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Improved Infeasible Path
Optimization for Sequential Modular

Simulators
Part 2: The Optimization Algorithm

by

L.T. Biegler and J.E. Cuthrell
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Recently, it was shown that: chemical processes modeled by steady-estate

simulators could be optimized without repeatedly converging the process sim-

ulation. Instead, optimization and simulation of the flowsheet can be per-

formed simultaneously, along an infeasible path, thus leading to much more

efficient performance. " ~ = —

In this two-part study, we describe several improvements to this

infeasible path approach. This second paper deals with theoretical

and computational improvements to the optimization algorithm. Since

recycle convergence and optimization occur simultaneously, the

consequences of algorithmic failure can be severe, since little useful

infontation is recoverable. Here we consider and improve several

factors that affect the efficiency and robustness of the Successive

Quadratic Programming (SQP) optimization algorithm.

The improvements are demonstrated on several small problems as well

as three chemical process problems. The results show significant improvement

in performance as predicted from the theory.

SCOPE

In Part one of this study we described the importance of process

simulation for design and analysis. However, the present mode of

simulation, the sequential modular strategy, can be very inefficient

for optimization. Previous studies have shown (e.g. Gaines and Gaddy

(1976), Ballman and Gaddy (1977)) that performing an optimization

study by repeatedly simulating the flowsheet requires prohibitive

computational effort, JJt^terms of demands made on the process

simulator.
PIT7



To make process optimization on sequential modular simulators

more efficient and effective, Biegler and Hughes (1982) proposed the

infeasible path approach. Here the process flowsheet and the

optimization problem are converged simultaneously; the inefficient

recycle convergence calculations are totally eliminated and the

flowsheet itself is converged automatically at the optimum point.

Several studies on a variety of test problems (Biegler and Hughes

(1982,1983), Chen and Stadtherr (1983), Hutchison et al (1983)) have

shown that this approach is much more efficient than previous

optimization strategies. In this two part series we discuss further

improvements to the infeasible path approach. Part one of this study

(Biegler and Shivaram, 1983) deals with improving the interface

between the process simulator and the optimization algorithm. The

principal consideration there is the calculation of the objective and

constraint functions and their gradients from the modules in the

process flowsheet. Additionally optimal tearing strategies and

non-differentiabilities in flowsheet modules were discussed. In

this paper we deal exclusively with the optimization algorithm.

Because the process flowsheet and the optimization problem are

converged simultaneously by this algorithm, little information can be

recovered if the algorithm fails. For this reason, the optimization

algorithm must be efficient and robust. Specifically, it must be able

to handle poor starting points, badly scaled problems and some

inaccuracies in the gradients. In Part one of this study we mention

that the SQP algorithm (Han (1977), Powell (1977)) has been an

efficient and effective tool for optimization. In this paper we

improve upon the efficiency and reliability of this algorithm.

Introduction

As mentioned in the Part one of this series, the infeasible path op*

timization algorithm can be given by:



(NLP) Min
x

s.t. g(x) ^ 0

h(x) = 0

where x - decision variables chosen by
designer and tear variables

p - objective function

g - inequality constraints

h - equality constraints imposed
by the designer and tear equations.

Part one discussed the formulation of this problem, the role of the

variables in the process flowsheet and how constraint functions were

evaluated.

The SQP algorithm solves the above problem by determining a

search direction at each iteration i from the quadratic programming

problem (QP):

Q(xi,B): Min ^ ( x 1 ) 1 d + j dT Bd
d

s.t. g U 1 ) + v g U 1 ) 1 d £ o

M x 1 ) + v h(x i) T d = 0

Gradients for Q(x*,B) are generally obtained from the flowsheet

by perturbation. The Hessian matrix, Br is constructed through BFGS

(see Dennis and More (1977)) updates which rely on gradients of the

Lagrangian: L(x,u,v) = #(x) + uTg(x) + vTh(x) at successive points

(here u and v are Kuhn-Tucker multipliers returned from Q(xi
rB)).

