

 3

cells. With C3W, users can include functionality from any
web application where the user fills out a web form and
receives a result page. User can encapsulate a web form
into a function by creating “cells” that map to the inputs of
the form. The user then tells C3W how to find the data of
interest in the resulting page and assigns a function name to
encapsulated form. The function can then be used in
spreadsheet formulas. For example, the user can take a
company’s stock trading symbol as input, find its dollar
price by creating a function out of a web page that looks up
the stock quote, and then convert this price into Japanese
Yen by flowing this data through another web site.

Hunter Gatherer [31] and the Internet Scrapbook [33] are
tools that enable users to interactively extract components
of multiple web pages and assemble them into a single web
page or a collection.

Our work differs from these systems in that we focus on
extracting masses of typed data from web pages or even
entire web sites, identifying data types of attributes of each
item of data, providing a set of operations for the relevant
data types found, and applying operations to a large set of
data. For example, a listing of movies from a web site may
be spread over several pages and have attributes such as the
title (a string), rating (a number), and running time (also a
number). When data is extracted from web pages and is
broken down into constituent attributes and types, users can
manipulate extracted web content with more flexibility and
power. Listings can be sorted or filtered by an attribute and
attributes can be operated on. If we have a listing of books
with title and publication date attributes, we can look up
price for the correct edition of each book in a bookseller’s
web service.

Hunter Gatherer and Internet Scrapbook focus on extraction
of textual clips from web pages, without specifically
breaking down extracted web pages into data items with
typed attributes. Although C3W can make a function out of
nearly any web form, it does not appear to be easy to work
with larger sets of data (for instance, applying a function to
a large listing of items). Users must invoke functions using
a syntax for spreadsheet formulas. Furthermore, our
Marmite focuses on providing an interface to web services.
Some web services provide access to the core functionality
that may be more flexible and lower-level than what a user
would encounter using the web interface. Working with and
remixing the sub-components of multiple websites is how
most programmers create mashups.

Web Content Selection
We argue that one of the key challenges of end-user
programming for the web is making it easy for end-users to
specify what parts of a page or set of pages they want. This
is difficult because there is such a wide range of
possibilities. For example, by selecting a single link from a
page, a person might want just that link, all links in that
group, all links on that page that are not part of the overall
navigation, all links on that page, or all of the

aforementioned possibilities but for a set of pages. It is
possible to apply well-known machine learning techniques
or programming by demonstration techniques here;
however, the challenge is to find the right combination of
simplicity and flexibility that will help end-users succeed.

Identifying patterns of relevant information on a web page
can be done with web page parsing APIs, frameworks for
existing programming languages [25], or specialized
languages [2, 14]. There has also been a great deal of work
in developing data wrappers, programs that extract data
from a web site so that it can be manipulated by traditional
database systems [18, 19]. However, most of these tools are
aimed at programmers.

Recent work has attempted to mitigate these problems.
Chickenfoot [3] can match text using natural language
expressions (e.g. “just before the text box”) but requires
programming in JavaScript. PiggyBank [11] extracts data
from websites that are augmented with semantic data but
requires JavaScript to extract data from normal websites.
There has also been a great deal of work in automatically
inferring structure in freeform text (for example, [29, 30,
23, 24, 4, 8]). Our goal with Marmite is not to innovate in
these areas, but rather to use these algorithms to facilitate
data extraction. Our current implementation of Marmite
uses a pattern-matching algorithms from Sifter [12] and
Solvent [32] , which uses XPath [34] queries to help the
user select and extract multiple data of interest from a
single page. Creo and Miro [9] compose a system which
helps users extract information using a combination of
programming-by-demonstration (PBD) and semantic
libraries [21].

Dapper [6] is a tool for creating screen-scrapers that allows
a user to access any web page as if it was structured data in
an XML document. Although it is an excellent way to avoid
having to write a screen-scraper, it is geared more towards
programmers who can make use of its output.

The Semantic Web and Web Services
There is also some related work in the area of the Semantic
Web [34], an effort to embed machine-readable meaning
and semantics to the large body of information that exists
on the web. The goal is to transform this knowledge into a
machine readable form so that computers can reason based
on this information. Our goal with Marmite is orthogonal to
Semantic Web efforts. If the Semantic Web takes off, then
we can later adapt Marmite so that it can make use of those
technologies. However, it is important to point out that
there is a great deal of existing content already available,
and that even if the Semantic Web takes off, we still have
the same problem as before, namely that content and
service providers cannot always predict all end-users’ needs
in advance.

