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Abstract

User-space malware such as keyboard sniffers, spyware, and Trojans represent a signifi-
cant threat to today’s desktop computing environment. Users have little assurance that such
malware cannot observe their input to a particular application. In this paper, we present Bump
in the Ether (BitE), an approach for preventing malware from accessingsensitive user input
and providing the user with additional confidence that her input is being processed as desired.

Rather than preventing malware from running or detecting already-running malware, we
facilitate user input that bypasses common avenues of attack. User input traverses atrusted tun-
nel from the input device to the application. This trusted tunnel is implemented using atrusted
user device working in tandem with a TCG-compliant host platform. The userdevice verifies
the integrity of the host platform and application, provides a trusted display through which the
user selects the application to which her inputs should be directed, and encrypts those inputs
so that only the application can decrypt them. We describe the design and implementation of
BitE, with emphasis on both usability and security issues.

1 Introduction

Using security-sensitive applications on current computer systems exposes the user to numerous
risks. User-level malware such as spyware or keyloggers often monitor and log the user’s every
keystroke. Through keystrokes, an adversary may learn sensitive information such as passwords,
bank account numbers, or credit card numbers. Unfortunately, current computing environments
make such keystroke logging trivial; for example, X-windows allows any application to register a
callback function for keyboard events destined for any application.1 Similar vulnerabilities exist in
Microsoft Windows.2

Besides the ease of eavesdropping on keystrokes, another serious risk to the user is the integrity
of screen content. Malicious applications can easily overwrite any screen area with their content.

1Giampaolo shows—with his infamousxkey.c 100-line C program [19]—that it is easy to capture keyboard
input events that the user intended for some other application under X11. We conclude that it is desirable to reduce
the involvement of the window manager in sensitive I/O activities as much as possible.

2For example, searchhttp://msdn.microsoft.com/ for RegisterHotKey andSendInput, and con-
sider the consequences of judicious use of both.
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This introduces the threat that a user cannot trust any content displayed on the screen since it
may originate from a malicious application. An example of such a vulnerability is that malicious
Javascript code embedded in a web page can overwrite security-critical browser elements [43].

In such an environment, it is challenging to design a system that provides the user with guar-
antees that the correct operating system and the correct application are currently running, and that
only the correct application will receive the user’s keystrokes. In particular, we would like a com-
puting environment with the following properties:

• The user obtains user-verifiable evidence that the correctOS and the correct application were
loaded.

• The user obtains user-verifiable evidence that only the correct application is receiving keystroke
events.

Our approach for providing these properties is to establisha user-verifiable trusted tunnel that
securely transports keystrokes from the keyboard to the desired application. Figure 1 shows a
comparison of the legacy input path versus input through a trusted tunnel. To reduce the user’s need
to trust the window manager, we use the display on a mobile device as a trusted output mechanism.
Given the increasing ubiquity of advanced cell phones or PDAs, we leverage such devices. Mobile
devices are continuously increasing in complexity and thusfeature software vulnerabilities of their
own. We consider the consequences of various compromises inSection 6.

To provide evidence to the user that the correct OS and applications were loaded, we assume
the user’s computing platform is equipped with a Trusted Platform Module (TPM) as specified by
the Trusted Computing Group (TCG), and that the BIOS and OS are TPM-enabled and perform
integrity measurements of code loaded for execution [1, 31,39]. The user’s mobile device is used
to verify these measurements.

To achieve a trusted tunnel that securely delivers keystrokes to the correct application, we
design an OS module that directly passes sensitive keystrokes from the user’s mobile device to
the correct application, bypassing the vulnerable X-windows system. We designed and prototyped
Bump in the Ether (BitE), a system that provides secure user-verifiable trusted tunnels, which we
describe in the remainder of this paper.

2 Related Work

We review related work on secure window managers, followed by related work on attestation and
integrity measurement.

2.1 Secure Window Managers

A goal of BitE is to ensure that only the correct application isreceiving input events, and to provide
user-verifiable evidence that this is so. While much prior work has addressed this issue, none of
it is readily available for non-expert users on commodity systems today. We now review related
work chronologically.
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Figure 1: Traditional flow of keystrokes vs. trusted tunnels. On a traditional computer system, keystrokes
are first sent to the OS kernel, which passes them to X-windows, which then passes them as X11 events
to all applications that register for that class of keyboard event. Unfortunately, malicious applications can
register a callback function for keyboard events for other applications.Our trusted tunnels would protect
keystrokes and only send them to the desired application.

Several government and military computer windowing systems have been developed with at-
tention to security and the need to carefully isolate different grades of information (e.g., classified,
secret, top secret). Early efforts to secure commercial window managers resulted in the develop-
ment ofCompartmented Mode Workstations(e.g., [6, 8, 9, 17, 20, 27, 29, 30, 40]), where tasks
with different security requirements are strictly isolated from each other. These works consider an
operating environment where an employee has various tasks she needs to perform, and some of her
tasks have security requirements that necessitate isolation from other tasks. For example, Picciotto
et al. consider trusted cut-and-paste in the X window system. Cut-and-paste is strictly confined to
allow information flow from low-sensitivity to high-sensitivity applications, so that high-sensitivity
information can never make its way into a low-sensitivity application [28]. Epstein et al. performed
significant work towards trusted X for military systems in the early 1990s [11, 12, 13, 14, 15, 16].
While these systems are effective for employees trained in security-sensitive tasks, they are unsuit-
able for use by consumers.

Trostle details some timing attacks against trusted path mechanisms [37]. His attacks greatly
reduce the password search space for secrets entered using systems’ trusted path mechanisms (e.g.,
Ctrl+Alt+Del to login to a machine running Microsoft Windows).

Shapiro et al. propose the EROS Trusted Window System [34], which demonstrates that break-
ing an application into smaller components can greatly increase security while maintaining very
powerful windowing functionality. Unfortunately, EROS isincompatible with a significant amount
of legacy software, which hampers widespread adoption. In contrast, BitE works in concert with
existing window managers.

