us refer back to our
exanpl e of the last two paragraphs. Suppose
the DMwoul d like the noninferior solution
such that profit is nmaximzed while keeping
the production at no less than 6000 units
per year. Choosing w equal to (-1/6000)
and solving fornul ati (p6) will locate the
solution narked "b" on Fig. 7.

Anot her fornulation is possible which com

bi nes several earlier ideas (Véndell and Lee
(1977)). By adding constraints to formla-
tion (P4) of the form

< T
fi Ei. _
where the point (? 1n 1) is a point
inside region R an& solving ?P4) with all
q
—
w\- 1/q (so ) w* 1), one can also dis-

i-l
noni nf eri or points.

cover all Thi s

particular formulation will find only non-
inferior points, but has the di sadvantage
that one nust discover a sequence of points
f withinregion R Figure 8 illustrates the
idea. The points found will be support
points for the feasible region, as we argued
earlier. Because all w are greater than
zero, be found.

only noninferior points will

Fig. 8 Finding noninferior points using
formulation (p4) with constraints
and equal wei ghts. O osshatched
area is constrained area, "a" is

support point for reduced feasible
region. 45° support lines are for
0.5 (f1+f2) - k for different k.

D rection of decreasing k shown.

A Fi x

There appears to be an expedient "fix" for
preventing formulations (P5) and (P6) froa
|l ocating points which are not noninferior.
This "fix™ was found in an article by
Shimzu (. It is to augrment the objective
with the term

- [ 3
[ Z'if:l
For exanpl e, the objective for (P5) becones
r
Y+ e zwi.fi ’

where ¢ is a very small nunber (say 10"8 the
size expected for Y) » Y wll still dom -
nate in selecting the solution point. The
points marked with an "*" in Fig. 4 all re-
sult in the sane V value. However, the ex-
tra termw |l then come into play and se-
lect the one with least value to the sun of
the wei ghted objectives, i.e. the nonin-
ferior point |abeled "a".

1
(all M >0, tss 0)

Wiile the "fix™ is interesting it is not
without risk. It too will find points
which are not noninferior if Y can he. in-

creased whil e decreasing the tern c > w'f
t—+ i

by exactly the same anmount or a bit nore.




One could consider the odds in ones favor
here, however. The exactly vertical line is
to be expected; the above is unlikely. 1t
must be the case that many problems will al-
low one objective to reach a minimum for a
range of values for the other objective. For
example the minimum heating and cooling util-
ity usage of a process is a fixed quantity
under appropriate assumptions. Several dif-
ferent heat exchanger configurations can usu-
ally be developed that feature this minimum
usage, each differing in investment cost.
Thus if one chose utility usage as one ob-
jJective and investment cost as the other,
then one would discover several different
investment costs will yield the same minimum
for utility usage. This is exactly the type
of problem giving the vertical part of the
curve in Fig. 4.

A Decomposition

Takama and Umeda (1980) suggest that the in-
terior problem of locating noninferior points
can be solved by decomposing it for typical
engineering problems. They partition the
variables z into the disjoint sets (z 2295
«ss.Z_,V) such that the MCDM problem dan’be
writtén:

Min (fl(il ), fz(izyv ’ '--fq(Eq!!)

s.t. 31(51,!) £0 }

hy(z0 < 0

i=1,....q

Their approach relies on the assumption that
most engineering problems will have this
structure. The suggested approach to solving
is illustrated in Fig. 9.

Mn (€ (2,9, £,(2,.9) ... £ (X))
v 1'=1 2'=2 q—q

s.t. vav

o v] fJ eeees v -«
1,(2,.9 £,(2,.0) £z,
!:i- £,(2,0

1 Subproblem Subprodlen
st “(!1'!)“2 2 . 2
bz, 00

Fig. 9 Decomposition Scheme of Takama and
Umeda (1980) :

Being suggested is that the top level ad-
Justs v, passes v to each_ lower level prob-
lem vhich finds its own f (z,,v) as a sca-
lar optimization, over z . _it adjusts v
again and continues until the DM likes the
solution.

The decomposition idea is intriguing. How-
ever a problem not discussed is how to

tive is

select variables v such that all the sub-
problems will remain feasible. Passing
back an infinite value for f*(z »V) when
subproblem i is infeasible is possible but
forces one into using rather inefficient
pattern search optimization algorithms.

The MCDM Executive

So far we have been examining the problem of
finding a noninferior solution given a set
of weights. The next aspect of solving MCDM
problems is to consider how the weights are
selected, a job of the box we labeled the
MCDM executive in Fig. 2. As can be seen in
that figure, the executive must interact
with both the subsystem that locates non-
inferior points and the decision maker.
Several approaches exist for constructing
the executive. The nature of the overall
problem (is it linear, is region R convex,
etc.) affects what will be in the executive.

The simplest algorithm in concept is to gen-
erate a sufficient scattering of noninferior
points so as to define the entire noninfe-
rior surface completely. Clearly this ap-
proach is likely the one maximizing the work
done. For more than two objectives, it also
is likely far too much work because the prob-
lem size grows as n~l, where n is the nua-
ber of points over which each of the objec~
tive functions is ''gridded". For example if
10 different values of each f, are desired
and there are q=4 dimensions, one would_be
required to generate on the order of 103
noninferior points. For only two objectives,
a total search is feasible and frequently
used.

1f prob formulation (P4) is used (objec-
vifi)’ one difficulty is choosing

the weights w, so as to distribute the non-
inferior points evenly throughout the (f1,
£,) space. Thus formulations (P5) and (P6)
afe likely superior for this task.

