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Abstract

User-space malware such as keyboard sniffers, spyware, ajgh3mrepresent a signifi-
cant threat to today’s desktop computing environment. Users have littleaassuthat such
malware cannot observe their input to a particular application. In thisrpapgresent Bump
in the Ether (BItE), an approach for preventing malware from accessngitive user input
and providing the user with additional confidence that her input is beimgegsed as desired.

Rather than preventing malware from running or detecting alreadyisrgnmalware, we
facilitate user input that bypasses common avenues of attack. User anmrsis &rusted tun-
nelfrom the input device to the application. This trusted tunnel is implemented usingtad
user device working in tandem with a TCG-compliant host platform. Thedmseéce verifies
the integrity of the host platform and application, provides a trusted displaydgh which the
user selects the application to which her inputs should be directed, angenitrose inputs
so that only the application can decrypt them. We describe the design andrnieméion of
BitE, with emphasis on both usability and security issues.

1 Introduction

Using security-sensitive applications on current compsystems exposes the user to numerous
risks. User-level malware such as spyware or keyloggeenofionitor and log the user’s every
keystroke. Through keystrokes, an adversary may learntsensformation such as passwords,
bank account numbers, or credit card numbers. Unfortunatatrent computing environments
make such keystroke logging trivial; for example, X-windoallows any application to register a
callback function for keyboard events destined for anyiappibn! Similar vulnerabilities exist in
Microsoft Windows?

Besides the ease of eavesdropping on keystrokes, anotloerssesk to the user is the integrity
of screen content. Malicious applications can easily ovéevany screen area with their content.

1Giampaolo shows—uwith his infamouskey. ¢ 100-line C program [19]—that it is easy to capture keyboard
input events that the user intended for some other apmitathder X11. We conclude that it is desirable to reduce
the involvement of the window manager in sensitive I/O ati¢ig as much as possible.

2For example, seardft t p: / / nsdn. ni crosof t . cont for Regi st er Hot Key andSendl nput , and con-
sider the consequences of judicious use of both.



This introduces the threat that a user cannot trust any obuisplayed on the screen since it
may originate from a malicious application. An example affsa vulnerability is that malicious
Javascript code embedded in a web page can overwrite gectitital browser elements [43].

In such an environment, it is challenging to design a systeahprovides the user with guar-
antees that the correct operating system and the correlata@pm are currently running, and that
only the correct application will receive the user’s kegk#s. In particular, we would like a com-
puting environment with the following properties:

» The user obtains user-verifiable evidence that the co@8and the correct application were
loaded.

* The user obtains user-verifiable evidence that only theecbapplication is receiving keystroke
events.

Our approach for providing these properties is to estalalisber-verifiable trusted tunnel that
securely transports keystrokes from the keyboard to theedeapplication. Figure 1 shows a
comparison of the legacy input path versus input throughsied tunnel. To reduce the user’s need
to trust the window manager, we use the display on a mobiledas a trusted output mechanism.
Given the increasing ubiquity of advanced cell phones or e leverage such devices. Mobile
devices are continuously increasing in complexity and feagure software vulnerabilities of their
own. We consider the consequences of various compromisgesciinon 6.

To provide evidence to the user that the correct OS and apiolics were loaded, we assume
the user’'s computing platform is equipped with a Trustedf&a Module (TPM) as specified by
the Trusted Computing Group (TCG), and that the BIOS and OS ak&diabled and perform
integrity measurements of code loaded for execution [1391, The user’s mobile device is used
to verify these measurements.

To achieve a trusted tunnel that securely delivers keystrdk the correct application, we
design an OS module that directly passes sensitive kegstristkm the user's mobile device to
the correct application, bypassing the vulnerable X-wimsleystem. We designed and prototyped
Bump in the Ether (BitE), a system that provides secure usd@ialge trusted tunnels, which we
describe in the remainder of this paper.

2 Related Work

We review related work on secure window managers, followerkkated work on attestation and
integrity measurement.

2.1 Secure Window Managers

A goal of BitE is to ensure that only the correct applicatioreiseiving input events, and to provide
user-verifiable evidence that this is so. While much priorknoas addressed this issue, none of
it is readily available for non-expert users on commoditgteyns today. We now review related
work chronologically.
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Figure 1. Traditional flow of keystrokes vs. trusted tunnels. On a traditional caenmystem, keystrokes

are first sent to the OS kernel, which passes them to X-windows, whichpdgses them as X11 events
to all applications that register for that class of keyboard event. Unfatély, malicious applications can
register a callback function for keyboard events for other applicati@ns. trusted tunnels would protect
keystrokes and only send them to the desired application.

Several government and military computer windowing systéve been developed with at-
tention to security and the need to carefully isolate deffergrades of information (e.g., classified,
secret, top secret). Early efforts to secure commerciati@wnmanagers resulted in the develop-
ment of Compartmented Mode Workstatiofesg., [6, 8, 9, 17, 20, 27, 29, 30, 40]), where tasks
with different security requirements are strictly isothfeom each other. These works consider an
operating environment where an employee has various thskseeds to perform, and some of her
tasks have security requirements that necessitate molatim other tasks. For example, Picciotto
et al. consider trusted cut-and-paste in the X window systéat-and-paste is strictly confined to
allow information flow from low-sensitivity to high-sensiity applications, so that high-sensitivity
information can never make its way into a low-sensitivitpkgation [28]. Epstein et al. performed
significant work towards trusted X for military systems i tharly 1990s [11, 12, 13, 14, 15, 16].
While these systems are effective for employees trainedcargg-sensitive tasks, they are unsuit-
able for use by consumers.

Trostle details some timing attacks against trusted pattham@sms [37]. His attacks greatly
reduce the password search space for secrets entered ysiaims’ trusted path mechanisms (e.qg.,
Ctrl+Alt+Del to login to a machine running Microsoft Windojvs

Shapiro et al. propose the EROS Trusted Window System [3iwdemonstrates that break-
ing an application into smaller components can greatlyease security while maintaining very
powerful windowing functionality. Unfortunately, EROSircompatible with a significant amount
of legacy software, which hampers widespread adoptionohtrast, BitE works in concert with
existing window managers.