Common to the majority of these schemes is a mechanism by whichsome portion of the com-
puter’s screen is trusted. That is, an area of the screen is controlled by some component of the
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trusted computing base (TCB) and is inaccessible to all user applications. Due to the complexity
of X, it is difficult to implement this trusted screen area in an assurable way. BitE uses the trusted
mobile device’s screen as a trusted output device. In Section 6, we discuss other issues with trusted
window managers—such as the semantics of full-screen mode.We defer this discussion until after
the presentation of BitE.

We emphasize that, despite the large body of work on trusted windowing systems, the majority
of users do not employ any kind of trusted windowing system. Thus, we proceed under the as-
sumption that users do not want to change their windowing system. In the remainder of the paper,
we show that BitE can increase user input security under theseconditions.

2.2 Attestation and Integrity Measurement

BitE depends on the ability of the user’s computing platform to provide attestations of the software
executing therein. In order to be capable of attestation, the platform must be equipped with an in-
tegrity measurement architecture (IMA). In this section weprovide some background on attestation
and integrity measurement.

The Trusted Computing Group (TCG) is an organization that promotes open standards to
strengthen computing platforms against software-based attacks [1, 2]. The TCG specifies a Trusted
Platform Module (TPM). A TPM is a dedicated security chip that enables many trusted computing
features, including sealed storage, attestation, and integrity measurement. Computers featuring
TPMs are readily available today.

TPMs can generate a Storage Root Key (SRK) that will never leavethe chip. The SRK enables
sealed storage, whereby data leaving the TPM chip is encrypted under the SRK for storage on
another medium. Several other keys are maintained by the TPMand kept in sealed storage when
not in use. One of these is the Attestation Identity Key (AIK), which is an RSA signing keypair
used to sign attestations. To the remote party trying to verify the attestation, the AIK represents
the identity of attesting platform.

TPMs have one-way platform configuration registers (PCRs) that an IMA can extend with
measurements(typically cryptographic hashes computed over a complete executable) of software
loaded for execution. The IMA extends the appropriate PCR registers with the measurement of
each software executable just before it is loaded. Figure 2 shows the architecture of a host making
use of the TPM and integrity measurement.

An attestationproduced by the IMA and TPM consists of two parts: (1) a list ofthe measure-
ments of all software loaded for execution, typically maintained in the OS; and (2) an AIK-signed
list of the values in the PCR registers. A remote party with an authentic copy of the public AIK
can compute the expected values for the PCR registers based onthe measurement list, and check
to see whether the signed values match the computed values. The end result is achainof measure-
ments of all software loaded since the last reboot. The security requirement is that all software is
measured before being loaded for execution.

Sailer et al. developed an IMA for Linux [31]. They show that it is difficult to manage the
integrity measurement of a complete interactive computer system, since the order in which appli-
cations are executed is reflected in the resulting PCR values.During the boot process, however, a
well-behaved system always loads in the same order. Hence, integrity measurement of the system
from boot through the loading of the kernel, its modules, anddeterministic system services will be
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consistent across multiple boot cycles on a well-behaved host platform.
Sealed storage enables another feature that is useful to BitE: data can be encrypted under a key

generated based on the current PCR values. The stored data is thus inaccessible unless the host
platform’s software state is consistent with the state recorded during the initial creation of the key.
When using sealed storage, it is assumed that the user’s platform will always load certain software
in the same order. If the order changes, the system is considered to be sufficiently different to
invalidate existing security relationships.

kernel

boot stack

TPM

host platform

bluetooth.o

module
BitE.o

module
tpm.o

module

add’l
modules...

User Space

Kernel Space

Wrapper

Legacy
App

BitE-
Aware

Application

Figure 2: TCG-enabled host platform integrity measurement architecture (IMA). The dashed lines denote
integrity measurementas described by Sailer et al. [31].

3 Architecture

The essence of BitE is end-to-end encrypted, authenticated tunnels between a trusted mobile device
and a particular application on the user’s TPM-equipped host platform. Trusted tunnels use per-
application cryptographic keys which are established during an application registration phase. The
process of establishing a trusted input session over the trusted tunnel is contingent on the mobile
device’s successfully verifying an attestation from the IMA and TPM on the user’s host platform.

The user’s trusted mobile device must be capable of establishing a secure connection to the
user’s input device (i.e., keyboard). This can take the formof a physical connection or authenti-
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Figure 3: BitE system architecture. The user presses keys (e.g., types a password) on the keyboard. The
keypress events are sent over an encrypted channel to the BitE Mobile Client. The BitE Mobile Client
re-encrypts the keyboard events with a cryptographic key that is specific to some application. On the host
platform, the encrypted keyboard events are passed from thebluetooth.o kernel module to the BitE
Kernel Module, and then to the application, where they are decrypted.

cated, encrypted communication over a wireless link. The mobile devices we consider have the
following properties:

• A display.

• Persistent storage capable of storing cryptographic keys.

• Sufficient computational power to compute asymmetric cryptographic functions (e.g., digital
signatures).

• Wireless network interface(s) capable of simultaneously3 communicating with I/O devices
(e.g., Bluetooth keyboard and mouse [7]) and the host platform.

The mobile phone’s display serves as a trusted output channel to the user. This enables us to
minimize the amount of trust we place in the window manager onthe host platform.

To minimize the burden on the user, we envision two wireless connections with the mobile
device: one connection to the input device and another connection to the user’s host platform.
We assume that a secure (authenticated and encrypted) association between the user’s wireless
keyboard and her mobile phone can be established. For the remainder of the paper, we consider
the user’s input devices (e.g., wireless keyboard and mouse) as extensions of her mobile phone.
Thus, subsequent discussions will focus on interaction between the the user, her mobile phone, and
her host platform.