Once the entire surface is generated, it can
be presented to the DM who can decide for
himself which of all the points generated he
prefers. Clearly an advantage is thac he
can change his mind as he looks at the re-
sults, or even from one day to the next.

All other approaches must in some sense seek
solutions in a sequential manner, by gen-
erating a few noninferior points, asking the
DM for his preferences, generating a few
more points, asking again, etc. We now con-
sider this interaction with the DM,

Interaction with the Decision Maker

In scanning through several articles, {t
would appear interaction with the decision
maker can take several forms which are
listed here.

1) The DM can be shown a single noninferior
point (and perhaps the coordinates of the




Ut opi a point for reference) and asked
one or nore of the followng

a) which objectives nust still be re*
duced and which may be increased in
exchange

b) for those that can be increased, how
far can they be increased

c) for the objective that is to be de-
creased, what rate of trade is the
DMw Iling to accept in terns of de-
creasi ng fi while increasing f, (i.e.
-Af/Af. )™ An exanple would b* to
say"a 51 decrease in f, is allowed if
it can be had for no mre than a IX
increase in fj.

2) " The DM can be shown two or nore nonin-
ferior points and asked to do one or
more of the follow ng:

a) rank order the points
b) suggest a desired solution

c) pick a "region' within which to place
nmore points

d) for the best point, respond to the
questions asked in (1) above.

3) the DMcan be asked apriori if sone of
the objectives take precedence over
others. The purpose here would be to
pernmit the nost inportant objectives to
be dealt with first, before considering
those of I|esser inportance.

Al ternative MCDM Executives

W shall now exam ne several approaches to
the construction of the MCDM Executive bl ock

of Fig. 2. W shall start with the nost

wi del y covered problem type, the all |inear
problem For an all linear problem (linear
obj ective functions, linear constraints),

the region Rin Fig. 1 is convex and problem
formulation (P4) is suitable for |ocating
noni nferior solutions.

Perhaps one of the npbst interesting al go-
rithms is that of Wite (1980), which is a
variation of the method proposed earlier by
Wl | enius and Zionts (1977). It is based on
solving a series of linear programs of the
formof (P4), specifically

TS
i

S.t. 4

=
=

In
e |

The MCDM executive directs the values of the
wei ghts, W to be used when searching for
the decision maker's preferred sol ution.

The approach is to pick arbitrarily any w
which satisfies the current set of con- —
straints on w. Wth each iteration a new
constraint is added to the set further re-
stricting the choice possible for the

wei ghts.  Termination occurs when one can

e

dermonstrate -that all the allowed Ws yield
the same solution point. The algorithm
very roughly, is as follows.

1. Define the constraint set on wto contain
at least the followi ng constraints

"O-IZ‘E' !

=0

Wi te reposes this constraint set by
listing the points in w space which
"generate" the constraint set. For ex-
anple feasible Ws subject to the above
constraints are generated by the extrene

poi nts
(1) " (1.0,0 .... 0}
w(2) - {0,1,0 .... 0)

v(gq) - C,0,0 .... 1}

Al'l feasible ws are then convex combi-

nations of these extreme points. Figure
10 illustrates for a problemw th g«2
obj ecti ves.

s 2(2> - (0.1)

1.0

=1y = (10}

-l

Fig. 10 Method of Wallenius and Zionts
(1977) as inplenmented by Wite

(1979). _Initial space of feasible
wsis , the line joining w(l)
tow(2). -

2. Choose a w fromthe set of extreme points
and generate a first noninferior point.
Call this point the current best sol ution.

3. Choose another w and generate anot her
noni nferior point.

4. Show the latest noninferior point and the
current best point to the DM

5. If the current point is better add the




constraint

- N
(g’v“ﬁ ?1ew poi nt (Z "1y Current =0
best point

to the set restricting the choice of w.
Rewriting this constraint gives

E (8} v, = O
1

If the current point is worse, add

L

-and if deemed equal by the DM add

):.(“1’ v =0 .
Suppose in Fig. 9, the noninferior points
gener at ed byv%/jl) give (f,, f,)(1) - (10,20)
andbyw(2), (f,.f,)(2) -Y15,5). Suppose
the DMprefers dbir?t (2). Then the con-
straints

(15-10) w + (5-20) wo * 0

Is created. It is plotted in Fig. 10.

6. Wite shows that the new extreme point
set is easily found by finding the inter-
section of this new constraint with the
lines joining the disfavored point to
the other extrene points, here generat-
ing w(3). The disfavored point w(I) is
del efed fromthe set. ~

7. Repeat fromstep 3 until all extrene
points for the space defining the fea-
sible region for wcan be shown to yield
the sane noninferTor point.

Note that in this approach, the DMis asked
only to conpare noninferior points and rank
order them

The STEMnethod of Benayoun et al (1970,
1971, 1971) is another nethod devel oped for
a linear problem The RESTIMnethod by
Shimzu (- -seems to be quite simlar. The
approach would seemto extend directly to
nonl i near probl ens.

The algorithmstarts by locating the U opia
point. It then uses problem fornulation
(P5), where the Utopia point is treated as
the originin the (fAf---..f ) space. The
wei ghts ware set as folTows **

W, "
| Range of fj

Cl"- <r-

wher e

TEyE

The range of f"-ZC:u::-1 val ues is the max-

imumfA value, f™* anong those found when
di scovering the Ejtopia point less the mni-
m f~ value, which is f*, the value at the
Uopia point. (Wile Beﬁayoun suggest s
mexim zing each f to define its range, it
seens nore reasondble to use the maxinum of
fi. as above.)