Common to the majority of these schemes is a mechanism by sbitie portion of the com-
puter’s screen is trusted. That is, an area of the screemisatied by some component of the



trusted computing base (TCB) and is inaccessible to all uggicafions. Due to the complexity
of X, itis difficult to implement this trusted screen area massurable way. BitE uses the trusted
mobile device’s screen as a trusted output device. In Se6tiove discuss other issues with trusted
window managers—such as the semantics of full-screen MWidelefer this discussion until after
the presentation of BitE.

We emphasize that, despite the large body of work on trustedowing systems, the majority
of users do not employ any kind of trusted windowing systerhusl we proceed under the as-
sumption that users do not want to change their windowintesysin the remainder of the paper,
we show that BitE can increase user input security under ttasditions.

2.2 Attestation and Integrity Measurement

BitE depends on the ability of the user’s computing platfoompiovide attestations of the software
executing therein. In order to be capable of attestatianptatform must be equipped with an in-
tegrity measurement architecture (IMA). In this sectionps@vide some background on attestation
and integrity measurement.

The Trusted Computing Group (TCG) is an organization that ptesiopen standards to
strengthen computing platforms against software-badadkat[1, 2]. The TCG specifies a Trusted
Platform Module (TPM). A TPM is a dedicated security chipttbaables many trusted computing
features, including sealed storage, attestation, andribteneasurement. Computers featuring
TPMs are readily available today.

TPMs can generate a Storage Root Key (SRK) that will never ldeavehip. The SRK enables
sealed storagewhereby data leaving the TPM chip is encrypted under the SiRkstbrage on
another medium. Several other keys are maintained by the aikept in sealed storage when
not in use. One of these is the Attestation Identity Key (Al¥hich is an RSA signing keypair
used to sign attestations. To the remote party trying tdywéhne attestation, the AIK represents
the identity of attesting platform.

TPMs have one-way platform configuration registers (PCR4) dhalMA can extend with
measurement@ypically cryptographic hashes computed over a completegable) of software
loaded for execution. The IMA extends the appropriate PChstexg with the measurement of
each software executable just before it is loaded. Figure®'s the architecture of a host making
use of the TPM and integrity measurement.

An attestationproduced by the IMA and TPM consists of two parts: (1) a listhef measure-
ments of all software loaded for execution, typically mained in the OS; and (2) an AlIK-signed
list of the values in the PCR registers. A remote party with atlhentic copy of the public AIK
can compute the expected values for the PCR registers baded areasurement list, and check
to see whether the signed values match the computed valbe®nd result is ahainof measure-
ments of all software loaded since the last reboot. The ggceguirement is that all software is
measured before being loaded for execution.

Sailer et al. developed an IMA for Linux [31]. They show thatsi difficult to manage the
integrity measurement of a complete interactive computstesn, since the order in which appli-
cations are executed is reflected in the resulting PCR valesng the boot process, however, a
well-behaved system always loads in the same order. Hamegyity measurement of the system
from boot through the loading of the kernel, its modules, @@rministic system services will be

4



consistent across multiple boot cycles on a well-behavestiplatform
Sealed storage enables another feature that is useful todzit& can be encrypted under a key

generated based on the current PCR values. The stored dhates isccessible unless the host
platform’s software state is consistent with the state né®d during the initial creation of the key.
When using sealed storage, it is assumed that the user'snptad¥ill always load certain software
If the order changes, the system is coeside be sufficiently different to

in the same order.
invalidate existing security relationships.
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Figure 2: TCG-enabled host platform integrity measurement architecture (IMA¢. dashed lines denote

integrity measuremeras described by Sailer et al. [31].

3 Architecture
The essence of BitE is end-to-end encrypted, authenticatee ks between a trusted mobile device
and a particular application on the user’'s TPM-equipped pladform. Trusted tunnels use per-
application cryptographic keys which are establisheddugin application registration phase. The
process of establishing a trusted input session over tisgettuunnel is contingent on the mobile
device’s successfully verifying an attestation from theAllind TPM on the user’s host platform.
The user’s trusted mobile device must be capable of edtatdisa secure connection to the
user’s input device (i.e., keyboard). This can take the fofra physical connection or authenti-
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Figure 3: BitE system architecture. The user presses keys (e.g., types a pdsswdahe keyboard. The
keypress events are sent over an encrypted channel to the BitE Mdigite. CThe BitE Mobile Client
re-encrypts the keyboard events with a cryptographic key that is spexgiome application. On the host
platform, the encrypted keyboard events are passed frorblthet oot h. o kernel module to the BitE
Kernel Module, and then to the application, where they are decrypted.

cated, encrypted communication over a wireless link. Theilaaevices we consider have the
following properties:

» Adisplay.
* Persistent storage capable of storing cryptographic.keys

« Sufficient computational power to compute asymmetric wgpaphic functions (e.qg., digital
signatures).

 Wireless network interface(s) capable of simultanecustynmunicating with I/O devices
(e.g., Bluetooth keyboard and mouse [7]) and the host platfor

The mobile phone’s display serves as a trusted output chémtige user. This enables us to
minimize the amount of trust we place in the window managetherhost platform.

To minimize the burden on the user, we envision two wirelesmections with the mobile
device: one connection to the input device and another aiometo the user's host platform.
We assume that a secure (authenticated and encrypted)agsobetween the user’'s wireless
keyboard and her mobile phone can be established. For trender of the paper, we consider
the user’s input devices (e.g., wireless keyboard and massextensions of her mobile phone.
Thus, subsequent discussions will focus on interactiowden the the user, her mobile phone, and
her host platform.

