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Minimaxity, Statistical Thinking and
Differential Privacy

Larry Wasserman∗

1 Introduction

It is important that privacy methodology be supported by rigorous theory. The purpose
of this paper is to introduce researchers in privacy to some statistical theory that is
relevant for privacy. The emphasis is on the role of statistical minimax theory and
differential privacy. I will discuss some differences between how statisticians think about
these issues versus how computer scientists1 think about them.

To large extent, this paper is more of an essay, offering some general ideas and open
problems, and suggesting avenues for future research. Similar viewpoints were taken in
previous work, for example, Dwork and Smith (2010) and Wasserman and Zhou (2010).

2 Differential Privacy

We begin by briefly reviewing differential privacy (Dwork, 2006). Let D = (X1, . . . , Xn)
denote a database, or dataset, where each Xi ∈ S. The set S of possible values of Xi is
the sample space. Hence, the universe of possible databases of size n is

D ≡ Sn = S × · · · × S. (1)

We say that two databases D = (X1, . . . , Xn) and D′ = (X ′1, . . . , X
′
n) are neighbors,

and we write D ∼ D′ if they differ in only one element. Let

N =
{

(D,D′) : D,D′ ∈ D, D ∼ D′
}

(2)

denote all pairs of neighboring databases. Note that D is assumed to be known. This
is an important point to which I will return.

Suppose we wish to output some quantity Z taking values in Z. We draw Z from
a conditional probability distribution Q( · |D). Fix a small positive constant α. We say
that Q satisfies differential privacy if

Q(Z ∈ A|D) ≤ eαQ(Z ∈ A|D′), for all A ⊂ Z, and all (D,D′) ∈ N . (3)

It has been shown by researchers in privacy that differential privacy provides a very
strong guarantee. Essentially it means that whether or not one particular individual is
entered in the database has neglible effect on the output.
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In the query-response model of privacy, Z is the answer to some specific question.
An example of a query is: “What is the mean of D?” The response Z would typically
be the mean of D plus (carefully calibrated) noise. In the sanitized database model of
privacy, we want to output a database Z = (Z1, . . . , Zk) that can be used as a proxy
for the data D = (X1, . . . , Xn).

The research in differential privacy is vast and we will not attempt a review here. A
few references are Dwork (2006), Dwork et al. (2007), Barak et al. (2007), Dwork and
Lei (2009), Blum et al. (2005) and references therein.

3 Statistical Thinking

Privacy research is conducted in many fields. We are concerned here with theoretical
foundations where important contributions have come from statisticians and computer
scientists, among others. There is conceptual overlap between the statistical view and
the computer science view, but there are also definite differences. These differences are
an advantage because they add to the intellectual diversity of the research landscape.
But they are also a disadvantage because they inhibit collaboration and make it difficult
for researchers to appreciate work in each other’s domains.

In this section I will provide a brief overview of statistical thinking aimed mainly
at theoretical computer scientists. I have two goals. First, I want to explain why
the “query-response” model often used in CS is considered unrealistic by statisticians.
Second, I want to explain a bit of minimax theory which I think theoretical computer
scientists will find appealing and which may help to create a bridge between the two
fields.

3.1 What Do Statisticians Do?

The query-response model is interesting and allows one to derive theoretical insight. It
may even be realistic in some settings. But I don’t know of a single statistician in the
world who would analyze data this way.

Statisticians want the whole dataset so they can engage a variety of activities with
the data, many of which are unforeseeable before the process of data analysis starts.
These activities include: plotting data, fitting models, examining residuals, estimating
parameters, testing the fit of models, robustness analysis, making predictions, estimating
densities, clustering, dimension reduction, principal component analysis, and a million
other things. In most cases it is difficult, if not impossible, to say beforehand what
algorithms will be used.

For this reason I think it is fair to say that most statisticians would prefer to obtain
a sanitized dataset. Therefore, in the rest of the paper I will assume that the goal is to
produce a sanitized dataset Z = (Z1, . . . , Zk).

Another difference between CS and statistics is the role of prediction. Statisticians
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Figure 1: Statisticians view prediction (classification, regression, etc.) as a part of
statistics. Some in CS see statistics as a subset of prediction.

see prediction (classification, regression, etc.) as an important part of statistics. But it
is only one part. My impression is that in CS there is a tendency to see statistics as a
subset of prediction. See Figure 1.

3.2 Minimaxity

Let us now discuss one part of theoretical statistics in more detail. Suppose we have
i.i.d. data X1, . . . , Xn which we regard now as a sample from an unknown distribution
P .

Suppose we want to estimate (learn) some quantity θ. (We are focusing now on
estimation but similar ideas apply to prediction.) Typically, θ depends on the unknown
P so we write θ = θ(P ). For example, if we want to estimate the mean of a population
then P denotes the population distribution and θ(P ) is the mean of the population. We
use the sample X1, . . . , Xn to construct an estimate θ̂ = θ̂(X1, . . . , Xn) of θ.