Note that a large range, small cost coef-
ficients, and a small maxi numcost, fA%,

each lead to a larger weight. (ne detects
ﬁ smattering of reasonable arbitrariness

ere.

Next the noninferior point (z(m) is found
using the weights w,. The DMis asked how
he |ikes each of thd objective function
values for that point. He can respond by
saying each objective function value is or
is not satisfactory. For each satisfactory
one f , he is asked how large an increase,
Af.t Jnhe would tolerate in f_ in order to
inrove the unsatisfactory offjectives. For
each satisfactory response, the follow ng
constraint is then added to the definition
of the original problem

£, % £,(z(m)) + Afj
For each unsatisfactory one, one adds
fj * ~(£(10))

Finally the weight w for each satisfactory
objective is set to iero, and a newiteration
starts with the locating of the next nonin-
ferior point using the nodified weights and
new constraints.

‘Mukai (1980) presents an algorithmfor non-
linear problems which is related to the
above ideas. As above he also suggests ask-
ing the user which objectives can be com
prom sed so as to inprove the others. His
schene al so del etes them from the set con-
sidered, with a bound placed on the extent
to which these objectives can be conproni sed.

The next approach to be discussed is by
Srinivasan and Shocker (1973). The descrip-
tion here follows that given by Zonts
(1979). The approach is valid for both lin-
ear and nonlinear problens.

The idea is to locate a target set of "ideal"
obj ective function values as well as a set

of weights. Each actual noninferior point,
f_, is characterized by the "distance™ from
the unknown i deal poi nt, §: ]

q

) .

dyy = Z vilfyym £
1=l

2




The noninferior points discovered so far are
presented to the DMpairvise for all pos-
sible pairs. The followi ng constraint can
be witten for each such conparison

£0if point j preferred

2 _ 42 « 0 if no preference
IR O
L i 0 if point k preferred
Alittle alge_bra rewites (1) as
2
Ev E Eij)
= 0 .
53“151)(f1k’f11} =0 (2)
) =0

which is linear both in w, and the pr oduct
vy ( \%wg Rermenber the f1 val ues
are kn i nf ormati on about Aon|f|‘fer|0r
points j and k.

Because the DMis likely to give inconsis-
tent answers, -each inequality has a slack
variable s A 0 added which represents the
vi ol ati on 3 I the constraint. For exanpl e,
an equation of the formof (2)

T T
x
By ¥ tDh, ¥x0

woul d be witten

T T -
ﬁjk!*—!jk!*-'jkho .

The objective is then

Mino [} P
ik

subject to the constraints witten. Note
that variables w” £ but v can be of any
sign. This problemcan be solved as a
linear program Once w and v are found,
the next point to be_searched for is the
one that mnimzes d* for it. It appears
one woul d need to solve a quadratic pro-
grammng problemto find that next point if
the original problemis entirely linear.
An interesting variation mght be to use f
as the target set of objectives and then
apply the ideas of Lightner (1979). As we
noted earlier, letting vA 1/7. 2" fornu-
lating the problemin the form of problem
(P5) would seek that solution.

i

Another of the approaches is called the
surrogate worth trade-off (SW) nethod
(Hlines and Hall (1974)). In this approach,
useful for nonlinear problens as well as
linear, one views the problemto be of the
form (P3) stated earlier:

M n I.'I(El,f

o . t. G(f|ff2—fq) -0

Renenber that the surface of noninferior
solutions (f-,f f)* implicitly de-

fines the coﬁst alnt fSnction (f,, f >
e 0in (f.,fyo....f ) space. He tan vri Se
the Lagraﬁge functl 8n for (P3):
L(f.,—f ,H - U- nG
! 3

Necessary conditions for optimality of (P3>
yield

T W 36 5. e
S "Se b E =0 i-,2,..q .

As there is only one constraint G and as-
Burning all Prcé- exi st at the point of in-
df 5
i
terest, we can first discover a value for e

based on f jo
w2
3, S?I

1
Substituting |i for f. 11, gives

3
3L - 3H l/”‘G 26 _
=0
£ 3f
3, ot )3 f
or
W\, 2%
== /= 3)
ag; [ 3¢ ij af

The termon the left is called the
rate of substitution,”
the "trade-off ratio."

"cargi nal
the one on the rirht

The narginal rate of substitution is knovn
only by the DM It is the rate at vhich he
iswlling to trade objective f, for objec-
tive f-. The trade-off ratio is a result
of sol \}I ng the nmodel for noninferior solu-
tions and gives the rate at which the nocsl
suggests one can trade f, for f.. Equation
(3) says that if the DMs narginal rate cf
substitution equals the problems trade-off
ratio for each of the objectives 2 through
g against the first objective, then he has
satisfied the necessary conditions and thus
likely has found the optimumof his utiliiy
function. An algorithmbased on this idea
in Haines and Hall (1974) (see also °

N shitani et al (1980)) proceeds as follcvs

1) For each objective f., i»2_ g, find a
sequence of noninferior solutions such
that each f., j * 1 and i, is being held
fixed and f~ is being exchanged for f..
Move along this "“line" in (frMA-.f )
space showi ng each noninferior Sol ut Fon
found to the DM  Continue until the
trade of fl for f, being found seens ia
be what he“likes. ™ At this point his nar-.
ginal rate of substitution equals the
problems trade-off ratio in the direc-
tion searched.

2) Repeat step 1 until no noves in any di-
rection are possible.




