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Part 2: The Optimization Algorithm
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Recently, it was shown that’ chemical processes modeled by steadngtate
simulators could be optimized without repeatedly converging the process sim-
ulation. 1Instead, optimization and simulation of the flowsheet can be per-
formed simultaneously, along an infeasible path, thus leading to much more
efficient performance. | - _

In this two-part study, we describe several improvements to this
infeasible path approach. This second paper deals with theoretical
and computational improvements to the optimization algorithh. Since
recycle convergence and optimization 6ccur simultaneously, the
consequences of algorithmic failgre can be severe, since little useful
information is recoverable. Here we consider and improve several
factors that affect the efficiency and robustness of the Successive
Quadratic Programming (SQP) optimization algorithm.

The improvements are demonstrated on several small problems as well
as three chemical process problems. The results show significant improvement
in performance as predicted from the theory.

SCOPE

In Part one of this study we described the importanpe of process
simulation for design and analysis. However, the present mode of
simulation, the sequential modular strategy, can be very inefficient
for optimization. Previous studies have shown (e.g. Gaihes and Gaddy
(1976) , Ballman and Gaddy (1977)) that performing an optimization
study by repeatedly simulating the flowsheet requires prohibitive

computational effort, ,:Lt/‘terms of demands made on the process

simulator. . UNIVERSITY |1
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To meke process optimzation on sequential nodul ar simulators
nore efficient and effective, Bi egl er and Hughes (1982) proposed the
i nfeasi bl e path approéch. Here the process flowsheet and the
optim zation problem are converged.sinultaneously; the inefficient
recycl e convergence calculations are totally elimnated énd t he
fl owsheet itsel f is-converged automatically at the optimm point.
Several studies on a variety of test problems (Biegler and Hughes
(1982,1983), Chen and Stadtherr (1983), Hutchison et al (1983)) have
shown that this approach is much nore efficient than previous
optim zation strategies. In this two part series we d{g;hss quther
i nprovenents to the infeasible path approach. Part one of this study
(Biegler and Shivaram 1983) deals with inproving the interface
bet ween the process sinﬁlator and the optimzation algorithm The
pri nci pal Considération there is the'calculation of the objective and
constraint functions and their gradients fromthe nmodules in the
process flowsheet. Additionally optimal tearing strategies and-
non-differentiabilities in floﬁsheet nodul es were di scussed. In
this paper we deal exclusively with the optimzation algorithm
Because the process flowsheet and the optimzation problem are
converged simultaneously by this algorithm Iittlé i nformati on can be
recovered if the algorithmfails. For this reason, the optimzation
algorithnlnust-be efficient and robust. Specifically, it must be able
to handl e poor starting points, badly scaled problens and somne
i naccuracies in the gradients. In Part one of this study we nention
that the SQP algorithm (Han (1977), Powell (19f7)) has been an
efficient and effective tool fér optim zati on. In thig paper we
i nprove upon the efficiency and reliability of this algorithm

| nt roducti on

As mentioned in the Part one of this series, the infeasible path op*

timzation algorithm can be given by:




(NLP) Mn  $(x)
. X

s.t. g(x) ~ 0
h(x) =0
wher e X - decision variables chosen by
designer and tear variables
p - objective function
g - inequality constraints

h - equality constraints inposed
by the designer and tear equations.

Part one discussed the fornmulation of this problem the role of the
vari ables in the process flowsheet and how constraint functions were
eval uat ed
The SQP al gorithm solves the above probl em by determining a
search direction at each iteration i fromthe quadratic progranm ng
probl em (QP): )
QAxi, B): Mn  A(xHtd +} d7 Bd
d =
s.t. gul) +vgulytdzso
Mx*) + v h(x')Td=0

G adients for Qx*,B) are generally obtained fromthe fl owsheet
by perturbation. The Hessian matrix, B, is constructed thréugh BFGS
(see Dennis and More (1977)) updates which rely on gradﬂents of the
Lagrangi an: L(x,u,v) = #(x) + u'g(x) + v'h(x) at successive points
(here u and v are Kuhn-Tucker multipliers returned fromQ(x',B)).

