
Carnegie Mellon University
Research Showcase
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

1-1-1980

Control allocation : the automated design of Digital
Controllers
Richard J. Cloutier
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/ece

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase. It has been accepted
for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase. For more information,
please contact research-showcase@andrew.cmu.edu.

Recommended Citation
Cloutier, Richard J., "Control allocation : the automated design of Digital Controllers" (1980). Department of Electrical and Computer
Engineering. Paper 63.
http://repository.cmu.edu/ece/63

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece/63?utm_source=repository.cmu.edu%2Fece%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CONTROL ALLOCATION:
THE AUTOMATED DESIGN OF DIGITAL CONTROLLERS

by
Y Richard J. Cloutier

DRC-01-05-80

April 1980

Control Allocation:

the

Automated Design of Digital Controllers

M.S. Project Report

by

Richard J. Cloutier

Electrical Engineering Department

Carnegie-Mellon University

18 April 1980

This research has been supported by the United States Army Research office, under grants
DAAG29-79-C-0197 and DAAG29-78-G-0070, and the Department of Electrical Engineering,
Carnegie-Mellon University.

Acknowledgements

I would like to thank my advisor, Dr. Alice Parker for providing me with the opportunity to work on a

very interesting project. Her in-depth discussions about the problems involved and her supportive

nature have been invaluable. I would also like to thank Andy Nagle for his assistance especially in the

representation of the problems inherent to control allocaton.

I would also like to express my thanks to Lou Hafer and Gary Leive who have supplied both detailed

information and software support without which this project would have been impossible. In addition,

I thank the members of the CMU-DA group who have attentively listened to presentations of my work

and have commented on it or have discussed it with me. They have provided me with objective views

of my methods, which have pointed out deficiencies that I would never have seen without their help.

Table of Contents
1. Introduction 2

1.1 Definition of Terms 3
1.2 The Basic Requirements 4
1.3 The Solution 5

2. Control Allocation in Relation to Other Design Tasks 7

2.1 The CMU-DA project 7

3. The Input Requirements for the CMU-DA Control Allocator 8

4. How Control Information is Stored in the Module Database 10

4.1 Assumptions Made About the Controller 10

4.2 An Example 12

5. The Steps of Control Allocation 16

5.1 Conversion of Data Operations Into Micro-ops 17
5.2 The Conversion of Control Operations Into Micro-ops 21
5.3 Micro-cycle Time Evaluation 22
5.4 Control Graph Generation 23

5.4.1 Application of the potential parallelism rule 25
5.4.2 The Control Graph Model 27

5.5 Micro-instruction Definition and Micro-word Formatting 28

5.6 Control Signal Conditioning and Micro-word Representation 32

6. Results 36

7. Suggested Improvements for the Automated Control Allocator 39

8. Conclusions - 41

I. Appendix 1: The PDP-11/40 example 43

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

1. Introduction

Digital system design has normally been separated into two main tasks, data path design and

control design. During the data path design the architecture of the system takes shape while during

the controller design the sequencing and synchronization details are fixed. Control allocation is the

process of specifying a controller which will be able to drive the data path design in some specified

manner. An automated control allocator will take a description of some digital hardware data path1

and a procedural description of the desired behavior (the micro-sequence) and produce a description

of an engine which will evoke the data path devices in the order specified by the micro-sequence

"program". The resulting controller will be a dedicated digital system with its own memory and I/O

and have its own specific timing requirements.

Control allocation is a many-faceted problem. Initally the process may be viewed as a hardware

design. The functions and interconnection of the digital devices which will generate the sequence of

evoke signals must be specified. The control allocation problem is also a problem of autonomous

control since the controller must be able to generate all of its own internal control signals which it

might require. The system clock signal is an example of such a control signal since it is used to

change the state of the controller.

If the controller being designed is of the microprogrammed variety then the control allocation

process must also consider the code generation problem. The micro-instructions which will be

placed in the micro-rom must first be compiled from the micro-sequence program. To reduce the cost

of the controller the control allocator should also consider the problems involved with bit packing of

the micro-words. If the micro-word may be reduced in width by a single bit then the microprogram

storage requirements will be reduced by as many bits as there are micro-words, a substantial savings

in most cases.

Perhaps the most interesting problem of control allocation is the evaluation of potential parallelism.