Web services are a programmatic interface to the web,
using the web as a medium for providing services through
well-defined APIs with clear semantics (meant for

computers) rather than just HTML (meant for people). The
problem is that web services are again aimed at
programmers rather than end-users.

FORMATIVE DESIGN
To quickly explore the design space, we conducted a series
of small studies to inform our design, consisting of a user
test of Apple’s Automator [1], a blank paper study, and a
series of low-fidelity paper prototypes.

Automator Usability Study
Marmite was inspired by Automator, but is focused more
on extraction and processing of web data. Thus, we felt that
a running basic usability test with Automator would help us
understand some potential usability problems that Marmite
might encounter.

In Automator, end-users create a workflow by chaining
together a series of operations. End-users can choose
operations from desktop applications they are familiar with,
such as getting email addresses from the address book
application or retrieving a web page with the the Web
browser. We asked three participants to complete three
tasks. The first task was a simple warm-up task and the
other two were operations that involved traversing a large
number of links and downloading a large number of
images.

We found the following problems:

1. Participants had a hard time knowing what operation to
select. This was especially when for creating a new
dataflow. Although we showed our participants several
examples of how to chain operations together, they
often had a hard time selecting the first operation to get
started.

Solution: Suggest relevant next actions. In our
prototypes, we developed a few ways of having
Marmite suggest what kinds of operations they may
want to do next, based on the data currently available.
For example, if there was street address data available,
Marmite would suggest generating a map as one of the
next operations.

2. Participants had no feedback about what the state of the
data was in between operations.

Solution: Show results of intermediate steps. Many
end-user programming tools take either a program-
centric view, where the program itself is the main view,
or a data-centric view (most notably spreadsheets),
which emphasizes the data over the program. In our
paper prototypes, we developed a linked data flow /
spreadsheet view that shows the program itself (data
flow) as well as the effects of a given step in that data
flow (spreadsheet view).

3. Since it can take a large amount of time to execute
programs that involve large amounts of data, it was

difficult to rapidly iterate on programs and ensure that
the programs do the right thing. This was especially
problematic for programs that copied or downloaded
files, since the copies would have to be deleted before
trying again.

Solution: Support incremental execution. Participants
in the Automator study and in our paper-prototype
study found the operators fairly easy to understand and
use, as they made programming easier by letting people
build programs incrementally and correct errors earlier.

4. Participants often generated theories about why
problems occurred but were not effective at coming up
with theories to test them. This is consistent with prior
work on end-user programming [16].

Solution: Incremental execution and showing
intermediate results helps alleviate this problem
somewhat because it is easier to see where the problem
occurred. Automatic generation of theories for
programming bugs is currently an open problem in
software engineering [17].

Blank Paper Study
To design a method for interactively extracting text from a
web page, we conducted a blank paper study, inspired by
similar studies in natural programming designs [28]. In
these blank paper studies, three participants were asked to
write down unambiguous instructions for another person
that would extract multiple instances of a data type (such as
a company or hotel name) from a web page. They used
semantic references such as “get all of the names of
companies.” Some participants used drawings and referred
to the typographical features (e.g. “all of link text up until
the hyphen”).

This finding suggests that since users would most likely
extract information based on semantics, typographic, or
other features that can be difficult for a computer to
understand or even ambiguous for a human being, the
system must use a variety of heuristics, data detectors, or
semantic detectors [9] to come up with some guesses about
what data the user wants. The system and the user can then
engage in a negotiation to navigate between guesses and the
parameters of guess to arrive at what is actually desired (or
close to it).

We address this problem in Marmite’s design by
having the user interactively detect relevant data. The
system should try to guess what patterns of information
are desired and find the user’s intent is through
negotiation. This feature is only partially supported in
the current implementation of Marmite.

Paper Prototypes
We conducted six rounds of paper prototypes with twenty
participants. The paper prototype allowed users to assemble
a sequence of operators (a data flow) that performed some
tasks on a set of data. When an operator executes, its output

 5

is available as input for the following operation. Users
could see the results of operations in tables to the right of
the data flow. Each operator was associated with a before-
and-after view of the data.