3Fast enough so that the user does not notice additional inputlatency.
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For our prototype (which we describe in Section 7), we used a Nokia 6620 as the trusted device
and Bluetooth and infrared as the wireless network interfaces. As mobile phones have become
ubiquitous, we assume the use of a mobile phone as the trusteddevice for the remainder of the
paper.

Mobile devices are continuously increasing in complexity and thus feature software vulnera-
bilities of their own. Efforts are ongoing to improve the security of mobile devices, augmented by
the experience gained working to secure more traditional platforms [38]. We consider the conse-
quences of various compromises in Section 6.

We must trust the application and kernel on the host platformwith which the user wishes to
establish a trusted tunnel for input. One reason we must trust the OS kernel is because of its ability
to arbitrarily read the memory space of any process executing on the system—we cannot trust an
application without also trusting the kernel on which it runs. Despite this trust, it is desirable to
minimize the involvement of the kernel in the handling of user input. For example, consider the
infrequency of situations in which user input is actually destined for the kernel. In most Linux
distributions, Ctrl+Alt+Del is intercepted by the kernel and passed to theinit process. In the
Windows NT family, Ctrl+Alt+Del is received by the GINA4 DLL5. We further investigate the
reasons why a trusted kernel is insufficient for secure inputin Section 6.

In the next section, we describe BitE in detail. For ease of exposition, we describe our system
using Linux and X11 terminology [41, 42]. However, our techniques can be applied in other
operating environments, e.g., Microsoft Windows.

4 Bump in the Ether – Detailed Design

Bump in the Ether (BitE) is built around a trusted mobile devicethat can proxy input, show data
on its own display, and perform asymmetric and symmetric cryptographic operations efficiently.
This trusted device runs a piece of software called the BitE Mobile Client. The BitE Mobile Client
communicates with the BitE Kernel Module, which is loaded on the host platform. The software
required to leverage BitE also includes application extensions (for BitE-aware applications) and
wrappers (for legacy applications).

Figure 3 shows the main components of BitE. The user types on a wireless keyboard which
communicates via an authenticated, encrypted channel witha BitE Mobile Client running on that
user’s mobile phone. The BitE Mobile Client simultaneously establishes a second authenticated,
encrypted channel with the BitE Kernel Module loaded on the host platform.

The BitE Kernel Module manages per-application cryptographic keys which it keeps in TPM-
protected sealed storage [39], denotedKAppi

for applicationi. These keys are shared with the BitE
Mobile Client (i.e., the keys are simultaneously stored by the BitE Mobile Client on the user’s
mobile phone). The per-application keys are established during application registration, which we
describe in Section 4.2.

The trusted tunnel for input of sensitive information is an encrypted, authenticated tunnel con-
structed with session keys. BitE-aware applications obtainsession keys (e.g., keys for encryption

4Graphical Identification aNd Authentication
5Dynamic Link Library
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and MAC6) from the BitE Kernel Module. The session keys are derived from the per-application
keys using standard protocols (e.g., [10, 18, 26]). The BitE Mobile Client uses the session keys
to encrypt and MAC the actual keyboard events such that they can be authenticated and decrypted
by the BitE-aware application in an end-to-end fashion. We now describe the operation of BitE in
detail.

4.1 Initial Cryptographic Key Setup

BitE requires that several cryptographic keys be setup correctly to properly protect user input.
The BitE Mobile Client and the BitE Kernel Module must be able to mutually authenticate, from
which encrypted channels can be bootstrapped using standard protocols (e.g., [10, 18, 26]). The
necessary keys for authentication can be setup using location-limited channels [3, 22, 36], or—due
to the infrequent need for initial key setup—we can assume that the initial configuration occurs in
the absence of malicious activity (as SSH does today). We usethe notation{Kmodule , K

−1
module},

and{Kphone , K
−1
phone} for the asymmetric (e.g., RSA) keypairs for the BitE Kernel Module and the

BitE Mobile Client, respectively.
Additionally, the BitE Mobile Client must be equipped with thepublicAttestation Identity Key

from the host platform, denotedAIK . AIK is required by the BitE Mobile Client to verify the
signature on attestations from the TPM in the host platform.AIK can be sent to the BitE Mobile
Client signed byK−1

module , since the phone can verify the signature withKmodule .

4.2 Application Registration

Each application with which the user desires to be able to establish a trusted tunnel must be reg-
istered with the BitE Kernel Module and the BitE Mobile Client. The user performs an initial
execution of the application to be registered. The IMA automatically measures this application
and its library dependencies7 and stores them in the IMA measurement list (see [31] for details).
We assume the system state can be trusted during applicationregistration (i.e., there is no malicious
code executing).

The BitE Kernel Module generates a symmetric keyKAppi
(for applicationi) to be used in

subsequent connections for the derivation of encryption and MAC session keys for establishing
the trusted tunnel. The IMA measurement for applicationi, the newly generated symmetric key
KAppi

, and the user-friendly name of the registered application (e.g.,Mozilla Firefox), are sent
over a mutually authenticated, encrypted channel (established usingKmodule andKphone) to the
BitE Mobile Client, where they are stored for future use. The role of this data in establishing the
trusted tunnel is detailed in the next section.

6Message Authentication Code, e.g., HMAC [4].
7Other dependencies may exist that we wish to measure. For example, configuration files can have a significant

impact on application security. Automatic identification of configuration files associated with a particular application
is complex, and beyond the scope of this paper.
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Figure 4: Example application execution and trusted tunnel establishment with registered BitE-aware ap-
plication so that the user can enter sensitive information to that application. Inthis figure we assume the
wireless keyboard is an extension of the phone, so we do not show the keyboard. We also assume key setup
(Section 4.1) and application registration (Section 4.2) have already been successfully completed. TT stands
for Trusted Tunnel.