The first aspect of this problem is hardware independence. This is the determination of which basic

operations (micro-ops) in the data path machine may be done in parallel due to the independence of

the sets of hardware devices which each require. The second aspect is that of data independence in

the micro-sequence program. Two micro-sequence steps are data independent when the results of

one operation do not depend upon the results of the other.

In addition to these major design problems there are also some intriguing implementation problems

to be solved, such as how to correlate different levels of descriptions. If the control sequence is

For a definition of this term and others see section 1. 1

described at a more abstract level than the devices to be controlled are, then each of the control

sequence steps must be expanded into a more detailed version which is compatible. There is also the

problem of the controller having its own data paths (with the control signals as data) which must be

controlled by itself. The question arises: Which comes first the controller data part or the controller

control part? The allocator must know the details of the data part before it may define the control

signals, but it must know the signal requirements before it may define the data paths fully. In fact, the

optimal solution would require simultaneous solutions to both aspects of the problem.

Control allocation is a complete digital design problem, from the basics of hardware

interconnections to the details of an optimizing compiler.

1.1 Definition of Terms

Control Points or Control Lines: The inputs of any device which are not defined as data inputs.

These lines are able to select a function or evoke an operation in the device. Examples are lines such

as clock, load, select, r/w, clear.

Control Signals: The values which must be placed on control points to cause a particular action

to be performed. Associated with each device primitive is a control signal for each control line on the

device.

Doln Path: A representation of a collection of devices and the interconnections between them.

Data Path Graph: The name for the data path representation in the CMU-DA system. This

representation allows for the nodes: register, operator, multiplexer, constant, concatenation, and

link. All of the interconnection information is stored in the links and concatenation nodes.

Device: Any collection of hardware elements for which an operation may be defined. Examples

are: transistor, AND gate, flip-flop, register, microprocessor. Some device primitives are

(respectively): on/off, and, set, load, run/halt/restart.

Device Primitive: The simplest or most basic operation(s) which a device may perform. For

example, the simplest type of operation for a register is a LOAD. Whereas the flip-flops which make

up the register may be SET but they may not be ON or OFF. The transistors inside of the flip-flop may

only be ON or OFF.

Evoke Control Point: A control input which causes a change in the data stored in a device. The

clock, load, and clear lines of most devices are in this category.

Micro-controller: The digital subsystem which produces the control signals for driving the data

path devices.

Micro-instruction: The name given to a single word stored in a microprogram rom. It is usually

equivalent to the micro-step.

Micro-operation or Micro-op: A collection of device primitives which must be done during a

single clock cycle.

The micro-op model is defined as:
micro-operation = <device list,operation time>

An entry in the device list contains:
device list element = (name of device,

source or destination flags,
control signals for this device,
pointer to the next device list element or zero>

operation time = <the time required for this micro-operation to be completed>
(Usually the longest propagation delay from one of the
sources to the destination device(s).)

Microprogram Rom: The device (memory) of the micro-controller which contains the

micro-instructions. Also called the MCROM or the micro storage memory.

Micro Sequence Table: The part of the CMU-DA design description which contains the

micro-sequence program. This table is made up of register transfer instruction and control How

directives.

Micro-step: A collection of micro-ops which will be done during the same major clock cycle.

Micro-ops are allowed in the same micro step only when there are no device or data conflicts between

them.

Register-transfer Operation: An abstract description of the transfer of a value stored in a

register to another register through an optional operator. A register transfer may also describe a

transformation made upon the data in situ, such as a shift in a shift register.

Select Control Point: A control input which does not of itself change the value stored in the

device. Function selects and output enable lines are of this type.

1.2 The Basic Requirements

In order to understand how a control allocator works one must first understand what it has to work

with. There are three basic requirements and each must be available in order for the allocation

process to operate as an independent process.

The first requirement is a description of each of the devices which will be used to implement the

digital system. This description should contain a name for the particular device, the operations which

the device may perform, and a concise description of how the particular device may be controlled for

each operation. In addition to the devices themselves, the interconnections between them in the

digital system is important and must be included in the basic requirements.

The second main requirement for any control allocator is an abstract description of the control

sequence. A control sequence is a representation of the proper order of events which should occur

in the digital system and may be represented at any level of detail, analogous to the description of the

devices. This sequence may be represented in a high level programming language or it may be

expressed in minute detail by specifying the actual bit patterns which should be used to drive the

control points of the data path devices.