Our vision for our design was that users would be able to
interact with web services as graphical operators. The
operators would be built and connected to web services by
programmers who could add their operators to Marmite
operator pool. Some of these might be provided by web
service providers themselves, who might be interested in
increasing the use of their services.

As we were evaluating the paper prototypes, we noticed
that even though users might understand how Marmite
worked conceptually, the usability of Marmite was still
very sensitive to the design of the individual operators. This
was a major concern Marmite’s operators would be created
by programmers. We decided to address this in our high-

fidelity prototype by creating a code framework where the
interface was generated for the developers simply by
specifying their inputs and outputs. This enables Marmite
operators to be consistent and lets programmers concentrate
on connecting to the web services.

Users also felt that it was difficult to know where to start.
We modified the paper design to include template data-
flows for common tasks. Some participants using our low-fi
prototypes commented that it would be easier to use
Marmite if they had examples to examine or modify.
Template data-flows can be included to show the range of
tasks that can be accomplished. This feature is not
implemented in the current version of Marmite.

THE MARMITE SYSTEM
Marmite is currently implemented as a Firefox plug-in
using JavaScript and XUL. We choose to make Marmite a
part of Firefox rather than a standalone application for
several reasons. First, we thought that close integration with
a common web-browser would be beneficial for usability,
adoption, and development. Being in the web browser,
Marmite would be very close to the user’s web browsing
experience. If the user were to find some data that he or she
would like to manipulate, the user would not have to launch
a separate program to begin using Marmite. Second,
integrating Marmite with the browser also makes it easier to
manipulate private or protected data that is guarded by
passwords, cookies, or other web security mechanisms that
the browser is normally used to access. Third, we felt that a
browser plug-in would have lower barriers to adoption than
traditional applications. Installation of a Firefox extension
can be done by simply clicking on a link and restarting
Firefox. The Firefox platform also automatically tracks
updates for plug-ins and notifies the user when new
versions are available.

Marmite’s interface (see Figure 1) consists of three major
areas: the operator selection area (left, not shown in Figure
3 below), the data flow area (middle), and the spreadsheet
display (right). Users select operators from the operator
selection area, place them into the data flow, and view the
current state of the data at a particular operator in a table,
which shows what the data looks like after it has passed
through an operator.

Data Flow View of Operations
Operators represent pieces of code that either access web
services or are functions that operate locally on data.
Operators are chained together in a data flow where the
results of one operation are passed as input to the next
operation, similar to Apple Automator [1] and Anthracite
[22]. The data that flows through the operators is
represented in a table. The basic unit of work for each
operator is a row in the table (as opposed to columns or a
single cell). Each piece of data has various attributes which
are represented by different columns in the table.

Figure 3. A data flow showing an operator which retrieves event

records from a web service and passes it to an operator which
filters the records by date. Note that this screenshot does not

show the operator selection area, that is the set of possible
operators that can be added.

Figure 4. This figure shows the same data flow as in Figure 3 but

with an extra operator added. The final operator is showing a
map view rather than the default spreadsheet view.

Figure 3 shows an example. The first operator retrieves
event information from a web service. The event objects
have 6 attributes: the name of the event (column A), the
date of the event (column B), the event venue (column C),
the city where it is being held (column D), and latitude and
longitude coordinates (offscreen). By adding objects to the
data-flow, the first operator creates a schema for the data
table, where each column is internally labeled with a data
type. Subsequent operators add to this schema when they
add columns, which might happen if additional attributes
are retrieved for each piece of data.

The second operator is an event filter that removes rows
from the data if they meet a certain criteria. It has a single
argument; it needs to know which column to use as the date
field. If the operator’s inputs and the previous operator’s
outputs use the same label for their types, inputs and
outputs can be matched automatically and connected.
However, Marmite is intended to be an open platform
where individuals and providers of web services create their
own operators and may have different ways of labels for
their data types. For example, a web service that provides
event listings may have a field called “time” that indicates
when an event is starting. An operator from a calendar
service may call that same a field called “start time.” In this
case, Marmite would not automatically connect these
listings service output to the calendar input; user would
have to do that manually.

Some operators provide alternative displays of the data. For
example, Figure 4 shows a continuation of our data flow,
with a third operator that displays all of the events on top of
a map. Each operator can also be collapsed to save space.
For example, in Figure 4, steps 1 and 2 are collapsed.