Once Q(x*,B) determines a search direction, dr a stepsize, \ ,

along this direction must be chosen to set the next point, i.e.

x* •+ \d. In order to choose this step a sufficient decrease in some

merit function must be found along the search direction. This function

must include an objective function term plus a nonlinear combination

of the violated constraints^ To achieve desirable performance the



stepsize or line search procedure must avoid determining steps that

are either so large that they lead to cycling or divergence, or so

small that the rate of convergence becomes undesirably slow.

Finally, while the theoretical convergence properties of the SQP

algorithm are determined by implementation of the quadratic program

and stepsize procedure, the most drastic effect on performance is

* produced by the scaling of the optimization problem. While several

automatic scaling algorithms have been proposed, (see Tomlin (1975))

none has been universally effective in improving performance.

This paper deals with three areas of improvement relating to the

SQP algorithm. Taken together, they represent an improvement in the

computational effort required by the propylene chlorination

optimization (see Part one) by up to a factor of -jr^re^ The three

areas are:

1) Improvements in setting up and solving Q(x*,B).

2) More efficient and robust line search procedures.

3) An automatic scaling procedure and an 'on-line measure

of how well the problem is scaled.

Each area is motivated by examples that illustrate serious problems

with existing strategies. We also present, in the final two sections

extensive numerical results that illustrate the effectiveness of our

improvements.

I. The Quadratic Programming Step.

The most basic step in the SQP algorithm is formulation and

solution of the quadratic program, Q(x*,B). By analogy, one can

compare this step to Gaussian elimination of the Jacobian in a Newton

Raphson procedure. Both cases strongly depend on the accuracy and

efficiency of the basic steps. Aside from the effort needed to

evaluate function values and gradients, this step is the most

time-consuming in the SQP algorithm.



Perhaps the most widely used version of the SQP algorithm is VF02AD,

a FORTRAN-callable subroutine in the Harwell Library. Developed by Powell

(1977), it uses a QP algorithm, VE02AD developed by Fletcher (1971)• At

present, however, VE02AD is generally regarded as inefficient because

the constraint updating procedure for the active set is time consuming

and often has a tendency to become unstable. Several implementations

(Locke et.al (1983), Stadtherr and Chen (1983)) as well as our own use a QP

algorithm developed by Gill and Murray (1978). This algorithm performs a

QR factorization of the active constraint normals and optimizes only in the

linear subspace of the active set. In addition, Gill and Murray developed

constraint updating formulae that apply directly to the factorizations, are

exact, and do not contribute to the growth of roundoff error. Thus their al-

gorithm incorporates a stable and efficient updating procedure for solving

QPfs.

Another provision allowed by the Gill and Murray QP algorithm is

the use of "warm" starts. Much of the solution time for solving QP's

is spent in determining the active constraint set that satisfies

Kuhn-Tucker conditions. The "warm1* start provides a "good guess" of

the active set before the solution procedure begins. Since the SQP

algorithm often chooses its active constraints in the first few

iterations, the active set for the QP seldom changes frTom

iteration to iteration. Thus, using "warm" starts at each iteration

greatly reduces the QP solution time. Both Locke et al. (1983) and

Stadtherr and Chen (1983) eliminate the equality constraints and

reduce the QP before solving it. With Gill and Murray's QR

factorization of the constraint normals and the use of "warm" starts,

it is easy to see that removing equality constraints does not

necessarily lead to a more efficient algorithm on small problems.

Even with an efficient QP procedure, the SQP algorithm can sometimes

be plagued with inconsistent constraint linearizations. Here the local lin-



earization of the nonlinear constraints produces an empty feasible region.

Since no feasible point exists, the QP algorithm fails. To combat this pro-

blem, Powell (1977) added an extra parameter |- to Q(x*-,B) to form:

Ql (xi,B): Min J(xi)Td +j d TBd + T)|
d

s . t . maxtOrg^x 1 ) ]^ + min[O,gj (x 1 ) ] + v 9j (x 1 )* d £0

h(xl) I + 7 M x 1 ) 1 d = 0

0 * § * 1 , Tl = -10

For QPfs that have no feasible region, the heuristic_incorporation

of § r tends to shift the constraints and "create" a feasible region.