The third and final input requirement for a control allocator is a list of the significant constraints on

the design. These may be parameters such as cost and speed or they may be instructions as to which

types of controllers should be considered. Each of these restrict the design space and are helpful to

the control allocator in its search for a suitable controller.

With these requirements fulfilled the control allocator should be able to define a useful controller.

1.3 The Solution

The micro-sequence program is the heart of the control allocation process. Each instruction will

be mapped into one or more basic data path operations (device primitives). Combinations of the

device primitives will be used to define micro-operations. Once this has been done for each

micro-sequence step then there will exist a micro-operation program at a level of detail sufficient for

the completion of the control allocation process. The problem will then be one of determining the

form of the controller which should be used. The control allocator will select a particular controller

configuration by using parameters measured from the microprogram. Once selected, the controller is

entered into the path graph description. The control allocator then evaluates the potential parallelism

in the micro-operation program. This is determined from the data and hardware dependencies of

successive micro-ops. The micro-operations are then assigned to micro-steps. This assignment is a

major problem in itself and the procedure used for this project is a heuristic method which attempts to

constrain the micro-word width to a specified value while trying to reduce the execution speed of the

micro-controller to a minimum. After the micro-steps are assigned, the size requirements for the

micro-storage are known and this information is placed in the data path graph description. The final

step of the control allocation process is the conversion of the micro-operations into bit patterns which

will be stored in the microprogram rom. This step is fairly simple and is similar to the assembling of a

machine language program.

2. Control Allocation in Relation to Other Design
Tasks

Control allocation is only a single step of the complete digital design process. It is not necessarily

independent of all of the other steps and in most hand designed projects the controller design is

considered during the time that the data paths are being designed. This overlap allows for

optimizations in the controller which will reduce the cost or increase the speed of the machine.

2.1 The CMU-DA project

The CMU-DA project is a top-down type of design system. It consists of programs which map the

design descriptions from an abstract level to a more detailed level during each step. The inital

description of the digital system is in the form of an ISPS procedure. This is converted and modified

by successive programs until it is detailed enough for construction. The first step is the Value Trace

process. In this step the ISP description is converted into a new language which represents the data

flow and control flow of the design in a graphical form. This graph allows the VT program to

recognize data and control dependencies which will allow for transforms on the design. Some

possible transforms include ones which eliminate unnecessary computations such as the

recalculations of values which were previously evaluated and could have been saved. A more

advanced transform is similar to the code motion technique used in optimizer compilers. The

movement of common operations out of all the branches of select statement and the removal of

invariant computations from loops are two such transforms [McFa 78]. The second step is the Design

Style Selector which determines which type of design the ISPS description is most similar to, and

should be implemented with. The effect of this step is to select which particular data path allocator

should be used. The third step, Data Path Allocation, is where the data path devices and their

interconnections are selected. This allocator uses generic types of devices as building blocks and

assumes that the technology which will be used to implement the design can be used to construct

these blocks. The following step is Module Binding, during which the devices in the data path are

assigned to specific real devices which are available in the design technology. If a device is not

available to perform a requested operation then the module binder transforms the data path graph

and the micro-sequence table in such a way that the assumed operation may be performed with

available devices. The Control Allocation s.tep is next and here additions are made to the path graph

to include the controller hardware. The micro-sequence program which was generated by the Data

Path allocator is compiled into a microprogram and the program is added to the description of the

design. The final steps of layout and construction take the description and modify it in any way which

is required for construction. For a detailed discussion of the CMU-DA system see [McFa 78].

8

3. The Input Requirements for the CMU-DA
Control Allocator

In the CMU-DA project the main requirements for control allocation are satisfied by the

combination of three sources. The first is the design description which contains the data path graph

and the micro-sequence table. The second is the Module data base which contains control

information about all the devices used. The third input is from the user, who selects specific

parameters during the control allocation process.

The data path graph contains a list of the devices which are required by the design at its current

stage of completion. The data path graph also contains information about how each of these devices

are interconnected. Associated with each device is a name of a module which will perform the

specified functions. The data path graph has been generated by the Data Path allocator and the

module information has been added by the Module Binder. A description of each module is contained

in a database called the Module Database. The information concerning how devices may be

controlled to perform particular operations is also contained in this database. The combination of the

Module Database and the data path graph is sufficient for the first main requirement for control

allocation.

