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Abstract
This paper presents dsync, a file transfer system that can
dynamically adapt to a wide variety of environments.
While many transfer systems work well in their special-
ized context, their performance comes at the cost of gen-
erality, and they perform poorly when used elsewhere. In
contrast, dsync adapts to its environment by intelligently
determining which of its available resources is the best
to use at any given time. The resources dsync can draw
from include the sender, the local disk, and network peers.
While combining these resources may appear easy, in
practice it is difficult because these resources may have
widely different performance or contend with each other.
In particular, the paper presents a novel mechanism that
enables dsync to aggressively search the receiver’s local
disk for useful data without interfering with concurrent
network transfers. Our evaluation on several workloads
in various network environments shows that dsync outper-
forms existing systems by a factor of 1.4 to 5 in one-to-one
and one-to-many transfers.

1 Introduction
File transfer is a nearly universal concern among com-
puter users. Home users download software updates and
upload backup images (or delta images), researchers of-
ten distribute files or file trees to a number of machines
(e.g. conducting experiments on PlanetLab), and enter-
prise users often distribute software packages to cluster or
client machines. Consequently, a number of techniques
have been proposed to address file transfer, including
simple direct mechanisms such as FTP, “swarming” peer-
to-peer systems such as BitTorrent [4], and tools such as
rsync [22] that attempt to transfer only the small delta
needed to re-create a file at the receiver.

Unfortunately, these systems fail to deliver optimal per-
formance due to two related problems. First, the solutions
typically focus on one particular resource strategy to the
exclusion of others. For example, rsync’s delta approach
will accelerate transfers in low-bandwidth environments
when a previous version of the file exists in the current
directory, but not when a useful version exists in a sib-
ling directory or, e.g., /tmp. Second, existing solutions
typically do not adapt to unexpected environments. As
an example, rsync, by default, always inspects previous
file versions to “accelerate” the transfer—even on fast

networks when such inspections contend with the write
portion of the transfer and degrade overall performance.

This paper presents dsync, a file(tree) transfer tool that
overcomes these drawbacks. To address the first prob-
lem, dsync opportunistically uses all available sources
of data: the sender, network peers, and similar data on
the receiver’s local disk. In particular, dsync includes a
framework for locating relevant data on the local disk that
might accelerate the transfer. This framework includes
a pre-computed index of blocks on the disk and is aug-
mented by a set of heuristics for extensively searching
the local disk when the cache is out-of-date. dsync ad-
dresses the second problem, the failure of existing file
transfer tools to accommodate diverse environments, by
constantly monitoring resource usage and adapting when
necessary. For example, dsync includes mechanisms to
throttle the aggressive disk search if either the disk or
CPU becomes a bottleneck in accepting data from the
network.

Those two principles, opportunistic resource usage and
adaptation, enable dsync to avoid the limitations of pre-
vious approaches. For example, several peer-to-peer sys-
tems [6, 1, 4, 11, 19] can efficiently “swarm” data to many
peers, but do not take advantage of the local filesystem(s).
The Low Bandwidth File System [13] can use all simi-
lar content on disk, but must maintain an index and can
only transfer data from one source. When used in batch
mode, rsync’s diff file can be sent over a peer-to-peer
system [11], but in this case, all hosts to be synchronized
must have identical initial states.

dsync manages three main resources: the network, the
disk, and CPU. The network (which we assume can pro-
vide all of the data) is dsync’s primary data source, but
dsync can choose to spend CPU and disk bandwidth to
locate relevant data on the local filesystem. However,
dsync also needs these CPU resources to process incom-
ing packets and this disk bandwidth to write the file to
permanent storage. Therefore, dsync adaptively deter-
mines at each step of the transfer which of the receiver’s
local resources can be used without introducing undue
contention by monitoring queue back-pressure. For ex-
ample, dsync uses queue information from its disk writer
and network reader processes to infer disk availability
(Section 4). When searching the receiver’s disk is viable,
dsync must continuously evaluate whether to identify ad-



ditional candidate files (by performing directory stat
operations) or to inspect already identified files (by read-
ing and hashing the file contents). dsync prioritizes avail-
able disk operations using a novel cost/benefit framework
which employs an extensible set of heuristics based on
file metadata (Section 5.2). As disk operations are sched-
uled, dsync also submits data chunk transfer requests to
the network using the expected arrival time of each chunk
(Section 5.3).

Section 6 presents the implementation of dsync, and
Section 7 provides an extensive evaluation, demonstrating
that dsync performs well in a wide range of operating
environments. dsync achieves performance near that of
existing tools on the workloads for which they were de-
signed, while drastically out-performing them in scenarios
beyond their design parameters. When the network is ex-
tremely fast, dsync correctly skips any local disk reads,
performing the entire transfer from the network. When
the network is slow, dsync discovers and uses relevant
local files quickly, outperforming naive schemes such as
breadth-first search.

2 Goals and Assumptions
The primary goal of dsync is to correctly and efficiently
transfer files of the order of megabytes under a wide range
of operating conditions, maintaining high performance
under dynamic conditions and freeing users from man-
ually optimizing such tasks. In our current use-model,
applications invoke dsync on the receiver by providing
a description of the file or files to be fetched (typically
end-to-end hashes of files or file trees). dsync improves
transfer performance (a) by exploiting content on the re-
ceiver’s local disk that is similar to the files currently
being transferred, and (b) by leveraging additional net-
work peers that are currently downloading or are sources
of the files being transferred (identical sources) or files
similar to the files being transferred (similar sources).

Typical applications that benefit from similar content
on disk include updating application and operating system
software [5], distributed filesystems [13], and backups
of personal data. In addition to the above workloads,
network similarity is applicable in workloads such as
email [7], Web pages [8, 12], and media files [19]. Peer-
to-peer networks, mirrors, and other receivers engaged in
the same task can also provide additional data sources.

The following challenges suggest that achieving this
goal is not easy, and motivate our resulting design.
Challenge 1: Correctly use resources with widely
varying performance. Receivers can obtain data from
many resources, and dsync should intelligently schedule
these resources to minimize the total transfer time. dsync
should work well on networks from a few kilobits/sec to
gigabits/sec and on disks with different I/O loads (and
thus different effective transfer speeds).