3Fast enough so that the user does not notice additional latguicy.
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For our prototype (which we describe in Section 7), we usedlkad@6620 as the trusted device
and Bluetooth and infrared as the wireless network intesfades mobile phones have become
ubiquitous, we assume the use of a mobile phone as the trdstece for the remainder of the
paper.

Mobile devices are continuously increasing in complexitg shus feature software vulnera-
bilities of their own. Efforts are ongoing to improve the gty of mobile devices, augmented by
the experience gained working to secure more traditiorafgrims [38]. We consider the conse-
guences of various compromises in Section 6.

We must trust the application and kernel on the host platfeith which the user wishes to
establish a trusted tunnel for input. One reason we mugttra©S kernel is because of its ability
to arbitrarily read the memory space of any process exegotinthe system—we cannot trust an
application without also trusting the kernel on which it surDespite this trust, it is desirable to
minimize the involvement of the kernel in the handling of usgut. For example, consider the
infrequency of situations in which user input is actuallstileed for the kernel. In most Linux
distributions, Ctrl+Alt+Del is intercepted by the kerneldapassed to theni t process. In the
Windows NT family, Ctrl+Alt+Del is received by the GINADLL®. We further investigate the
reasons why a trusted kernel is insufficient for secure inp8ection 6.

In the next section, we describe BItE in detail. For ease obsition, we describe our system
using Linux and X11 terminology [41, 42]. However, our teicjues can be applied in other
operating environments, e.g., Microsoft Windows.

4  Bump in the Ether — Detailed Design

Bump in the Ether (BitE) is built around a trusted mobile devlta can proxy input, show data
on its own display, and perform asymmetric and symmetriptographic operations efficiently.
This trusted device runs a piece of software called the BitbiMdClient. The BitE Mobile Client
communicates with the BitE Kernel Module, which is loaded lo@ host platform. The software
required to leverage BItE also includes application extarsifor BitE-aware applications) and
wrappers (for legacy applications).

Figure 3 shows the main components of BitE. The user types omedess keyboard which
communicates via an authenticated, encrypted channelanBitE Mobile Client running on that
user’s mobile phone. The BitE Mobile Client simultaneousliabkshes a second authenticated,
encrypted channel with the BitE Kernel Module loaded on th& ptatform.

The BitE Kernel Module manages per-application cryptogiagéys which it keeps in TPM-
protected sealed storage [39], denatég),,, for application:. These keys are shared with the BitE
Mobile Client (i.e., the keys are simultaneously stored y BitE Mobile Client on the user’s
mobile phone). The per-application keys are establishedglapplication registration, which we
describe in Section 4.2.

The trusted tunnel for input of sensitive information is acrypted, authenticated tunnel con-
structed with session keys. BitE-aware applications ol#assion keys (e.g., keys for encryption

4Graphical Identification aNd Authentication
SDynamic Link Library



and MAC?) from the BItE Kernel Module. The session keys are derivethftbe per-application
keys using standard protocols (e.g., [10, 18, 26]). The Bitiblé Client uses the session keys
to encrypt and MAC the actual keyboard events such that taeye authenticated and decrypted
by the BitE-aware application in an end-to-end fashion. We describe the operation of BitE in
detail.

4.1 Initial Cryptographic Key Setup

BitE requires that several cryptographic keys be setup ctiyréo properly protect user input.
The BitE Mobile Client and the BitE Kernel Module must be able tatually authenticate, from
which encrypted channels can be bootstrapped using sthpdatocols (e.g., [10, 18, 26]). The
necessary keys for authentication can be setup usingdoechtnited channels [3, 22, 36], or—due
to the infrequent need for initial key setup—we can assuratthe initial configuration occurs in
the absence of malicious activity (as SSH does today). Wehesaotation{ K,,quze, K;L})dule},
and{ K pnone, K;hlone} for the asymmetric (e.g., RSA) keypairs for the BitE Kernel Miedand the
BitE Mobile Client, respectively.

Additionally, the BitE Mobile Client must be equipped with theblic Attestation Identity Key
from the host platform, denoted/K. AIK is required by the BitE Mobile Client to verify the
signature on attestations from the TPM in the host platfadmi” can be sent to the BitE Mobile
Client signed byK;L1 since the phone can verify the signature Wih .4, -

odule?

4.2 Application Registration

Each application with which the user desires to be able tbésh a trusted tunnel must be reg-
istered with the BitE Kernel Module and the BitE Mobile Clienthél'user performs an initial
execution of the application to be registered. The IMA awdboally measures this application
and its library dependencieand stores them in the IMA measurement list (see [31] forildgta
We assume the system state can be trusted during applicagjistration (i.e., there is no malicious
code executing).

The BitE Kernel Module generates a symmetric K€y, (for application:) to be used in
subsequent connections for the derivation of encryptiah MAC session keys for establishing
the trusted tunnel. The IMA measurement for applicatiotihe newly generated symmetric key
K 4pp,, and the user-friendly name of the registered applicateog.(Mozilla FirefoX), are sent
over a mutually authenticated, encrypted channel (estedadi usingi<, 4. and K,,.) to the
BitE Mobile Client, where they are stored for future use. The aj this data in establishing the
trusted tunnel is detailed in the next section.

5Message Authentication Code, e.g., HMAC [4].

’Other dependencies may exist that we wish to measure. Forgeaconfiguration files can have a significant
impact on application security. Automatic identificatioinconfiguration files associated with a particular applimati
is complex, and beyond the scope of this paper.
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Figure 4: Example application execution and trusted tunnel establishment with redigi&Eeaware ap-
plication so that the user can enter sensitive information to that applicatiaislfigure we assume the
wireless keyboard is an extension of the phone, so we do not showythede. We also assume key setup
(Section 4.1) and application registration (Section 4.2) have already beesssfully completed. TT stands
for Trusted Tunnel.

4.3 Trusted Tunnel Setup

This section describes the setup of the BIitE trusted tunnallda the user to securely send input
to registered applications. Establishment of a trustedeLlis initiated by a BitE-aware application
when it requires sensitive input from the user. We discussnsions to allow the user to manually
initiate a trusted tunnel in Section 6. We first describe radroperation when a single registered
application requests a trusted tunnel, then detail comégsxlution which must be performed when
multiple applications request a trusted tunnel at or neastme time.