The above schene is like a "univariate"
search in (f.,f». ... f ) space. It nust
have simlar L‘haracter|§t|cs e.g. zigzag-
ging insmll steps if a rldge is encoun-
tered. It would seema clever nove to adopt
conjugate search directions. How one deals
with fuzzy DMresponses is of course an open
question when one attenpts a fancier

al gorithm

Uneda et al (1980) suggest using a pattern
search method (e.g. the sinplex nethod or
conpl ex method) to find the optinumof the
DMs utility function. The major advantage
is that the DM need only rank order the cur-
rent set of noninferior solutions. Consistent
with their paper an approach can be as fol-
lows (see Fig. 11).

Fig. 11 Using a pattern search algorithmto
adjust the weights to find the DM s
optimal noninferior solution.

1) First find the U opia point, (f‘.',f’;»...
2 *

2) Choose a set of at least g+l linearly
i ndependent vectors of weights, w(i)

3) For each vector of weights w(i), find
the correspondi ng noninferior point
using formulation (P4) with the UWopia
poi nt being the origin, (there appears
to be no reason formulations (P5) and
(P6) could not be used instead.)

4) Ask the DMto rank order the points, for
exampl e, using a mniml nunmber of pair-
Wi se conpari sons.

5) Drawa line fromthe worst point inw
space through the centroid of the otRer
w's. The centroid is the p0|nt W with

the coordinates v, A*1j2, L. @ where
; n
w; bV v, (1)
i=]l
ijHorst
Poi nt

where n is the nunber of points w(i)

the "conpl ex!* of points being used.
Search along that line until a point is
found which is better at least than the
second worst point.

6) Toss out the weights w(i) corresponding
to the worst point fromthe current set
and add in the new point found in step 5.
(Test to be sure the set of vectors w(i)
stay linearly independent. If not, Oc-
casional ly restart the algorithm from
step 2.)

7) Repeat fromstep 3 until the DMis unable
to distinguish anong the noninferior
points found.

The last approach we shall describe for the
MCDM Executive is the one suggested by Payne
and Polak (1980). It was developed for the
special case of precisely two conpeting ob-
jectives. Figure 12 ill ustrates the idea.
The approach is interactive and particularly
attractive for interacting with the DM
through a graphics display terninal.

fz R

a

= .~

- " =1 =] -~

a”’ ’/’ \\’b
N

d

f
1

Fig. 12 Payne and Polak (1980) rectangles
boundi ng the noninferior curve.
Only the noninferior points a,b,c
and d have been eval uat ed.

The DMis asked to establish a rectangle in
(f-,f2) space within which his preferred
sofution will reside. The MCDM executive
algorithmthen selects where to try to find
a set of a prescribed nunber of noninferior
solutions that will |eave the maxi num for
the least amount of area within vhich the
optimumcould exist. That twisted state-
ment sinply means they are appl yi ng an
area elimnation schene in (f. , 7) space.
See Fig. 12. Note that if pofnts Ma"
through "d" are known to be noninferior so-
lutions, then all other noninferior solu-
tions can only exist within the rectangles
shown. They look for solutions along

lines passing diagonally fromlover left to
upper right within the chosen rectangles.
When the noninferior solutions are |ocated,
new rectangl es are drawn. The DM chooses
whi ch of these contains his optinmm sol u-
tion and the process repeats. It




term nates when the chosen rectangle is so
small that the DMno longer cares to dis-
tingui sh anong the noninferior solutions
residing withinit.

Coal programm ng

Frequently the term goal programm ng appears
in papers discussing multiple criteria de-

ci sion neking (MCDV problenms. Coal pro-
gramm ng is where one picks a set of target
val ues for the objectives and then seeks to
find a solution that in some sense cones the
closest to that target. |If the target is $,
one can redefine the objectives to be of the
form

r L
£, % Ad(ELE)

vhere the function d neasures the distance
between f. and ?i. Exanpl es woul d be

(&) &£ ,£) =t - £ |
(b)  d(£.£) = (£ - £)

L4
Using f, as the i-th objective, we have con-

verted & goal programinto an MCDM probl em

2

Using form(a) for d(f",fi), one can wite

and then

1
flﬂd’.-ui-l-vi

Inthis form d, can be included within a
l'inear progranm ng formlation.

Cheni cal Engi neering Applications

Wthin the chemcal engineering literature,
a nunber of papers exist which have applied
MCDM concepts to sol ving exanpl e process de-
sign problens. As nentioned before the
earliest found is by Seinfeld and MacBri de
(1970). Qhers include those by N shitani
and coaut hors (1979, 1980, 1981), Shieh and
Fan (1980), Ureda et al (1980), Gauer et al
(1979a, b), and G ossmann and Jain (1981).

C her | ssues to Consider in MCDM Probl ens

O considerabl e inportance for MCDM probl ens
are a fewof the follow ng questions. First,
one is faced with the issue of devel oping a
definition and then a neans to nodel pro-
cesses so as to be able to characterize them
in terms of noncomnparabl e objectives. For
exanpl e, how does one state, in terns of one
or two neasures each, the safety of a pro-
cess, the flexibility of a process, process
reliability or process controllability?
These criteria open up whol e new and i npor -
tant nodeling questions, ones whose answers
are the theme of much research currently

bei ng perforned. Certainly the papers in
this conference by Gossmann and Mrari will
address this issue.

Anot her question which occurs is that nost
designers identify which variables in their
probl emthey wi sh to select as objectives
only *s they proceed. Indeed one has to
suspect significant mnd changi ng occurs
throughout the design process. That woul d
suggest really flexible programs are needed

‘which allowvirtually any variable to be an

obj ective or be constrained or be ignored
with frequent changes in the way a variable
is treated as the design proceeds.

A last point of interest is that the MCDM
problemis really in the class of enbedded
opti xadzation problens, (Pi), as ve shoved at
the start of this paper. This class of prob-
lems Is a difficult one which we shall now
di scuss.