(By specifying d = 0 and 5 = 0 , one automatically specifies a feasible

point for Q£jx*-,B). In his code, VF02AD, Powell terminates the SQP

algorithm if § = 0 is ever a solution to Q g (xi,B). Here he assumes

no feasible point can be found for the (NLP).

While this procedure is conceptually attractive it suffers from two

serious deficiencies. First, consider the problem:

Min x2
x

s.t. 1.0 + x - x 2 £ 0
1 2

1.0 - x - x 2 £ 0
1 2

x 2 * o

shown in Figure 1. From the figure it is clear that the solution lies

at point B. Starting at point A, however, it is easy to see that the

constraint linearization is inconsistent and the solution to Q§ (x^,B)

contains § = 0. Powell's procedure thus terminates at point A because

it assumes no feasible point can be found. Second, while Q§ (x*,B) often

finds a solution when Qtx^B) has no feasible region, it does not

follow that Q ^(x^B) and Q(xA,B) give the same solutions if a feasible

region exists. For example, the simple quadratic program:



2 2
Min d + d + 5.0d + 5.0d?
d 1 z 1 Z

s.t. d + d = 1001

d - d = 999
1 2

T i

has the solution d = [ 1000,1 ]. If we augment this QP to form Q§ (x\B)

then the solution is dT= [ 100.lr 1-001 ] and £ = 0.1001. Thus the

procedure proposed by Powell may interfere with the true solution of

the QP.

In our implementation we simply solve Q(x*,B) at every alteration. If

we encounter an inconsistent constraint linearization the QP.routine of Gill
and Murray terminates but also calculates the minimum infeasibility (MI) for

Q(x*,B). At this point we reset the maximum constraint violation tolerance

to (1.01) MI and solve the QP again. In this way a feasible region is

"created11 and a search direction is found that minimizes the transformed QP.

This procedure is conceptually similar to one recently developed by Tone

(1983) which includes slack variables in the constraints.

While this simple procedure is not guaranteed to handle all

inconsistent linearizations, it clearly solves the two examples given

above. In the first example, a feasible region is created that allows

movement from point B to point A. The second example presents no

problem since Q(x^,B) has a solution. After considerable experience

on a number of test problems, we found this procedure superior to the

one proposed by Powell.

II. The Line Search Procedure

Han (1976) and Garcia-Palomares and Mangasarian (1976) showed that the

SQP algorithm has a superlinear convergence rate if:

a) the starting point is sufficiently close to the solution,

b) full steps are taken along the search direction, and

c) the Hessian is calculated using rank-two quasi-Newton updates
such as DFP or BFGS (see Dennis and More (1977)).

Han (1977) showed that if the stepsize, \ , is chosen by reducing an exact



penalty function:

£ () I

where gj(x)+ = max[ 0 , g* (x) ]

•along the search direction d, then the SQP algorithm converges to a Kuhn-

Tucker point from any starting point (global convergence). However, using

this line search procedure often leads to very small stepsizes and slow

convergence rates, especially in the neighborhood of the solution (Maratosr

(1978). To try to relax the stepsize procedure, Powell (1977) introduced

a less stringent line search function:

m meq
Pp(x,Qf ) = ̂ (x) + I u . g,(x), + X v. |h,(x)l

j=1 j j + j=i j J

where at iteration i:

i . r i=l 1 . - . 1-1 .1u = min |u. , j ( u + u )Ji

j

This function, however, possesses neither global nor local superlinear

convergence properties. Chamberlain et al (1982) showed that this

function can exhibit the same slow convergence behavior that the exact

penalty function does. Moreover, Chamberlain (1979) showed that the

SQP algorithm, with Powell's line search function, cycles between

points A and B for the problem given in Figure 2. The optimum for

this problem is clearly at point C.