Challenge 2: Continuously adapt to changes in re-
source performance. Statically deciding upon the rela-
tive merits of network and disk operations leads to a frag-
ile solution. dsync may be used in environments where
the available network bandwidth, number of peers, or disk
load changes dramatically over the course of a transfer.
Challenge 3: Support receivers with different initial
filesystem state. Tools for synchronizing multiple ma-
chines should not require that those machines start in the
same state. Machines may have been unavailable during
prior synchronization attempts, may have never before
been synchronized, or may have experienced local mod-
ification subsequent to synchronization. Regardless of
the cause, a robust synchronization tool should be able to
deal with such differences while remaining both effective
and efficient.
Challenge 4: Do not require resources to be set up
in advance. For example, if a system provides a pre-
computed index that tells dsync where it can find desired
data, dsync will use it (in fact, dsync builds such an index
as it operates). However, dsync does not require that such
an index exists or is up-to-date to operate correctly and
effectively.
Assumption 1: At least one correct source. Our system
requires at least one sender to transfer data directly; the
receiver can eventually transfer all of the data (correctly)
from the sender.
Assumption 2: Short term collision-resistant hashes.
dsync ensures correctness by verifying the cryptographic
hash of all of the data it draws from any resource. Our
design requires that these hashes be collision-resistant for
the duration of the transfer, but does not require long-term
strength.
Assumption 3: Unused resources are “free”. We as-
sume that the only cost of using a resource is the lost
opportunity cost of using it for another purpose. Thus,
tactics such as using spare CPU cycles to analyze every
file on an idle filesystem are “free.” This assumption is
not valid in certain environments, e.g., if saving energy is
more important than response time; if the costs of using
the network vary with use; or if using a resource degrades
it (e.g., limited write cycles on flash memory). While
these environments are important, our assumption about
free resource use holds in many other important environ-
ments. Similarly, dsync operates by greedily scheduling
at each receiver; we leave the issue of finding a globally
optimal solution in a cooperative environment for future
work.
Assumption 4: Similarity exists between files. Much
prior work [7, 13, 5, 8, 12, 19] has shown that similar-
ity exists and can be used to reduce the amount of data
transferred over the network or stored on disk. A ma-
jor benefit of rsync and related systems is their ability to
exploit this similarity.
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Figure 1: The dsync system

3 Design Overview
dsync operates by first providing a description of the file
or files to be transferred to the receiver. dsync receiver
then uses this description to fetch the “recipe” for the file
transfer. Like many other systems, dsync source divides
each file or set of files (file tree) into roughly 16 KB
chunks, and it hashes each chunk to compute a chunk
ID.1 Then, dsync creates a tree descriptor (TD), which
describes the layout of files in the file tree, their associated
metadata, and the chunks that belong to each file. The
TD thus acts as a recipe that tells the receiver how to
reconstruct the file tree.

Figure 1 shows a conceptual view of dsync’s operation.
Given a TD (usually provided by the sender), dsync at-
tempts to fetch the chunks described in it from several
sources in parallel. In this paper, we focus on two sources:
the network and the disk. As we show in Section 7, intel-
ligent use of these resources can be critical to achieving
high performance.

3.1 The Resources
dsync can retrieve chunks over the network, either di-
rectly from the original sender or from peers downloading
the same or similar content. Our implementation of dsync
downloads from peers using a BitTorrent-like peer-to-peer
swarming system, SET [19], but dsync could easily use
other similar systems [4, 1, 11]. Given a set of chunks to
retrieve, SET fetches them using a variant of the rarest-
chunk-first strategy [10].

dsync can also look for chunks on the receiver’s local
disk, similar to existing systems such as rsync [22]. First,
dsync consults a pre-computed index if one is available.

1dsync uses Rabin fingerprinting [20] to determine the chunk bound-
aries so that most of the chunks that a particular file is divided into do
not change with small insertions or deletions.

If the index is not available or if the chunk ID is not in the
index (or the index is out-of-date), dsync tries to locate
and hash files that are most likely to contain chunks that
the receiver is trying to fetch. Note that the disk is used
as an optimization: dsync validates all chunks found by
indexing to ensure that the transfer remains correct even
if the index is out-of-date or corrupt.

dsync requires CPU resources to compute the hash
of data from the local disk and to perform scheduling
computations that determine which chunks it should fetch
from which resource.

3.2 Control Loop
Figure 1 depicts the main dsync control loop. dsync per-
forms two basic tasks (shown with thicker lines in the
figure) at every scheduling step in its loop: First, dsync
determines which resources are available. Second, given
the set of available resources, dsync schedules operations
on those resources. An operation (potentially) returns a
chunk. After assigning some number of operations to
available resources, dsync executes the operations. This
control loop repeats until dsync fetches all of the chunks,
and is invoked every time an operation completes. Sec-
tions 4 and 5 provide more detail about the above tasks.

4 Avoiding Contention
dsync’s first task is to decide which resources are available
for use: the network, the disk, or both. Deciding which
resources to use (and which not to use) is critical because
using a busy resource might contend with the ongoing
transfer and might actually slow down the transfer.2 For
example, searching the local disk for useful chunks might
delay dsync from writing chunks to disk if those chunks
are received over a fast network. Spending CPU time to
compute a more optimal schedule, or doing so too often,
could delay reading data from the network or disk.

Back-pressure is the central mechanism that dsync
uses to detect contention and decide which resources are
available to use. dsync receives back-pressure informa-
tion from the network and the disk through the explicit
communication of queue sizes.3 While the disk exposes
information to dsync indicating if it is busy, the network
indicates how many requests it can handle without incur-
ring unnecessary queuing. dsync also monitors its CPU
consumption to determine how much time it can spend
computing a schedule.

2Note that dsync tries to avoid resource contention within an ongoing
transfer. Global resource management between dsync and other running
processes currently remains the responsibility of the operating system,
but is an interesting area for future work.

3Our experience agrees with that of others who have found that
explicit queues between components makes it easier to behave gracefully
under high load [23, 2].



Disk: dsync learns that the disk is busy from two
queues:

• Writer process queue: dsync checks for disk back-
pressure by examining the outstanding data queued
to the writer process (a separate process that writes
completed files to disk). If the writer process has
pending writes, dsync concludes that the disk is over-
loaded and stops scheduling new disk read opera-
tions. (Writes are critical to the transfer process, so
they are prioritized over read operations.)

• Incoming network queue: dsync also infers disk
pressure by examining the incoming data queued
in-kernel on the network socket. If there is a queue
build-up, dsync stops scheduling disk read opera-
tions to avoid slowing the receiver.

Network: dsync tracks availability of network re-
sources by monitoring the outstanding data requests
queue on a per sender basis. If any sender’s outstand-
ing data queue size is less than the number of bytes the
underlying network connection can handle when all the
scheduled network operations are issued, dsync infers that
the network is available.

CPU: dsync consumes CPU to hash the content of lo-
cal files it is searching, and to perform the (potentially
expensive) scheduling computations described in the fol-
lowing section. When searching the local filesystem, the
scheduler must decide which of thousands of candidate
files to search for which of thousands of chunks. Thus,
dsync ensures that performing expensive re-computation
of a new, optimized schedule using CPU resources does
not slow down an on-going transfer using the following
guidelines at every scheduling step.

• As it does for disk contention, dsync defers schedul-
ing computations if there is build-up in the incoming
network queue.

• To reduce the amount of computation, dsync only re-
computes the schedule if more than 10% of the total
number of chunks or number of available operations
have changed. This optimization reduces CPU con-
sumption while bounding the maximum estimation
error (e.g., limiting the number of chunks that would
be erroneously requested from the network when a
perfectly up-to-date schedule would think that those
chunks would be better served from the local disk).