Each operator comes with three buttons to control the
execution of the operator: Reload, Pause, and Play.
Operators do not execute immediately after being placed
into the data flow because they may have arguments that
need to be set before any meaningful execution can occur.
The user then needs to press the “Play” button for the
operator to begin its work.

These controls were motivated by our user study of Apple
Automator. We found that users had trouble creating
correct sequences of operations because the user would
typically create a data flow and test it as a single unit.
Unless the user had planned in advance to restrict the initial
data set to a few small items, the data flow would operate
on the entire set of data and errors would only be visible at
the end of the process. When operations involved accesses
to the network, specifically to web pages or web services,
this increased the time it took to debug a process.
Consequently, Marmite allows the user more control over
execution, making it easier to test a data flow on a small
sample of the data before committing to executing the data
flow on a much larger dataset.

Operators are written in JavaScript and XBL (Extensible
Binding Language). XBL encapsulates the JavaScript code

for an operator, and is the glue that links JavaScript code to
Marmite’s operator framework. XBL makes it easy to
provide some basic GUI controls and minimizes the amount
of work required to interact with other operators in a data
flow as well as the rest of Marmite.

Spreadsheet View of Data
In the Marmite interface, each operator is associated with a
table that shows the state of the data after the operator has
been run (see Figure 3). The table is displayed in the
results/display area on the right. Each row in the table
corresponds to a piece of data with multiple attributes.
Users can view the current state of the data after executing
each step. This lets the user see the effects of operations
right away and identify problems immediately.

It should be noted that our spreadsheet view is currently
read-only, in that end-users cannot click on a cell and
modify the data. This may change in later versions of
Marmite.

Inputs and Outputs
Marmite currently has three categories of operators:

Sources: These operators add data into Marmite by
querying databases, extracting information from web
pages, and so on.
Processors: These operators modify, combine, or
delete existing rows. Example operators include
geocoding (converting street addresses to latitude and
longitude) and filtering. Processor operators might add
or remove columns as well.
Sinks: These operators redirect the flow the data out of
Marmite. Examples include showing data on a map,
saving it to a file, or to a web page.

In Marmite, each of these columns is associated with a data
type that is defined by the operator that created that column.
Each operator is visually divided into controls for inputs
and controls for outputs. Operators that accept input from
the previous operators have input parameters. Some of
these may be taken from a column in the data flow and
some of these may be fixed parameters that aren’t specific
to the row being operated on. Since data types are defined
by operator authors, inputs for one operator have to be
matched with the outputs for the previous operator. If
Marmite cannot perform this match automatically, the user
has to tell the operator where to take each argument from.

For example, Figure 3 shows the visual details of two
operators. The second operator is a filter for removing rows
from the data flow. It has an argument which it accepts
from each row, the date of the event, and an argument
which applies to all rows, the date which should be used to
filter the events. The argument for the date of the event is
set to column “B,” which is known as “Time” to the
previous operator.

Although we could have made the operators in this version
of Marmite all use the same set of types, operators can be

 7

used represent function calls to web service APIs. Web
service APIs, in turn, all define their own data type. We
also don’t expect future operator writers to all agree on type
compatibility. Although we hope to encourage operator
writers to all agree on a single way to refer to data types,
the design decision to allow manual type matching between
operators in a data flow is based on the conservative
assumption that type standardization is not guaranteed in
the future.

Currently, Marmite has a small set of pre-defined data
types, such as time, address, and number. Marmite also has
a very basic data type resolution system. For Marmite to
achieve wide-scale traction, it will require a larger set of
useful data types that most authors of operators can agree
on. This issue is beyond the scope of this current paper, but
it is important to note that this is a fundamental and well-
known problem in many domains, including federating
databases, XML schemas, and the semantic web.

Operator Groupings
The operator list contains a set of operators which can be
added to the data flow. But rather than using a simple list,
we implemented the operator as a tree that grouped similar
operators together. This was intended to help users find
operators more quickly because they are able to skip over
groups that are inapplicable to their task. Figure 5 shows
the operator menu.

Because Marmite knows what data types are currently in
the data flow, it can provide a list of “suggested operators.”
This list only includes operators that are compatible with
the data types. We incorporated this feature to make it
easier for end-users to find relevant operators.