4.3 Trusted Tunnel Setup

This section describes the setup of the BitE trusted tunnel toallow the user to securely send input
to registered applications. Establishment of a trusted tunnel is initiated by a BitE-aware application
when it requires sensitive input from the user. We discuss extensions to allow the user to manually
initiate a trusted tunnel in Section 6. We first describe normal operation when a single registered
application requests a trusted tunnel, then detail conflictresolution which must be performed when
multiple applications request a trusted tunnel at or near the same time.

When a BitE-aware application requires security-sensitive input (e.g., passwords or credit card
numbers), it sends a message to the BitE Kernel Module to register an input-event callback function
implemented by the BitE-aware portion of the application. Ifthe BitE Kernel Module has no
other outstanding requests, it begins the process of establishing the trusted tunnel. This process
has three steps: the host platform must attest the state of its software to the BitE Mobile Client
(Section 4.3.1); the user must interact with the BitE Mobile Client (Section 4.3.2); and session
keys must be established for creation of the actual tunnel (Section 4.3.3).
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4.3.1 Attestation

The BitE Mobile Client must verify an attestation of the currently running software on the user’s
host platform (recall Section 2.2). The BitE Mobile Client canverify the signature on the attes-
tation with its authentic copy of the public AIK, and it can then verify the measurement list is
consistent with the signed PCR values. It can then compare themeasurement values with those
present during application registration (Section 4.2). The measurements of interest to the BitE
Mobile Client are those of the boot stack up through the loading of the kernel, its modules, deter-
ministic system services, and the measurement of the application requesting the trusted tunnel. If
the values match, we consider the host platform to have successfully attested its software state to
the BitE Mobile Client. The user now has assurance that the bootprocess up through the loading
of the kernel, its modules (notably the BitE Kernel Module), and deterministic system services
happened in exactly the same way that it did during application registration, and that the same
version of her application is running that was running during application registration.

Note that the software state of a host platform is comprised of all software loaded for execu-
tion, and that verification of the boot stack up through the loading of the kernel, its modules, and
deterministic system services, and the application requesting the trusted tunnel, leaves room for
unknown user-level software to execute. It is this unknown user-level software against which the
trusted tunnel offers protection. We discuss this further in Section 6.1.

4.3.2 User – Phone Interaction

Upon verifying the attestation from the BitE Kernel Module, the BitE Mobile Client has assurance
that the correct application is executing. Before session keys can be established to form the trusted
tunnel, it is necessary to involve the user via her mobile phone to ensure that the application with
which the user intends to interact and the application asking for her input are the same. This
property can be challenging to achieve without annoying theuser. A viable solution is one that is
easy to use, but not so easy that the user “just hits OK” every time.

Our solution is to display a list of registered applicationson the BitE Mobile Client. The user
must scroll down (using the arrow keys on her keyboard, or thenavigational buttons on the phone
itself) and then select (e.g., press enter) the correct application. Note that since all input from the
user’s keyboard passes through the mobile phone the user does not actually need to press buttons
on her phone. The phone will interpret the user input from herkeyboard appropriately. Refer to
Figure 4 for more information on the interaction between theuser and her phone.

We are concerned about users developing habits that might increase their susceptibility to
spoofing or phishing attacks. Thus, we randomize the order ofthe list so that the user cannot
develop a habit of pressing, e.g., “down-down-enter,” whenstarting a particular application that
requires a trusted tunnel. Instead, the user must actually read the list displayed on her phone
and think about selecting the appropriate application. We believe selection from a randomized
list achieves a good balance between security and usability, provided that the length of the list is
constrained (e.g., it always fits on the phone’s screen).

Once the list is displayed, the BitE Mobile Client signals the user—e.g., by beeping. This
serves two purposes: (1) to let the user know that a secure input process is beginning; and (2) to
let the user know that she must make a selection from choices on the phone’s screen. Item (2)
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is necessary because a user may become confused if her application seems unresponsive when in
reality the BitE Mobile Client on her mobile phone is promptingher for a particular action.

Note that a look-alike (e.g., Trojan, phishing attack) application will be unable to get the mobile
phone to display an appropriate name, because the look-alike application was never registered with
the BitE system (recall Section 4.2). Only applications thatwere initially registered are options for
trusted tunnel endpoints.

If the user is satisfied, she selects the option given by her phone corresponding to the name
of the application with which she wants to establish a trusted tunnel. If she suspects anything
is wrong, she selects theAbort option given by her phone. It is an error if the user selects any
application other than the one which is currently requesting a trusted tunnel. That is, the BitE
Mobile Client will report an error to the user (the application she selected from the list is not the
same application that requested a trusted tunnel). It is a policy decision to decide how to handle
this type of error. One approach is to fail secure, and prevent the user from entering sensitive input
into her application until a successful retry.

Variations on this user interface that might also be effective in practice are discussed in Sec-
tion 6.3.

4.3.3 Session Keys

Session keys must be established which will be used to encrypt and authenticate keyboard events
from the BitE Mobile Client to the BitE-aware application, denotedKencr , KMAC . This process is
similar to that performed by SSH8. Depending on the structure of an actual implementation, itmay
also be necessary to incorporate keystroke timing attack countermeasures, e.g., [35, 37].

Session key establishment depends on the BitE Kernel Module and the BitE Mobile Client
establishing mutually authenticated communications overwhich session key establishment can
proceed (see Section 4.1). Session keys are derived from theapplication key,KAppi

—which was
generated during application registration—using standard protocols (e.g., [10, 18, 26]).

Figure 4 presents step-by-step details on the process of input via the BitE trusted tunnel. Once
the trusted tunnel is established, the user can input her sensitive data. After this data has been
input, the application notifies the BitE Kernel Module that itis finished receiving input via the
trusted tunnel. At this point, the BitE Kernel Module tears down the encrypted channel from the
BitE Mobile Client to the application, and reverts to listening for requests for trusted tunnels from
other registered applications.