The Qeneral Two-Level Program ng Problem

The recent availability of effective tech-
ni ques for solving constrai ned nonlinear op-
timzation problems, particulars the Vil son-
Han- Povel | al gorithm (WIson (1963), Han
(1975), Powell (1977)), has created consid-
erable interest in using these nethods for
optim zing chemcal processes. >uch of this
wor k has been oriented towards using the

ri gorous nodel s in conventional, "sequential
modul ar'* sinulators to evaluate the coeffi-
cients for an approxi mate (and perhaps re-
duced) process nodel, then applying an op-
timzer to this sinpler nodel (Parker and
Hughes (1978), Jirapongphan, et al (1979),
Bi egl er and Hughes (1981)). (ne inportant
probl em however, seens to have been over-

| ooked: when eval uating the behavior of

uni ts exhibiting phase and chenical equi-
librium the simulator nust make discrete
deci sions (based on feed conposition, tem
perature and pressure) about the nunber and
nature of the phases present. This causes
nondi fferentiabilities in the approximte
nmodel seen by the optimzer and can lead to
errati c behavior —perhaps even failure to
converge. W wll show how this probl emcan
be formulated naturally as an enbedded op-
timzation of the form(Pi) and discuss the
inherent difficulties in solving this type
of problem W will then discuss possible
algorithns for obtaining a local solution of
problem (Pi) by solving a sequence of tra-
ditional "single-level" nonlinear prograns.

The Enbedded Equilibrium Cal cul ation

The nost general way of performng the equi-
libriumcalculation for multiphase, reacting
chem cal systens is to solve the follow ng
constrained optin zation probl em (Gautam
and Seider (1979), Castillo and G ossmann
(1980)):

NCI MP
mmJ” 2‘;,Xn_h»,,'°,- 3TInf .

N, =l &=
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st Z z a"n*=h’

i=1 k=1

i=l N

n 20 i =1~NC  k=1.NP

where HC - nunber of conponents in the
system

HP ¢ nunber of phases in the system
HE * nunber of elenments in the system
Ny m nunber of gram atoms of conpon-

ent "i" in phase "k"

N - chenmical potential of "i" at
system tenperature and unit
pressure

f,. * fugacity of conponent "i" in

i W o
phase "k

a, . gramatons of elenent "j " in

* conmponent "i"
b. - gramatons of element "j" in

J the system

The first constraint is the conservation
equation: it states that the gramatons of
‘elenent "j " in the feed nust end up distrib-
uted anong the phases present at equilibrium
The second constraint merely states that the
mol e nunbers must be non-negative, and the
obj ective function is the G bbs Free Energy.

In the context of optimzing a chemcal pro-
cess, the above problemis actually a param
etric program given the feed flows, tem
perature and pressure for the unit at equi-
librium the ninimzation can be perforned.
The question that we wish to ask is how to
adj ust these "paraneters'! so that the over-
all process is optimal in sone sense. Thus,
the problemis of the form (Pi) where we
identify

41 « measure of process optimality

x
'

feed flows, tenperature and pres-
sure for the equilibriumunit

and ot her vari abl es descri bing
other processing units

g.,h. ¢ constraints other than those for
the equilibrium calculation —
conservation equations for other
units, design specifications,
etc.

rf,- G bbs Free Energy

X;‘ « mole nunbers n,, for the equi -
I'i brium cal cul ati on

92, h2 « atom bal ances and non-negativity
constraints for the equilibrium
cal cul ation

There are two inportant points to be noted
concerning this problem First, the "param
“efers" of the inner problem(i.e. feed flows,
tenperature and pressure) are really vari-
abl es being adjusted to acconmbdate the

L]

outer one. These are not adjusted by the
i nner probl emvhile mnimzing the G bbs
Free Energy. Second, the problemis not a
conventional max-mn problem since there
are two distinct objective functions. Nor
is it amltiobjective optimzation, be-
cause the inner problemis a constraint for
the outer one and it involves mnimzation
over a subset of the variables.

An Exsmple |llustrating Problem D fficulties

To understand nore clearly what it neans for
the inner nininization to be a constraint
for the outer one, consider the follow ng

si npl e exanpl e:

. 2 2
min (x1 - 2)° + (xz - 5)
xl.x2
it 0i x i 5
Xy € arg min (x, + 1)2 * (y - 5)?
y
St -3x; + 2yA2

X; « 3y £ 14

Figure 13 shows the inner problemconstraints
and the contours of the outer problem ob-
jective function. Note that the inner prob-
lemessentially says "get x* as close as
possible to 5, subject to tne constraints."”
As shown in the figure, when x,, £ 2 the

first constraint is binding, ile for x,n

2 the second constraint takes over. Thus§,
the X, that solves the inner problemfor a
given‘x[, which we will call X*x”", is

15 1

if X £2
lex'l =

-0.33x; * 4.67 if x, 2 2

and the overall problem can be written

M tx - 2)7 + (xp - 5)°
XX,
st 0N Xy ~n B

x, " Xata,| = 0

Two difficult features of this problemare
now apparent: nondifferentiability and non-
convexity. Kondifferentiability neans that
a gradient-based algorithmwi |l probably
have troubl e solving the problem since ve
cannot guarantee that the solution lies at
a point where the Karush-Kuhn-Tucker con-
ditions will hold. Nonconvexity rneans that
we shoul d expect multiple local optina.
Both arise because we require x, to solve
the inner problemfor a given value of x”*.
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Fig. 13 The Inner problemconstraints and
outer problem objective contours
for the example. The arrow shows
the direction of decreasing 6-1.