Once Q(x*,B) deternmines a search direction, d;, a stépsize, \ o,
along this direction nust be chosen to set the next point, i.e. xitl =
x* e+ \d. In order to choose this step a sufficient decrease in sone
nerit function nust be found along the search direction. This function
must include an objective function tern1b|us a nonlinear conbination

of the violated constraints® To achieve desirable perfornmance the




stepsize or line search procedure nust avoid determning steps that
are either so large that they lead to cycling or aivergence, or .so
smal | that the rate of. convergence becomes undesirably slow.

Finally, while the theoretical convergence propertieé of the SQP
algorithmare deternined by inplementation of the quadratic program
and stepsize procedure, the nost drastic effect on performance is

produced by the scaling of the optimzation problem \Wile several

‘automatic scaling algorithns have been proposed, (see Tomin (1975))

none has been universally effective in inproving performance.

This paper deals with three areas of inprovement relating to the
SQP a]gorithm Taken together, they represent an inprovement in the
comput ational effort required by the propylene chlorination

optim zation (see Part one) by up to a factor of -jr~re® The three

areas are:
1) Inprovenents in setting up and solving Q(x*, B).
2) More efficient.and robust line search procedures.
3) An autonatic'scaling procedure and an 'on-line measure
of how wel | the problemis scaled
Each area is motivated by exanples that illustrate serious problenms

with existing strategies. W also present, in the final two sections
extensive numerical results that illustrate the effectiveness of our
| mprovenents.
. The Quadratic Programm ng Step

The nost basic step in the SQP algorithmis formulation and
solution of the quadratic program Q(x*,B). By analogy, one can
conmpare this step to Gaussian elimnation of the Jacobian in a Newon
Raphson procedure. Both cases strongly depend on the accuracy and
efficiency of the basic steps. Aside fromthe effort needed to

eval uate function values and gradients, this step is the nost

time-consuming in the SQP algorithm
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Perhaps the nost widelyl used version of the SQP algorithmis VFO2AD,
a FORTRAN-cal | abl e subroutine i.n the Hafwell Li brary. Devel oped by Powel |
(1977), it uses a QP algorithm VEO2AD devel oped by Fletcher (1971) At
present, however, VEO2AD is generally regarded as inefficient because
the constraint updating procedure for the active set is time consum ng
and often has a tendency to becone unstable. Several inplenentations
(Locke et.al (1983), Stadtherr and Chen (1983)) as well as our own use a QP
al gorithm devel oped by G|l and Murray (1978). This algorithm perforns a
R factorization of the active constraint normals and opti rrizes. only in tt\_e___"
i near subspac'e of the active set. In addition, Gl and Miurray devel oped
constraint updating fornulae that apply directly to the f‘actorizations, are
exact, and do not contribute to the growh of roundoff error. Thus their al-:
gorithm incorporates a stable and efficient updating procedure for solving
QP's.

Anot her provision allowed by the GIl and Murray QP algorithmis
the use of "warnt starts. Mich of the solution tinme for solving QP's
is spent in determining the active constraint set that satisfies |
Kuhn- Tucker conditions. The "warnt* start provides a "good guess" of
the active set before the solution procedure begins. Si nce the SQP
al gorithm often chooses its active constraints in the first few
iterations, the active set for the QP sel domchanges frTom
iteration to iteration. Thus, using "warm' starts at each iteration
greatly reduces the QP solution tine. Both Locke et al .. (1983) and
St adt herr and Chen (1983) elimnate the equality constraints and
reduce the QP before solving it. Wth GIl and Muirray's QR
factorization of the constraint normals and the use of "warni starts,
it is easy to see that renovi ng.equéility constrai nts does not
necessarily lead to a nore efficient al gorithr; on small problens.

Even with an efficient QP procedure, the: SQP al 'gorithm can sonetines

be plagued with .inconsistent constraint |inearizations. Here the local I|in-
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eari zation of the nonlinear constraints produces an enpty feasible region.
Since no feasible point exists, the QP al gori_thmfai Is. To conbat this pro-
bl em Powell (1977) added an extra paraneter |- to x*-,B to form

Q (xi,B): Mn J(xi)™d +t d"Bd + T
d

s.t.  maxtOorg*xH]* + min[O,gj (x})] + v 9j (x')* d £0
h) 1 +7 MxH* d =0
0*§* 1, T =-10°

For QP's that have no feasible region, the heuri st i c_incor porati on
of 8 ,' tends to shift the constraints and "create" a feasible region.

