
Carnegie Mellon University
Research Showcase @ CMU
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

1982

The modeling and synthesis of bus systems
Chia Jeng Tseng
Carnegie Mellon University

Daniel P. Siewiorek

Follow this and additional works at: http://repository.cmu.edu/ece

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has been
accepted for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase @ CMU. For
more information, please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE MODELING AND SYNTHESIS OP BUS SYSTEMS

by

Chia-Jeng Tseng & Daniel P. Sieworelc

DRC-18-42-82

Apri l , 1902

The Modeling and Synthesis of Bus Systems

Chia-Jeng Tseng and Daniel P. Siewiorek

Departments of Electrical Engineering and Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

November 28,1980

This research is supported by the NSF under grant #55898 and by the Department of Electrical
Engineering, Carnegie-Mellon University.

Table of Contents
1. Introduction 1
2. Primitives for Bus Style Design 2
3. Modeling Bus Style Systems 4

3.1. A Canonical Model of One-Bus Systems 6
3.2. Basic Models of Two-Bus Systems 6
3.3. A Canonical Model of Three-Bus Systems 8
3.4. A Canonical Model of Four-Bus Systems 8
3.5. Generalization of the Basic Models 9

4. A Synthesis Algorithm for Designing Bus Style Systems 10
4.1. Related Work 10
4.2. Representation 11
4.3. The Algorithm 13
4.4. Illustrative Examples 15

5. Comparing Bus Style Design and Distributed Style Design 24
5.1. Comparing the Synthesis Algorithms . 24
5.2. Comparing the Structure of a Bus and its Distributed Counterpart 24
5.3. Comparing the Delay and the Cost 24
5.4. Adaptivity of these Two Design Styles 25

6. Conclusions and Future Work 25

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

List of Figures
Figu re 2 -1 : Graphic Representations of the Primitives
Figure 3 -1 : Variations of Data Paths in the Vicinity of an ALL)
Figure 3-2: A Canonical Model of One-Bus System
Figure 3-3: Data Paths of The PDP-11 /10
Figure 3-4: Model I of Two-Bus Systems
Figu re 3-5: Model II of Two-Bus Systems
Figure 3-6: A Canonical Model of Three-Bus Systems
Figure 3-7: A Canonical Model of Four-Bus Systems
Figu re 4 -1 : The Transfer Matrix Representation of the HP 2116 Computer
Figure 4-2: Refinement of A "Join-Node"
Figure 4-3: A Reduced Transfer Matrix for the HP 2116 Computer
Figu re 4-4: Data Paths of the HP 2116 Computer - Proposed Algorithm
Figure 4-5: Data Paths of the HP 2116 Computer - [Torn77] and [Math??]
Figu re 4-6: Data Paths of the HP 2116 Computer - [Torn77] and [Math??]
Figure 4-7: The Transfer Matrix Representation of the PDP-11 /40 Computer
Figu re 4-8: A Reduced Transfer Matrix for the PDP-11 /40 Computer
Figu re 4-9: Data Paths of the PDP-11 /40 Computer - Proposed Allocation
Figu re 4-10: Data Paths of the PDP11 /40 Computer - Actual Implementation
Figu re 6 -1 : The Global Structure of a Bus Style Data-Memory Allocator

3
5
7
8
9
10
11
12
13
15
17
17
18
18
20
21
22
22
27

The Modeling and Synthesis of Bus Systems

Chia-Jeng Tseng and Daniel P. Siewiorek

Departments of Electrical Engineering and Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Bus oriented interconnection of registers and data operators is the dominate mode of design for the
data paths of digital systems. A study of ten processor implementations, ranging in size from
microprocessor to large mainframes, that spanned almost 20 years in the practice of digital design
indicated a strong similiarity. From this study a set of bus style primitives and generic bus models
were developed. The generic bus models can be simplified to match each of the ten processors
composing the study. An algorithm for generating a bus style design is presented and compared to
prior work reported in the literature. The algorithm is also used to generate the data paths of the PDP-
11/40 resulting in lower cost and shorter delays than the original implementation. Finally, the paper
concludes with a discussion of the bus synthesis algorithm's implementation and its role in the CMU
functional-to-hardware Design Automation System.

1. Introduction
Modern digital systems are often divided into a data part and a control part. The concept of design

styles was proposed in [Thom77]. A design style is an abstraction of a group of module sets.

Furthermore, a module set is a collection of digital devices which is complete in the sense that

arithmetic, logic, and memory functions needed to implement a general digital system are available.

The design of either the data part or the control part can be implemented in various styles. For the

data part the possible design styles are bus, distributed, bit-slice microprocessor, etc. The bus style is

one of the most widely used in practice.

This research is a part of the CMU design automation (CMUDA) system [Siew76,Park79]. The

CMUDA system is partitioned into global optimization, design style selection, abstract module

allocation, physical module binding, and control allocation phases. Bus style allocator is intended to

be one of the possible realizations in the abstract module allocation phase. This paper investigates

the properties of and proposes a synthesis algorithm for bus style systems.

Section 2 describes the primitive components used in bus style design. In Section 3 some basic

models for bus style systems are proposed. Section 4 describes a synthesis algorithm for the design

of bus style data paths. Two examples are given to illustrate the algorithm. Section 5 compares bus

style design and distributed style design. General conclusions and areas for further research are

provided in the last section.