Included in the same file as the data path graph is the micro-sequence table. This is the abstract

description of the control sequence which is required by the control allocator. The micro-sequence

table is a series of register transfer instructions and control flow directives. Each of the register

transfer instructions specifically notes which devices of the data path graph should be used for the

operation. If the micro-sequence program had not been bound to the path graph in this way then the

control allocation problem would have been much more difficult because it would be necessary to

associate the program operations with actual hardware devices. This type of conversion and the

associated register allocation problems have been considered by DeWitt and Mallett. DeWitt defines

the process of register allocation as the procedure necessary to determine which hardware register

should be assigned to contain a program variable and when this assignment should be changed to

accommodate a new program variable [DeWi 78]. He also deals with the problem of processor

allocation used to determine which operator should be used for a particular instruction. DeWitt shows

that this problem is NP complete [DeWi 76]. Mallett has also considered the problem of micro-word

compaction and states:

"A high-level language to microcode translator cannot afford the time to exhaustively
improve the object code for every moderately sized program"

Mallett also presents a heuristic method which seems to compact nearly optimally for a linear segment

of microcode, in a predefined digital system [Mall 78]. These heuristic methods include ones which

direct a search through a branch and bound type graph and a method of early termination of search

down branches of this graph. For the current control allocation project however the controller has

not yet been defined and Mallett's procedure may not be used.

The micro-sequence program also includes the control directives in the form of ifs, selects, and

joins. Each of these only evoke devices in the controller and the specific action of each will be known

by the control allocator so there is no register allocation problem here. Thus the micro-sequence

table is sufficient to fulfill the second major requirement of control allocation.

The constraints for the design, which is the third major requirement of control allocation are either

built into the control allocator itself or they are specified by the user when running the allocator.

While there are multiple controller schemes such as asynchronous operation and distributed or

residual control, only the microprogrammed variety is considered in this project. The bitwidth of the

micro-word, which is related to the cost of the controller, is specified by the user at runtime. The

speed of the controller is inversely related to this bitwidth. This effect is due to the fact that wide

words are able to control more data path devices at once and thus more concurrent operations are

allowed.

10

4. How Control Information is Stored in the
Module Database

The control information which is being considered here and that which has been placed in the

database is only a subset of that found in an ordinary data book. It is only concerned with the

operations which will be requested by the register transfer operations and in addition the information

has been conditioned by the type of control structure which will be used by the controller.

4.1 Assumptions Made About the Controller

There have been several assumptions made about the operation of the controller before any of the

control data was entered in the database. These assumptions were made for two reasons: to save

processing time during the control allocation step and to simplify the process of defining the control

signals. The controller model which is used assumes that a sequence of signals will be generated.

The select signals will become valid first and then the evoke signals will occur. After the evoke signals

have returned to their inital state the select signals will become invalid. Allowing for only one type of

sequence simplifies the control allocator's job. If arbitrary types of sequences were allowed then the

control allocator would have to map each type into the sequence which the controller could generate.

Since this mapping would have to occur once for each bit stored in the microprogram it was decided

that the person defining the conliol signals would store the standard sequence in the database and

save a substantial amount of processing time. With only a standard sequence allowed the process of

entering the information in the database should also be simpler for the user.

The first assumption made about the controller is that there will be a two phase clock system in the

controller. The general form of these signals is shown in Figure 4-1. The pulse width of the clock

signals will be narrow enough so that both the rising and falling edges may be used for evoking

actions. The clock cycle time and their relative phase will be determined by the control allocator

during the generation of the micro-code.

A second assumption made is that each control point in the database will be classified as either a

select or evoke line. The signals which drive select inputs will be wired directly from the

micro-controller and their values will be held at the value specified in the data base for a complete

clock cycle. Control points which are designated as evoke points will have their control signals

conditioned by the phase 2 clock signal. This allows for four types of evoke signals: rising edge,

falling edge, positive pulse, and negative pulse. To do this conditioning, the signal from the

microprogram word will either be NANDed or ANDed with phase 2 of the system clock. The

micro-word value will be determined by the control allocator so that the proper evoke signal will be

11

^ Micro-clock cycle

Phase 1

Phase 2

The select signals are valid from the start of a phase 1 cycle
to the end of that phase. The evoke signals occur during the
phase 2 clock pulse.

Figure 4 - 1 : The micro-clock signals

generated. The use of either NAND or AND will also be determined by the control allocator by

examining the non-active state specified in the database for the evoke control point. After the

operation is evoked the value at the control point will return to its non-evoke value and then the select

control lines will be set to the value required for the next operation.