When a BitE-aware application requires security-sensitipei (e.g., passwords or credit card
numbers), it sends a message to the BitE Kernel Module tateegis input-event callback function
implemented by the BitE-aware portion of the application.thié BitE Kernel Module has no
other outstanding requests, it begins the process of estalg the trusted tunnel. This process
has three steps: the host platform must attest the state sbitware to the BitE Mobile Client
(Section 4.3.1); the user must interact with the BitE Mobile@ (Section 4.3.2); and session
keys must be established for creation of the actual tunresit{@ 4.3.3).



4.3.1 Attestation

The BItE Mobile Client must verify an attestation of the cuthgmunning software on the user’s

host platform (recall Section 2.2). The BitE Mobile Client ocgerify the signature on the attes-
tation with its authentic copy of the public AIK, and it carethverify the measurement list is

consistent with the signed PCR values. It can then comparm#asurement values with those
present during application registration (Section 4.2).e Tireasurements of interest to the BitE
Mobile Client are those of the boot stack up through the lagdiithe kernel, its modules, deter-
ministic system services, and the measurement of the apiplicrequesting the trusted tunnel. If
the values match, we consider the host platform to have safidly attested its software state to
the BItE Mobile Client. The user now has assurance that the grooess up through the loading
of the kernel, its modules (notably the BitE Kernel Modula)daleterministic system services
happened in exactly the same way that it did during appboategistration, and that the same
version of her application is running that was running dgiapplication registration.

Note that the software state of a host platform is compridesllsoftware loaded for execu-
tion, and that verification of the boot stack up through tredlog of the kernel, its modules, and
deterministic system services, and the application ragqugethe trusted tunnel, leaves room for
unknown user-level software to execute. It is this unknowsertlevel software against which the
trusted tunnel offers protection. We discuss this furthe8ection 6.1.

4.3.2 User — Phone Interaction

Upon verifying the attestation from the BitE Kernel Modulee BitE Mobile Client has assurance
that the correct application is executing. Before sessigs kan be established to form the trusted
tunnel, it is necessary to involve the user via her mobilenghto ensure that the application with
which the user intends to interact and the application a@skin her input are the same. This
property can be challenging to achieve without annoyingudes. A viable solution is one that is
easy to use, but not so easy that the user “just hits OK” evers. t

Our solution is to display a list of registered applicatieamsthe BitE Mobile Client. The user
must scroll down (using the arrow keys on her keyboard, onthwgational buttons on the phone
itself) and then select (e.g., press enter) the correcicgtign. Note that since all input from the
user’s keyboard passes through the mobile phone the usemdoactually need to press buttons
on her phone. The phone will interpret the user input fromKegtboard appropriately. Refer to
Figure 4 for more information on the interaction betweenubker and her phone.

We are concerned about users developing habits that mightase their susceptibility to
spoofing or phishing attacks. Thus, we randomize the ordéheolist so that the user cannot
develop a habit of pressing, e.g., “down-down-enter,” whtanting a particular application that
requires a trusted tunnel. Instead, the user must actusdigt the list displayed on her phone
and think about selecting the appropriate application. \&lete selection from a randomized
list achieves a good balance between security and usalpitityided that the length of the list is
constrained (e.g., it always fits on the phone’s screen).

Once the list is displayed, the BitE Mobile Client signals tlsemr—e.g., by beeping. This
serves two purposes: (1) to let the user know that a secuw prpcess is beginning; and (2) to
let the user know that she must make a selection from choiecgbhephone’s screen. Item (2)

10



IS necessary because a user may become confused if heragippliseems unresponsive when in
reality the BitE Mobile Client on her mobile phone is promptimgy for a particular action.

Note that a look-alike (e.qg., Trojan, phishing attack) aggilon will be unable to get the mobile
phone to display an appropriate name, because the lookaghilication was never registered with
the BItE system (recall Section 4.2). Only applications thete initially registered are options for
trusted tunnel endpoints.

If the user is satisfied, she selects the option given by hen@ltorresponding to the name
of the application with which she wants to establish a tistennel. If she suspects anything
is wrong, she selects th&bort option given by her phone. It is an error if the user selects an
application other than the one which is currently requeséirtrusted tunnel. That is, the BitE
Mobile Client will report an error to the user (the applicatishe selected from the list is not the
same application that requested a trusted tunnel). It idiaypdecision to decide how to handle
this type of error. One approach is to fail secure, and piterenuser from entering sensitive input
into her application until a successful retry.

Variations on this user interface that might also be eféecin practice are discussed in Sec-
tion 6.3.

4.3.3 Session Keys

Session keys must be established which will be used to enangpbauthenticate keyboard events
from the BitE Mobile Client to the BitE-aware application, d&wkK ..., Kac. This process is
similar to that performed by SSHDepending on the structure of an actual implementationaif
also be necessary to incorporate keystroke timing attaskteomeasures, e.g., [35, 37].

Session key establishment depends on the BitE Kernel Modwetee BitE Mobile Client
establishing mutually authenticated communications ovieich session key establishment can
proceed (see Section 4.1). Session keys are derived froapthieation key,K 4,,,—which was
generated during application registration—using stashgaotocols (e.g., [10, 18, 26]).

Figure 4 presents step-by-step details on the process utf wgpthe BitE trusted tunnel. Once
the trusted tunnel is established, the user can input heitsendata. After this data has been
input, the application notifies the BitE Kernel Module thatsitfinished receiving input via the
trusted tunnel. At this point, the BitE Kernel Module tearsvdahe encrypted channel from the
BitE Mobile Client to the application, and reverts to listegiior requests for trusted tunnels from
other registered applications.