To remedy these problems, Chamberlain et al (1979) proposed

the "watchdog" technique. Here the stepsize is chosen by reducing

either the Lagrangian: 0(x) + uTg(x) + vTh(x) or the exact penalty

function during the line search. The convergence properties, however,

require a reduction in the exact penalty function every t iterations



(where t ^ 2 ) . If no reduction occurs r the algorithm must restart

from a previous point. A simplification of this algorithm was recently

implemented by Stadtherr and Chen (1983) and found to be

computationally more efficient than VF02AD. The studies of Biegler

and Hughes also used the "watchdog" algorithm with the exception that

a modified Lagrangian: ^(x) + u T g ( x ) + + v Th(x) was used so that

feasibility of the inequality constraints is no€ rewarded. More

recently. Chamberlain et al (1982) modified the original watchdog

algorithm; they simply alternate between taking full steps along the

search direction-and reducing the exact penalty function. Again, the

convergence properties of this algorithm are valid since the exact

penalty function must still be reduced every t iterations and a

restart is required if no reduction occurs.

Several investigators considered other line search strategies for

the SQP algorithm. Fletcher (1982) and Mayne and Polak (1981) sought

to remedy the "Maratos effect1' by proposing second order correction

search arcs to the search direction in the neighborhood of the

solution. However, it is difficult to determine when to apply these

corrections before the solution is known. Schittkowski (1981a) and

Yamashita (1982) proposed an augmented Lagrangian:

m

La<x,u,v,o, ) = (ftx) + J L J |"( a (x) + >2 . 2"|
j—1 L •* J + j J

+ vT h(x) 4- | h(x) T h(x)

for the line search. Both authors showed that an SQP algorithm using

an augmented Lagrangian line search function has local superlinear

and global convergence properties under certain conditions. However,

numerical experience reported by Schittkowski (1981b) showed this line

search function to have inferior performance to Powell's line search

function. To explain this, he mentions that his procedure for



updating the penalty parameter, a , often causes it to tend to infinity.

In this section we introduce a new line search function:

L*(x,u,v,<y) = 0(x) + uTg(x)+ + v
Th(x) + | Hg(x) + , h(x)|l

2

Cuthrell and Biegler (1983) showed that for an equality constrained problem,

the solution of Qtx^B) is equivalent to taking a truncated Newton step for

V L (x,v,or ) = 0 in the space of the variables (xfv). Thus L (x,u,v,or) is

a natural line search function for an SQP algorithm. It was shown

that for certain values of a # the SQP algorithm with L _(x,u,v, a) as the

line search function is globally and locally superlinearly convergent.

Moreover, the function can be factored for or , which allows us to

determine a region for or where the line search test is satisfied and

conditions for convergence are met. If this region does not exist, a

smaller step must be taken.

Cuthrell and Biegler (1983) have also shown that if the solution of the QP

gives a descent direction for L (x,u,v,or)r then the SQP.algorithm is glo-

bally convergent. Writing this condition, V L (x,u,v,a) p < 0,

where p= u - u

v - v1

is the solution of Q(x ,B), in terms of X yields:

l)Td + (u - 2U1) gCx1) + (v - 2V1)

11 8(x ).. > h ( x ) 11

The property for a sufficient decrease during a line search given by

Armijo(1966) is:

L*( x1 + Xd , u1 + X( u - u1) , v1 + X( v - v1) , a) ̂

L*( x1, u1 , v1 , a) + X « v L*( x1 , u1 , v1 , cr)T P

As seen in Figure 3, the line search is satisfied when the value of L*

i



for a given X lies below the chord specified by L (z1) and 7 L (z1) Tp

Since the terms in the inequality can be factored for a , we can derive

the bound:

L^ (z1 + X ) - L. (z1) - X6 7L, ( z 1 ) ^

"LS T(X)

where

VL+(s )
A = V J((x ) ' p + ( u - 2u )1 g(x )+ + (v - 2v )

 K J

- \ II gCx1 + X d ) + , hCx1 +Xd)|l2 + ( y2 - X6)U

Here Of is either a lower bound (if T (X )>o) or a*upper bound (if

T (X )<0) on a which if satisfied for the current \ , the Armijo condition will

be satisfied. The bounds or and ct. can be used to adaptively choose the

penalty parameter cr and results in fehe following line search procedure:

1) Set X = 1

2) a1 = max ( 0 , cr*|d + l(f
3

3) If Y(X) > 0 (U a£g > a^d go to 5)

Else, continue.