2. Primitives for Bus Style Design
The primitive components of bus style systems are storage elements, functional units, and

interconnection units-

Storage elements may be special or general purpose registers. Special registers are those which

have dedicated functions such as stack pointer, instruction register, program counter, memory

address register, memory data register, etc. The general registers are not restricted to a dedicated

function. Functional units are data operators which can be further subdivided into unary and binary

operators. Unary operators include complementers, shifters, byte swappers, etc. Binary operators

include arithmetic and boolean functions such as adders, multipliers, AND, etc. Binary operators and

some of the unary operators are typically combined into a centralized arithmetic logic unit (ALU).

A data transfer is associated with a source and a sink. Depending upon the direction of the data

transfer, a storage element or functional unit may act as the source or a sink at a particular moment

Taking the physical or logical constraints into account, a bus may have more than one sink active

simultaneously, that is, more than one sink can be "opened" to receive the input data at the same

time. However, only one source is allowed to be active at a time. Hence, the storage elements and

functional units are linked together by various kinds of interconnection primitives.

An interconnection primitive may be a general bus, a multiplexer, a demultiplexer, or a set of simple

wires. A general bus is an interconnection primitive which has multiple inputs and multiple outputs.

Each input or output is connected to the bus through a gating element. When the gating element is

deactivated, the connection is in the passive state, i.e., very high impedance exists between the bus

and the data source or sink. A multiplexer has multiple inputs and a single output. Only one input can

be active at a time. A demultiplexer, on the other hand, has a single input and multiple outputs. Only

one output can be active at a time. Both multiplexer and demultiplexer have a suitable number of

address leads to select the active input or output. Either multiplexer or demultiplexer can also have a

gating element to control the data transfers. A set of simple wires are associated with one source and

one sink. In a general sense all of these interconnection primitives can be regarded as buses.

All of the interconnections mentioned above can be either unidirectional or bidirectional. A

bidirectional component is symmetrical with respect to the direction of data transfers. In a general

bus, bidirectional gating logic can activate a data transfer into or out of a storage or functional unit

which is connected with the bus.

For our purpose we are not interested in the detailed physical structure of these devices. What we

are interested in is their cost and performance . Rgure 2-1 depicts the graphic representations of the

various primitives which will be used to describe the data paths of digital systems in later sections.

A Set of Simple Wires

Multiplexer

Demultiplexer

General Bus

Multiplexing Bus

Wired-Broadcast Tree

Registers And Unary Operators

Arithmetic Logic Unit ALU

Figure 2 -1 : Graphic Representations of the Primitives

3. Modeling Bus Style Systems
In order to understand the structure and characteristics of bus style systems in depth, the

implementations of a number of existing systems were studied, including the PDP-11, INTEL 8080,

PIC 1650, ALTO, AM 2901, AM 2903, TMS 1000, HP 2116, IBM 360/30, and IBM 360/91. These

systems were found to have a very strong commonality. Among them, the IBM 360/91 is a system

consisting of multiple functional units [Ande67,Toma67]. Each of the other systems has a single

centralized ALL). The inputs of the ALU are usually fed from registers which may be accumulators or

temporary storage. A register can be allocated at the output of the ALU to store the result of various

operations. Unary operators such as byte swappers or complementers can be inserted in the data

paths in the vicinity of the ALU to speed up some data operations. Some independent, special

purpose storage such as program counter, instruction register, memory address register, memory

data register, stack pointer and index register may also be used to speed up operations. For the IBM

360/91, the data paths associated with each functional unit still has a common structure as the other

single centralized ALU systems.

The capability for parallel data transfers in a system is directly related to the number of buses. Thus

the number of buses can be used to evaluate the degree of parallelism in a bus style system. One

design synthesis heuristic would be to select one of the following general bus models based on the

concurrency of the algorithm. The design would be completed by simplifying the general model until

only essential primitives remained. Rather than use this approach, Section 4 will present a synthesis

algorithm.

Figure 3-1 depicts different configurations for the data paths in the vicinity of an ALU. In Figure 3-

1(a) and Figure 3-1 (b) the inputs of the ALU share a common bus, while in Figure 3-1 (c), Figure 3-1 (d)

and Figure 3-1 (e) each input is connected to a dedicated bus. Assume the operands of a binary

operation are available on the buses, but not already in the registers in front of the ALU. Let the time

delay be the same for each data transfer. In Figure 3-1 (a) two units of time are required for

transferring the operands into the registers and one unit of time is needed to feed the operands from

the registers to the inputs of the ALU. Thus three units of time are necessary to set up the input data.

In Figure 3-1 (b) one of the inputs is directly connected to the common data bus, so only two units of

time are required to set up the input data. In Figure 3-1 (c) and Figure 3-1 (d) the inputs of the ALU are

fed through two different buses. The transferring of operands from the buses to the registers can

occur simultaneously. Thus two units of time are enough to set up the input data. In Figure 3-1 (e)

both inputs are directly connected to the buses, the input data can be set up in one time unit. The

input data set-up time (IDSUT) is a measure for evaluating the parallelism associated with the ALU.

Some basic models for bus style systems are proposed in this Section. These basic models focus

on the single centralized ALU systems. For convienience of comparison, they are classified by the

(a)

(b)

(c)

(d)

(e)

BUS

BUS

I
I

BUSES

I—
Ih-

BUSES

I-
BUSES

ALU

ALU

ALU

ALU

ALU

Figure 3 -1 : Variations of Data Paths in the Vicinity of an ALU

number of general buses in the systems.