Let us see what happens if we try to solve

. this exanple using the "nmost obvious™ strat-
egy. That is, given an x., solve the inner
problem for x,- Then, cafculate the grad-
ient of its solution (i.e. the gradient of

Xj Cxp - x» 0) by differencing and the
gradients of the outer problem constraints
and use a gradient-based algorithmto solve
the outer problem This strategy is sketched
inFig.14.

x
' 1
S ,
l | QUTER i NN
CPTI M ZER 1 CPTI M ZER

% |

. x’(xil

Fig. 14 The "nost obvious" strategy for

solving the problem an inner op-
timzer is used explicitly to cal-
culate Xp(x1).

Assume we start with an x* greater than 2,
so the inner optimzer conputes X.(x_) *
-0.33 x- +4.67. The outer optinfzef can
then reduce its objective function by de-
creasing x. and nmoving x., al ong X(x..) un-
til it reafhes the point 5(2,4). At this
point, the outer optimzer will see "(x;E

- Xa(x.)) as shown by the vector 7X% in
Fig. |i and the negative of its objé&ctive
function gradient as -vL,. This suggests
that further inprovenent “can be nade by re-
ducing x_, since -v4. does not lie along
vXt. “Holever, reductng x, causes the inner
optimzer to calculate Xp(x.) - 1.5 xM + 1,
\évith gradient VX —hsuggesht‘i ng| inpr?]venen}d
y Increasing x.~ Thus, the algorithmwou
bounce back and‘forth between the two con-
straints. Assuming that the outer optim zer

has a test on the gradient of the Lagrangian
involved in termnation, sinply attenpting
to reduce the step size when it notices 6.
go up by noving from(2,4) will not help. !
The problemis that the equality constraint
introduced by the inner problemhas no gra-
dient at that point. Note that if -*6_ lies
anywhere within the cone defined by 7% and
vx| the point (2,4) is optimal. This région
is the cone of subgradients of x_- X (x.)

at that point. 2 21
. VX,'
.v" 2
I.t :
vx/
4.1
\\
t.t [ |
/
I.t _—
I.f /
t.t
t.t |.t I.t t.t 4.t I.t
Fig. 15 The gradients at the point (2.4).
An _Insight into Solving
How, then, should we solve our problen? W

wi sh to use a gradient-based nethod if pos-
sible, since all the truly effective al go-
rithms for nonlinear programming fall in
this class, but X«(x,) stands in our way.
Therefore let us ‘Eongi der X, nore closely,
with the hope of discovering a way of ap-
plying a gradient-based method to our

probl em

Assunming that an appropriate constraint
qualification is met, the Karush-Kuhn-Tucker
conditions nust hold in order that x« solve

the inner problemfor a fixed x, (Bafaraa
and Shetty (1979)): i
m p
-* 2 X o
3x, * I": 9x, *2i i/\_- ~d, 2. -
(4)

Tyt fH 50 i=1m (5)
hz,jl‘r‘z' =0 J = 1J3 (6)
o s = © o i=1.m(7)

i=1-m (8)
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where X- and p, are the vectors of Lagrange
nul tipli"ers corresponding to the constraints
% 2"Y A Thus, given an x., equations (4)
tRrough (8) inplicitly defind Xo(x ). Ve
wi I | subsequently refer to Eq. (4) “as the
"stationarity relationship" and Eq. (7) as
the "conpl enentarity condition."

The equation of primary interest to us is the
conpl enentarity condition. It states that
the indices of the inequality constraints 9,
can be partitioned into two sets:

A=t gp>lyXp) = 0)

I= <k] 9u(x.x) <0}

such that multipliers, p» "~ for the con-
straints with indices in 1 are zero, and
only those corresponding to constraints with
indices in A can be nonzero. Thus, if ve
knew what the proper partition of the in-
equality constraints was, X-(X. ) coul d be
eval uated by solving Egqs. (£), (6) and the
el enents of (5) corresponding to constraints
with indices in A This observation is the
basis of "active set strategies" for solving
conventional nonlinear prograrmns.

It is inportant to note that the interaction
of the "on/off" nature of the conplenentarity
constraint with the stationarity relation-
ship is exactly the cause of the nondiffer-
entiability of XAx ) . That is, nondiffer-
entiabilities in X_“occur at those points
where the partiti offs change, whi ch neans
gradients are available if we stay within a
fixed partition. Thus, one way of solving
the overall problemis to exanine each pos-
sible partition of the inner problemin-
equal ities, solving the nonlinear program
corresponding to each partitionwth a

gradi ent -based al gorithm

Sol ution Al gorithns

In avery recent paper, Bard and Fal k (1982)
al so discuss the two-level progranm ng prob-
lem They suggest replacing the inner prob-
| emwi th Karush- Kuhn- Tucker conditions and
solving the resulting single-level problem
Realizing that this problemis nonconvex,
they propose solving it with a special-
purpose al gorithm for nonconvex program
mng (Falk (1972)). Since this algorithm
requires the functions involved to be sep-
arabl e, the paper is devoted to solving the
case where both the inner and outer problens
are conpletely linear. :

However, even when all the functions are lin-
ear, the usual forns of the conplenentarity
conditions are not separable. Thus, the

aut hors make use of some clever insight to
convert the standard conplenentarity form

m

X5 9W=0

i=1

nto the equivalent relations

m

Y nmin(Qw +ft} =0

=1
w, e g<lx) . ,i‘ =0 i=1..m

whi ch makes the resulting single-level prob-
| em separabl e and pi ecevise linear. They
can then apply their algorithm vhich is a
branch- and- bound techni que, to the single-

| evel problemand obtain its global solu-
tion. Since the problemis piecevise linear,
they note that the naxi mum nunber of sub-
problens that will be solved for an inner
problemwith "n" inequalities is Z*"! - 1.