(By specifyingd =0and 5 =0, one autonatically specifies a feasible

‘point for QEj x*-,B). In his code, VFO2AD, Powell termnates the SQP

algorithmif 8 =0 is ever a solutionto Qg (xi,B). Here he assunes
no feasible point can be found for the (NLP).
Wiile this procedure is conceptually attractive it suffers fromtwo
serious deficiencies. First, consider the problem
Mn X
X
s.t. 1L0+x,-XxX2£0
1 2
"1L0-x_ -XxX2£ 0
1 2
Xo2%0
shown in Figure 1. Fromthe figure it is clear that the solution lies
at point B. Starting at point A however, it is easy to see that the
[ 3
constraint linearization is inconsistent and the solution to @& (x*,B)
contains 8 = 0. Powell's procedure thus termnates at point A because
it assunmes no feasible point can be found. Second, while 8 (x*,B) often
finds a solution when Qt x*B) has no feasible region, it does not

followthat Q~(x"B) and Q x” B) give the sane solutions.if a feasible

region exists. For exanple, the sinple quadratic program




2 2
i +d,_ +5.04_ + 5.04:
H;n d1 2 5 1 2
.t. d, + 4, = 1001
s.t 1 2 0
-da = 999

a
T 1 2
has the solution d'= [ 1000,1 ]. 1If we augment this QP to form Qf (xi,B)

then the solution is dT= [ 100.1, 1.001 ] and & = 0.1001. Thus the
procedure proposed by Powell may interfere with the true solution of
the QP. ~

In our implementation we simply solve Q(xi,B) at every interation. If

we encounter an inconsistent constraint linearization the QP,roﬁtine of Gi}l

and Murray terminates but also calculates the minimum infeasibility (MI) for
Q(xi,B). At this point we reset the maximum constraint violation tolerance
to (1.01) MI and solve the QP again. 1In this way a feasible region is
"created" and a search direction is found that minimizes the transformed QP.
This procedure is conceptually similar to one recently developed by Tone
(1983) which includes slack variables in the constraints.

While this simple procedure is not guaranteed to handle all
inconsistent linearizations, it clearly solves the two examples given
above. 1In the first example, a feasible region is created that allows
movement from point B to point A. The second example presents no
problem since Q(xi,B)'has a solution. After considerable experience
on a nuﬁber of test problems, we found this procedure superior to the
one proposed by Powell.

II. The Line Search Procedure
. Han (1976) and Garcia-Palomares and Mangasarian (1976) showed that the
SQP algorithm has a superlinear ccnvergence rate if:
a) the starting point is sufficiently close to the solution,
b) full steps are taken alon§ the search direction, and

Cc) the Hessian is calculated using rank-two quasi-Newton updates
such as DFP or BFGS (see Dennis and More (1977)).

Han (1977) showed that if the stepsize, ) , is chosen by reducing an exact

——————




penal ty function:

P(x, o) = §(x) +-a 1 3?1 gj(x)-"_ + jj;q Inj(x] | ]

wher e gj (x)+=mx[ 0, Q*J(X) ]

o = lu.vll,

ealong the search direction d, then the SQ al gorithmconverges to a Kuhn-
Tucker point fromany starting point (global convergence). However, using
this line search procedure often Ieads to very small stepsizes and sl ow
convergence rates, especially in the nei ghborhood of the solution (Mrat os;,r‘—*'
'(f11978). To try to relax the stepsize procedure, Powell (1977) introduced

a less stringent line search function:

u. g,(x), + X v. |h(x] : "

R(x,d ) =7x) + lu XV
S SR B B p=t ) d

where at iteration i:

i _ r = 1 - -1 -
d=minf by di 3

1 _ i-1 1 1-1
vj min [vj > 3 { j+vj )]

This function, however, possesses neither global nor | ocal _superl i near
convergence properties. Chanberlain et al (1982) showed that this
function.can exhibit the sanme sl ow convergence behavior that the exact
penalty function does. Moreover, Chanberlain (1979) showed .t hat the
SQP algorithm with Powell's line search function, cycles between
poi nts.A and B for the problemgiven in Figure 2. The opti mum for
this problemis clearly at point C