6

3 . 1 . A Canonical Model of One-Bus Systems

In the simplest system the storage elements and data operators communicate through a common

data bus. Figure 3-2 is a canonical model for one-bus systems. Aside from the data transfers which

originate from the same source, a one-bus system provides no parallelism for inter-register data

transfers through the common data bus. The N square blocks attached to the common data bus are

general and special registers. The multiplexer in front of each square block provides the capability of

selecting one input from multiple sources. The wired-broad cast network at the output of a square

block allows the register to be fed to multiple destinations1. A floating arrow front on a wired-

broadcast tree may be connected to any floating arrow rear on a multiplexer in front of the other

square components. The floating arrow front and the floating arrow rear represent respectively an

output and an input of these two square blocks. These floating connections provide variations in

routing the data transfers such as bypassing some components or feedback to previous stages.

The total numbers of multiplexers and wired-broad cast trees in the model are N + 5 and N + 4

respectively. In general, connecting the output of a square block to its own input is a null operation.

Thus the possibility of directly connecting an output of a square block to its own input can be

excluded. An output lead on a wired-broadcast tree which is located at the output of a square block

can be connected to one of the input leads of the remaining N + 4 multiplexers. The number of

different interconnections which are available is (N + 4)N + 3. On the other hand, a storage element is

required to store the ALU output so that it can perform various operations appropriately. Directly

connecting the ALU output to its inputs is not allowed. The ALU output can only be connected to the

inputs of the other N + 3 multiplexers in front of the square blocks. Thus the total number of different

designs is (N + 3) • (N + 4)N + 3.

The one-bus model has been widely adopted in the design of micro- and mini-computers. Some

examples are the INTEL 8080, PIC 1650, PDP 11/10, etc. Figure 3-3 depicts the PDP-11/10 data

paths [Snow78] as an instantiation of the canonical one-bus model.

3.2. Basic Models of Two-Bus Systems

Additional buses may be included to increase the degree of parallelism. The buses can be assigned

to the inputs and/or output of the ALU. Depending on the allocation, the structure may be quite

different. Figure 3-4 and Figure 3-5 are two basic models for two-bus systems. In Figure 3-4 the

working storage associated with each input of the ALU is assigned a separate bus. Input data

transfers can proceed in parallel through these two general buses. In Figure 3-5 the working storage

1The input of a wired-broadcast tree can be fed to multiple destinations simultaneously. It is considered to be a more
general interconnection mechanism than a demultiplexer in which only one output can be in the active state at a time. Thus,
instead of using a demultiplexer, a wired-broadcast tree is used in the model.

, tr iT^VTii i v u v . • • JJgT^iT'

Common Data Bus

Figure 3-2: A Canonical Model of One-Bus System

elements associated with both inputs are connected to the same bus. The other bus is assigned to

the output of ALU. Unless the input data come from the same source, only one data transfer is

allowed through the common data bus. However, a different kind of intsr-register data transfer can

proceed simultaneously through the other bus (OBUS).

The number of wired-broadcast trees is N + 3 in Model II. Each of them can be connected to an

input of the other N + 4 multiplexers. The total number of different designs is (N + 3) 4)N * 3

Following the same derivation, the total number of different designs for Model I is (N1 + N2 + 3)

(N1 4)N W N 2
If the number of storage elements and/or unary operators (N1 + N2) in the

model is replaced by the integer N, then the result is again (N + 3) • (N + 4)N * 3 .

8

->TBAl / > BUS ADDRESS
18

Condition
Codes

IR

AMUX

. B.AUX

From UNIBUS

-to-
"O" -2>\^

To UNIBUS

DMUX

BMUX

Note: All data paths are 16 bits wide unless otherwise indicated

Figure 3-3: Data Paths ofThePDP-11/10

3.3. A Canonical Model of Three-Bus Systems

The parallel transfers of input data to an ALU is made possible by assigning a dedicated bus to each

input of the ALU. If a third bus is assigned to the output, three data transfers can proceed

simultaneously. Figure 3-6 is a canonical model for three-bus systems.

As shown in Figure 3-6, there are three sets of storage elements and/or discrete unary operators.

Assume the number of components are N1, N2 and N3. Then the number of different designs are

(N1 + N2 + 3) • (N1 + N2 + 4)N1 + N2 * 3 .

3.4. A Canonical Model of Four-Bus Systems

In some special purpose applications such as a hardwired Fast Fourier Transform, extremely

intensive inter-register data transfers are required. Additional buses might be essential to improve the

performance. Figure 3-7 is a canonical model for four-bus systems. A common data bus which

surrounds the three-bus model is included in the model. Again, the number of different designs can

be derived as (N1 +N2+N3 + 3) * (N1 N3 + 4)N 1 + N 2 + N 3 + 3

N1

•O*

N2

Fi9ure 3-4: Model I of Two-Bus Systems

3.5. Generalization of the Basic Models

Generally speaking, additional number of buses can be included to facilitate more inter-register

data transfers. Theoretically, a system may have an arbitrary number of buses. However, due to the

limitation on the availability of data operators, extra buses can not significantly improve the

performance.

10

OBUS

Common Data Bus

Figure 3-5: Model II of Two-Bus Systems

4. A Synthesis Algorithm for Designing Bus Style Systems

4 . 1 . Related Work

Taking the data transfer variables and concurrency constraints as the inputs, Torng and

Wilhelm[Torn77] proposed a formal algorithm for the synthesis of digital systems. They characterized

a design according to the number of buses and the number of links.2 Their algorithm applied the

technique of generation and test in dynamic programming to find all the solutions which have the

minimal numbers of buses and links. The combinatorial searches require significant computation.