4.3.4 Handling Concurrent Trusted Tunnels to Prevent User ©nfusion

While there are no technical difficulties involved in mainiag multiple active trusted tunnel con-
nections from the BitE Mobile Client to applications, there aser-interface issues. We know of
no way to disambiguate to the user which application is x@&egiinput without requiring excessive
user diligence. For example, a naive solution is to dispheyrtame of the application for which
user input is currently being tunneled on the mobile phosersen. This requires the user to look
at the screen of her mobile phone and ensure that the naméesdttat of the application with
which she is currently interacting.

8Secure SHellnt t p: / / www. openssh. cont .
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To prevent user confusion, we force the user to interact wite application at a time in a
trusted way. If we allow users to rapidly switch applicagdas today’s window managers do), then
the binding of user intent with user action is dramaticallyakened. The rapid context switching
makes it easy for the user to become confused and enterigengiut into the wrong application.
An adversary may be able to exploit this weakness.

We consider two example applications which we assume to e &itare and that require a
trusted tunnel for user authentication:

1. Banking software which requires the user to authenticatie an account number and a
password.

2. A virtual private network (VPN) client which requires thser to authenticate with a user-
name and a password.

Suppose the user needs to interact with both applicatiche aame time, for example, to com-
pare payroll information from her company with entries im personal bank account. In today’s
systems, there is nothing to cause the user to serializeutkergication to these applications.
She may start the banking software, then start the VPN c¢ltbeth authenticate to the banking
software, then authenticate to the VPN client. In the BitEeys assuming the banking software
and VPN client are BitE-aware, the BitE Kernel Module conssdars behavior to be a concurrent
request by two applications for establishment of a trusiede!.

Itis a policy decision how to handle concurrent trusted alnequests. One option is to default-
deny both applications, and alert the user to the contenBbe can then retry with one of the two
applications, and use it first. This forces the user to eistabltrusted tunnel to the first application
and fully input her sensitive data to that application. Ohee data is input, the first application
will relinquish the trusted tunnel, and it will be torn dowg BitE. The user can then begin the
process of entering her sensitive data to the second appticavhich will entail the establishment
of another trusted tunnel. These one-at-a-time semantgsimiuce some additional latency for
the user before she can begin using her applications, butowsider this to be an acceptable
tradeoff in view of the gains in security.

4.4 BitE-Unaware (Legacy) Applications

We now describe BItE operation with an application thatmawareof the BitE system. That
is, this section describes how BItE is backwards-compatiate existing applications. Legacy
applications were written without knowledge of BitE, so thexno way for a legacy application to
request a trusted tunnel. Hence, all input to a legacy agipbic must go through a trusted tunnel.
The basic idea is that we run legacy applications insideagpperapplication (the BitE-wrapper)
that provides input events to that application (esg.dli n or X keyboard events).

The legacy application gets measured by the IMA and regdterth BitE in the same way the
BitE-aware applications do. If the application changesrét$anitial registration, the BitE Kernel
Module will not release the session keys necessary to deangauthenticate keyboard events.
The most challenging part of interacting with a legacy agglon is that it contains no BitE-aware
component that can handle the decryption and authenticafickkeyboard events. Instead, the
BitE-wrapper does the decryption and authentication of &ayth events. It is necessary to prevent
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the legacy application from receiving keyboard events ftbemwindow manager (or other user-
level processes), while allowing it to receive input frone thrapper application. This is easy to
achieve for console applications (e.g., just redisgadi n); however, itis challenging for graphical
applications. We now consider the necessary BitE-wrappetionality for X11 applications.

X11 applications ¢lientsin the context of X) register to receive certain types of éventifi-
cations from the X server. Common event types include keybpegss and release events. Ap-
plications register to receive these events usingd®el ect | nput function. The BitE-wrapper
application can intercept this call for dynamically linkagplications using theD_PREL QAD en-
vironment variable. WithLD_PRELOAD defined to a custom BitE shared library, the run-time
linker will call the BitE XSel ect | nput instead of the X11XSel ect | nput . Thus, the BitE
Kernel Module has hooked into the application’s input edenp. The BitE Kernel Module can
generate its own input events to send to the applicationlgibpcalling the callback function the
application registered in its call %6Sel ect | nput .

5 Security Analysis

In this section we analyze the security of BitE. During theigie®f BitE, we tried to make it
difficult for the user to make self-destructive mistakesr &mample, the BitE Mobile Client will
not allow the user’s keystrokes to reach the BitE Kernel Medfiverification of an attestation
fails. The user must respond to messages displayed on heélerdelice before she can proceed.
Security mechanisms on the critical input path cannot goticed by the user. These mechanisms
must provide a tangible benefit with a value commensurate tivé difficulty of using them.

We provide some examples of attacks that BitE is able to pragmgunst. We then consider the
failure modes of BitE when the assumptions upon which it isstmicted do not hold.

5.1 Stopped Attacks

We consider multiple scenarios where the use of BitE proteetsiser.

Capturing Keystrokes with X Giampaolo shows how easy it is for an attacker to use a mascio
application to capture the keystrokes the user intends twdbe active (and assumed benign)
application [19]. If the user is using BIitE to enter sensitila&a; however, this attack does not
work (see Figure 1). The user’s keystrokes are encryptecatignticated with session keys (as
discussed in Section 4.3) which are unavailable to the imakcapplication. Hence, the encrypted
keystrokes reach the user’s desired application unobderve

Hardware Keyloggers Hardware keyloggers are becoming a significant threat. ®amo Bank

in London was the victim of a sophisticated fraud scam inmgh\hardware keyloggers [32]. With
BitE, the user’s keystrokes travel inside encrypted, autbatied tunnels. Even if an adversary can
capture the ciphertext, he will be unable to extract the keltes (assuming the relevant crypto-
graphic primitives are secure).