To remedy these probl ens, Chanberlain et al (1979) pr oposed
the "watchdog” technique. Here the stepsize is chosen by reducing
either the Lagrangian: 0(x) + uTg(x) + v'h(x) or the exact penalty
function during the line search. The convergence properties, however,

require a reduction in the exact penalty function every t iterations




(where t> 2). If no reduction occurs, the algorithm must restart
from a pfevious point. A simplification of this algorithm was recently
implemented by Stadtherr and Chen (1983) and found to be
computationally more efficient than VFO2AD. The studies of Biegler
and Hughes also used the "watchdog" algorithm with the exception that
a modified Lagrangian: ¢(x) + uTg(x)+ + vTh(x) was used so that
feasibility of the inequality constraints is nof rewarded. More
recently, Chamberlain et a% (1982) modified the‘original watchdog

. 2/ ar,.
algorithm; they simply aliérn;té 5étween taking full steps along the
search direction—a:;L;educing the exact penalty functidgj— Again, the
convergence properties of this algorithm are valid since the exact
penalty function must still be reduced every t iterations and a
restart is required if no reduction occurs.

Sevéral investigators considered other line search strategies for
the SQP algorithm. Fletcher (1982) and Mayne and Polak (1981) sought
to remedy the "Maratos effect" by proposing second order correction
search arcs to the search direction in the neighborpood of the
solution. However, it is difficult to determine when to apply these

corrections before the solution is known. Schittkowski (198la) and

Yamashita (1982) proposed an augmented Lagrangian:

m
= 1 2 - 2
L (x,u,v.a) ,d(x) * 59 j=>; [( o gj(x) + uj)+ - uj]

+v' h(x) + g h(x)T h(x)

for the line search. Both authors showed that an SQP algorithm using
an augmented Lagrangian line search function has local superlinear
and global convergence properties under certain conditions. However,
numerical experience reported by Schittkowski (1S81b) showed this line
search function to have inferior performance to Powell's line search

function. To explain this, he mentions that his procedure for




updating the penalty paraneter, a, often causes it to tend to infinity.

In this section we introduce a new'line sear ch functio_n:
L*(x,u,v,<y) = 0(x) + u'g(x)++ vh(x) + | Hg(x)s+, h(x)|I?

Cuthrell and Biegler (1983) showed that for an equality constrai ned problem

the solution of Qtx"B) is equivalent to taking a truncated Newton step for

VL (x,v,or ) =0 in the space of the variables (x;v). Thus L (Xx,u,v,or) is

a natural line search function for an S@P algorithm |t was shown

that for certain values of a # the S@QP algorithmwith L*_Q<,u,v, .a) as the_____
line search function is globally and locally superlinearly convergent.
Moreover, the function can be factored for or , which allows us to

deternmne a region for or where the line search test is satisfied and
conditions for convergence are net. |If this region does not exist, a

smal | er step nust be taken.

Cuthrell and Biegler (1983) have al so shown that if the solution of the QP
gives a descent direction for L*(x, u,v,or)r then the SQ.algorithmis gl o-
bally convergent. Witing this condition, V L (x,u,v,a) —p <0, |

d 4

where p= u-u is the solution of x ,B), interns of X yields:

vB(x')Td + (0 - 209 gOxY), + (V - 2V) h(x)
118(x), >"(*) 1

The property for a sufficient decrease during a |line search given by

Armjo(1966) is:

LY( xP+Xd , ut+X(u-out) , viEX( V- vh) o, oa) A

L*( x* ul, v, a) + X«vLl*( x*, ut, vi, cr)T P

As seen in Figure 3, the line search is satisfied when the value of L*




for a given X lies below the chord specified by L*(zl) and 7 ¥ (zH p
Since the terms in the inequality can be 'factbred for a , we can derive
the bound:

LA (zP+X) - Lo (zY) - X6 7L, (z')~

T(X)

"LS

wher e
L_'_(z.-*.) = g (xi) + uT g(}n:i)+ + vT h (xi)

1
VL+(S_)AP: VIkx)'p +(T - 2U_)1 g(x7) .+ (v - 2vH)* sk ] )

vy = - LD g +Xd) ., hOxE#Xd) [T+ (Y, - X6)U g(xdy + , nexHIN?