Mathialagan and Biswas[Math??] addressed the same problem with the techniques for finding the

minimal cover in switching theory. Their algorithm reduces the amount of computation required to

perform a design. However, finding the minimum link solution is still'a cumbersome process. In

addition, both researchers treated every interconnection as a general bus. It is not unusual that

interconnections degenerate into the other primitives presented in Section 2: a multiplexer, a wired-

broadcast tree, and a direct connection. Thus, interconnections have different costs. The algorithm

proposed in this paper is conceptually very simple. The strategy adopted is, without violating the

constraints of concurrent data transfers, to assign as many of the data transfer variables to a bus as

A link is named as a gating element in this paper.

11

IBUS

N2 IBUS Common Data Bus

Figure 3-6: A Canonical Model of Three-Bus Systems

possible. The algorithm also attempts to reduce the number of gating elements. The next section

describes the representation used in the algorithm.

4.2. Representation

In [Torn77] the data transfers in a system are represented by a transfer matrix. Basically, the same

representation is used in the proposed algorithm. The rows and columns in the transfer matrix specify

the sources and sinks of data transfers respectively. An entry in the transfer matrix may bo null or

filled with concurrency identifiers depending on whether there are data transfers between the

specified source and sink or not. A data transfer from a source indexed with i to a sink indexed with j

is identified by a variable X(iJ). Those data transfers which occur simultaneously are assigned with

12

IBUS

OBUS N3

Common Data Bus
^ l r • • • • ' . - - _ ^ - * * '*• - - ^ - ^ - p ^ * - - * • - - • - ^

Figure 3-7: A Canonical Model of Four-Bus Systems

the same concurrency identifiers. A null transfer has no concurrency identifier. The concurrency

identifier of an isolated data transfer is assigned to be zero. Each group of simultaneous data

transfers are identified by a unique nonzero integer. Thus a data transfer variable might have one or

more than one concurrency identifiers. The transfer matrix in Figure 4-1 which represents the data

transfers in the HP 2116 minicomputer [Torn77] can be used to explain these identifiers. The system

consists of registers A, Bt M, P, T, and an ALU which are indexed with integers 1, 2, 3, 4, 5, and 6

respectively. As an example, data transfer variable X(1V6), X(5,6)f X(6,1), and X(6t5) have the same

concurrency identifiers, they represent data transfers which may occur at the same time.

The transfer matrix of a system can be derived from, its control specifications. For a

microprogramming system, the operations specified by a microinstruction are considered to occur

13

concurrently. Let op be a binary operation in the ALU and -> mean "store into". The data transfer

variables X(1,6), X(5,6), X(6,1), and X(6,5) mentioned in the last paragraph can be derived from a

microinstruction which initiates the operation A op T -> A, T.

1

2

1
A

2
B

3
M

4
P

5 6
T ALU

B

0

1

0

5

0

2

0

0

2

0

0

134

1

5

2 3

145

3 M

4 P

5 T

6 ALU

Figure 4 - 1 : The Transfer Matrix Representation of the HP 2116 Computer

4.3. The Algorithm

In order to describe the algorithm, the following terms are defined:

• Compatible Set: a set of data transfers which are in the same row or are in the same
column and do not have the same concurrency identifiers. The data transfer variables in
a compatible set can share a bus.

• Maximal Incompatible Set: the set of all concurrent transfers each of which originates
from a different source constitute a maximal incompatible set (abreviated as MIC). An
MIC can be defined with reference to the transfer matrix as the set of all data transfer
variables with the same concurrency identifier, each of which appears in a different row.

The algorithm generates the buses of a system one by one. In general, a bus can carry a number of

data transfers. Before a bus is generated, the data transfer variables which are to be assigned to the

bus are unknown. A "selected set" is used to contain those data transfer variables which can be

realized with the bus being allocated. Initially the selected set is an empty set.

As mentioned in Section 2, a gating element is required to control the input from and/or output to a

bus. If the data transfer variables in a compatible set (which have the same source or sink) can share

a bus, only one gating element is required for the source or sink. If more than one bus is necessary to

carry the data transfers, additional gating elements are required. To minimize the number of gating

14

elements, the number of buses assigned to the data transfer variables in a compatible set must be

minimized. Based on this criterion, the algorithm is:

1. Put all of the isolated transfer variables into the selected set and exclude these elements
from the transfer matrix by deleting the corresponding concurrency identifiers.

2. Construct all of the possible disjoint compatible sets in the reduced matrix. Those
compatible sets which consist of elements in a row can be easily constructed. Taking
advantage of the concurrency identifiers, the maximum compatible sets in a column can
also be constructed.

a Choose a compatible set which has maximum cardinality from the compatible sets
constructed in step 2, named MCS. Put all of the transfer variables in MCS into the
selected set.

4. Delete those elements which are already contained in the MCS from the remaining
compatible sets.

5. Taking advantage of the MCS just selected and the MIC, delete those elements which can
not share the bus being allocated from the compatible sets.

6. Repeat steps 3 to 5 till there are no more data transfer variables that can be included in
the selected set.

7. Delete the concurrency identifiers of those variables which have already been selected
from the transfer matrix.

Now a set of data transfer variables which can share a bus have been collected. The original

transfer matrix is reduced to a smaller one. Any data transfer variable accompanied with a lone

concurrency identifier become an isolated element. Its concurrency identifiers are updated to zero.

Repeatedly applying the above steps, the transfer matrix will enventually be reduced to a null matrix.