Figure 5 Operators are placed in groups to improve browsing.
The menu above the list allows the user select to select
alternative groupings (e.g. show only operators that can take
the current data as input)

Web Page Extraction
Figures 3 and 4 show a highly specific source operator that
makes it easy to extract information from a pre-specified
web site, in this case, the event site upcoming.org. To
extract more general information from arbitrary web pages,
we also provide an operator that, when played, opens a new

browser window. Users are then led through a series of
wizard screens (see Figure 6) that let the user select an
example of the items of interest, provide some feedback on
the system’s guess about the items of interest, and finally
manually add or remove items that were either

unintentionally picked or not included.

Currently, this operator only uses a simple XPath pattern
matcher based on the one found in Solvent [32] to select
links that might be similar enough to the user’s example.
Figure 6 shows a screen with the controls of the wizard laid
on top. XPath pattern matching tends to work well for web
pages where individual items of data in listings are in their
own HTML tags.

FORMATIVE EVALUATION
We conducted a user study with 6 people to identify
usability issues and how usable our design was for different
classes of users. Since we incorporated some aspects of
spreadsheets to make Marmite more familiar to certain
types of users, we also wanted to determine how
understandable these were. Note that we made two minor
modifications to the user interface during the evaluation
phase, as described later.

We divided our participants into three groups: users
familiar with programming, users familiar with
spreadsheets but not programming, and users who were not
familiar with spreadsheets or programming.

We recruited participants by posting an advertisement on
our local Craigslist website as well as a popular university
bulletin board. Using email surveys, we asked our

Figure 6. This figure shows our wizard for selecting items of

interest from a web page.

participants about Internet use and familiarity with
spreadsheets and programming. We had two people in each
of the following groups:

• Little or no spreadsheet or programming familiarity
(“no-experience” group)

• Familiar with spreadsheets (including formulas)

• Familiar with programming

Participants who had taken programming classes in the past
but claimed to be bad or unfamiliar with programming were
not included in the programming group.

The testing was conducted on a 12-inch Apple Powerbook
G4. A mouse was provided and was used by most users.

Tasks
Because Marmite is not intended as a walk-up-and-use
system, users were provided with a warm-up task to help
familiarize them with the system. The instruction sheet for
the warm-up task explained what actions were needed to
retrieve a set of addresses and how to geocode an address
(that is, transform a street address into latitude and
longitude, a prerequisite before putting items onto a map).

After completing the warm-up task, users were asked to
complete three more tasks of increasing complexity. The
three tasks were:

1. Search for events and filter out events further than a
week away. Here, we wanted to see if participants
could use two operators to achieve a result, and to
assess the basic usability of the system.

2. Compile a list of events from multiple event services
and plot them on a map. (The two event services have
different output schemas, can users make sure they are
merged?)

3. Given a web page with links to some apartment rental
listings, plot those apartments on a map. We wanted to
understand if our design for screen-scraping links from
a page was usable. This is similar to the functionality
offered by the mashup HousingMaps.com. Figure 7
shows an example of a completed data flow for this
task.

Our first two participants were unable to do most of the
tasks due to labeling problems in the operators. We added
some labeling to indicate that the column-selection menus
would tell the operator which column should be examined
for each argument that it needed. Of the four remaining
users, both users in the programming group and one user in
the spreadsheet group were able to complete the tasks with
little difficulty.

We also decided to turn off the automatic appearance of
suggested operators after the first test when the user got
extremely disoriented by apparently unexplainable changes.
We changed this so that instead of appearing automatically,
user would have to ask for them.

Observations
Three of the participants were able to complete most of the
tasks without difficulty: one from the spreadsheets group
and two from the programming group. Participants who
were able to complete all of the tasks completed them in
under an hour.

The users in the programming group seemed enthusiastic
about the tool and wanted to be notified when Marmite was
complete. One user mentioned that it would be possible to
use a tool like this to replicate the some of the functionality
data aggregation and visualization services such as the

Multiple Listing Service real estate database, which he
remarked was too expensive for ordinary people.

If users were to do this in a programming environment, they
would have to figure out how to access web services
represented by our operators or replicate the code they
represent, write the code, and debug it. Furthermore, this
would have been impossible for the users in the spreadsheet
group. It is also worth noting that the housingmaps.com
mashup replicated in this task was developed by a highly
skilled professional programmer.