A statistical model P is a set of distributions P . One way to assess the accuracy of an
estimator is to look at the worst case behavior of the estimator over some model P. The
model could parametric—such as the set of Normal distributions—or nonparametric—
such as the set of all distributions. Let `(θ̂, θ) be a loss function. For example, if θ and
θ̂ are both real-valued, then a common loss function is `(θ̂, θ) = (θ̂− θ)2. We define the
risk EP [`(θ̂, θ)] and maximum risk

sup
P∈P

EP [`(θ̂, θ)]
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where EP is the mean of `(θ̂, θ) under the distribution P . The minimax risk is

Rn(P) = inf
θ̂

sup
P∈P

EP [`(θ̂, θ)], (4)

where the infimum is over all possible estimators. An estimator that achieves the min-
imax risk is called a minimax estimator. The minimax risk is one measure of how well
we can do on a statistical problem. A natural question is whether the minimax risk is
the same with and without differential privacy. We discuss this point later.

Example 1 Suppose that θ = θ(P ) is the mean of P and P is the set of all Normal
distributions. Wolfowitz (1950) showed that X = 1

n

∑n
i=1Xi is the unique minimax for

all bowl-shaped loss functions. (Bowl-shaped means that the level sets of the function
are convex and symmetric about the origin.) The risk of X is O(1/

√
n). For estimating

means (in bounded domains), the extra loss from adding noise to achieve differential
privacy is O(1/n), which is small compared to O(1/

√
n).

Example 2 Suppose we observe X1, . . . , Xn ∼ P where Xi ∈ Rd and P has density p.
Consider estimating p. Then,

inf
p̂

sup
p∈P

Ep

∫
(p(x)− p̂(x))2dx =

C

n4/(4+d)
,

where P is the class of smooth densities. (See Wasserman (2006) for details.) Density
estimation plays a role in constructing differentially private sanitized databases. We
discuss this in the next section.

Example 3 Let X1, . . . , Xn be a sample from a distribution P with density p where p
is contained in a parametric family P = {pθ : θ ∈ Θ} and Θ ⊂ Rd. Under conditions
on P, the (asymptotically) minimax estimator of θ is the maximum likelihood estimator
θ̂ which maximizes L(θ) =

∏n
i=1 pθ(Xi). (See van der Vaart (1998) for details.) Smith

(2008) shows how to make a differentially private version of the maximum likelihood
estimator.

4 Generating Sanitized Data

Now we review some specific methods for generating a sanitized dataset.

4.1 Density Estimation

The first few methods involve density estimation: we form a density estimate p̂ which
we then convert into a differentially private estimate p̂∗. Finally we sample Z1, . . . , Zk
from p̂∗. In summary:
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X1, . . . , Xn
density estimation−→−→ p̂

privatize−→−→ p̂∗
sample−→−→ Z1, . . . , Zk.

As long as p̂∗ is differentially private, then the sample Z1, . . . , Zk is too. The samples
size k can be taken to be arbitrarily large. Now we survey some density estimation
methods.

Basis Expansion. Let p denote the known density of P . Let ψ1, ψ2, . . . , denote
any uniformly bounded orthonormal basis. Then, assuming that

∫
p2(x)dx <∞,

p(x) =
∞∑
j=1

βj ψj(x),

where βj =
∫
ψj(x)p(x)dx. An unbiased estimate of βj is

β̂j =
1
n

n∑
i=1

ψj(Xi).

The density p is estimated by

p̂(x) =
J∑
j=1

β̂j ψj(x).

The truncation parameter J is chosen to achieve a good bias-variance tradeoff but we
shall not discuss that here. (See Wasserman (2006) for details.)

Now we sanitize the β̂j ’s by defining

β̂∗j = β̂j +
√

2CJ
nα

Lj , j = 1, . . . , J , (5)

where C is a bound on the basis functions and L1, . . . , LJ are independent draws from
a Laplace distribution. Wasserman and Zhou (2010) showed that the sanitized density
estimator

p̂∗(x) =
J∑
j=1

β̂∗j ψj(x)

satisfies differential privacy and has good accuracy.

A small technical point: we have to ensure that p̂∗(x) is a probability density func-
tion. So we replace p̂∗(x) with

p̂∗∗(x) =
[p̂∗(x)]+∫
[p̂∗(u)]+du

,

where [a]+ = max{a, 0}. Finally, we draw a large sample Z1, . . . , Zk from p̂∗∗. Here, k
can be taken to be arbitrarily large.
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Basis function estimators are minimax under appropriate conditions. If the density
has β smooth derivatives then the minimax rate for estimating p in squared error loss
is O(n−

2β
2β+1 ). This rate is achieved by p̂ using J = n1/(2β+1). Wasserman and Zhou

(2010) showed that p̂∗ has the same rate of convergence. Hence, in this sense, accuracy
is preserved under privitization.