Each time we finish steps (1) to (6), a new bus is generated.

In step (3), if more than one compatible set has the same number of elements, perform step (5),

compare the number of variables to be excluded, and choose a compatible set which excludes the

least number of variables. Theoretically, the lookahead can be further applied. However, if the size of

the selected sets are still the same after one stage lookahead, choosing any one of these selections

will result in a system with essentially the same cost and performance. If necessary, all of the

alternate solutions can be found by repeating the derivation procedures.

Refining the Initial Design:

As depicted in Figure 4-2(a), an initial design might have a "join node" in which more than one bus

is connected to a single input. To make the data paths adhere to the basic models in Section 3, a

multiplexer is inserted in front of the input. The resulting data paths are shown in Figure 4-2(b). The

"join-node" can easily be found by checking the data transfers to an input. If the input data transfers

15

are fed from more than one bus, then this node needs to be refined.

(a)
BUS1

BUS 2

h
Synthesis Output

Generic
Module

(b)

BUS1

BUS 2 Generic
MUX Module

Refined Output

Figure 4-2: Refinement of A HJoin-Node19

4.4. Illustrative Examples

For the purpose of illustration, two examples are given. The first example is used to compare the

proposed algorithm with others in the literature. The second example is used to compare the POP*

11/40 data paths synthesized by the proposed algorithm and the actual implementation.

Example 1.

In Figure 4-1, a transfer matrix constructed from a description of the Hewlett Packard 2116

computer is given.

The synthesis process is as follows:

• Put isolated transfer variables X(1,5), X(2,5), X(3,4), X(5,1), X(5,2), X(5,3), and X(5,4) into
the selected set and delete the concurrency identifiers of these elements from the original
transfer matrix.

• Construct the compatible set from the reduced matrix. They are { X(6,1), X(6f2), X(6,3),
X(6,4), X(6,5) }, { X(1,6), X(2,6), X(4,6) }, and { X(4,6), X(5,6) }.

• Choose th^compatible set which has the maximal cardinality, { X(6,1), X(6,2), X(6,3),
X(6,4), X(6,5) }. Put these transfer variables into the selected set.

• Since none of the elements in the selected compatible set is contained in the remaining

16

compatible sets, step (4) in the algorithm is skipped.

• The remaining compatible sets are { X(1.6), X(2,6), X(4,6) } and { X(4,6), X(5,6) }. None of
these data transfer variables can share the bus being allocated. All of them are deleted.

• Now, no more data transfer variables can share the bus being allocated.

• Delete the concurrency identifiers of those elements in the selected set from the transfer
matrix. Update the concurrency identifiers of each isolated data transfer in the transfer
matrix to zero. The reduced matrix is shown in Figure 4-3.

Repeat these procedures for the reduced matrix. Finally we find that the data transfer variables are

partitioned into three sets. They are { X(1,5), X(2,5), X(3,4), X(5,1), X(5,2), X(5,3), X(5,4), X(6,1), X(6,2),

X(6,3), X(6,4)f X(6,5) }, { X(1,6), X(2,6), X(4,6) }, and { X(5,6) }. The data paths are depicted in Figure

4-4.3

The data paths drawn in Figure 4-5 and Figure 4-6 were synthesized by Torng and Mathialagan, et

al. Assume all the data paths are n bits wide. If every interconnection is regarded as a general bus,

Figure 4-5 and Figure 4-6 require 15*n gating elements. Figure 4-4 needs 16*n gating elements. In

practice, one gating element is enough to control the data flow through a bus which has a single input

and output Taking this special case into account, Figure 4-4, Figure 4-5, and Figure 4-6 require 15*n,

14*n and 15*n gating elements respectively. Furthermore, in Figure 4-4 the bus which has three

inputs and one output can be replaced by a built-in multiplexer. The external connections are

reduced.

According to the above explannation, we see the cost of these systems are comparable. However,

the amount of computation required by the proposed algorithm is much less than that required by the

algorithms proposed by Torng and Mathialagan, et al.

Example 2.

Figure 4-7 is a transfer matrix constructed from a microprogram of the PDP-11 /40 [Full76]. SPM, D,

DPY, B, BA, IR, PS are registers. B.AUX represents constants, sign extender, and byte swapper. CC

represents the condition codes. UBUS represents a system bus, the UNIBUS. Applying the proposed

algorithm to this transfer matrix, the synthesis process can be summarized as follows:

• Put the isolated data transfer variables X(1,4), X(1,8), and X(10,8) into the selected set.

• There are two compatible sets with the same cardinality. They are { X(10,1), X(10,3),
X(10,4), X(10,7), X(10,8) } and { X(2f1), X(2,3), X(2,4), X(2,8) }. If the first set is chosen,

For clarity, instead of using unidirectional interconnections, bidirectional gating elements are used in Figure 4-4, Figure 4-5,
and Figure 4-6.

17

1
A

2
B

3
M

4
P

5 6
T ALU

1

2

3

B

M

5 T

6 ALU

•

1

5

0

1 5

Figure 4-3: A Reduced Transfer Matrix for the HP 2116 Computer

M

A
'—>

B

p
j >

— J "
I

T -P
I1

7 ALU

U

Figure 4-4: Data Paths of the HP 2116 Computer - Proposed Algorithm

data transfer variables X(1,11), X(5,11), X(11,2), and X(11,6) must be excluded. If the
second set is chosen, then the data transfer variables to be excluded are X(1,6), X(1,11),
X(4,11), X(5,11), X(8,11)f X(11,2), and X(11f6). The first compatible set excludes fewer
data transfer variables. Thus data transfer variables X(10,1), X(10,3), X(10,4), X(10,7)f

and X(10,8) are put in the selected set.