4.3.4 Handling Concurrent Trusted Tunnels to Prevent User Confusion

While there are no technical difficulties involved in maintaining multiple active trusted tunnel con-
nections from the BitE Mobile Client to applications, there are user-interface issues. We know of
no way to disambiguate to the user which application is receiving input without requiring excessive
user diligence. For example, a naive solution is to display the name of the application for which
user input is currently being tunneled on the mobile phone’sscreen. This requires the user to look
at the screen of her mobile phone and ensure that the name matches that of the application with
which she is currently interacting.

8Secure SHell,http://www.openssh.com/.
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To prevent user confusion, we force the user to interact withone application at a time in a
trusted way. If we allow users to rapidly switch applications (as today’s window managers do), then
the binding of user intent with user action is dramatically weakened. The rapid context switching
makes it easy for the user to become confused and enter sensitive input into the wrong application.
An adversary may be able to exploit this weakness.

We consider two example applications which we assume to be BitE-aware and that require a
trusted tunnel for user authentication:

1. Banking software which requires the user to authenticate with an account number and a
password.

2. A virtual private network (VPN) client which requires theuser to authenticate with a user-
name and a password.

Suppose the user needs to interact with both applications atthe same time, for example, to com-
pare payroll information from her company with entries in her personal bank account. In today’s
systems, there is nothing to cause the user to serialize her authentication to these applications.
She may start the banking software, then start the VPN client, then authenticate to the banking
software, then authenticate to the VPN client. In the BitE system, assuming the banking software
and VPN client are BitE-aware, the BitE Kernel Module considers this behavior to be a concurrent
request by two applications for establishment of a trusted tunnel.

It is a policy decision how to handle concurrent trusted tunnel requests. One option is to default-
deny both applications, and alert the user to the contention. She can then retry with one of the two
applications, and use it first. This forces the user to establish a trusted tunnel to the first application
and fully input her sensitive data to that application. Onceher data is input, the first application
will relinquish the trusted tunnel, and it will be torn down by BitE. The user can then begin the
process of entering her sensitive data to the second application, which will entail the establishment
of another trusted tunnel. These one-at-a-time semantics may induce some additional latency for
the user before she can begin using her applications, but we consider this to be an acceptable
tradeoff in view of the gains in security.

4.4 BitE-Unaware (Legacy) Applications

We now describe BitE operation with an application that isunawareof the BitE system. That
is, this section describes how BitE is backwards-compatiblewith existing applications. Legacy
applications were written without knowledge of BitE, so there is no way for a legacy application to
request a trusted tunnel. Hence, all input to a legacy application must go through a trusted tunnel.
The basic idea is that we run legacy applications inside awrapperapplication (the BitE-wrapper)
that provides input events to that application (e.g.,stdin or X keyboard events).

The legacy application gets measured by the IMA and registered with BitE in the same way the
BitE-aware applications do. If the application changes after its initial registration, the BitE Kernel
Module will not release the session keys necessary to decrypt and authenticate keyboard events.
The most challenging part of interacting with a legacy application is that it contains no BitE-aware
component that can handle the decryption and authentication of keyboard events. Instead, the
BitE-wrapper does the decryption and authentication of keyboard events. It is necessary to prevent

12



the legacy application from receiving keyboard events fromthe window manager (or other user-
level processes), while allowing it to receive input from the wrapper application. This is easy to
achieve for console applications (e.g., just redirectstdin); however, it is challenging for graphical
applications. We now consider the necessary BitE-wrapper functionality for X11 applications.

X11 applications (clients in the context of X) register to receive certain types of event notifi-
cations from the X server. Common event types include keyboard press and release events. Ap-
plications register to receive these events using theXSelectInput function. The BitE-wrapper
application can intercept this call for dynamically linkedapplications using theLD PRELOAD en-
vironment variable. WithLD PRELOAD defined to a custom BitE shared library, the run-time
linker will call the BitE XSelectInput instead of the X11XSelectInput. Thus, the BitE
Kernel Module has hooked into the application’s input eventloop. The BitE Kernel Module can
generate its own input events to send to the application simply by calling the callback function the
application registered in its call toXSelectInput.

5 Security Analysis

In this section we analyze the security of BitE. During the design of BitE, we tried to make it
difficult for the user to make self-destructive mistakes. For example, the BitE Mobile Client will
not allow the user’s keystrokes to reach the BitE Kernel Module if verification of an attestation
fails. The user must respond to messages displayed on her mobile device before she can proceed.
Security mechanisms on the critical input path cannot go unnoticed by the user. These mechanisms
must provide a tangible benefit with a value commensurate with the difficulty of using them.

We provide some examples of attacks that BitE is able to protect against. We then consider the
failure modes of BitE when the assumptions upon which it is constructed do not hold.