4) If LV + X p) ^ L* (z1) + X6 7 L*(z)TP 8° t O 5 )

Elsef determine a smaller \ by say quadratic

interpolation and go to 3)

5) Update according to z « z + X P

i - i + 1

The line search procedure terminates and Q( x* B ) is solved

at the new point.



In step 2 we require or to always be positive, since infeasibility

would be rewarded for or < of and that or > or to ensure a descent
da

direction. To understand step 3 first recall that for Y (X ) > 0, a is

a lower bound on a . Thus either or^ < ordd < a or a J d < a^ . In the

former case we satisfy both the descent property and Armijo test, while for

the latter case or must be increased before the Armijo test can be met. Rather

than resetting a explicitly, we can just exit the line search procedure for

the current stepsize and thereby make no unnecesary restrictions on

subsequent iterations. Thus for Y (X ) > 0 the line search can be satisfied.

Recall also that & is an upper bound for Y (X ) < 0 leaving again two cases, •

a < a or cr < a < cr • For the former case both requirements are
dd LS LS dd

again satisfied. Only for the latter case must the stepsize be reduced since

a cannot simultaneously satisfy each condition. Thus for or__ > or,, we
LS. dd

may also accept the current stepsize, X .

One further comment on step 2 must be made. To rigorously ensure

a descent direction at each iteration, the condition a > a™ax where
max ±

 d d

or,. = max{or,, } i=l,2,3... must be enforced. This requirement is however
dd dd

overly restrictive since or often reaches its maximum value during the first

few iterations and was significantly less for the remainder of the solution

processs. This led to unnecessary restrictions during later iterations and

Sbmetimes resulted in the taking of small steps. Step 2 in the above

algorithm represents a mild relaxation since it only requires or > or,, for
dd

each i. We could essentially obtain the same result by simply restarting

the problem from a point subsequent to where the large or,, occurred.
dd

The above algorithm was tested on fifteen nonlinear programming

problems listed in Table 1. Here the letter and number corresponding

to each problem indicates the reference for the problem and the
j

problem number in the reference. The number of variables (N), total

number of constraints (M) and number of equality constraints(MEQ) are

also listed for each problem. The following algorithms were compared:



OPT - SQP with the above augmented Lagrangian line search
procedure given and the Gill and Murray (1978) QP algorithm

OPTHP - same as OPT except with Powell's line search procedure

WDOG - SQP algorithm used in Part one of this study (Biegler and
Shivaram (1983)) with Fletcher's (1971) QP program and the
watchdog line search procedure.

The results show that OPT never requires more function

evaluations than OPTHP. On the first two problems, given by

Chamberlain (1979), both OPTHP and WDOG fail to converge; they

oscillate continually between two infeasible points. For example, for

Figure 2 which depicts problem Al, OPT starts at point A and converges

to the optimum, point C, in 3 iterations; the other algorithms simply

cycle between A and B. OPT is also generally faster than WDOG although

nothing in the theoretical development guarantees this. Note that on

most problems, all three algorithms required about the same number of

function evaluations. For these cases, OPT and OPTHP obviously have

equivalent CPU times because the only difference was in the line *

search procedure. WDOG, on the other hand, which used a less

efficient QP solver, failed on three out of 15 problems, and required

over 50% more CPU time than OPT on the problems it solved

successfully.

OPT was then compared with WDOG on the three chemical process

problems described in Part one of this study. Here the scale factors,

perturbation sizes and convergence tolerances were the same as in Part

one. The results are given in Table 2 and illustrate the difference in

performance between the two algorithms. For the first problem since both

algorithms take full steps to the solution, no conclusions can be reached.

On the second problem the new line search procedure actually required

more functions evaluations to solve the problem. This is easily explained

be analyzing the iterates in terms of the objective function countours,

(see Figure 4 in Biegler and Hughes (1982)). The restrictive WDOG algorithm



luckily finds a point near the ridge, by taking less that a full step, and

then proceeds quickly to the solution• OPT, on the other hand, takes a

full step which terminates well over the ridge and then must spend time

moving back. Problem 3 clearly demonstrates the effectiveness of the new

procedure by requiring slightly less than half the number of function

evaluations and thus significantly less CPU time. Even though WDOG uses

a less efficient QP solver the CPU time reduction time is still clear.