18

M

A

B

p

T

•

s
i

9
ALU

J

Figure 4-5: Data Paths of the HP 2116 Computer - [Torn77] and [Math??]

Figure 4-6: Data Paths of the HP 2116 Computer - [Torn77] and [Math??]

• Now the MCS { X(2,1), X(2,3), X(2,4), X(2t8) } has the maximum cardinality. These data
transfer variables are put in the selected set.

• Deleting those data transfer variables which can not be included in the selected set, only
X(1,3) remains in the compatible sets. Put it in the selected set.

• The selected set consists of data transfer variables X(1,4), X(1,8), X(10,8), X(10,1) X(10,3).

19

X(10,4), X(107), X(10,8), X(2,1), X(2,3), X(2,4), X(2,8), and X(1,3). They share the first bus-
Deleting these data transfer variables and updating the concurrency identifiers, the
original transfer matrix can be reduced to the form of Figure 4-8.

Repeatedly applying the synthesis process, the following selected sets will be
constructed. Each of them corresponds to a bus.

Selected Sets:

B u s 1 { X (l , 4) . X (l , 8) . X (1 0 , 8) , X (1 0 t l) , X (1 0 , 3) , X (1 0 , 4) ,
X (1 0 . 7) , X (2 , l) , X (2 , 3) , X (2 , 4) , X (2 , 8) f X (l , 3) }

B u s 2 { X (l , 6) , X (l f l l) , X (8 f l l) }

B u s 3 { X (1 1 . 2) , X (l l , 6) }

B u s 4 { X (4 , l l) , X (5 f l l) }

B u s 5 { X (9 , 8) }

Inspecting these selected sets, it is found that primitive modules BA and PS are fed by more than

one bus with different concurrency identifiers. BA is fed by Bus 2 and Bus 3 while PS is fed by Bus 1

and Bus 5. To refine the data paths, a multiplexer is inserted in front of each of these two primitive

modules. The resulting data paths are drawn in Rgure 4*9.

Rgure 4-10 depicts the actual implementation of the PDP-11/40. Comparing Figure 4-9 and Rgure

4-10, a slight difference is found in these two data graphs. The DMUX and the wired-broadcast tree

following it are replaced by a general bus (Bus 1). The AMUX and the wired-broadcast tree following

it are replaced by Bus 2.

20

1
SPM

2
D

3
DPY

4
B B

5
.AUX

6
BA

7
IR

8 9 10 11
PS CC UBUS ALU

1 SPM

2 D

3 DPY

4 B

5 B.AUX

6 BA

7 IR

8 PS

9 CC

10 UBUS

11 ALU

1,2
3
17

14
15

1,2,3,4
5,6,7
8,9,10
11,12:
13,14

13
16
6,7
12
18

8

0

4,9
10,11
17

15

1
12

2
3

15

0

5

5,9,10
11,16
17,18

0

1,2,3,4
11,12,14

2,6

1,3,4,5
7,8,9
10,13

5,6

Note: SPM a scratchpad memory UBUS = unibus
DPY = display register CC = condition codes

Figure 4-7: The Transfer Matrix Representation of the PDP-11 /40 Computer

21

1
SPM

2
D

3
DPY

4
B B.

5
AUX

6
BA

7
IR

8
PS

9 10 11
CC UBUS ALU

1

2

3

4

5

6

7

8

9

10

11

SPM

D

DPY

B

B.AUX

BA

IR

PS

CC

UBUS

ALU

1,2,3,4
5,6,7
8,9,10
11,12
13,14

1
12

2
3

5,9
10,11*

1,2,3,4
11,12,14

2,6

1,3,4,5
7,8,9
10,13

5,6

Note: SPM = scratchpad memory UBUS = unibus
DPY = display register CC = condition codes

Figure 4-8: A Reduced Transfer Matrix for the PDP-11/40 Computer

Table 4-1 lists the number of gates required for the corresponding counterparts of these two data

graphs. The number of gates required for Figure 4-9 and Figure 4-10 are 96 and 144 respectively.

Even if the cost of a tri-state buffer is one and a half times that of a general logic gate, the cost of

Figure 4-9 is less than that of Figure 4-10. In fact the sixteen drivers and sixteen receivers which are

used as buffers between BUS 1 and the SPM can be replaced by sixteen transceivers, further

22

»j I Display Reg

•From UNIBUS
To UNIBUS

BAMUX
Condition
Codes

BUS1

Figure 4-9: Data Paths of the PDP-11 /4Q Computer - Proposed Allocation

Condition
Codes

MUX

Display Reg

PS

To
UNIBUS

AMUX

B.AUX
BMUX

BAMUX

ALU

BA
18

Bus
Address

UNIBUS
DMUX

>
To UNIBUS

Figure 4-10: Data Paths of the PDP 11 /40 Computer ~ Actual Implementation

decreasing the cost of the implementation in Figure 4-9.

23

Table 4-2 lists the delays in selected data transfers. Again, the results show that Figure 4-9 is a

better design than Hgure 4-10.

module
name

Between
Between
Between
Between
Between

Figure 4-9

SPM and BUS 1
SPM and BUS 2
PS and BUS 2
BUS 2 and BAMUX
D and BUS 1

Table 4-1

gate
count

16
16
16
16
16

Figure

module
name

AMUX
DMUX

4-10

gate
count

16
128

total 96 144

Note: AMUX consists of six SN7412 3-input positive NAND gate
with open-collector outputs.
DMUX consists of eight SN74153 multiplexers.
The modules used for Figure 4-10 are tri-state buffers
(e.g. SN74125 or SN74126).