5.1 Stopped Attacks

We consider multiple scenarios where the use of BitE protectsthe user.
Capturing Keystrokes with X Giampaolo shows how easy it is for an attacker to use a malicious
application to capture the keystrokes the user intends to goto the active (and assumed benign)
application [19]. If the user is using BitE to enter sensitivedata; however, this attack does not
work (see Figure 1). The user’s keystrokes are encrypted andauthenticated with session keys (as
discussed in Section 4.3) which are unavailable to the malicious application. Hence, the encrypted
keystrokes reach the user’s desired application unobserved.
Hardware Keyloggers Hardware keyloggers are becoming a significant threat. Sumitomo Bank
in London was the victim of a sophisticated fraud scam involving hardware keyloggers [32]. With
BitE, the user’s keystrokes travel inside encrypted, authenticated tunnels. Even if an adversary can
capture the ciphertext, he will be unable to extract the keystrokes (assuming the relevant crypto-
graphic primitives are secure).
Bluetooth Eavesdropping BitE is most convenient for the user when wireless communication
mechanisms can be used. As long as the initial exchange of public keys between the BitE Mobile
Client and the BitE Kernel Module proceeds securely (using, e.g., [3, 22, 36]), all communication
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between them can be encrypted and authenticated using standard protocols. If keystroke timing at-
tack countermeasures are incorporated (e.g., [35, 37]), timing side-channels can also be eliminated.
Since all communication is strongly authenticated, an adversary will not be able to masquerade as
a valid BitE Mobile Client or BitE Kernel Module.
Modification of Registered Applications An attacker may be able to modify (e.g., by exploiting
a buffer overflow vulnerability in a different application)the binary of a registered application.
Such an attack may modify the application’s executable suchthat it may log user input to a file,
or send it via email to a malicious party on the Internet. WithBitE, an IMA measurement of the
executable was recorded during initial application registration (recall Section 4.2). The modified
application binary will be detected during trusted tunnel setup when the BitE Mobile Client tries
to verify the attestation from the host platform. The BitE Mobile Client will alert the user that the
application has been modified.
Kernel Modification A measurement of the kernel binary is part of the integrity measurement
which is verified when a trusted tunnel is established. Modification of the kernel image on disk
will be detected after the next reboot. As a disk-only modification of the kernel image will not
affect the running system until a reboot, the attack is detected by the BitE Mobile Client before it
can affect the operation of BitE.
Kernel Rootkits Kernel rootkits often modify one or more operating system daemons for ma-
licious use. Typically, a vulnerability in one daemon is used to replace the binaries of several
daemons. As soon as the replacement daemons are executed, the integrity measurements for their
respective binaries will change. The BitE Mobile Client will reject the attestation from the host
platform during the next attempt to establish a trusted tunnel.

5.2 Failure Modes

We now describe what happens if the assumptions upon which the security of BitE is based turn
out to be invalid. Specifically, we discuss the extent to which the failure of our assumptions permit
the attacker to perform one or more of the following:

• To observe keystrokes in one ongoing session.

• To observe keystrokes in current and future sessions.

• To register applications of his own choosing.

Compromise of Active Application If the attacker is able to compromise an application while
the user has a trusted tunnel established, he may be able to observe the user’s keystrokes. This
break is limited to the compromised application, however, as the attacker has no way to access
keys established between the BitE Kernel Module and other registered applications. This break
is feasible because the adversary is exploiting a time-of-measurement, time-of-use (TOMTOU)
limitation of the integrity measurement architecture (e.g., a buffer overflow attack).
Compromised Mobile Phone Since the mobile phone is used as a central point of trust in our
system, its compromise will allow an attacker to access all keyboard events. The attacker will have
possession of{Kphone , K

−1
phone} so he may be able to masquerade as a trusted BitE Mobile Client

using an arbitrary device (e.g., one with a very powerful radio transmitter). Further, the attacker
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will capture all registered applications’ unique keys,KAppi
for applicationi, and user-friendly

name. This will enable the attacker to establish trusted paths with registered applications, and it
will allow the attacker to register new applications.

Note that the TCG is currently working on trusted platform standards for mobile devices [38],
which may be able to minimize the severity of a mobile phone compromise. For example, the BitE
Mobile Client could store its secrets in sealed storage, rendering them inaccessible to malicious
software installed on the phone by the adversary.
Compromise of Active Kernel on Host Platform If the operating system kernel on the host
platform is compromised without rewriting a measured binary (e.g., exploiting TOMTOU limita-
tions with a buffer overflow attack), the attacker may be in a position to capture sensitive user input
despite the BitE system. If the host platform is not TCG-compliant, there is little protection against
an attacker with superuser privileges trying to read the BitEKernel Module’s secrets. This gives
the attacker access to{Kmodule , K

−1
module} and to the unique application keysKAppi

. The attacker
can also capture keystrokes from ongoing sessions by reading the session keys out of the memory
space of the BitE Kernel Module or the application.

6 Discussion

In this section we discuss additional issues that arise while using the BitE system. These issues
include verification of a subset of integrity measurements (as opposed to all measurements); al-
ternative system architectures (elimination of the trusted mobile device or TPM); and alternative
user interface designs for the BitE system. We also perform a comparison of BitE with Microsoft’s
NGSCB.

6.1 Unknown Software Measurements

In Section 4.3, we discussed how the BitE Mobile Client verifiesthe integrity measurements of the
boot stack up through the loading of the kernel, its modules,deterministic system services, and the
application requesting the trusted tunnel. It is importantto note that this leaves room for unknown
software to execute—the true software state of a host platform is comprised ofall software loaded
for execution. Today’s host platforms load and run unknown software frequently, and requiring
the user to manage all possible executable content is intractable. However, we can distinguish
between two periods of integrity measurement: (1) the boot process up through the loading of the
kernel, its modules, and deterministic system services (e.g.,syslogd andsshd), which changes
infrequently; and (2) the software loaded interactively bythe user, which is constantly changing.
Verifying that the boot process up through the loading of thekernel, its modules, and deterministic
system services has not been altered gives the user a significantly higher probability of detecting
root-level compromises of her host platform. Verifying that the same application is running that
was initially registered allows the BitE Kernel Module to release session keys to that application
only. In other words, BitE is not a panacea, but it raises the bar for attackers considerably.
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6.2 Alternative System Architectures

The BitE system as presented in this paper is designed around aTPM-equipped host platform and
a trusted mobile device. We briefly consider alternative design approaches, namely, designs that
eliminate the mobile device or the TPM. It is particularly tempting to think that one or both of these
requirements may be unnecessary since we include the OS kernel in the TCB for BitE. In addition
to its role as resource manager, we must trust the OS kernel because of its ability to arbitrarily read
the memory space of any process executing on the system.