Here Gt is either a [ower bound (if T (X)>0) or a*upper bound (if
T (X)<0) on awhich if satisfied for the current \ , the Armjo condition wll
be satisfied. The bounds Ofig and ct., can be used to adaptively choose the
penalty parameter cr and results infehefollow ng line search procedure:
1) Set X = 1
2) at = mx (0, ofg+I(f°
3) If Y(X) >0 (U afg > a"d go to 5)
El se, continue. ‘
4) 1t LV +X,) A .L* (zY) + X6 7 L*(2)'P _8° 103
El se; determne a smaller \ Dby say quadratic
interpolation and go to 3)

5) Update according to z «zZ°-+XP
-0+ 1
The line search procedure termnates and Q x* ,B) is solved

at the new point.




In step 2 we require & to always be positive, since infeasibility

would be rewarded for @ ¢ 0, and that o > aﬁd to ensure a descent
direction. To understand step 3 first recall that for Y (A ) > O, oo is
a lower bound on @ . Thus either Uis < Uad { « or aﬁd < aLS . In the

former case we satisfy both the descent property and Armijo test, while for
the latter case @ must be increased before the Armijo test can be met. Rather
than resetting @ explicitly, we can just exit the line search procedure for

the current stepsize and thereby make no unnecesary restrictions on

subsequent iterations. Thus for ¥ (A ) > O the line search can be satisfied.

Recall also thatoi$is an upper bound for ¥ () ) < O leaving again two cases,

< or < < . For the former case both requirements are
“qa “%s %" %5 “%a t @ d

again satisfied. Only for the latter case must the stepsize be reduced since
o cannot simultaneously satisfy each condition. Thus for aiS > °Hd we
may also accept the current stepsize, A .

One further comment on step 2 must be made. To rigorously ensure

a descent direction at each iteration, the condition ui > °§3x where
max '
add = max{dzd } i=1,2,3... must be enforced. This requirement is however

overly restrictive since add often reaches its maximum value during the first
few iterations and was significantly less for the remainder of the solution
processs. This led to unnecessary restrictions during later iterations and
sometimes resulted in the taking of small steps. Step 2 in the above

algorithm represents a mild relaxation since it only requires ai > ai for

dd
each i. We could essentially obtain the same result by simply restarting
the problem from a point subsequent to where the large uéd occurred.

The above algorithm was tested on fifteen nonlinear programming
problems listed in Table 1. Here the letter and number corresponding
to each problem indicates the reference for the problem and the

J
problem number in the reference. The number of variables (N), total

number of constraints (M) and number of equality constraints(MEQ) are

also listed for each problem.' The following algorithms were compared:

——————
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OPT - SQ@ with the above augnented Lagrangi an |ine search
procedure given and the GIl and Murray (1978) QP algorithm

OPTHP - sane as OPT except with Powell's line search procedure
WDOG - SQP algorithmused in Part one of this study (Biegler and
Shivaram (1983)) with Fletcher's (1971) QP program and the
wat chdog |ine search procedure.

The results show that OPT never requires nore function
eval uations than OPTHP. On the first two problenms, given by
Chanmberlain (1979), both OPTHP and mpoe fail to converge; they
oscillate continually between two infeasible points. For exanple, for
Figure 2 which depicts problem Al, OPT starts at point A and converges
to the optimum point C, in 3 iterations; the other algorithms sinply
cycle between A and B. OPT is also generally faster than WDOG al t hough
nothing in the theoretical devel opnent guarantees this. Note that on
nost problens, all three algorithns required about the same nunber of
function eval uations. For tﬁese céses, OPT and OPTHP obvi ously have
equi val ent CPU tines because the only difference was in the line *
search procedure. WOG on the other hand, which useg a less
efficient QP solver, failed on three out of 15 problens, and required
over SOanDfe CPU time than OPT on the problens it solved
successful ly.

OPT was then conpared with WDOG on the three chenical process
probl ens described in Part one of this study. Here the scale factors,
perturbation sizes and convergence tol erances were the sanme as in Part
one. The results are given in Table 2 and illustrate the difference in
performance between the two algorithnms. For the first problem since both
algorithms take full steps to thevsolution, no concl usions can be reached
On the second problem the new line search procedure actually required
nore functions evaluations to solve the problem This is easily explained
be analyzing the iterates in terms of the objective function countours,

(see Figure 4 in Biegler and Hughes (1982)). The restrictive WDOG al gorithm




luckily finds a point near the ridge, by taking less that a full step, and
then proceeds quickly to the solutione OPT, on the othe} hand, takes a
full step which terminates well over the ridge and then nust spend tine
novi ng back. Problem 3 clearly denonstrates the effectiveness of the new
procedure by requiring slightly less than half the nunber of function

eval uations and thus significantly less CPU tine. Even though WDOG uses

a less efficient QP solver the CPU tine reduction tine is still clear

_WDOG also ternminated due to line search failures while OPT terninated

normally (this indicates that gradieﬁt error doesn't allow convergence -
to so tight a tolerance).