• dsync limits the total time spent in recomputation to
10% of the current transfer time.

• Finally, the scheduler limits the total number of files
that can be outstanding at any time. This limita-
tion sacrifices some opportunities for optimization
in favor of reducing the time spent in recomputation.

The experiments in Section 7 show the importance of
avoiding resource contention when adapting to different
environments. For example, on a fast network (gigabit
LAN), failing to respond to back pressure means that
disk and CPU contention impose up to a 4x slowdown vs.
receiving only from the network.

5 Scheduling Resources
Once the control loop has decided which resources are
available, dsync’s scheduler decides which operations
to perform on those resources. The actual operations
are performed by a separate plugin for each resource, as
described in the next subsections. The scheduler itself
takes the list of outstanding chunks and the results of
any previously completed network and disk operations
and determines which operations to issue in two steps.
(A) First, the scheduler decides which disk operations to
perform. (B) Second, given an ordering of disk opera-
tions, the scheduler decides which chunks to request from
the network. At a high level, dsync’s scheduler oppor-
tunistically uses the disk to speed the transfer, knowing
that it can ultimately fetch all chunks using the network.

This two-step operation is motivated by the different
ways these resources behave. Storage provides an op-
portunity to accelerate network operations, but the utility
of each disk operation is uncertain a priori. In contrast,
the network can provide all needed chunks. A natural
design, then, is to send to the disk plugin those operations
with the highest estimated benefit, and to request from
the network plugin those chunks that are least likely to be
found on disk.

5.1 Resource Operations
Network operations are relatively straightforward; dsync
instructs the network plugin to fetch a set of chunks (given
the hashes) from the network. Depending on the configu-
ration, the network plugin gets the chunks from the sender
directly and/or from peers, if they exist.

Disk operations are more complex because dsync may
not know the contents of files in the local file system.
dsync can issue three operations to the disk plugin to find
useful chunks on the disk.

CACHE operations access the chunk index (a col-
lection of <ChunkID, ChunkSize, filename, offset, file
metadata>-tuples), if one exists. CACHE-CHECK op-
erations query to see if a chunk ID is in the index. If
it is, dsync then stat()s the identified file to see if its
metadata matches that stored in the index. If it does not,
dsync invalidates all cache entries pointing to the specified
file. Otherwise, dsync adds a potential CACHE-READ
operation, which reads the chunk from the specified file
and offset, verifies that it matches the given hash, and
returns the chunk data.



HASH operations ask the disk plugin to read the spec-
ified file, divide it into chunks, hash each chunk to de-
termine a chunk ID, compare each chunk ID to a list of
needed chunk IDs, and return the data associated with
any matches via a callback mechanism. Found chunks are
used directly, and dsync avoids fetching them from the
network. The identifiers and metadata of all chunks are
cached in the index.

STAT operations cause the disk plugin to read a given
directory and stat() each entry therein. STAT does not
locate chunks by itself. Instead, it generates additional
potential disk operations for the scheduler, allowing dsync
to traverse the filesystem. Each file found generates a
possible HASH operation, and each directory generates
another possible STAT operation.

dsync also increases the estimated priority of HASHing
the enclosing file from a CACHE-CHECK operation as
the number of CACHE-READs from that file increase.
This optimization reduces the number of disk seeks when
reading a file with many useful chunks (Section 7.4).

5.2 Step A: Ordering Disk Operations
The scheduler estimates, for each disk operation, a cost
to benefit ratio called the cost per useful chunk delivered
or CPC. The scheduler estimates the costs by dynami-
cally monitoring the cost of operations such as disk seeks
or hashing chunks. The scheduler estimates the benefit
from these operations using an extensible set of heuristics.
These heuristics consider factors such as the similarity of
the source filename and the name of the file being hashed,
their sizes, and their paths in the filesystem, with files on
the receiver’s filesystem being awarded a higher benefit
if they are more similar to the source file. The scheduler
then schedules operations greedily by ascending CPC.4

The CPC for an operation, OP, is defined as:

CPCOP =
total cost of the operation

expected num. of useful chunks delivered
= TOP/E[Ndelivered ]

TOP, the total operation cost, includes all costs asso-
ciated with delivering the chunk to dsync memory, in-
cluding the “wasted” work associated with processing
non-matching chunks. TOP is thus the sum of the up-front
operation cost (OpCost()) and the transfer cost (Xfer-
Cost()). Operation cost is how long the disk plugin ex-
pects an operation to take. Transfer cost is how long the
disk plugin expects the transfer of all chunks to dsync
to take. E[Ndelivered ] is the expected number of useful
chunks found and is calculated by estimating the probabil-
ity (p) of finding each required chunk when a particular
disk operation is issued. E[Ndelivered ] is then calculated as
the sum of the probabilities across all source chunks.

4Determining an optimal schedule is NP-hard (Set Cover), and we’ve
found that a greedy schedule works well in practice.

We present the details of computing the CPC for each
disk operation in Section 6.2, along with the heuristics
used to estimate the benefit of operations.

Metadata Groups

Schedule computation can involve thousands of disk op-
erations and many thousands of chunks, with the cor-
responding scheduling decisions involving millions of
chunks ∗ disk operations pairs. Because the scheduler
estimates the probability of finding a chunk using only
metadata matching, all chunks with the same metadata
have the same probabilities. Often, this means that all
chunks from a particular source file are equivalent, unless
those chunks appear in multiple source files. dsync ag-
gregates these chunks in metadata groups, and performs
scheduling at this higher granularity.

Metadata-group aggregation has two benefits. First, it
greatly reduces the complexity and memory required for
scheduling. Second, metadata groups facilitate making
large sequential reads and writes by maintaining their
associated chunks in request order. The receiver can then
request the chunks in a group in an order that facilitates
high-performance reads and writes.

5.3 Step B: Choosing Network Operations
After sorting the chunks by CPC, the scheduler selects
which chunks to request from the network by balancing
three issues:

• Request chunks that are unlikely to be found soon on
disk (either because the operations that would find
them are scheduled last or because the probability of
finding the chunks is low).

• Give the network plugin enough chunks so that it
can optimize their retrieval (by allocating chunks to
sources using the rarest-random strategy [10]).

• Request chunks in order to allow both the sender and
receiver to read and write in large sequential blocks.

The scheduler achieves this by computing the expected
time of arrival (ETA) for each chunk C j. If the chunk is
found in the first operation, its ETA is simply the cost of
the first operation. Otherwise, its cost must include the
cost of the next operation, and so on, in descending CPC
order through each operation:

Ti = Total cost of operation i

ETAj = T0 +(1− p0, j) ·T1 +(1− p0, j) · (1− p1, j) ·T2

+ · · ·+∏
i

(1− pi, j) ·Tm

where pi, j is the probability of finding chunk j using
operation at position i.