If the basis is taken to be a wavelet basis, then the density estimator is adaptive
minimax, meaning essentially that it is minimax for a large class of different function
spaces. See Donoho et al. (1996).

Histograms. Suppose for simplicity that S = [0, 1]d. Divide S into cubesB1, . . . , BN
with sides of length h where N = (1/h)d. The histogram density estimator is

p̂(x) =
N∑
j=1

π̂j
hd
I(x ∈ Bj),

where π̂j = 1
n

∑n
i=1 I(Xi ∈ Bj). The privatized estimator is

p̂∗∗(x) =
[p̂∗(x)]+∫
[p̂∗(u)]+du

,

where

p̂(x) =
N∑
j=1

π̂∗j
hd
I(x ∈ Bj),

π̂∗j = π̂j +
√

2
nαLj and L1, . . . , LN are independent Laplace random variables.

Figure 2 shows an example. The top plot shows the original data. The plot shows a
histogram of the data along with the data points themselves, denoted by vertical black
lines. The bottom plot shows the privatized histogram and a sample drawn from the
histogram. The sanitized data look very different from the original data. The reason is
that the original dataset has regions where there are no data. Differential privacy forces
there to be positive probability in these regions. This problem can be ameliorated as
discussed in Section 7.

If the density satisfies a Lipschitz condition, then the minimax rate for estimating
p in squared error loss is O(n−

2
2+d ). This rate is achieved by p̂ using n1/(2+d) bins.

Wasserman and Zhou (2010) showed that p̂∗ has the same rate of convergence.

Kernel Density Estimators. The most commonly used density estimator is the
kernel estimator defined by

p̂(x) =
1
n

k∑
i=1

1
hd

K

(
||x−Xi||

h

)
where h > 0 is a bandwidth and K(·) is a kernel (a smooth symmetric density). See
Figure 3. Kernel density estimators have many nice properties. In particular, they
are easy to compute and they achieve the minimax rate of convergence under weak
conditions.
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Figure 2: The top plot shows the original data. The bottom plot shows the privatized
histogram and a sample drawn from the histogram. The sanitized data look very dif-
ferent from the original data. The reason is that the original dataset has regions where
there are no data. Differential privacy forces one to fill in such regions.
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Figure 3: A kernel density estimator.

4.2 Exponential Mechanism

We can also adapt the exponential mechanism due to McSherry and Talwar (2007) as
follows. (See also Blum et al. (2008).) Let PD denote the empirical distribution that
puts mass 1/n at each Xi:

PD(A) =
1
n

n∑
i=1

I(Xi ∈ A). (6)

Let P denote all distributions and let d be a metric on P. One such metric is the
uniform metric

d(P,Q) = sup
A∈A
|P (A)−Q(A)|, (7)

where A is some class of sets, such as the set of rectangles. Another metric, which is
perhaps more interesting for privacy, is the Wassertstein metric:

d(P,Q) =
(

inf
J
EJ ||X − Z||p

)1/p

, (8)

where X ∼ P , Y ∼ Q and the infimum is over all joint distributions J with marginals
P and Q. There are, of course, many other metrics.

Now we draw Z = (Z1, . . . , Zk) ∈ Sk from the density

q(z|D) = q(z1, . . . , zk|x1, . . . , xn) ∝ exp
(
−αd(PD, Pz)

2∆

)
, (9)

where
∆ = ∆(n, k) = sup

D∼D′
sup
z
|d(PD, Pz)− d(PD′ , Pz)|.

It follows from the results in McSherry and Talwar that this preserves differential pri-
vacy. The difficulty here is actually sampling from q(z1, . . . , zk|x1, . . . , xn). It can be
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done by importance sampling but it is not easy. Wasserman and Zhou (2010) gave a
general bound on the accuracy of the exponential mechanism. It is not known at this
time if this bound is tight.

4.3 Other Methods

There are many other mechanisms for constructing a sanitized database. See, for ex-
ample, Hardt et al. (2010), Barak et al. (2007), and Blum et al. (2008).

5 Accuracy

Minimaxity is a natural framework in which to examine the strengths and weaknesses
of differential privacy. For estimating one quantity θ(P ), we define the differentially
private minimax risk

Rn(P, α) = inf
θ̂∈Dα

sup
P∈P

EP (`(θ̂, θ)) (10)

where Dα denotes all α-differentially private estimators. We can then define the infor-
mation loss due to privacy to be

Rn(P, α)−Rn(P) = inf
θ̂∈Dα

sup
P∈P

EP (`(θ̂, θ))− inf
θ̂

sup
P∈P

EP (`(θ̂, θ)), (11)

where the second infimum is over all estimators. I am not aware of any systematic
attempt to compute these quantities in any generality.