The new algorithm again, is not guaranteed to perform better than
WDOG as is seen by both starting points for problem 2. However, it seens
to be more reliable and effective that WDOG on a |arge number of problens,
and al so exhibits sone desirable convergence properties.
I1l. Scaling Algorithns for_SCP

Per haps the |east understood and nost inportant part of process

optimzation is the appropriate formulation and scaling of the origina
problem At present, there are no fool proof scaling criteria; the
best choice of the scale set is usually problem dependent and often
determ ned by experinentation. To study this problem and provide sone
general guidelines (or t he infeasiblé path strategy we note that for
the SQP al gorithm

1) The quadratic programis scale invariant under changes in
constraint or variable scaling.

2) The BFGS update is also scale invariant under linear trans-
formations of the functions or variabl es.

These two statenents nean that neither updates of the Hessian approxi-
mation nor the QP solution are affected by the scale set if exact arithnetic
is used. However, the follow ng reasons indicate why scaling can'greatly
i nfluence the SQP al gorithm

1) Since the SQP is nothing nore than a Quasi-Newton mnethod
applied to the gradient of L with respect to both x, and -




the nultipliers of the active constraints, the initial
Hessin B should be:

7 L(x°,u,v®) =V2F1j (x°) + u°VPg(x°) +v° 72W)
XX ' .

Since second derivatives are not available in SQP, no
information is available for the initial approximtion of B.

2) O course, inaccurate gradients, calculations not done
in exact arithnetic and the use of bad pivot sequences |ead
to the accum ation of rounding errors which often result in
i naccurate QP sol utions.

The first statenment is probably the main reason why the SQP
algorithmis sensitive to variable scaling. In nost inplenentations B
is initially set to the identity matrix because no further information
is available. Scaling the variables sinply changes the initia
Hessi an approxi mation to another diagonal matrix.

Here: X = Cx B=clpge?

where ¢ is a diagonal matrix

How wel | this matrix approximates 7___ L(z°) and the nonlinear surface
determ nes the performance of the algorithm However, this cannot be
determined a priori.

Several scaling algorithnms have been proposed for the SQP algorithm  The
document ati on for VFO2AD recomrend scaling the gradients to "arbund one" to
avoid line search failures. Biegler and Hughes (1982) recomended as a first
guess, to scale the variables so that the gradients of the objective function
have el enents with absolute values between ten and ope—hundred. St adt herr
and Chen (1983) sinply scaled the Hessian matrix based on val ues of 5f(x°), X°
and 7$(x°). However, none of these "automatic" methods consistently give
better performance even when cohpared to unseal ed probl ens.

In this seétion we develop a scaling algorithm based on the.upper
and | ower bounds of the design and tear variables. As with any auto-
mati ¢ scaling nethod, we cannot guarantee inproved performance for al

probl ens. Instead this nethod brovidés a set of guidelines for scaling




process optim zation problenms solved by the infeasible path strategy*
%

To scale the variables we note that the solution to Qx*,B) is
in large part determ ned by the equality constraints, h(x) = 0, that
are given by the tear equations. .Since the gradients of these equations
are directly related to the magnitude of the variables, we sinply scale
the variables x so that they are bounded by 0 and 1. To determ ne the
scale factor we use the suggestion by Tomin (1975) that all scale factors
be integer powers of the floating point base (in this case, 2). Choosing
the bounds of x as our variable scale gives:
x = &
cjj =2"@ a=1int] logs (xy - Xg ) ]
It is inmportant to mention that the variable bounds must be physically
meani ngful. Normally, the designer has a good idea over what range of design
vari abl es the mpodel should be optim zed. To a lesser extent he has sone
i dea of the range of tear variables. Thus, the variable scale factors should
reflect fairly accurately the order of magnitude of x. Obviously, specifying
bounds of plus and mnus infinity makes no sense.
In addition, the constraints in the QP nust be scaled in order to pre-
vent inaccuracy in the pivoting step. In this case we sinply use the initial
values of the constraints as scale factors, provided they are not close to

-3

“zero. If the constraint is below a zero tolerance (e.g. /# ) the scale

factor is set to one. O herw se:

L]

-a
Rjj 2

«-Int [logy(] e;i or | h; 1)]

This sinple procedure provides only a suitable normalization procedure. After

o Q!

this step the engineer may (and probably shoul d) perform sone further seal-




ing based on his experience and insight. 1In this paper, we demonstrate that
even with this simple algorithm some improvement can be obtained for the in-
feasible path algorithm.