WDOG also terminated due to line search failures while OPT terminated

normally (this indicates that gradient error doesn't allow convergence

to so tight a tolerance).

The new algorithm, again, is not guaranteed to perform better than

WDOG as is seen by both starting points for problem 2. However, it seems

to be more reliable and effective that WDOG on a large number of problems,

and also exhibits some desirable convergence properties.

III. Scaling Algorithms for SQP

Perhaps the least understood and most important part of process

optimization is the appropriate formulation and scaling of the original

problem. At present, there are no foolproof scaling criteria; the

best choice of the scale set is usually problem dependent and often

determined by experimentation. To study this problem and provide some

general guidelines for the infeasible path strategy we note that for

the SQP algorithm:

1) The quadratic program is scale invariant under changes in
constraint or variable scaling.

2) The BFGS update is also scale invariant under linear trans-
formations of the functions or variables.

These two statements mean that neither updates of the Hessian approxi-

mation nor the QP solution are affected by the scale set if exact arithmetic

is used. However, the following reasons indicate why scaling can greatly

influence the SQP algorithm:

1) Since the SQP is nothing more than a Quasi-Newton method
applied to the gradient of L with respect to both x, and



the multipliers of the active constraints, the initial
Hessin B should be:

7 L(x°,u°,v°) =V2 flj(x°) + u°V2g(x°) + v° 7 2 W ° )
XX '

Since second derivatives are not available in SQP, no
information is available for the initial approximation of B.

2) Of course, inaccurate gradients, calculations not done
in exact arithmetic and the use of bad pivot sequences lead
to the accumlation of rounding errors which often result in
inaccurate QP solutions.

The first statement is probably the main reason why the SQP

algorithm is sensitive to variable scaling. In most implementations B

is initially set to the identity matrix because no further information

is available. Scaling the variables simply changes the initial

Hessian approximation to another diagonal matrix.

Here: x = Cx B = C BC

where c is a diagonal matrix

How well this matrix approximates 7 L(z°) and the nonlinear surface

determines the performance of the algorithm. However, this cannot be

determined a priori.

Several scaling algorithms have been proposed for the SQP algorithm. The

documentation for VF02AD recommend scaling the gradients to "around one" to

avoid line search failures. Biegler and Hughes (1982) recommended as a first

guess, to scale the variables so that the gradients of the objective function

have elements with absolute values between ten and one-hundred. Stadtherr

and Chen (1983) simply scaled the Hessian matrix based on values of rf(x°), x°

and 7$(x°). However, none of these "automatic" methods consistently give

better performance even when compared to unsealed problems.

In this section we develop a scaling algorithm based on the upper

and lower bounds of the design and tear variables. As with any auto-

matic scaling method, we cannot guarantee improved performance for all

problems. Instead this method provides a set of guidelines for scaling



process optimization problems solved by the infeasible path strategy*

% .

To scale the variables we note that the solution to Q(xx,B) is

in large part determined by the equality constraintsr h(x) = 0, that

are given by the tear equations. Since the gradients of these equations

are directly related to the magnitude of the variables, we simply scale

the variables x so that they are bounded by 0 and 1. To determine the

scale factor we use the suggestion by Tomlin (1975) that all scale factors

be integer powers of the floating point base (in this case, 2). Choosing

the bounds of x as our variable scale gives:

x = Cx

c = 2" a a = int[ log2 (xu - x£ ) ]

It is important to mention that the variable bounds must be physically

meaningful. Normally, the designer has a good idea over what range of design

variables the model should be optimized. To a lesser extent he has some

idea of the range of tear variables. Thus, the variable scale factors should

reflect fairly accurately the order of magnitude of x. Obviously, specifying

bounds of plus and minus infinity makes no sense.