Bluetooth Eavesdropping BItE is most convenient for the user when wireless commuiainat
mechanisms can be used. As long as the initial exchange t€tealys between the BitE Mobile
Client and the BitE Kernel Module proceeds securely (usirg, £, 22, 36]), all communication
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between them can be encrypted and authenticated usingstigotocols. If keystroke timing at-
tack countermeasures are incorporated (e.g., [35, 37ndi side-channels can also be eliminated.
Since all communication is strongly authenticated, an esirg will not be able to masquerade as
a valid BitE Mobile Client or BitE Kernel Module.

Modification of Registered Applications An attacker may be able to modify (e.g., by exploiting
a buffer overflow vulnerability in a different applicatiott)e binary of a registered application.
Such an attack may modify the application’s executable si@hit may log user input to a file,
or send it via email to a malicious party on the Internet. VBBttE, an IMA measurement of the
executable was recorded during initial application regtgin (recall Section 4.2). The modified
application binary will be detected during trusted tunreglp when the BIitE Mobile Client tries
to verify the attestation from the host platform. The BitE MelClient will alert the user that the
application has been modified.

Kernel Modification A measurement of the kernel binary is part of the integrityasueement
which is verified when a trusted tunnel is established. Madlion of the kernel image on disk
will be detected after the next reboot. As a disk-only modiimn of the kernel image will not
affect the running system until a reboot, the attack is deteby the BitE Mobile Client before it
can affect the operation of BitE.

Kernel Rootkits Kernel rootkits often modify one or more operating systerardans for ma-
licious use. Typically, a vulnerability in one daemon is dige replace the binaries of several
daemons. As soon as the replacement daemons are execatadethity measurements for their
respective binaries will change. The BitE Mobile Client wiject the attestation from the host
platform during the next attempt to establish a trustedeélnn

5.2 Failure Modes

We now describe what happens if the assumptions upon whéhdburity of BitE is based turn
out to be invalid. Specifically, we discuss the extent to Wwhie failure of our assumptions permit
the attacker to perform one or more of the following:

» To observe keystrokes in one ongoing session.
» To observe keystrokes in current and future sessions.

 To register applications of his own choosing.

Compromise of Active Application If the attacker is able to compromise an application while
the user has a trusted tunnel established, he may be ables¢ovelthe user’s keystrokes. This
break is limited to the compromised application, howevsritee attacker has no way to access
keys established between the BitE Kernel Module and othestergd applications. This break

is feasible because the adversary is exploiting a time-@dsurement, time-of-use (TOMTOU)
limitation of the integrity measurement architecture (eagouffer overflow attack).

Compromised Mobile Phone Since the mobile phone is used as a central point of trustiin ou
system, its compromise will allow an attacker to accesseglbkard events. The attacker will have
possession of K yone; K ...} SO he may be able to masquerade as a trusted BitE Mobile Client
using an arbitrary device (e.g., one with a very powerfuiodachnsmitter). Further, the attacker
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will capture all registered applications’ unique keys,,,, for applicationi, and user-friendly
name. This will enable the attacker to establish trustedgpaith registered applications, and it
will allow the attacker to register new applications.

Note that the TCG is currently working on trusted platforrmst@ads for mobile devices [38],
which may be able to minimize the severity of a mobile phomep@mise. For example, the BitE
Mobile Client could store its secrets in sealed storage,aeng them inaccessible to malicious
software installed on the phone by the adversary.

Compromise of Active Kernel on Host Platform If the operating system kernel on the host
platform is compromised without rewriting a measured binarg., exploiting TOMTOU limita-
tions with a buffer overflow attack), the attacker may be imsifon to capture sensitive user input
despite the BitE system. If the host platform is not TCG-coarglithere is little protection against
an attacker with superuser privileges trying to read the BitEnel Module’s secrets. This gives
the attacker access {d<,,oqui, Kmidule} and to the unique application keys,,,,. The attacker
can also capture keystrokes from ongoing sessions by igé#uensession keys out of the memory
space of the BitE Kernel Module or the application.

6 Discussion

In this section we discuss additional issues that ariseendsing the BitE system. These issues
include verification of a subset of integrity measuremeassqpposed to all measurements); al-
ternative system architectures (elimination of the trdistebile device or TPM); and alternative
user interface designs for the BIitE system. We also perforamgarison of BitE with Microsoft’s
NGSCB.

6.1 Unknown Software Measurements

In Section 4.3, we discussed how the BitE Mobile Client verifiesintegrity measurements of the
boot stack up through the loading of the kernel, its modweterministic system services, and the
application requesting the trusted tunnel. It is importariote that this leaves room for unknown
software to execute—the true software state of a host phati® comprised oéll software loaded
for execution. Today’s host platforms load and run unknowitvgare frequently, and requiring
the user to manage all possible executable content is tabilec However, we can distinguish
between two periods of integrity measurement: (1) the bomtgss up through the loading of the
kernel, its modules, and deterministic system servicegs,&ys| ogd andsshd), which changes
infrequently; and (2) the software loaded interactivelythg user, which is constantly changing.
Verifying that the boot process up through the loading ofkiienel, its modules, and deterministic
system services has not been altered gives the user a sagtlifibigher probability of detecting
root-level compromises of her host platform. Verifyingtttide same application is running that
was initially registered allows the BitE Kernel Module togate session keys to that application
only. In other words, BIitE is not a panacea, but it raises tmddyaattackers considerably.
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6.2 Alternative System Architectures

The BItE system as presented in this paper is designed aroliRMaequipped host platform and
a trusted mobile device. We briefly consider alternativagieapproaches, namely, designs that
eliminate the mobile device or the TPM. It is particularlynieting to think that one or both of these
requirements may be unnecessary since we include the O8l kethe TCB for BitE. In addition

to its role as resource manager, we must trust the OS keroalibe of its ability to arbitrarily read
the memory space of any process executing on the system.

6.2.1 Eliminating the Mobile Device

A significant challenge addressed by BitE is for the user taiokd user-verifiable property of the
integrity of the OS and application. It is important to disfuish between two of the many roles
the mobile device fulfills:

* Verification of integrity measurements from the host @ati.

 Trusted visual output to the user.