Suppose now that we choose some Q that generates a sanitized Z. How do we assess
the accuracy of the method? Let Qα be all Q’s that satisfy α-differential privacy. We
define two different notions of minimax risk for differential privacy:

R(D) = inf
Q∈Qα

sup
D∈D

EQ(d(PD, PZ)) (12)

R(P) = inf
Q∈Qα

sup
P∈P

EPEQ(d(PD, PZ)). (13)

The first treats the data D as fixed. The second treats the data as a sample from a
distribution P ∈ P.

The first has been computed in a few restricted cases. Some examples are Hardt and
Talwar (2010), Roth (2010), and Rudelson et al. (2010). As far as I know, the second
has not been computed. Neither has been computed in great generality.

A less ambitious approach is to calculate

R(P, Q) = sup
P∈P

EPEQ(d(PD, PZ))

for some specific Q’s. This is the approach taken in Wasserman and Zhou (2010).

Figure 4 summarizes some results from Wasserman and Zhou (2010). The rows cor-
respond to different metrics (different measures of accuracy). KS refers to Kolmogorov-
Smirnov distance. The columns correspond to different sanitization methods. The
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dimension r

Data Release mechanism
Distance smoothed perturbed exponential minimax

histogram histogram mechanism rate

L2 n−2/(2r+3) n−2/(2+r) NA n−2/(2+r)

KS
√

logn× n−2/(6+r) logn× n−2/(2+r) n−1/3 n−1/2

dimension r = 1

exponential perturbed orthogonal minimax rate
mechanism series estimator

L2 n−γ/(2γ+1) n−2γ/(2γ+1) n−2γ/(2γ+1)

Figure 4: Summary of some results from Wasserman and Zhou (2010). The rows corre-
spond to different metrics (different measures of accuracy). The columns correspond to
different sanitization methods. The message is that it is not clear when minimax rates
of preserved.

message is that some mechanisms preserve the minimax rate and some don’t. The
general picture is not well understood.

6 Problems With Differential Privacy

Differential privacy is a mathematically precise and very strong guarantee. But there
are two problems. First, recall that D = Sn = set of possible databases. But what is S?
The set of possible data points S is usually not known. Moreover S can be complicated:
it can be numbers, images, sounds, functions, etc. But differential privacy requires that
S be known exactly. In practice, we often choose some conservative guess S0 that is
assumed to contain S. But S0 can be large in which case differential privacy causes us
to add too much noise. We saw this in Figure 2.

A second, and related problem, is that differential privacy might be too strong.
Consider a high dimensional contingency table. The counts are very sparse. There are
many zeroes. The sample size n is much smaller than the number of cells. Creating a
synthetic database subject to differential privacy leads to a very noisy database. (Mostly
noise.)

7 Support Estimation

Suppose the data X1, . . . , Xn are drawn from a distribution P . The set of possible
datapoints that could be obtained is called the support of P . Formally, S is the smallest
closed set such that P (S) = 1. The universe of databases is D = S × · · · × S = Sn. In
real problems, S — and hence D — is not known and one generally uses a set S0 that
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is thought to contain S. Because S0 is so large, differential privacy forces us to add a
lot of noise. We saw an example of this in the section on histograms.

A way to improve differential privacy is to replace S0 with an estimate Ŝ of the
support. For continuous data, we can use the Devroye-Wise estimator (Devroye and
Wise, 1980)

Ŝ =
n⋃
i=1

B(Xi, εn),

where B(Xi, εn) is a ball of radius ε centered at Xi and εn shrinks to 0 at an appropriate
rate. Now we set D̂ = Ŝn and the set of neighboring databases

N̂ =
{

(D,D′) : D,D′ ∈ D̂, D ∼ D′
}

is much smaller. This reduces the amount of noise that needs to be added. In discrete
problems, we can take Ŝ to be the observed data.

We are giving up some privacy if we replace S with Ŝ. But the gain in accuracy
could be large. Note that we cannot estimate S in a differentially private way. To do so
requires we know S and we end up in a vicious circle. The role of support estimation
in differential privacy deserves careful investigation.

8 Conclusion

Differential privacy has the virtue of being a precise, mathematical guarantee. This pre-
cision is useful theoretically but can make it somewhat impractical. Statistical thinking
— especially minimax theory — can be useful for exploring the accuracy of differentially
private mechanisms.

There are many open problems. These include: computing the differentially private
minimax risk in various problems, finding ways to relax differential privacy, the role of
support estimation, and the calculation of general lower bounds.
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