In addition, the constraints in the QP must be scaled in order to pre-

vent inaccuracy in the pivoting step. In this case we simply use the initial

values of the constraints as scale factors, provided they are not close to

-3
zero. If the constraint is below a zero tolerance (e.g. /# ) the scale

factor is set to one. Otherwise:

g

. i i .
= R g

h

«-lnt [log2(| 8;i or | h° 1)]

This simple procedure provides only a suitable normalization procedure. After

this step the engineer may (and probably should) perform some further seal-



ing based on his experience and insight. In this paper, we demonstrate that

even with this simple algorithm some improvement can be obtained for the in-

feasible path algorithm.

Consider the fifteen test problems solved in Table 1. Of these, seven

have meaningful upper and lower variable bounds specified in their problem

statements. These were solved using the above scaling algorithm and are

listed in Table 3. Compared to the unsealed results, the scaled algorithm

never required more function evaluations, although scaling leads to improve-

ment on only two of them. The greatest improvement occurs with problem D4,

the alkylation problem of Bracken and McCormick (1968). Note here that the

equality constraints play the same role as the tear equations in infeasible

path optimization.

In this comparison three scaling procedures were compared to

the unsealed process problems. The first scale set (OPTSCALE) was

determined by experience, after running the three process optimization

problems several times. These scale sets were used in Part one of

this study and were determined in previous studies (see Biegler and

Hughes (1982,1983))- The second set of scale factors were derived

from the heuristic proposed in Biegler and Hughes (1982), that

|v /(x.) I be scaled between ten and one hundred. Finally, the

third set of scale factors (New Scale) was derived from the algorithm

above. The first two methods led to scale factors in powers of ten

while the third method yielded scale factors in powers of two.

The scaling results are given in Table 4. Note that the

unsealed infeasible path algorithm took small steps on the first two

problems and terminated before reaching the optimum. Imposing a

Kuhn-Tucker tolerance tighter than 10"^ may improve these solutions

although with the given perturbation sizes for gradient evaluation,

line search failures nay be encountered first. For the unsealed

algorithm the third problem terminates reasonably close to the optimum



after 39 iterations.

Lastly, we consider the conditioning of the QP problem. As pointed out

above, one of the reasons for constraint and variable scaling is to avoid

the buildup of roundoff error through inaccurate gradients and bad pivot se-

quences. In order to judge the effectiveness of scaling, it is useful to

monitor the conditioning of the problem and if necessary, rescale the problem

if it becomes ill-conditioned. -

To develop a measure for conditioning, consider the QP step. The QP

solution d is given by the linear equations Bd = - VL (x*,u,v,). Here the

relative error in the solution d is given by:

lUdll .: 11 67L 11 11 SB II
I M I IIVLU | [ B H

where {J• 11 - any matrix or vector norm

6d , SB - absolute errors in d and B, respectively

K(B) - I U H H B " II, the condition number of B

The condition number, K(B) thus indicates how much the error in the gradients

Is magnified in the solution, d. To keep the QP well-conditioned, K(B)

6
must be kept low (say <10 ). To calculate K(B) we merely parallel the

quasi-Newton BFGS update for B:

u i + 1 « u 1 s T B 1 B 1 s . y yT

B B " T I T
s T B 1 s » y



with the inverse BFGS update:

sy

i+l i
where s = x - x

y = VL (x , u , v) - VL (x , u , v)

The condition number of the symmetric B matrix is then computed by taking

the maximum row (or column) sums of j B.. | and | B, . |

as norms.

Table 4 shows the maximum condition munbers for the different

scaling procedures. Note that while there is not a strong correlation

between performance and condition number, line search failures were

30
observed for very high condition numbers (say >10 ). Also note that

the new scaling procedure keeps K(B) relatively low. Based on these

limited results, it seems that the new scaling algorithm performs

surprisingly well for an a priori scaling procedure and serves as a

good initial scaling method.

If the condition number becomes too high over the course of the opti-

mization, a rescaling procedure can be implemented to make the problem better

conditioned. Applying several scaling methods to the infeasible path al-

gorithm, Xu (1982) reported significant improvements in performance if the

problem is rescaled once the condition number becomes too high. To do the

rescaling, several heuristic and rigorous methods are available (see Tomlin

(1975), Bauer (1963)) for reducing the condition number. However, if B

becomes too ill-conditioned, it may be advantageous simply to restart the

Hessian, approximation with the identity matrix.