The scheduler then prioritizes chunk requests to the
network by sending those with the highest ETA first.



Operation Op- a.txt: b.txt:
Type Path Cost TOP p p CPC

Time = 0

STAT /d/new 1 9 1.000 1.000 1.125

Time = 1

HASH /d/new/a.txt 4 4 1.000 0.350 0.741
STAT /d 1 9 0.444 0.444 2.533
HASH /d/new/core 64 64 0.007 0.007 1142.9

Expected Time to Arrival→ 4 418.4

Table 1: Disk operation optimization example.

5.4 Optimization Example
Table 1 shows dsync’s optimization for a sample transfer.
The sender wants to transfer two 64 KB files, a.txt
and b.txt, to a destination path on the receiver named
/d/new. The destination path has two files in it: a.txt,
which is an exact copy of the file being sent; and a 1 MB
core file. We assume the operation cost of STAT and
CHUNK-HASH (cost for reading and hashing one chunk)
to be 1 unit. At the first scheduling decision (Time = 0),
the only available operation is a STAT of the target direc-
tory. The probability of locating useful chunks via this
STAT operation is set to unity since we expect a good
chance of finding useful content in the target directory of
the transfer.

After performing this operation (Time = 1), the
scheduler has the three listed options. The cost
of the first option, HASHing /d/new/a.txt, is 4
(OpCost(CHUNK_HASH) times the number of chunks
in the file—64 KB / 16 KB chunk size). Because a.txt
matches everything about the source file, dsync sets the
probability of finding chunks from it to 1. We then com-
pute the probability of finding chunks for file b.txt
from the operation HASH(/d/new/a.txt) by compar-
ing the metadata of files a.txt and source file b.txt;
Both files belong to the same target directory, have the
same size, but are only a file type match (both are text
files), and do not have the same modification time. We
give each of these factors a suitable weight to arrive at
p = 1 ·1 ·0.5 ·0.7 = 0.350 (Details in Section 6.2). The
CPC for the operation is then computed as TOP = 4 di-
vided by E[Ndelivered ](4 ∗ 1.0 + 4 ∗ 0.35). The costs for
subsequent operations are computed similarly. The disk
operations are then sorted as per their CPC. Intuitively,
since hashing a.txt found on the disk appears more
beneficial for the .txt files in the on-going transfer, its
CPC is lower than the other operations.

Given the CPC ordering of operations, the expected
time of arrival is then computed. Once again, because
the probability of finding the chunks in a.txt during
the first HASH operation (at Time = 0) is 1, the ETA for
chunks in a.txt is simply equal to the cost of that first

operation. Thus, because the chunks in b.txt have a
higher ETA from the disk, the scheduler will schedule
those chunks to the network.

6 Implementation
This section provides details of (1) the software compo-
nents and (2) the CPC parameters used in the current
implementation of dsync.

6.1 Software Components
dsync is implemented using the Data-Oriented Transfer
(DOT) service [21]. The dsync_client application trans-
fers a file or file tree by first sending one or more files
to its local DOT service daemon, receiving an object ID
(OID) for each one. dsync_client creates a tree descrip-
tor from these OIDs and the associated file metadata and
sends the tree descriptor to the receiving dsync_client.
The receiving dsync_client requests the OIDs from its
local DOT daemon, which fetches the corresponding files
using various DOT transfer plugins. Finally, dsync_client
re-creates the file tree in the destination path.

The receiver side of dsync is implemented as a client
binary and a DOT “transfer plugin”. DOT transfer plugins
receive chunk requests from the main DOT system. The
bulk of dsync’s functionality is a new DOT transfer plugin
(called dsync), which contains the scheduler component
that schedules chunk requests as described earlier, and a
second plugin (xdisk) that searches for hashes in local files.
For point-to-point transfers, dsync uses the DOT default
transfer plugin that provides an RPC-based chunk request
protocol. To properly size the number of outstanding
requests, we modified this transfer plugin to send with
each chunk the number of bytes required to saturate the
network connection. This implementation requires kernel
socket buffer auto-tuning, obtaining the queue size via
getsockopt.

For peer-to-peer transfers, dsync uses DOT’s existing
Similarity-Enhanced Transfer (SET) network plugin [19].
SET discovers additional network peers using a central-
ized tracker. These network peers could be either seeding
the entire file or could be downloading the file at the same
time as the receiver (swarmers). To fetch chunks from
swarmers more efficiently, SET exchanges bitmaps with
the swarmers to learn of their available chunks. Finally,
once it knows which chunks are available from which
sources, SET requests chunks from these sources using
the rarest-random strategy.

For dsync to work well on high-speed networks, we
added a new zero-copy sending client interface mecha-
nism to DOT to reduce data copies: put(filename);
clients using this mechanism must ensure that the file is
not modified until the transfer has completed. DOT still
stores additional copies of files at the receiver.



In addition to this interface, we improved DOT’s effi-
ciency in several ways, particularly with its handling of
large (multi-gigabyte) files; as a result, our performance
results differ somewhat from those described earlier [21].

6.2 Disk Operation CPC Parameters
For the implementation of the scheduling framework de-
scribed in Section 5, we treat CACHE, HASH, and STAT
operations individually.

6.2.1 CPC for CACHE Operations

There are two types of CACHE operations: CACHE-
READ and CACHE-CHECK.

CPCCACHE−READ: OpCost(CACHE-READ) involves
the overhead in reading and hashing a single chunk. dsync
tracks this per chunk cost (OpCost(CHUNK_HASH))
across all disk operations; when operations complete,
the scheduler updates the operation cost as an exponen-
tially weighted moving average (EWMA) with param-
eter α = 0.2, to provide a small amount of smoothing
against transient delays but respond quickly to overall
load changes.

CACHE-READ operations do not incur any transfer
cost since the chunk is already in memory. Since one
CACHE-READ operation results in a single chunk, the
expected number of useful chunks delivered is optimisti-
cally set to 1.

CPCCACHE−CHECK : OpCost(CACHE-CHECK) in-
volves the overhead in looking up the chunk index. Since
the chunk index is an in-memory hash table, we as-
sume this cost to be negligible. Further, a CACHE-
CHECK operation does not result in chunks; it results
in more CACHE-READ operations. Thus, the ratio
X f erCost()
E[Ndelivered ] is set to the CPC of the best possible CACHE-
READ operation. As seen above, this value equals
OpCost(CHUNK_HASH).

6.2.2 CPC for HASH Operation

OpCost(HASH) is OpCost(CHUNK_HASH) multiplied
by the number of chunks in the file. XferCost(HASH) is
zero since the chunks are already in memory (they were
just hashed). To calculate the expected number of useful
chunks that can result from hashing a file, the scheduler
calculates for each requested chunk, the probability that
the chunk will be delivered by hashing this file (p).