6.2.1 Eliminating the Mobile Device

A significant challenge addressed by BitE is for the user to obtain a user-verifiable property of the
integrity of the OS and application. It is important to distinguish between two of the many roles
the mobile device fulfills:

• Verification of integrity measurements from the host platform.

• Trusted visual output to the user.

Integrity measurement on the host platform puts in place thefacility for verification by an
external entity, but the host platform cannot “self-verify.” In BitE, the mobile device fulfills the
role of the verifying entity. The mobile device must have trusted visual output to the user so it can
appropriately notify the user of the success or failure of this verification.

6.2.2 Trusting the Window Manager

Without the trusted mobile device to securely display information to the user, the window manager
must perform this function (and hence become part of the TCB). We return to the discussion of
trusted windowing systems from Section 2.1. Recall that the most common trusted-output mecha-
nism is based on a dedicated area of the screen being reservedfor output from “trusted” processes
only. Despite several decades of effort, trusted windowingsystems are not readily available for
commodity platforms. We emphasize that BitE will work today,on some of today’s most prevalent
platforms.

We believe one reason window manager-reserved trusted screen areas are not common-place is
because their existence complicates the semantics of maximizing applications or using full-screen
mode. If an application can put the system into full-screen mode, it may be able to spoof the
trusted output area. Precisely defining trusted full-screen semantics that a non-expert user can
operate securely is, to the best of our knowledge, an unsolved problem.

Considering the value that the user receives from being able to maximize applications, and
the role of multi-media applications on today’s commodity PCs, we believe the ability to run
applications in full-screen mode on the system’s primary display is an indispensable feature. BitE
enables the user to interact securely with applications even when they run in full-screen mode.
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6.2.3 Input Proxying by the Mobile Device

With a trusted OS kernel, there is no technical reason why user input must travel through the
mobile device. The BitE Kernel Module already possesses copies of the cryptographic keys shared
with the application, and it could encrypt user input from the traditional keyboard driver before it
passes through the window manager. However, this design raises an important usability issue. The
mobile device must be on the critical input path so that it canensure that the user cannot proceed
unaware of a failed integrity verification. We are concernedthat non-expert users will proceed
to interact with their application even if a message appearson the mobile phone stating that the
system is compromised. With the mobile device on the critical input path, it can stop user input
from reaching the application while also providing secure feedback to the user.

6.2.4 TPM Alternatives

Finally, we discuss the extent to which the TPM is an essential requirement for BitE. We could
leverage software-based attestation mechanisms to verifythe authenticity of the OS [33]. However,
in open computing environments, it may be challenging to satisfy the assumptions underlying
these techniques, e.g., that the verified device cannot communicate with a more powerful computer
during the attestation process.

6.3 Alternative User Interfaces

An important property achieved by the BitE system is that the user selects the registered application
with which she would like to establish a trusted tunnel from alist on her trusted mobile phone’s
screen. We present two alternative operating models that may be more convenient for the user,
though they tradeoff the strength of the resulting trusted tunnel.

6.3.1 Active Selection

As described so far, BitE requires the user to select an application from a list presented by the
BitE Mobile Client when a registered application requests a trusted tunnel for input. An alternative
structure, and one that may be preferable for legacy applications, is one where the user directs the
BitE system to establish a trusted tunnel. Recall that the trusted tunnel is established in response
to a request from a BitE-aware application (Section 4.3). Onepossibility for giving the user this
ability is to maintain a list of all registered applicationson the BitE Mobile Client. When the user
wants to send secure input to, e.g.,Mozilla Firefox, she selects “Mozilla Firefox” from the list on
her phone.

This system has advantages for legacy applications since they do not actively request a trusted
tunnel for input. BitE as described in Section 4.4 requires a legacy application to receiveall input
through the trusted tunnel, which may be inconvenient for the user if she wishes to interact with a
second application with a trusted tunnel while her legacy application is still running (and using the
trusted tunnel).

The drawback of thisActive Selectionscheme is that it requires user diligence. We are con-
cerned about users forgetting to manually enable the trusted tunnel when they input sensitive data.
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6.3.2 Always-On-Top

Another possible configuration for a trusted tunnel system is one where the window manager is
involved. In this scenario, the BitE Mobile Client and the BitE Kernel Module maintain multiple
active sessions. The user’s typing goes to whatever application the window manager considers to
be “on top.” This configuration for BitE is problematic since the window manager becomes a part
of the TCB. Much of the motivation for BitE is that it is able to remove the window manager from
the TCB for trusted tunnel input.

6.4 Comparison with Microsoft NGSCB

We now compare BitE with a well-known host-only solution—thetrusted input capabilities of
Microsoft’s Next-Generation Secure Computing Base (NGSCB) [24]. NGSCB includes a design
for encrypted I/O. In NGSCB, special USB keyboards encrypt keystrokes which pass through
the regular operating system into theNexus, where they are decrypted. Once in the Nexus, they
can be sent to a trusted application running in Nexus-mode, or they can be sent to the legacy
OS. Applications running in Nexus-mode have the ability to take control of the system’s primary
display, which could be useful for establishing a trusted tunnel. However, the establishment of a
trusted tunnel depends on the user observing visual cues on the primary display. We are concerned
that a clever attacker can easily fool a regular user into believing they are interacting with a trusted
application when they are not. As Ye and Smith demonstrate, there is no effective way to establish
a trusted tunnel if there is no trusted display [43, 44].

With BitE, the user identifies an application by interacting with the display on her mobile
phone, which is physically distinct from the host’s primarydisplay. Sensitive keystrokes are
encrypted by the mobile phone under a key shared with that particular application. Encrypted
keystrokes are sent directly to the registered application, completely avoiding use of the window
manager for user input. BitE provides end-to-end encryptionfrom the keyboard through user’s
mobile phone to the registered application. Further, all the requirements for BitE can be met with
commodity devices today (as we show in our evaluation in Section 7).