Table 4-2 Delays for Selected Data Transfers

Figure 4-9 Figure 4-10

From SPM or PS to ALU
From SPM or PS to BAMUX
From SPM to B, PS. or IR

20 ns
20 ns
20 ns

22 ns
22 ns
39 ns

Note: The typical delay times of SN7412, SN74153, SN74125.
SN74126 are 22 ns, 17 ns, 10 ns, 10 ns respectively.
The delay time from SPM to B, PS. or IR consists of
delays of SN7412 and SN74153.
The delay of the data transfers mentioned for Figure 4-9
consists of the delays of a driver and a receiver.

24

5. Comparing Bus Style Design and Distributed Style Design
Currently a distributed style allocator is functioning at CMU. Both the bus style design and the

distributed style design assume that abstract modules are used for storage and data operations.

Their differences are in the interconnections. These interconnection differences provide the

foundation of comparing these two design styles.

5 . 1 . Comparing the Synthesis Algorithms

Conceptually, the distributed style design used a bottom-up approach while the bus style design

adopted a top-down approach. The distributed style allocator designed by Hafer [Hafe77] assumed

the availability of point-to-point data paths for data transfers. The data paths are allocated only when

they are required. A number of optimization criteria were proposed in [Hafe79]. If a storage element

or data operator is fed by multiple sources, a multiplexer is used to select the active source. If a data

source is feeding multiple destinations, a wired-broadcast tree is used to distribute the data. As

illustrated in Section 4, the algorithm proposed in this paper pays attention to structuring the

interconnections into a number of buses. A bus is usually associated with multiple sources and

multiple sinks. A multiplexer or wired-broadcast tree is a degenerate form of a bus which has a single

source or sink. Thus the bus style design is considered to be more general than the distributed

design.

5.2. Comparing the Structure of a Bus and its Distributed Counterpart

What is the distributed counterpart of a bus? Functionally, a general bus can be regarded as a

multiplexer followed by a wired-broadcast tree. In pratice, depending on the sophistication of the

distributed data paths, the distributed counterpart of a bus may consist of the following entries: simple

interconnections, multiplexers, wired-broadcast trees, and/or a set of basic units which are

composed of a multiplexer followed by a wired-broadcast tree.

5.3. Comparing the Delay and the Cost

Since the cost of each individual component inflates with time, it is very difficult to estimate the total

cost of a system. However, a brief discussion might be helpful. Assume the cost of the electric

transmission medium is negligible. Then the cost associated with a bus may be counted by the

number of gating elements adhering to the bus. The number of gating elements required in a bus

style design depends on the direction of data transfers. If a primitive module only consists of an input

or output data transfer with respect to a bus, then one gating element is enough. If data transfers in

both directions are needed, then depending on a bidirectional or two unidirectional gating elements

are used, one or two gating elements are required. The cost of the distributed counterpart is the sum

of the cost of the gating elements and that of the multiplexers. If a large number of multiplexers are

required, the distributed style design would be more expensive than the bus style design.

25

Assume the delay time of the electric transmission medium is negligible. Considering the delay, a

data transfer through a bus consists of delays of two gating elements. If the corresponding

distributed data paths do not consist of a multiplexer, the delay is the time spanned by one gating

element. If a multiplexer is in the counterpart, then the delay of the multiplexer must be considered.

The delay of a multiplexer depends upon the number of levels in the circuit. The number of levels in a

multiplexer circuit is a function of the number of inputs. When a multiplexer consists of a large

number of inputs, its delay is then significant.

5.4. Adaptivity of these Two Design Styles

In a distributed system an interconnection mechanism directly connects two primitive modules. As

the number of interconnections increases, its complexity also increases rapidly. In a bus system,

instead of directly connecting to the primitive modules, the interconnections are added to the buses.

Thus the interconnection complexity of a bus style design is better than that of a distributed style

design for a large system.

As mentioned in Subsection 5.3, the cost and delays of multiplexers in a distributed system play an

important role in the cost and performance of the system. A bus is usually shared by a great number

of data transfers in a large system. Thus the distributed counterpart of the bus generally consists of a

large number of multiplexers. Based on these justifications, the bus style design is more adaptive to

the design of large systems.

6. Conclusions and Future Work
The basic structure of bus style systems has been identified. Two criteria, the degree of parallelism

(the number of buses) and the input data set-up time were presented to evaluate a bus system.

Taking a transfer matrix as the input, a conceptually simple algorithm for the synthesis of bus style

systems has been proposed. Finally, the differences between the distributed and bus style designs

have also been compared and contrasted.

The input of the allocator is an intermediate form [McFa78,Snow78] of the original ISPS behavior

description [Barb78,Bell71 J. Many parameters in the ISPS, which govern the design decision, need to

be specified. For instance, an array storage may be treated as a bulk memory or as a register file.

Which choice is better? The criteria (cost and speed) which influence the decision must be justified.