Integrity measurement on the host platform puts in placefdlogity for verification by an
external entity, but the host platform cannot “self-vetifin BitE, the mobile device fulfills the
role of the verifying entity. The mobile device must havestad visual output to the user so it can
appropriately notify the user of the success or failure o Herification.

6.2.2 Trusting the Window Manager

Without the trusted mobile device to securely display infation to the user, the window manager
must perform this function (and hence become part of the TCE)r&turn to the discussion of
trusted windowing systems from Section 2.1. Recall that thetrmommon trusted-output mecha-
nism is based on a dedicated area of the screen being resenedput from “trusted” processes
only. Despite several decades of effort, trusted windoveiygfems are not readily available for
commodity platforms. We emphasize that BitE will work today,some of today’s most prevalent
platforms.

We believe one reason window manager-reserved trusteelsareas are not common-place is
because their existence complicates the semantics of maxgrapplications or using full-screen
mode. If an application can put the system into full-screesxde) it may be able to spoof the
trusted output area. Precisely defining trusted full-gtre@mantics that a non-expert user can
operate securely is, to the best of our knowledge, an undqrablem.

Considering the value that the user receives from being abieaximize applications, and
the role of multi-media applications on today’s commodi@s? we believe the ability to run
applications in full-screen mode on the system’s primaspldiy is an indispensable feature. BitE
enables the user to interact securely with applications edeen they run in full-screen mode.
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6.2.3 Input Proxying by the Mobile Device

With a trusted OS kernel, there is no technical reason why impeit must travel through the
mobile device. The BitE Kernel Module already possessessagithe cryptographic keys shared
with the application, and it could encrypt user input frora traditional keyboard driver before it
passes through the window manager. However, this desigesran important usability issue. The
mobile device must be on the critical input path so that it easure that the user cannot proceed
unaware of a failed integrity verification. We are concertieat non-expert users will proceed
to interact with their application even if a message appearthe mobile phone stating that the
system is compromised. With the mobile device on the ctitigaut path, it can stop user input
from reaching the application while also providing seceedback to the user.

6.2.4 TPM Alternatives

Finally, we discuss the extent to which the TPM is an essergguirement for BitE. We could
leverage software-based attestation mechanisms to Weefyuthenticity of the OS [33]. However,
in open computing environments, it may be challenging tes§athe assumptions underlying
these techniques, e.g., that the verified device cannot coneate with a more powerful computer
during the attestation process.

6.3 Alternative User Interfaces

An important property achieved by the BitE system is that 8er selects the registered application
with which she would like to establish a trusted tunnel frofiseon her trusted mobile phone’s
screen. We present two alternative operating models thgtbmanore convenient for the user,
though they tradeoff the strength of the resulting trusteuhél.

6.3.1 Active Selection

As described so far, BitE requires the user to select an atigit from a list presented by the
BitE Mobile Client when a registered application requestsistéd tunnel for input. An alternative
structure, and one that may be preferable for legacy apjits is one where the user directs the
BitE system to establish a trusted tunnel. Recall that theetdusinnel is established in response
to a request from a BitE-aware application (Section 4.3). Pwssibility for giving the user this
ability is to maintain a list of all registered applicatioms the BitE Mobile Client. When the user
wants to send secure input to, eldgzilla Firefox, she selects “Mozilla Firefox” from the list on
her phone.

This system has advantages for legacy applications siegedith not actively request a trusted
tunnel for input. BItE as described in Section 4.4 requiresgaty application to receial input
through the trusted tunnel, which may be inconvenient feruser if she wishes to interact with a
second application with a trusted tunnel while her legagiagtion is still running (and using the
trusted tunnel).

The drawback of thig\ctive Selectiorscheme is that it requires user diligence. We are con-
cerned about users forgetting to manually enable the ttustenel when they input sensitive data.
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6.3.2 Always-On-Top

Another possible configuration for a trusted tunnel systemne where the window manager is
involved. In this scenario, the BitE Mobile Client and the BitEridel Module maintain multiple
active sessions. The user’s typing goes to whatever apiplictne window manager considers to
be “on top.” This configuration for BitE is problematic sin¢etwindow manager becomes a part
of the TCB. Much of the motivation for BitE is that it is able to rewe the window manager from
the TCB for trusted tunnel input.

6.4 Comparison with Microsoft NGSCB

We now compare BItE with a well-known host-only solution—tinested input capabilities of
Microsoft's Next-Generation Secure Computing Base (NGSCB). [RGSCB includes a design
for encrypted I/0O. In NGSCB, special USB keyboards encrypisitekes which pass through
the regular operating system into tNexus where they are decrypted. Once in the Nexus, they
can be sent to a trusted application running in Nexus-mod¢hay can be sent to the legacy
OS. Applications running in Nexus-mode have the abilityatket control of the system’s primary
display, which could be useful for establishing a trustathel. However, the establishment of a
trusted tunnel depends on the user observing visual cudge@ritmary display. We are concerned
that a clever attacker can easily fool a regular user inti@iely they are interacting with a trusted
application when they are not. As Ye and Smith demonstragéeetis no effective way to establish
a trusted tunnel if there is no trusted display [43, 44].

With BitE, the user identifies an application by interactinghwthe display on her mobile
phone, which is physically distinct from the host’'s primatigplay. Sensitive keystrokes are
encrypted by the mobile phone under a key shared with thaicpkr application. Encrypted
keystrokes are sent directly to the registered applicatompletely avoiding use of the window
manager for user input. BItE provides end-to-end encrypftiom the keyboard through user’s
mobile phone to the registered application. Further, &lrdquirements for BitE can be met with
commodity devices today (as we show in our evaluation iniSeat).

7 Prototype and Evaluation

In this section, we describe our prototype and evaluate swawtical considerations necessary for
actually building BitE. We have developed a prototype J2MBDMI2.0 [25] BitE Mobile Client
that runs on the mobile phone. It receives keystrokes viafaared keyboard and sends them to a
prototype BitE Kernel Module loaded on the host platform viaddboth. Our prototype is shown
in operation in Figure 5. Our prototypes use the BouncyCastjatweight Cryptography API
for all cryptographic operations.