The scheduler uses an extensible set of heuristics to
estimate p based on the metadata and path similarity be-
tween candidate file to be HASHed and the source file
that a requested chunk belongs to specified for the transfer.
While these simple heuristics have been effective on our
test cases, our emphasis is on creating a framework that
can be extended with additional parameters rather than
on determining absolute values for the parameters below.
Note that we need only generate a good relative ordering

of candidate operations; determining the true probabil-
ities for p is unnecessary. Currently, our heuristics use
the parameters described below to compute p, using the
formula:

p = pmc · p f s · pss · ptm · ppc

Max chunks: pmc. If the candidate file is smaller than
the source file, it can contain at most a sizecandidate

sizesource
frac-

tion of the chunks from the source file; thus, any given
chunk can be found with probability at most pmc =
min(sizecandidate,sizesource)

sizesource
.

Filename similarity: pfs. An identical filename provides
p f s = 1 (i.e., this file is very likely to contain the chunk).
A prefix or suffix match gives p f s = 0.7, a file type match
(using filename extensions) provides p f s = 0.5, and no
match sets p f s = 0.1.
Size similarity: pss. As with filenames, an exact size
match sets pss = 1. If the file size difference is with in
10%, we set 0.5 <= pss <= 0.9 as a linear function of
size difference; otherwise, pss = 0.1.
Modification time match: ptm. Modification time is a
weak indicator of similarity, but a mismatch does not
strongly indicate dissimilarity. We therefore set ptm = 1
for an exact match, 0.9 <= ptm <= 1 for a fuzzy match
within 10 seconds, and ptm = 0.7 otherwise.
Path commonality: ppc. Our final heuristic
measures the directory structure distance between
the source and candidate files. Intuitively, the
source path /u/bob/src/dsync is more related
to the candidate path /u/bob/src/junk than
to /u/carol/src/junk, but the candidate path
/u/carol/src/dsync is more likely to contain rele-
vant files than either junk directory. The heuristic there-
fore categorizes matches as leftmost, rightmost, or middle
matches.

The match coefficient of two paths is the ratio of the
number of directory names in the longest match between
the source and candidate paths over the maximum path
length. How should ppc vary with the length of the match?
A leftmost or middle match reflects finding paths farther
away in the directory hierarchy. The number of potential
candidate files grows roughly exponentially with distance
in the directory hierarchy, so a leftmost or middle match
is assigned a ppc that decreases exponentially with the
match coefficient. A rightmost match, however, reflects
that the directory structures have re-converged. We there-
fore assign their ppc as the actual match coefficient.

Finally, if a chunk belongs to multiple source files,
we compute its probability as the maximum probability
computed using each file it belongs to (a conservative
lower bound):

p = max(p f ile1, . . . , p f ileN)



6.2.3 CPC for STAT Operation

The scheduler tracks OpCost(STAT) similar to
OpCost(CHUNK_HASH). For STAT operations, the
chunk probabilities are calculated using path commonal-
ity only, p = ppc and thus E[Ndelivered ] can be computed.
Once again, STATs do not find chunks; they produce
more HASH operations. Thus, the ratio X f erCost()

E[Ndelivered ] for
a STAT is set to the CPC of the best possible HASH
operation that could be produced by that STAT. (In
other words, the scheduler avoids STATs that could not
possibly generate better HASH operations than those
currently available).

Before the STAT is performed, the scheduler knows
only the directory name and nothing about the files con-
tained therein. The best possible HASH operation from
a given STAT therefore would match perfectly on max
chunks, file name, size, and modification time (pmc =
p f s = pss = ptm = 1). This lower bound cost is optionally
weighted to account for the fact that most STATs do not
produce a best-case HASH operation.

best p = ppc ·1 ·1 ·1 ·1

CPCSTAT = w · (OpCost(STAT )
∑ ppc

+

OpCost(CHUNK_HASH)
max(best p)

)

7 Evaluation
In this section, we evaluate whether dsync achieves the
goal set out in Section 2: Does dsync correctly and effi-
ciently transfer files under a wide range of conditions?
Our experiments show that it does:

• dsync effectively uses local and remote resources
when initial states of the receivers are varied.

• dsync ensures that transfers are never slowed.
dsync’s back-pressure mechanisms avoid overload-
ing critical resources (a) when the network is fast, (b)
when the disk is loaded, and (c) by not bottle-necking
senders due to excessive outstanding requests.

• dsync’s heuristics quickly locate useful similar files
in a real filesystem; dsync intelligently uses a pre-
computed index when available.

• dsync successfully provides the best of both rsync
and multi-source transfers, quickly synchronizing
multiple machines that start with different versions
of a target directory across 120–370 PlanetLab nodes
using a real workload.

7.1 Method
Environment. We conduct our evaluation using Emu-
lab [24] and PlanetLab [18]. Unless otherwise specified,

Emulab nodes are “pc3000” nodes with 3 GHz 64-bit In-
tel Xeon processors, 2 GB RAM, and two 146 GB 10,000
RPM SCSI hard disk drives running Fedora Core 6 Linux.
We choose as many reachable nodes as possible for each
PlanetLab experiment, with multiple machines per site.
The majority of PlanetLab experiments used 371 receivers.
The sender for the data and the peer tracker for the Plan-
etLab experiments are each quad-core 2 GHz Intel Xeon
PCs with 8 GB RAM located at CMU.

Software. We compare dsync’s performance to rsync and
CoBlitz [16] as a baseline. (We compare with CoBlitz be-
cause its performance already exceeds that of BitTorrent.)
Achieving a fair comparison is complicated by the dif-
ferent ways these systems operate. dsync first computes
the hash of the entire object before communicating with
the receiver, while rsync pipelines this operation. We run
rsync in server mode, where it sends data over a clear-text
TCP connection to the receiver. By default, dsync uses
SSH to establish its control channel, but then transfers the
data over a separate TCP connection.

To provide a fair comparison, in all experiments, we
measure the time after putting the object into dsync on the
sender and establishing the SSH control channel, and we
ensure that rsync is able to read the source file from buffer
cache. This comparison is not perfect—it equalizes for
disk read times, but dsync would normally pay a cost for
hashing the object in advance. In addition dsync maintains
a cache of received chunks, which puts extra pressure on
the buffer cache. Hence, in most of our evaluation, we
focus on the relative scaling between the two; in actual
use the numbers would vary by a small amount.

To compare with CoBlitz, our clients contact a CoBlitz
deployment across as many nodes as are available.
(CoBlitz ran in a new, dedicated slice for this experiment.)
We use CoBlitz in the out-of-order delivery mode. To
illustrate dsync’s effectiveness, we also compare dsync to
basic DOT, SET [19], dsync-1src and dsync-NoPressure
when applicable. Basic DOT neither exploits local re-
sources nor multiple receivers. SET is a BitTorrent-like
swarming technique that does not use local resources.
dsync-1src is simply dsync that does not use swarming.
dsync-NoPressure is dsync configured to ignore back-
pressure.