Since the focus of our user study was to identify usability
problems in our current tool, the rest of this section
discusses problems we uncovered.

For the 3 participants who were unable to complete the
tasks, the main barrier was understanding the concept of a
data flow. These users were puzzled by the meaning of
selecting inputs and outputs. Users deleted operators they
had successfully used not knowing that they were erasing
data. These users believed that an operator was no longer
needed once it had been used to produce a result in the
spreadsheet view. They also did not seem to believe that
there was any particular order to the operators, viewing
them as highly interactive tools to simply change the

Figure 7 A dataflow that mimics the functionality of the
housingmaps.com website. Note that Step 1 and 2 are

collapsed to save space.

 9

current state of the data, not as pieces of a sequence that
needed to be built up.

For the most part, users had several did not attempt to have
the same model of how the operators interacted with the
results tables that were displayed on the right. When these
users played an operator, they believed that operator has
made some changes to that copy of the table. In our system,
each operator has its own copy of the data, which is present
in the third column. Deleting an operator would delete the
table associated with that operator. The operator after it in
the data flow would have no prior operator to fetch the data
from. Similarly, users who were stuck would close
operators and lose all of the results from those operators.
One possible solution is to change operators so that they do
not own tables and instead to make tables objects in their
own right.

One of the non-programming users did not like trying to
accomplish their tasks with primitive operators. She said
that they preferred richer interactions where, once the data
type was introduced to the table, helpful displays about that
data should made visible. For example, one user
commented that once he extracted a list of URLs to web
pages that each had rental listings, he would have liked to
have immediately other useful attributes such as price,
location to be extracted without having to use separate
operators to get each piece of data.

FUTURE DIRECTIONS
Our user tests revealed a number of directions for
improvement:

In this version of Marmite, we only had a very basic screen-
scraping operator. We plan add more sophisticated screen-
scraping functionality and incorporate a more diverse set of
heuristics and data detection algorithms.

Another direction that we are looking at is to significantly
expand the set of operators, and create a way to transform a
data flow into a mashup website. The recent explosion of
mashup-making activity was caused by the increased
availability of web services APIs. A similar increase in the
number of available operators might encourage
experimentation. One method of doing this is to
automatically generate operators from machine-readable
web service descriptions (WSDL) offered by web services
providers.

We also plan to make some changes in operator feedback or
the placement of the data tables on the screen to address the
usability problems encountered by some of the non-
programmer users.

CONCLUSIONS
It is important to note that there is a growing need for a tool
like Marmite. Existing web sites and cannot always predict
the needs of all of its end-users. Thus, it is important to
provide tools that can help end-users help themselves.

In this paper, we presented the design, implementation, and
evaluation of Marmite, a tool for end-user programming on
the web. Marmite works by displaying a linked data flow /
spreadsheet view, letting people see the program as well as
the data simultaneously. A small user study showed it was
possible to replicate the functionality of a popular mashup
website.

ACKNOWLEDGMENTS
This work is supported in part by a National Science
Foundation grant IIS-0646526 and Intel Research. We also
thank Duen-Horng (Polo) Chau for his support and
assistance. We thank Michael Twidale and Cameron Jones
for their enthusiasm and support.

REFERENCES
1. Apple, Automator: Your Personal Automation

Assistant.
http://www.apple.com/macosx/features/automator/

2. Barrett, R., Maglio, P., and Kellem, D.. “How to
Personalize the Web.” Proc. CHI’97, pp. 75–82.

3. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,
R. C. Automation and customization of rendered web
pages. Proc. UIST '05. ACM Press (2005), 163-172

4. Cohen, W.W., Minorthird: Methods for Identifying
Names and Ontological Relations in Text using
Heuristics for Inducing Regularities from Data. 2004.
http://minorthird.sourceforge.net

5. Cypher, Allen, ed. "Watch What I Do: Programming
by Demonstration", MIT Press, Cambridge MA, 1993.

6. Dapper. http://www.dappit.com
7. DataMashups. http://www.datamashups.com
8. eGrabber, AddressGrabber Business 3.2.1.
9. Faaborg, A. and Lieberman, H.. A goal-oriented web

browser. Proc. CHI 2006. ACM Press (2006) pp. 751-
760

10. Fujima, J., A. Lunzer, K. Hornbaek, and Y. Tanaka.
Clip, Connect, Clone: Combining Application
Elements to Build Custom Interfaces for Information
Access. In Proc. UIST2004, CHI Letters 6(2). ACM
Press (2004). pp. 175-184.