CONCLUSIONS AND SIGNIFICANCE .

T



This paper forms the second part of a study detailing improvements

for the infeasible path optimization algorithm using sequential modular

simulators. Here we concentrate on improvements to the successive quadratic

programming (SQP) algorithm.

The improvements are divided into three areas. The first section deals

with solution of the quadratic programming problem (QP) that determines the

search direction at each iteration. We briefly discuss a new (QP) algorithm

by Gill and Murray (1978) and its advantages over the commonly used Fletcher

(1971) algorithm. We also develop a procedure for recovering from

inconsistent constraint linearizations, for which the QP has. no solution,

and demonstrate its effectiveness over an existing procedure suggested by

Powell (1977).

The second section deals with the line search algorithm which determines

a stepsize along the search direction. Current procedures based on exact

penalty functions (see Powell, 1977) can cycle or converge very slowly on

certain problems. Thus, present implementations of the SQP method usually

contain line search procedures that possess neither local superlinear nor

global convergence properties and therefore may exhibit undesirable

performance. Here we present a method based on a modified augmented

Lagrangian that has the above convergence properties. It performs

significantly better than current strategies on fifteen well-known

nonlinear test problems. We also apply this procedure on the process

optimization problems described in the first part of this study (Biegler

and Shlvaram (1983)) and demonstrate significant improvement on these as well.

Lastly, we consider scaling procedures for the SQP algorithm. In

this section we develop a very simple procedure based on the variable

bounds in the optimization problem. . While we make no claims as to its

efficiency over scale sets determined by insight and experience, we

see that the procedure serves as a very good initial scaling method. On

the nonlinear test problems we observe significant improvement over



unsealed runs. On the process optimization problems the new scaling

procedure performs competitively with a scale set determined by

experience. To monitor, over the course of the optimization run, the

conditioning of the QP, which directly influences the search direction

calculation we develop a method to efficiently calculate the condition

number of the Hessian. This allows us to periodically rescale the

problem if it becomes ill-conditioned.

The above improvements are based oh theoretical and computational

insights. They result in better performance up to a factor of •f"/!*-Jree

compared to the results reported in Part one of this study. Because

these improvements deal solely with the SQP algorithm, they are not

restricted to infeasible path process optimization but have wide

applicability for solving general nonlinear programming problems.

r
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Table 1

Comparison of SQP Algorithms on
15 Test Problems

Function evaluations (CPU msec)

N MEQ OPT OPTHP WDOG

Al
A2

Bl
B3
B4
B6

C3
C5
C13
C24

D4
D5
D9

E

F

2
1

5
5
4
6

2
3
5
2

10
10
4

2

4

CM
 

CM

10
6
0
4

3
2
6
2

11
3
4

1

3

0
0

0
0
0
4

o
 

o
 

to
 o

en
 en

 o

0

0

4
3

5
3

52
13

10
9
4
4

30
30
5

10

12

(117)
(87)

(373)
(197)
(2184)
(1201)

(33)
(324)
(230)
(100)

(6865)
(2935)
(197)

(333)

(766)

cycles
cycles

5
3

52
25

10
9
4
8

30
30
5

10

14

(360)^
(198)
(2256)
(1712)

(34)
(327)
(244)
(125)

(6837)
(2911)
(190)

(309)

(761)

cycles
cycles

" 5
4
54
13

10
7
4
6

52
28
5

10

11

/ f" O ft \

(584)
(433)
(1780)
(2357)

(212)
(330)
(537)
(121)

(47796) failed
(5882)
(396)

(177)

(678)

A. Chamberlain (1979)
B. Colville (1968)
C. Himraelblau (1972)
D. Bracken and McCormick (1968)
E. Schuldt (1975)
F. Itosen and Suzuki(1965)
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B3
B6

C3

C13

D4
D9

3
13

10

4

30
5

Table 3

New Scaling Results On
Appropriate Test Problems

Using OPT

# function evaluations

Unsealed Scaled

3
10

10 (converged to different
local min.)

4

7
5

12 12

r
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