Finally, we start PlanetLab experiments using 50 par-
allel SSH connections. At most, this design takes two
minutes to contact each node. All the experiment results
are averaged over three runs. In the case of CoBlitz, the
average is computed over the last three runs in a set of
four runs to avoid cache misses. We log transfer through-
put for each node, defined to be the ratio of the total bytes
transferred to the transfer time taken by that node.

Scenarios. In many of our experiments, we configure the
local filesystem in one of the following ways:
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Figure 2: Transfer time for a single receiver using five initial
filesystem configurations over a 1.544 Mbps link.

• Empty: The destination filesystem is empty, afford-
ing no opportunities to find similar files.

• Useless: The destination filesystem has many files,
but none similar to the desired file. The filesystem is
large enough that dsync does not completely explore
it during a transfer.

• Similar: The destination filesystem contains a file
by the same name as the one being transferred in the
final destination directory. We set the similarity of
this file with the file being transferred to either 50%
or 99%.

• Sibling: The destination filesystem contains a 99%
similar file with the same name but in a directory
that is a sibling to the final destination directory.

7.2 dsync works in many conditions
In this section, we explore dsync’s performance under a
variety of transfer scenarios, varying the number of re-
ceivers, the network conditions, and the initial filesystem
configurations.

7.2.1 Single receiver

We first use a simple 50 MB data transfer from one source
to one receiver to examine whether dsync correctly finds
and uses similar files to the one being transferred and to
evaluate its overhead relative to standard programs such as
rsync. The two nodes are connected via a 1.544 Mbps (T1)
network with 40 ms round-trip delay. Figure 2 compares
the transfer times using the original DOT system, dsync-
1src, dsync, and rsync under the five filesystem scenarios
outlined above. This figure shows three important results:

dsync rapidly locates similar files. In the “Similar-
99%” configuration, both dsync and rsync locate the
nearly-identical file by the same name and use it to rapidly
complete the data transfer. In the “Sibling” configuration,
only dsync5 locates this file using its search heuristics.

5rsync supports a manual Sibling mode where the user must point
rsync at the relevant directory.
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Figure 3: Transfer time across 45 nodes using five filesystem
configurations over 1.544 Mbps links.

dsync’s performance is as good as its subsystems in-
dividually. When transferring over the network, dsync is
as fast as the DOT system on which it builds. dsync incurs
negligible penalty over dsync-1src when using both disk
and swarming plugins.

dsync adds only small overhead vs. rsync. In the
similar-99 case, dsync requires 2.8 seconds more transfer
time than rsync. The overhead over the basic time to
read and chunk (2.3 seconds) comes from a mix of the
DOT system requesting chunk hashes before reading from
either the network or the local filesystem ( 0.4 seconds),
dsync’s post-hash index creation ( 0.3 seconds) and an
artifact of the Linux kernel sizing its TCP buffers too
large, resulting in an excess queue for dsync to drain
before it can fetch the last chunk from the single source
(250 KB at 1.5 Mbps = 1.4 seconds).

7.2.2 Multiple receivers, homogeneous initial states

We next explore dsync’s ability to swarm among multiple
receivers. In this Emulab experiment, we use a single 10
Mbps sender and 45 receivers with T1 links downloading
a 50MB file. All the receivers have homogeneous initial
filesystem configurations. The receivers use a mix of
hardware, ranging from pc650 to pc3000. The sender is a
pc850. Figure 3 shows the average and standard deviation
of the transfer times for rsync, SET, dsync-1src and dsync
as the initial configurations are varied.

dsync effectively uses peers. The “Empty” and the
“Useless” scenarios show the benefit from swarming – In
rsync and dsync-1src, all the receivers obtain the data
from a single sender, dividing its 10 Mbps among them-
selves. dsync (and SET) swarm among the receivers to
almost saturate their download capacities, resulting in 6×
speedup.

dsync effectively combines peering and local re-
sources. In the “Similar-99%” scenario, dsync is 21×
faster than SET because it uses the local file. dsync is
also 8× faster than rsync in this scenario, because the
single rsync sender becomes a computational bottleneck.
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Finally, in the “Similar-50%” scenario, all schemes ex-
cept SET effectively use the local data to double their
throughput.

7.2.3 Multiple receivers, heterogeneous initial states

This experiment shows how dsync can synchronize mul-
tiple machines whose disks start in different initial con-
figurations from each other by intelligently using a com-
bination of similar local files, the original sender, and
the other recipients. Figure 4 depicts two scenarios, and
Figure 5 shows the download time for a 50 MB file with
rsync, SET, dsync-1src, and dsync.

In both rsync and dsync-1src, Receiver 1 uses the sim-
ilar file on its local disk to speed the transfer while Re-
ceiver 2 fetches the entire file from the source. Because
the sender is the bottleneck in both cases, the DSL and
LAN cases perform similarly. SET alone behaves like
other peer-to-peer swarming systems; Receiver 1 does not
use the local file. Instead, the two receivers collectively
fetch one copy of all of the file data from the sender. Re-
ceiver 2’s download is faster with SET than with rsync be-
cause with rsync, the clients fetch 1.10 copies (100% and
10%, respectively) of the data; SET’s rarest-first heuristic
ensures that the receivers do not request the same chunks.

 0

 20

 40

 60

 80

 100

%
 o

f 
n

o
d

e
s

Empty

rsync
dsync-1src

CoBlitz
SET

dsync

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

%
 o

f 
n

o
d

e
s

Average throughput (Mbps)

Similar-99%

CoBlitz
SET

rsync
dsync

dsync-1src

Figure 6: CDF of average throughput across 371 PlanetLab
nodes for different filesystem configurations.

dsync shows drastic improvement from searching the
local disk and downloading from a peer. Receiver 1
fetches most of the file from the local disk and offers
it to Receiver 2. In the DSL scenario, Receiver 2 fetches
the file from both the sender and Receiver 1, transferring
the file about twice as fast as rsync can. In the LAN sce-
nario, Receiver 2 grabs almost all of the bytes over its fast
link to Receiver 1, and the two receivers fetch only the
missing 10% of the data from the slow source. Overall,
dsync automatically uses the best resources to download
the file, using the disk when possible and transferring only
one copy of the remaining data over the network.

7.2.4 Multiple receivers in the wild (PlanetLab)

We now explore the performance of rsync, CoBlitz, SET,
dsync-1src and dsync when all available PlanetLab nodes
simultaneously download a 50 MB file. All the nodes are
in identical initial filesystem configurations.