The BitE Mobile Client consists of less than 1000 lines of Javdec not including source
code from libraries. The BitE Kernel Module consists of apraately 500 lines of C and Java
code which interacts with the BitE Mobile Client via Bluetoothe legacy input system via the

%ht t p: // www. bouncycast | e. or g/
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ui nput kernel module, and the integrity measurement architeaitigailer et al. [31] via the
/ pr oc filesystem.

KBProxy Hsgs

send: HelloMsg
keysent 104 (35)
keysent 101 (18)
keysent 108 (38)
keysent 108 (38)
o keySent 111 (24)
B |.cysent 99 [46)

BN keysent 99 (46)
(31

keysent 115 (31)
= Options Cancel

(a) Phone closeup.  (b) Debugging
screenshot  cap-
tured on the
phone.

Figure 5: Debugging screenshot showing the BitE prototype in operation.

7.1 Encrypted Channel Setup Latency Between Phone and Host Platform

We have performed experiments to determine the overheadiatsd with asymmetric crypto-
graphic operations necessary to establish encryptedemtithted communication between a mo-
bile phone and host. We used a J2ME MIDP 2.0 application nghan a Nokia 6600, and a J2SE
application running on the host platform.

Establishing mutually authenticated communication imgslperforming asymmetric signature
and verification operations at both communication endgoitrt our experiments with 1024-bit
RSA keys (see Table 1), signing operations take 2546 ms oma@eeiSignature verification av-
erages 82 ms. Thus, mutual authentication on the Nokia 66l@ake on the order of 4 to 5
seconds, which is a noticeable but tolerable delay. Thigtabse these asymmetric operations
are only required for communication setup. Once sessios &syestablished, efficient symmetric
primitives can be used for communication.

7.2 Keyboard — Phone Communication

We experimented with an infrared keyboard to provide useutino the BitE Mobile Client, and

a Bluetooth connection from the BitE Mobile Client to the hostfgrm. This is because our
development phones (Nokia's 6600 and 6620) can support amdyBluetooth connection at a
time. The use of an infrared keyboard is undesirable becthes&eystrokes are transmitted in
the clear. A better solution is to use a keyboard that philgiestaches to the mobile phone.
Alternatively, a Bluetooth keyboard capable of authenéidaiencrypted communication can be
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used. We are unaware of any mobile phones available todastipport more than one active
Bluetooth connection simultaneously, but such devices neagime available in the near future.

We performed simple usability experiments to analyze kekstlatencies, to ensure that BitE
is not rendered useless by excessive latency while typirggogerve no noticeable latency with
debug logging disabled. Our prototype does not yet enchgkeystrokes it sends, but the use of
symmetric cryptographic primitives introduces minimakdwead per keystroke. For example, the
use of counter-mode encryption could enable the BitE Mobiier€to precompute enough of the
key stream so that the only encrypt / decrypt operation orcthieal path for a keystroke is an
exclusive-or [23]. This reduces the most significant crgpaphic per-keystroke operation to the
verification of a MAC (e.g., HMAC with SHA-1, [4, 5, 21]). Ouxperiments below on verifying
integrity measurements indicate that SHA-1 operationsbheaperformed efficiently on the class
of mobile phones we consider.

7.3 Verifying Attestations on the Mobile Phone

We have the integrity measurement architecture (IMA) ofe8ait al. [31] running on our devel-
opment system. We have implemented the operations negdssdhe BitE Kernel Module to
send the IMA measurement list to the BitE Mobile Client, andtha BitE Mobile Client to com-
pute the PCR aggregate for comparison with a signed PCR qustetfre TPM. Table 1 shows
some performance results for our prototype on a Nokia 6626rder to validate an attested set of
measurements from the host platform, the measurementuist be hashed for comparison with
the signed PCR aggregate. For a typical desktop system,ntlotves hundreds of hash opera-
tions. Our experiments show that the average time necessaigmpute a SHA-1 hash of 401
measurements (the number of measurements our developystarnshad performed at the time of
the experiment), 171 ms, is dominated by the time necessanahipulate the data from the mea-
surement list—2087 ms. In this experiment, the Nokia 6628bisnd by memory access and not
CPU operations. Our results show that the expected time fal@&N6620 to verify an attestation
(check the signature on the aggregate values from the PCRstliemeasurement list, and com-
pare the aggregate hash from the measurement list to themgie PCR value) is approximately
3 seconds. We feel that this is reasonable, consideringitpaificantly faster phones are already
available (unfortunately, we did not have one to experimetit).

Action Time (ms) | Variance
RSA PSS (sign) 2546 343
RSA verify 82 251
SHA-1 aggregate 171 110
Data manipulation 2087 703

Table 1: Average time (in milliseconds) to perform an RSA signature and verificatidtmav1024-bit key;
compute an aggregate hash of 401 SHA-1 measurements from a Deblkstation running Linux kernel
2.6.12.5; and manipulate the measurement list data. The RSA experimentsesferenpd on a Nokia
6600; the SHA-1 and data manipulation experiments were performed onia 6&220.

20



8 Conclusions

This work addresses the design and analysis of Bump in ther [E8#E), a system that uses
a mobile phone as a trusted proxy between a keyboard and a d@@Hant host platform to
establish a trusted tunnel for user input to applicatior® resulting tunnel is an end-to-end trusted
tunnel all the way from a user’s mobile phone to an applicatimning on the host platform. BitE
places specific emphasis on these design issues: (1) maweleas keyboard sniffers, spyware,
Trojans, and phishing attacks running at user level will bahle to capture the user’s input; (2)
operation of the system is convenient and intuitive for siS@) the BitE system is feasible today on
commodity hardware; and (4) the BitE system still offers s@mo#ection for legacy applications.
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