11. Huynh, D., Mazzocchi, Stefano and David Karger.
Piggy Bank: Experience the Semantic Web Inside Your
Web Browser. International Semantic Web Conference
(ISWC), November 2005, Galway, Ireland.

12. Huynh, D. F., Miller, R. C., and Karger, D. R. Enabling
web browsers to augment web sites' filtering and
sorting functionalities. Proc. UIST '06. ACM Press
(2006), 125-134.

13. Kelleher, C. and Pausch, R. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput. Surv. 37, 2 (2005), 83-137.

14. Kistler, T. and Marais, H. WebL - a programming
language for the Web. Proc. WWW7, (1998) 259-270.

15. Ko, A. J. Myers, B. A. Human Factors Affecting
Dependability in End-User Programming. 1st
Workshop on End-User Software Engineering (2005),
St. Louis, MI, pp. 1-4

16. Ko, A. J., Myers, B. A., and Aung, H. Six Learning
Barriers in End-User Programming Systems. IEEE
Symp. On VLHCC, (2005) pp. 199-206

17. Ko, A. J. and Myers, B. A. Designing the Whyline: A
Debugging Interface for Asking Questions About
Program Failures. Proc. of CHI 2004, ACM Press
(2004), 151-158.

18. Kuhlins, S. and R. Tredwell, Toolkits for Generating
Wrappers - A Survey of Software Toolkits fo
Automated Data Extraction from Web Sites. LNCS
2591 2003: p. 184-198.

19. Laender, A.H.F., B.A. Ribeiro-Neto, A.S.d. Silva, and
J.S. Teixeira, A Brief Survey of Web Data Extraction
Tools. SIGMOD Record 2002. 31(2): p. 84-93.

20. Lieberman, H. (Ed.) 2001. Your Wish is My
Command: Programming by Example. San Francisco:
Morgan Kaufmann.

21. H. Liu, P. Singh, ConceptNet — A Practical
Commonsense Reasoning Tool-Kit, BT Technology
Journal, 22, 4, p.211-226, October 2004

22. Metafy Anthracite.
http://www.metafy.com/products/anthracite

23. Microsoft, Microsoft Office XP Smart Tags.
http://www.microsoft.com/technet/prodtechnol/office/o
fficexp/maintain/xptags.mspx

24. Miller, R.C., Lightweight Structure in Text,
Unpublished PhD thesis, Carnegie Mellon University,
Pittsburgh, 2002.

25. Miller, R. and Bharat, K. SPHINX: A Framework for
Creating Personal, Site-Specific Web Crawlers. Proc.
WWW7, (1998), 119-130.

26. Mozilla Foundation, XBL (Extensible Binding
Language).
http://www.mozilla.org/projects/xbl/xbl.html

27. Mozilla Foundation, XUL (XML User Interface
Language), http://www.mozilla.org/projects/xul/

28. Myers, B. A., Pane, J. F. and Ko, A. Natural
Programming Languages and Environments. Comm.
Of the ACM, (Sept. 2004), 47-52.

29. Nardi, B.A., J.R. Miller, and D.J. Wright, Collaborative
Programmable Intelligent Agents, Communications of
the ACM, vol. 41(3): pp. 96-104, 1998

30. Pandit, M.S. and S. Kalbag. The Selection Recognition
Agent: Instant Access to Relevant Information and
Operations. In Proceedings of International Conference
on Intelligent User Interfaces. Orlando, FL. pp. 47-52
1997.

31. schraefel, m.c., Modjeska, D., Wigdor, D., and Zhu, Y.
Hunter Gatherer: Interaction support for the creation
and management of within-Web-page collections.
Technical Report CSRG-437, Department of Computer
Science, University of Toronto, October 2001.

32. Solvent, http://simile.mit.edu/solvent/
33. Sugiura, A. and Koseki, Y. Internet scrapbook:

automating Web browsing tasks by demonstration.
Proc UIST '98. ACM Press (1998), 9-18.

34. W3C, XPath (XML Path Language)
http://www.w3.org/TR/xpath

35. W3C, Semantic Web. http://www.w3.org/2001/sw/