In the nonlinear case, trying the various
partitions for a problemw th "a" inner

probl eminequalities is still a conbinatorial
probl emof size 2™ but each el enent nowre-
quires solving a conventional nonlinear pro-
gram Thus, it is irnportant to find a way
of examining only a few of the possible par-
titions. W propose the follow ng al gorithm

Step 1. Choose an initial partition of the

inner probleminequalities into A
and | .

Step 2. Solve the single-level nonlinear

program:
min p1lx %2y
‘l"z-"'z.k')z
‘st g tx) SO
W °
p -
, e YO
I fr~ £- 3XZ N2> X- Sx, §]
2 k6A j=1 < .
h_lx % l =0
gzulx X } =0 k GA
gza“l'le 50 k6 I
k €A

s 20

(Note that the last three constraints
ensure that we remain in the se-
lected partition.)

Step 3. If the solution to the above prob-
lemlies in the interior of the
current partition (i. Ny >0
for all k c A and nenrfor all
kcl) goto Step 5; dyfherwse go
to Step 4.

Step 4. W are at a partition boundary.
Check the adjacent partitions to




see if a feasible descent direction

can be found. If one can, reparti-

tion the inner problem inequalities

into A and I as appropriate and go

to Step 2; otherwise go to Step 5.
Step 5. The current point is a local optimum
satisfying the Karush-Kuhn-Tucker
conditions for both the inner and
outer problems. STOP.

Assuming a method is available for solving
the conventional nonlinear program in Step
2, the difficult parts of this algorithm
are choosing the initial partition in Step 1
and testing the adjacent partitions for a
feasible descent direction in Step 4. Ve
will first discuss the second point and re-
turn to the problem of choosing the initial
partition later.

Testing for Descent at the Boundaries —
The Degeneracy Problem

If there were no inner problem, the infor-
mation required to test for a feasible de-
scent direction could be obtained by eval-
uating the Lagrange multipliers, , for the
tight constraints as follows (Westerberg and
DeBrosse (1973)):

Step 1. Let f be the vector of tight con-
straints at the current point.
Perform the LU factorization

(39)- (35 39)- (.4

on its Jacobian matrix, splitting
x into y and z so that(%é) is

invertible. (This is a natural
consequence of the LU factoriza-
tion.)

Step 2. Solve

() - (30)

for the Lagrange multipliers.
We prefer to calculate the multipliers in
this way, rather than using a generalized

inverse of the Jacobian, because it results
in

ﬂ=0;)*k

for an inequality rewritten as the pair

gk(x) + 5= 0 and s, 2 0. Thus, if <0,
releasing the constraint g, and moving into
the feasible region (i.e. s, > 0) vhile

keeping all other constraintsktigh: (s

= 0 for ] # k) produces a decrease in

the

objective function; this means we are test-
ing all the constraints independently. 1f
xk 2 0 for all inequalities By s then the
current point is optimal.

For the two-level programming problem, how-
ever, we have an additional complication
associated with maintaining feasibility; the
inner problem must remain at a minimum.
Avoiding mathematical rigor (but see Robinson

(197&), for instance), we state that if the

multipliers for the tight inner problem in-
equalities are positive at the current point,
and we hold the same constraints tight when
we meve, then we will remain at an inner
problem minimum for a small step in the
outer problem variables.

This suggests computing both the Lagrange
multipliers for the inner problem (hence-
forth called sirply "inner multipliers") and
those for the nonlinear program solved in
Step 2 of the algorithm ("outer multipliers')
We can then ask if there are any tight inner
inequalities that the inner problem will al-
low us to drop (those with zero inner multi-
pliers) and which the outer problem can re-
lease to reduce its objective function
(those with negative outer multipliers). If
none exist, then the current point is op-
timal. Otherwise, we place the indices for
all the tight inner problem constraints that
can not be dropped in the active set A and
continue the algorithm at Step 2.

In the previous development we have assumed
that the inner multipliers were uniquely de-
fined. Unfortunately, there may be points
for which this is not true: a situation re-
ferred to as "degeneracy" in the optimiza-
tion literature. However, as opposed to its
infrequent occurrence in conventional opti-
mization problems, degeneracy will arise in
the two-level programming problem each time
the cuter optimizer encounters a point with
more tight inner problem constraints than
there are inner problem variables.

We can see this in our simple example prob-
lem at the point (2,4). Here, both inner
problem constraints are tight, yet we have
only one inner problem variable. We cannot
place both constraints in the active set and
continue the algorithm at Step 2: to do so
would mean we were fixing the value of an
outer problem variable with an inner problem
constraint. Thus, we are faced with a com-
binatorial problem of deciding which inner
problem inequalities to place in the active
set A.

Given an inner problem with '"n" variables,
"p" equalities and "m' tight inequalities,
the maximum number of possible choices is

~m !
(m-n+p) ! (n-p)!

However, some of these choices may not be
allowed, since we must simultaneously sat-
isfy the stationarity constraint and




non-negativity of the inequality nultipliers.

To illustrate, consider the two-variable

probl emshown in Fig. 16. Here {1,2} and
{1,3} are possible choices for the active
set, but [2,3} is not, since -?4 does not
lie in the cone obtained frong2 and 7g3.

& Feasi bl e

Regi on

Fig. 16 Degeneracy and possible choices for
the active set.