Consider the fifteen test problems solved in Table 1. Of these, seven
have meaningful upper and lower variable bounds specified in their problem
statenenis. These were solved using the above scaling algorithm and are
listed in Table 3. Compared to the unscaled results, the scaled algorithm
never required more function evaluations, although scaling leads to improve-
ment on only two of them. The greatest improvement occurs with problem D4L;_
the alkylation problem of Bracken and McCormick (1968). Note here that the
equality constraints play the same role as the téar equations in infeasible
path optimization.

In this comparison three scaling procedures were compared to
the unscaled process problems. The first scale set (OPTSCALE) was
determined by experience, after running the three process optimization
problems several times.. These scale sets were used in Part one of
this study and were determined in previous studies (see Biegler and
Hughes (1982.,1S83)). The second set of scale factors were derived
from the heuristic proposed in Bieéler and Hughes (1982), that
v ¢(xj)] be scaled between ten and one hundred. Finally, the
third se£ of scale factors (New Scale) was derived from the algorithm
above. The first two methods led to scale factors in powers of ten
while the third method yielded scale factors in powers df two.

The scaling results are given in Table 4. Note that the
unscaled infeasible path algorithm took small steps on the first two
problems and terminated before reaching the optimum. Imposing a
Kuhn-Tucker tolerance tighter than 16h3 may improve these solutions
although with the given perturbation sizes for gradient evaluation,
line search failures may be encountered first. For the unscaled

algorithm the third problem terminates reasonably close to the optimum

———— - em e -




after 39 iterations.

Lastly, we consider the conditioning of the Q® problem As pointed out
at_)ove, one of the reasons for constraint and variable scaling is to avoid
t he buil dup of rounfjoff error through inaccurate gradients and bad pivot se-
guences. In order to judge the effectiveness of scaling, it is useful to
noni to-r the conditioning of the problemand if necessary, rescale the problem

if it becones ill-conditioned.

-

To devel op a neasure for conditioning, consider the QP step. The QP
solution d is given by the linear equations Bd = - VL (x*,U,Vv,). Here the

relative error in the solution d is given by:

Wl . g, L6LL , LB
IM I VLU |[BH

L

where {Je 11 - any matrix or vector norm

6d , SB - absolute errors in d and B, respectively

K(B) -1 UHHB" Y1, the condition number of B

The condi tion nunber, K(B) thus indicates how much the error in the gradients
I's magnified in the solution, d. To keep the QDMBII-donditioned, K( B)
nust be kept low (say <10 ). To calculate K(B) we nerely parallel the

quasi - Newt on BFGS update for B:

Ul *l o« ut <T Rl R! ¢ - y ;:T
B B " I . T
s' B! s » Yy




with the inverse BFGS update:

T T T
(Bi+1) 1 - I- sTx (Bi) 1 I- % s + sTs
s y s Yy s 5y
i+l i
where s = x - x
i+l - - i - -
Y = VL (X y U, V) - VL (x » U, V)

The condition number of the symmetric B matrix is then computed by taking

the maximum row (or column) sums of I B l and I B -1 ]

ij ij

as norms.

Table 4 shows the maximum condition munbers for the different
scaling procedures. Note that while there is not a strong correlation
between performance and condition humber, line search failures were
observed for very high condition numbers (say )1030). Also note that
the new scaling procedure keeps K(B) relatively low. 'Based on these
limited results, it seems that the new scaling algorithm performs
surprisingly well for an a priori scaling procedure and serves as a
good .initial scaling method.