Figure 6 shows the throughput for all the schemes in
the “Empty” scenario. The single sender becomes a bottle-
neck in rsync and dsync-1src. CoBlitz uses multi-source
downloads and caching to outperform rsync. Somewhat
unexpectedly, dsync outperforms CoBlitz; the median
dsync node is 1.67× faster. The most evident reason for
this is that dsync receivers make more aggressive use
of the original source, drawing 1.5 GB from the sender
vs. CoBlitz’s 135 MB. Thus, CoBlitz is more sender
friendly. However, CoBlitz’s performance is impaired
as the remaining senders are extremely busy PlanetLab
nodes. dsync’s load balancing makes more effective (but
perhaps less friendly) use of the fast source. dsync’s per-
formance is again comparable to that of the underlying
SET transfer mechanism in the “Empty” scenario: sug-
gesting that dsync’s filesystem searching does not slow
down the transfers even on busy nodes.
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In the “Similar-99%” scenario, dsync automatically
uses local resources when appropriate to improve the
median throughput by 50% over “Empty” scenario. An
interesting note about this figure is that dsync-1src (no
swarming) is slightly faster, because the additional net-
work load appeared to slow down the PlanetLab nodes.
This effect did not appear in similar tests on Emulab; we
accept this as a case in which dsync’s generality made it
perform slightly worse in one particularly extreme exam-
ple. dsync did, however, correctly reduce network traffic
in these cases.

7.3 dsync’s back-pressure is effective
This section shows that dsync effectively uses its back-
pressure mechanisms to adapt to overloaded critical re-
sources in order to retain high performance.

7.3.1 Gigabit network

In this experiment, we transfer files varying from 1 MB
to 1 GB over a 1 Gbps network between two nodes. This
network is faster than the disk, which can sustain only
70 MB/sec, or 550 Mbps. Thus, the disk is the overloaded
critical resource that limits transfer speed. Figure 7 shows
throughput as file size increases for the various systems.

dsync uses back-pressure to defer disk operations.
dsync correctly notices that the network is faster than the
disk and ignores the local file. Thus, dsync-Similar-99%
and dsync-Empty perform similarly. rsync-Similar-99%,
however, suffers significantly when it tries to use a 1 GB
local file because it competes with itself trying to write
out the data read from the disk.

It is noteworthy that dsync outperforms rsync-similar
even though the prototype dsync implementation’s over-
all throughput is lower than rsync-Empty as a result of
additional data copies and hashing operations in the un-
derlying DOT system. This figure also shows that dsync’s
improvements come mostly from its back-pressure mech-
anisms and not simply from using both the network and

Throughput over a 100 Mbps Link

Disk contention (writes/second)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

0 0.1 0.2 1.0

0

20

40

60

80

100

120

140

rsync−Empty

rsync−Similar−99

dsync−Empty

dsync−Similar−99

dsync−NoPressure−
Similar−99

Figure 8: Throughput vs. disk contention for a 1 GB file.

the disk. While dsync-NoPressure also slightly outper-
forms rsync in Similar-99% case, its performance is much
lower than that of the pressure-aware dsync.

7.3.2 Slow disk

The gigabit case is not a rare exception to be handled by
an “if” statement. Critical resources can be overloaded
in a variety of scenarios. For example, we simulate slow
disk scenarios using a process performing bulk writes
(1 MB at a time) to disk and varying the frequency of
writes. The single sender and the receiver are connected
by 100 Mbps LAN and transfer a 1 GB file. Figure 8
shows the throughput as disk load increases.

dsync again uses back-pressure to defer disk opera-
tions. rsync-Similar-99%, however, still tries to read from
the overloaded local disk, and its performance degrades
much more rapidly than fetching from the network alone.

7.3.3 Dynamic adaptation to changing load

Figure 9 shows a transfer in the Slow Disk scenario
(above), in which we introduce disk load 20 seconds into
the transfer. Each plot shows the number of bits/second
read from each resource during the transfer.

dsync dynamically adapts to changing load condi-
tions among resources. We observe that dsync backs off
from reading from the disk when the contention starts.
This helps dsync to finish writing the transferred file more
quickly (101 seconds) than dsync-NoPressure (117 sec-
onds).

7.4 dsync effectively uses the local disk
This section highlights dsync’s ability to discover useful
data on disk regardless of index state. dsync uses a pre-
computed index when available, and its heuristics for data
discovery otherwise.

dsync correctly decides between index reads and se-
quential reads. To evaluate dsync’s use of the index,
we transfer files between 10 MB and 1 GB between two
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10 50 100 1024

dsync 0.94 4.39 7.75 167
dsync-naive 0.91 4.10 8.63 525

Table 2: Transfer time (seconds) from intelligent use of
proactive index as file size is varied from 10 MB to 1 GB.

nodes. The receiver maintains a pre-computed index of
the files on the disk, and all files being transferred are
available on the receiver’s disk. dsync-naive satisfies the
cache hit for each chunk request by opening the relevant
file, seeking to the chunk offset and reading the required
bytes. dsync, however, observes that several chunks are
desired from the same file and sequentially reads the file
to serve all cache hits. The results of this test are shown
in Table 2. As the file size increases, this strategy is more
effective—a 1 GB file is copied 3× faster.

dsync’s filesystem search heuristics are effective at
exploring the disk to identify useful chunks. In this ex-
periment, the sender wants to transfer a file called “a.out”
into the destination path “/s/y/n/c/test/” on the receiver.
Each set of rows in Table 3 represents iterations of the
experiment with the useful file in a different directory.
We measure the number of STAT and HASH operations
and the number of megabytes hashed up to and including
when dsync hashed the useful file. We disabled fetching
chunks from the network since our intent was to measure
the discovery process of the heuristics and not transfer
time. We compare our heuristics with two simple strate-
gies: (a) An allstats strategy where we “stat” the entire
hard disk and hash the files in the descending order of
their usefulness, and (b) a breadth-first strategy (BFS) that
traverses the directory hierarchy by hashing all files in its
sub-tree before going to its parent.

The root of the filesystem is the desktop machine home
directory of one of the authors. The file system had
445,355 files in 37,157 directories, occupying 76 GB.
The alternate paths we explore represent a few feasible
locations in which a duplicate copy of a file might exist
in a home directory. We do not claim that this set is repre-
sentative of other filesystems, but it demonstrates that the
heuristics perform well in these (reasonable) scenarios.
We performed no tuning of the heuristics specific to this
filesystem, and never used it as a test during development.

In the top group, the useful file is in the destination
directory. Here, the heuristics find the file quickly and do
not hash any other files beforehand. When the useful file
has a completely different name “diff”, dsync issues STAT
requests of several other directories before hashing it. In
the second group, the useful file is in a sibling directory
to the destination path. Here, dsync’s heuristics perform
several additional STATs before finding the useful file,
but relatively few additional hashes. In fact, the scheduler
suggests only one extraneous HASH operation for a file
with size match. BFS performs reasonably well in scenar-
ios 1-6. Allstats incurs a constant 56.17 seconds to stat
the entire filesystem before hashing the useful file.

The final group in the table shows the results when the
useful file is in a completely unrelated directory on the
receiver’s file system. Here, when the file name matches
exactly, dsync STATs almost 15% of the directories in
the file system, but only hashes two extraneous files. The
last line of the table reveals an interesting result: when
the useful file has neither a name or path match, dsync
inventoried the entire file system looking for useful files,
but still only hashed 175 MB of unnecessary data. This
results in performance similar to allstats. BFS, however,
degrades as it hashes ∼4 GB of data. Thus, dsync intelli-
gently adapts to different filesystem configurations unlike
simple strategies.