Note that seeking inner nultipliers satisfy-
ing stationarity and non-negativity at a
fixed point (x"x is sinmply a phase 1 Sim
pl ex operation. The solution of the non-
linear program from Step 2 provides us with
one valid set of multiplier values, though,
so our work is reduced.) Also note that the
basis in the Sinplex Tabl eau defines the
current active set, so checking if a given

I nactive constraint could replace one in the
active set while nmaintaining non-negativity
Is essentially a Sinplex "Mn Ratio test."
Thus, if the nunber of possibilities is not
too large, the work required to check the
possi bl e inner problem active sets should
not be excessive.

Once the inner multipliers have been deter-
mned for the current active set, the gra-
dients of the stationarity constraints in
the associated single-level nonlinear pro-
gram can be conputed and the outer multi-
pliers obtained. W can then ask the sane
questions as before. It is inportant to
realize that the only portions of the
Jacobi an matrix used to calculate the outer
multipliers which are affected by changi ng
the inner problemactive set are those rows
corresponding to the inner problemstation-
arity constraints. Thus, if we have an
inner problemw th many fewer variables than
the outer one (as is the case when the
equilibriumcalculation is enbedded in a
large flowsheet), considerable savings can
be achieved by using techniques for nodify-
ing factorizations such as those of G111 et
al (1975).

A Probl em Rel axation

As nmentioned previously, the difficulties
associated with solving the two-1evel prob-

| &nare caused by the discrete nature of the
conplementarity relationship. Thus, it was
suggested in a conversation with Fiacco

(1982) to approxinmate the inner problemwth
a penalty function. This has the effect of
rel axing the discrete behavior and renoving
the nondifferentiabillties. To see why this
is the case, consider solving the problem

nunfix)
X
st g.<x) *0 i=l.m

with the Interior penalty function

m

RXr) =~(X) - r z Lni-g bl
=

Computing an unconstrained m nimum of P(x,r)
gi ves

=0

which is identical to the stationarity
condi tions

- dg
+ z’la_£=

i=1

for the original problemif p.g.(x) ¢ r for
all i. Thus, the penalty app?'oﬁch wor ks by
achi eving conplenentarity in the limt as r
approaches zero.

Rat her than using a penalty approach direct-
ly (attenpting to avoid its ill-conditioning
woes), and in the spirit of solving a single-
| evel nonlinear programat Step 2 of our
algorithm we can solve

9U, . xa» S 0
hle,.Xz» =0
2 0
o, gzlx xlSr =1.m
for some "reasonably snall", positive value

of r to obtain a good Initial estimate of a
local solution to the two-Ilevel problem




,

In fact, ve can obtain a local solution to
the overall problem (Pi) by solving the
above program for a sequence of decreasing
r. This is illustrated in Fig. 17, which
shows the feasible region resulting from ap-
plying (9) to our previous example for vari-
ous values of r: as r is decreased, the fea-
sible region for the relaxed problem becomes
a better approximation to the true feasible
region of the tvo-level problem Also

since it relaxes the discrete nature of the
conpl ementarity conditions, this approach
avoi ds the combinatorial problens associated
with degeneracy. In the limt as r ap-
proaches zero a valid set of inner multi-
pliers will be found, and ve are not forcing
the outer problemto satisfy a selected set
of inner probleminequalities as if they vere
equalities.

——
\

.0 1.8 - 2.0 3.0 4.t l.

>

Fig. 17 The effect of r on the feasible
region of (9). (The feasible re-
gion lies between the curves and
the inner problem constraints.)
The arrow indicates decreasing r.

V\hile our conputational experience is limted
to a nunber of small exanple problems, this
scheme appears to work quite well. For in-
stance, solving the relaxed problem for our
previous exanmple at a single r value of 10""
results in the proper solution —x.» 2 and
Xa* 4 —even though the inner probfem is
dggenerate there. We are continuing the work
by solving some exanples involving the em
bedded equilibrium calculation

DI CUSSI ON AND CONCLUSI ONS

The multiple criterion decision making prob-
I em has been the subject of a large amount

of literature. The difficult aspects of this
problem are (1) developing effective models
for different criteria, (2) finding the non-
inferior points for the chosen models, and
(3) Interacting with the decision maker in a
way that allows him to discover his problem
trade-of fs without annoying or overwhel m ng

him,

An Issue vhich appears to have been given
little attention, but vhich is a natura
concern vhen ve regard the decision making
probl em as an embedded optim zation, is the
presence of multiple local optima. For in-
stance, consider a decision maker using
probl em formulation (P4) to solve the exas-
ple shown-in Fig. 18. Let us assume the

wei ghts have been chosen so that the sol u-
tion Co (P4) gives the support plane through
points "A" and "C". An increase in weight
ve, results in possible solutions at both

“B" and "D", but "B" is only a local opti=u=i.
If v, vere increased still more, the de-

ci sion maker m ght experience a "jump" frca
"B" to "E", hanpering his choice of an
optimum

Fig. 18 Local optima in the multiple
criterion decision ciaking
probl em

The general tvo-level programm ng problem
has only recently begun to be studied. The
difficult features of this problemare its
nondifferentiability and nonconvexity; these
arise fromthe discrete nature of the com

pl ementarity conditions for the inner prob-
lem  We have discussed two approaches that
address this problem One is based on an
active set strategy for the inner problem
and the other on a relaxation of the com
plementarity conditions. The active set idea
suffers from a severe deficiency, however
vhich the relaxed fornulation does not: de-
ciding which constraints to place in the
active set at a degenerate point is a com
binatorial problem  Our limted conputa-
tional experience suggests that the relaxed
formulation is a very effective way to solve
the embedded optim zation problem
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