7 Prototype and Evaluation

In this section, we describe our prototype and evaluate somepractical considerations necessary for
actually building BitE. We have developed a prototype J2ME MIDP 2.0 [25] BitE Mobile Client
that runs on the mobile phone. It receives keystrokes via an infrared keyboard and sends them to a
prototype BitE Kernel Module loaded on the host platform via Bluetooth. Our prototype is shown
in operation in Figure 5. Our prototypes use the BouncyCastle Lightweight Cryptography API9

for all cryptographic operations.
The BitE Mobile Client consists of less than 1000 lines of Java code, not including source

code from libraries. The BitE Kernel Module consists of approximately 500 lines of C and Java
code which interacts with the BitE Mobile Client via Bluetooth,the legacy input system via the

9http://www.bouncycastle.org/
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uinput kernel module, and the integrity measurement architectureof Sailer et al. [31] via the
/proc filesystem.

(a) Phone closeup. (b) Debugging
screenshot cap-
tured on the
phone.

Figure 5: Debugging screenshot showing the BitE prototype in operation.

7.1 Encrypted Channel Setup Latency Between Phone and Host Platform

We have performed experiments to determine the overhead associated with asymmetric crypto-
graphic operations necessary to establish encrypted, authenticated communication between a mo-
bile phone and host. We used a J2ME MIDP 2.0 application running on a Nokia 6600, and a J2SE
application running on the host platform.

Establishing mutually authenticated communication involves performing asymmetric signature
and verification operations at both communication endpoints. In our experiments with 1024-bit
RSA keys (see Table 1), signing operations take 2546 ms on average. Signature verification av-
erages 82 ms. Thus, mutual authentication on the Nokia 6600 will take on the order of 4 to 5
seconds, which is a noticeable but tolerable delay. This is because these asymmetric operations
are only required for communication setup. Once session keys are established, efficient symmetric
primitives can be used for communication.

7.2 Keyboard – Phone Communication

We experimented with an infrared keyboard to provide user input to the BitE Mobile Client, and
a Bluetooth connection from the BitE Mobile Client to the host platform. This is because our
development phones (Nokia’s 6600 and 6620) can support onlyone Bluetooth connection at a
time. The use of an infrared keyboard is undesirable becausethe keystrokes are transmitted in
the clear. A better solution is to use a keyboard that physically attaches to the mobile phone.
Alternatively, a Bluetooth keyboard capable of authenticated, encrypted communication can be
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used. We are unaware of any mobile phones available today that support more than one active
Bluetooth connection simultaneously, but such devices may become available in the near future.

We performed simple usability experiments to analyze keystroke latencies, to ensure that BitE
is not rendered useless by excessive latency while typing. We observe no noticeable latency with
debug logging disabled. Our prototype does not yet encrypt the keystrokes it sends, but the use of
symmetric cryptographic primitives introduces minimal overhead per keystroke. For example, the
use of counter-mode encryption could enable the BitE Mobile Client to precompute enough of the
key stream so that the only encrypt / decrypt operation on thecritical path for a keystroke is an
exclusive-or [23]. This reduces the most significant cryptographic per-keystroke operation to the
verification of a MAC (e.g., HMAC with SHA-1, [4, 5, 21]). Our experiments below on verifying
integrity measurements indicate that SHA-1 operations canbe performed efficiently on the class
of mobile phones we consider.

7.3 Verifying Attestations on the Mobile Phone

We have the integrity measurement architecture (IMA) of Sailer et al. [31] running on our devel-
opment system. We have implemented the operations necessary for the BitE Kernel Module to
send the IMA measurement list to the BitE Mobile Client, and forthe BitE Mobile Client to com-
pute the PCR aggregate for comparison with a signed PCR quote from the TPM. Table 1 shows
some performance results for our prototype on a Nokia 6620. In order to validate an attested set of
measurements from the host platform, the measurement list must be hashed for comparison with
the signed PCR aggregate. For a typical desktop system, this involves hundreds of hash opera-
tions. Our experiments show that the average time necessaryto compute a SHA-1 hash of 401
measurements (the number of measurements our development system had performed at the time of
the experiment), 171 ms, is dominated by the time necessary to manipulate the data from the mea-
surement list—2087 ms. In this experiment, the Nokia 6620 isbound by memory access and not
CPU operations. Our results show that the expected time for a Nokia 6620 to verify an attestation
(check the signature on the aggregate values from the PCRs, hash the measurement list, and com-
pare the aggregate hash from the measurement list to the appropriate PCR value) is approximately
3 seconds. We feel that this is reasonable, considering thatsignificantly faster phones are already
available (unfortunately, we did not have one to experimentwith).

Action Time (ms) Variance
RSA PSS (sign) 2546 343
RSA verify 82 251
SHA-1 aggregate 171 110
Data manipulation 2087 703

Table 1: Average time (in milliseconds) to perform an RSA signature and verification with a 1024-bit key;
compute an aggregate hash of 401 SHA-1 measurements from a Debian workstation running Linux kernel
2.6.12.5; and manipulate the measurement list data. The RSA experiments were performed on a Nokia
6600; the SHA-1 and data manipulation experiments were performed on a Nokia 6620.
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8 Conclusions

This work addresses the design and analysis of Bump in the Ether (BitE), a system that uses
a mobile phone as a trusted proxy between a keyboard and a TCG-compliant host platform to
establish a trusted tunnel for user input to applications. The resulting tunnel is an end-to-end trusted
tunnel all the way from a user’s mobile phone to an application running on the host platform. BitE
places specific emphasis on these design issues: (1) malwaresuch as keyboard sniffers, spyware,
Trojans, and phishing attacks running at user level will be unable to capture the user’s input; (2)
operation of the system is convenient and intuitive for users; (3) the BitE system is feasible today on
commodity hardware; and (4) the BitE system still offers someprotection for legacy applications.
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