If the condition number becomes too high over the course of the opti-
mization, a rescaling procedure can be implemented to make the problem better
conditioned. Applying several scaling methods to the infeasible path al-
gorithm, Xu (1982)'reported significant improvements in performance if the
problem is rescaled once the condition number becomes too high. To do the
rescaling, several heuristic and.rigorous methods are available (see Tomlin
(1975), Bauer (1963)) for reducing the condition number. However, if B
becomes too ill—conditioned; it may be advantageous simply to restart the
Hessian,approximétion with the identity matrix.

CONCLUSIONS AND SIGNIFICANCE




This paper forns the second part of a study detailing inprovenents
for the infeasible path optinization algorithm using sequential nodular
sinmulators. Here we concentrate on inprovenents to the successive quadratic
programmng (SQP) algorithm

The inprovenents are divided into three areas. The first section deals
with solution of the quadratic progranmng problem (@) that deternines the
search direction at each iteration. W briefly discuss a new (@) algorithm
by GIl and Murray (1978) and its advantages over the conmonly used Fletcher
(1971) algorithm W also develop a procedure for recovering from
i nconsi stent constraint linearizations, for which the QP Thas. no solution, ——
and denpnstrate its effectiveness over an existing procedure suggested by
Powel I (1977).

The second section deals with the line search algorithm which determ nes
a stepsize along the search direction; Current procedures based on exact
penalty functions (see Powell, 1977) can cycle or converge very slowy on
certain problems. Thus, present inplenentations of the SQ nmethod usually
contain line search procedures that possess neither |ocal superlinear nor
gl obal convergence properties and therefore nmay exhib}t undesi rabl e
performance. Here we present a nmethod based on a nndified_augnEnted
Lagrangi an that has the above convergence properties. It perforns
significantly better than current strategies on fifteen well-known
nonl i near test problens. W also apply this procedure on the process
optim zation problens described in the first part of this study (Biegler
and Shlvaram (1983)) and denonstrate significant inprovenent on these as well .,

Lastly, we consider scaling procedures for the SQP al gorithm In
this section we develop a very sinple procedure based on'the vari abl e
bounds in the optim zation problem . Wile we nmake no clains as to its
ef ficiency over scale sets deterni ned By i nsi ght and experi ence, mé
see that the procedure serves as a very good initial scaling method. On

the nonlinear test problens we observe significant inprovenent over
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unseal ed runs. On the process optim zation problens the new scaling
procedure perforns conpetitively with a scale set-deternined by
experience. To nonitor, over the course of the optimzation run, the
conditioning of the QP which directly influences the search direction
calcul ation we develop a method to efficiently calculate the condition
nunber of the Hessian. This allows us to periodically rescale the
problemif it becomes ill-conditioned

The above inprovenments are based oh theoretical and conputationa
insights. They result in better peffornance up to a factor of of"/**- yee
compared to the results reported in Part one of this study. Because
these inmprovenents deal solely with the SQP algorithm they are not
restricted to infeasible path process optimnzation but have w de

applicability for solving general nonlinear progranm ng problens.
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1

Comparison of SQP Al gorithnms on

15 Test Pro

bl ens

" Function eval uations (CPU nsec)

[o2BF~ N e ] =N

NOTWN

N0 WO

OO O

NONW

A
B
C.
D.
E.
F.

MEQ

0 4
0 3
0 5
0 3
0 52
4 13
o 10
e 9
o 4
o 4
3 30
o 30
o 5
0 10
0 12

Chanberl ain (1979)

Colville (
Himradgblau

oPT

(117)
(87)

(373)
(197)
(2184)
(1201)

(33)

(324)
(230)
(100)

(6865)
(2935)
(197)
(333)

(766)

1968)
(1972)

OPTHP

cycl es
cycl es

10

14

(360) A"
(198)
(2256)
(1712)

(34)

(327)
(244)
(125)

(6837)
(2911)
(190)
(309)

(7éD

Bracken and McCormidk (1968)

Schuldt (1

975)

Itosen and Suzuki(1965)

VDOG

cycl es
cycl es

5
4
54
13

o g4O

£ oft \

(584)
(433)

(1780)
(2357)

(212)
(330)
(537)
(121)

(47796) failed
(5882)

(396)

(177)

(678)
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. Table 3
New Scaling Results On
Appropriate Test Problens
Usi ng OPT

# function eval uations

Unseal ed Scal ed
: B3 3 - . ’ 3
. B6 13 10
C3 10 . 10 (converged to different
local mn.)
C13 4 4
D4 30 7
D9 5 : 5
F 12 12
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