Information provided by ISPS may be important or irrelevant to the design of bus style systems. What

kinds of information are essential to designing a bus style system? Can they be expressed in ISPS

descriptions? How can we generate this information which can not be expressed in an ISPS

description? On the other hand, the variations and tradeoffs between cost and performance of an

initial design are also worthwhile to investigate. For instance, it is probable that an operation can be

26

realized with different kinds of implementation. Sharing a common bus with other operations might

be more cost-effective than using dedicated data paths. However, the latter option can generally

improve the performance. Which strategy should be adopted?

As depicted in Figure 6-1, the bus style data-memory allocator is partitioned into the mapping, the

synthesis and the control specification modules. The mapping module reads in the VT file

[Snow78,McFa78] and converts it into a transfer matrix representation. The function of the mapping

module is basically scanning the VT file and assigning semantics. Two approaches may be applied

for the design of the scanner. One is to treat it as a finite state automaton recognizer. The other is to

apply table look-up techniques. Though it is not clear to us at this time, it is believed that a lot of

optimization criteria are inhered in the semantic phase. For example, the issues of efficient register

allocation in compiler design might be applicable. To search for and identify these optimization

criteria is essential in this phase. The second module is called the synthesis module. Using the

algorithm presented in Section 4, the synthesis module will construct a data-path graph for the

transfer matrix. The data-path graph is a "static1* structure. In order to coordinate with the control

allocator, the operation sequences must be specified. The control specification module will specify

the operation sequences with respect to the data paths.

The software depicted in Figure 6-1 is nearing completion.

Acknowledgements

The CMUDA system is the result of many individuals. This study could not have been completed

without the previous work of the other CMUDA members and their assistance. Especially, helpful

conversations with Dr. Steve W. Director, Dr. Donald E. Thomas, Dr. Alice C. Parker, Jin H. Kim, Lou

Hafer, Michael McFarland, and John Nestor are gratefully appreciated.

27

Mapping Module

Transfer
Matrix

Synthesis
Module

Control
Specification

Module

Operation
Sequences

Figure 6 -1 : The Global Structure of a Bus Style Data-Memory Allocator

28

Bibliography

[Ande67] D. W. Anderson, F. J. Sparacio, and R. M. Tomasuio.
The IBM System/360 Model 91: Machine Philosophy and
Instruction-Hand!ing,
IBM Journal of Research and Development, Vol. 11, No. 1,
pp. 8-24, January 1967.

[Barb78] Mario R. Barbacci, Gary E. Barnes, Roderic G. Cattell, and
Daniel P. Siewiorek.
The Symbolic Manipulation of Computer Descriptions:
The ISPS Computer Description Language.
Technical Report, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
March 1978.

[Bell71] C. Gordon Bell and Allen Newell.
Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

tFull76] S. H. Fuller, G. T. Almes, W. H. Broadley, C. L. Forgy,
P. L. Karlton, V, R. Lesser, and J. R. Teter.
PDP-11/40E Microprogramming Reference Manual.
Technical Report, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
January 16, 1976.

[Hafe77] Lou Hafer.
Data-Memory Allocation in the Distributed Logic Design Style,
M.S. Project Report, Department of Electrical Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
December 1977.

[Hafe79] Lou Hafer.
Automated Data-Memory Synthesis.
Ph.D. Thesis Proposal, Department of Electrical Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
March 6, 1979.

[Math??] A. Mathialagan and Nripendra N. Biswas.
The Optimal Interconnections in Microprocessor and
Digital Systems.
Department of Electrical Communication Engineering,
Indian Institute of Science, Bangalore, India.

[McFa78] Michael McFarland.
The Value Trace: A Data Base for Automated Digital Design.
Master Thesis, Department of Electrical Engineering,
Carnegie-Mel Ion Univers ityt Pittsburgh, Pennsylvania,
December 1978.

[Park79] A. C. Parker, D. E. Thomas, D. P. Siewiorek, M. R. Barbacci.

29

L. Hafer, G. Leive, and J. Kim.
The CMU Design Automation System: An Example of Automated
Data Path Design.
In Proceedings of The Sixteenth Design Automation Conference,
ACM SIGDA and IEEE Computer Society DATC, June 1979.

[Siew76] Daniel P. Siewiorek and Mario R. Barbacci.
The CMU RT-CAD System: An Innovative Approach to
Computer Aided Design.
In American Federation of Information Processing Societies
Conference Proceedings, Vol. 45, June 1976.

[Snow78] E. Snow and Daniel P. Siewiorek.
Impact of Implementation, Design Tradeoffs on Performance:
The PDP-11, A Case Study.
In Computer Engineering: A DEC View of Hardware Systems Design
by C. Gordon Bell, J. Craig Mudge, and John E. McNamara.

[Thom77] Donald E. Thomas.
The Design and Analysis of An Automated Design Style Selector.
Ph.D. Dissertation, Department of Electrical Engineering,
Carnegie-Mellon University, 1977.

[TI76] Texas Instruments Incorporated.
The TTL Data Book for Design Engineers.
1976.

[Toma67] R. M. Tomasuio.
An Efficient Algorithm for Exploiting Multiple Arithmetic
Units.
IBM Journal of Research and Development, Vol. 11, No. 1,
pp. 25-33, January 1967.

[Torn77] H. C. Torng and Neil C. Wilhelm.
The Optimal Interconnection of Circuit Modules in Microprocessor
and Digital System Design.
IEEE Transactions on Computers, Vol. C-26, Mo. 5, pp.450-457,
May 1977.

	Carnegie Mellon University
	Research Showcase @ CMU
	1982

	The modeling and synthesis of bus systems
	Chia Jeng Tseng
	Daniel P. Siewiorek

	tmp.1333047260.pdf.UU3nX