7.5 Real workload
dsync substantially improves throughput using a workload
obtained from our day-to-day use—running our experi-
ments required us to frequently update PlanetLab with the
latest dsync code. This workload consisted of 3 binaries
(totaling 27 MB): the DOT daemon (gtcd), a client (gcp)
and the disk read process (aiod). We choose one such
snapshot during our experimentation where we synchro-
nized 120 PlanetLab nodes. A third of these nodes did
not have any copy of our code, another third had a debug
copy in a sibling directory and the last third had almost
the latest version in the destination directory. We also
repeated this experiment for 371 nodes.

Figure 10 shows the CDF of average throughput across
these nodes for rsync, SET and dsync. Using dsync, the
median node synchronizes 1.4-1.5× faster than it does
using SET, and 5× faster than using rsync.



dsync BFS
Size, Similarity Files (MB) Files (MB)

Path of Useful File (MB, %) STAT Ops Hashed Seconds STAT Ops Hashed Seconds
1. /s/y/n/c/test/a.out 12.0, 100% 1 (0%) 1 (12) 0.30 1 (0%) 8 (70.05) 1.25
2. /s/y/n/c/test/a.out 12.1, 11% 1 (0%) 1 (12.1) 0.29 1 (0%) 8 (70.05) 1.25
3. /s/y/n/c/test/diff 12.0, 100% 373 (1%) 1 (12) 0.76 1 (0%) 8 (70.05) 1.25

4. /s/y-old/n/c/test/a.out 12.0, 100% 879 (2.37%) 2 (24.03) 1.84 364 (0.97%) 3212 (139.4) 4.17
5. /s/y-old/n/c/test/a.out 12.1, 11% 879 (2.37%) 2 (24.03) 1.84 364 (0.97%) 3212 (139.4) 4.17
6. /s/y-old/n/c/test/diff 12.0, 100% 2225 (5.98%) 2 (24.03) 4.67 364 (0.97%) 3212 (139.4) 4.17

7. /a.out 12.0, 100% 6038 (16.25%) 3 (34.03) 8.90 6962 (18.74%) 51,128 (4002.4) 1771.9
8. /a.out 12.1, 11% 6038 (16.25%) 3 (34.03) 8.90 6962 (18.74%) 51,128 (4002.4) 1771.9
9. /diff 12.0, 100% 37,157(100%) 227 (173.8) 68.3 6962 (18.74%) 51,128 (4002.4) 1771.9

Table 3: Performance of dsync heuristics on a real directory tree. Files with 11% similarity are an old version of “a.out”.
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Figure 10: CDF of average throughput when dsync is used
for software distribution on Planetlab.

8 Related Work
Our work fits into the broad scope of systems that leverage
an excess of one resource to compensate for the lack of
another. Examples range from the familiar use of caching
to avoid computation to more contemporary systems that
use spare CPU cycles, in the form of speculative execu-
tion, to hide disk latency [3] and network latency [15]; or
that mask network latency or limited capacity by explicit
caching or prefetching [9]. dsync specifically uses local
computation and storage resources to replace network
bandwidth, when such a trade-off is appropriate.

Like many such systems, ensuring that dsync does not
create a scarcity of a local resource is key to performing
well under a wide range of conditions. These problems
do not just occur with disk contention; for example, the
benefits of Web prefetching can be eclipsed if the prefetch-
ing traffic slows down foreground traffic, a situation that
can again be solved by strictly prioritizing traffic that is
guaranteed to be useful [9].

Many systems address the problems of drawing from
multiple sources that have heterogeneous performance.
The Blue File System [14], for example, selects sources

from a group of storage devices based on power and per-
formance characteristics. The River cluster filesystem [2]
shares our goal of automatically using sources of differ-
ent rates (though in its case, different disk rates within a
cluster). Like dsync, River does so by managing the re-
quest queue to each source. Exposing the queues between
components helps systems such as SEDA shed load intel-
ligently under overload conditions [23], much as dsync’s
queue monitoring avoids local resource contention.

As we noted in the introduction, many of the tech-
niques that dsync uses to obtain chunks are borrowed
from systems such as rsync [22], LBFS [13], CFS [6],
and Shark [1]. A particularly noteworthy relative is Shot-
gun, which used the Bullet’ content distribution mesh to
disseminate the diff produced by rsync batch mode [11].
This approach works well—it avoids the overhead of mul-
tiple filesystem traversals on the sender and greatly re-
duces the amount of network bandwidth used—but rsync
batch mode requires that the recipients be in identical
starting states and is subject to the same limitations as
rsync in finding only a single file to draw from.

dsync uses a peer-to-peer content distribution system
to allow nodes to swarm with each other. For implemen-
tation convenience, we used the SET plugin from DOT,
but we did not use of any of its unique features—our sys-
tem could use any transfer system that allows transferring
chunks independent of a file. In keeping with our philoso-
phy of opportunistic resource use and broad applicability,
the most likely alternative distribution system for dsync is
CoBlitz [16] since it is cache-based and does not require
that sources “push” data into a distribution system.

Finally, several forms of system support for chunk-
based indexing provide possible opportunities for improv-
ing the timeliness and efficiency of the pre-computed in-
dex. Linux’s inotify() would at least permit an index
daemon to re-hash files when they change. A content-
addressable filesystem would avoid the need for an exter-
nal index at all, provided its chunking and hashing was
dsync-friendly. The CZIP [17] approach of adding user-
level chunk index headers to files would permit dsync to



much more rapidly examine new candidate files during
its filesystem exploration.

9 Conclusion
dsync is a data transfer system that correctly and effi-
ciently transfers files under a wide range of operating
conditions. dsync effectively uses all available resources
to improve data transfer performance using a novel opti-
mization framework. With an extremely fast sender and
network, dsync transfers all data over the network instead
of transferring the data more slowly from the receiver’s
local disk; with a slow network, it will aggressively search
the receiver’s disk for even a few chunks of useful data;
and when sending to multiple receivers, dsync will use
peer receivers as additional data sources.

While combining network, disk-search, and peer-to-
peer techniques is conceptually simple, doing so while
ensuring that resource contention does not impair perfor-
mance is difficult. The keys to dsync’s success include
adaptively deciding whether to search the local disk, in-
telligently scheduling disk search operations and network
chunk requests to minimize the total transfer time, and
constantly monitoring local resource contention. Making
good scheduling decisions also requires that dsync deal
with practical system issues such as ensuring large se-
quential read/write operations, that can be hidden behind
the content-based naming abstraction.

Our evaluation shows that dsync performs well in a
wide range of operating environments, achieving per-
formance near that of existing tools on the workloads
for which they were designed, while drastically out-
performing them in scenarios beyond their design pa-
rameters.
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