12

4.2 An Example

For a more detailed explanation of what the database contains consider this example of one of the

entries. An partial listing of the SN74161 entry is:

I I) : SN74161
LINE - 1 4 - -CTILINES- -C1LNAME-

5 tCTLNAMF.
ID: CTI NAME.1
LINE - 0 - -P1NNAME-

CIOCK
ID: CILNAME.2
LINi: - 0 - -PINNAME-

CLEAR
ID: CILNAME.3
L1NL - 0 - -PINNAME-

LOAD
11): CTINAME.4
U N I 0- -IMNNAML-

ENBP
ID: CUNAME.5
LINE - 0 - -PINNAME-

ENBT
I INE - 1 4 -

ID: INC
LINE - 0 - -EVOKLINE-

1
ID : ESEQ.l
LINE - 0 - -EVAL-

tEVAL
I I) : IVAl .1
LINE - 0 - - l i l

P
I I) : fVAL.2

-PINTYPL-
1

-P INTYPI -
1

- P I N I Y I H -
1

-IMNIYPl -
0

-PINTYPE-
0

-NONEVOKE-
H

-NONLVOKE-
H

-NONLVOKE-
H

NONLVOKl-
X

-NONEVOKE-
X

- C I I I S E O -
tCHESEQ

-EVOKSTEP-
1

IVAL-

LINE - 0 - -BITVAL-
II

I I) : IVAl .3
1 INI -0 -HI

H
ID: EVAL.4

IVAI -

LINE - 0 - -BITVAL-
II

ID: EVAl.5
LINE - 0 - -U l

H

ID: I0AD
LINI - 0 - IVQKI 1NL-

1
11): ESIQ. l
1 INI - 0 - - IVAL-

tEVAL
ID: IVAl .1
LINL 0- -HI

P
ID: IVAl .2
1 INI - 0 - - I I I

H
ID: I V A l . 3
LINE - 0 - -HI

L
ID: IVAl .4

IVAL-

1VOKSIIP-
1

IVAl -

IVAl -

IVAL-

-SUBMOD-
1

SUHMOD-
1

-SUBMODNO-
1

-SUBMODNO-
1

-SUBMODNO-
1

SUBMODNO-
1

-SUBMODNO-
1

-MAXTIME-
35

-MAX1IML-
29

-ESEQ-

tESEO

-ESEO-
tESEQ

13

LINE -0-

ID: EVAL.5
LINE -0-

ID: READ

-BITVAL-
H

-BITVAL-
H

LINE -0- -LVOKLINE- -tVOKSIEP-
0

ID: CLEAR

0

LlNl -0- -LVOKLlNr- LVOKS1LI'-
2

ID: LSEQ.l
LlNl -0-

ID: EVAL.l
LINE -0-

ID: IVAI.2
LINE -0-

ID: EVAL.3
LINE -0-

1D: EVAL.4
LINE -0-

ID: EVAL.5
LINE -0-

1

-EVAL-
tEVAL

-BIIVAL-
H

-BITVAL-
L

-BITVAL-
H

-BITVAL-
H

-BIIVAL-
H

-SUBMOD-
1

-SUBMOD-
1

-MAXTIME-
0

MAX!IME-
38

-ESEQ-
tESEQ

-ESEQ-
tESEQ

In this example only line 14 is shown, however in the data base there are lines 0 through 13 which

contain other information about this particular device. See Leive's report on the module database for

more information about the lines O through 13. [Leiv 79]

Line 14 contains the information required to specify control for the device. The first entry,

CTLLINES, is the number of control lines for each device, in this case it is five. Note that this is the

number of lines per device and not the number of lines per package. In the SN7474 there are two

devices per package with six control lines total but only three CTLLINES per device. If CTLLINES is

zero then there are no control lines for the device and it requires no control inputs to perform its

function. The SN7400 (NAND) is such a device.

The second entry CTLNAME is a list of characteristics of each control line. There are four traits for

each line and the first, PINNAME, is a character string which names the control point on the device.

The second trait, PINTYPE, is either 1 or 0.. A 1 signifies that the particular control point is an evoke

input, a 0 indicates it is a select input. The third trait is NONEVOKE which is a single character

indicating the non-evoke state for a particular line. The three valid values are H(high) L(low) and

X(don't care). The NONEVOKE has an obvious meaning for evoke lines but if a particular device

requires some sort of setup sequence then the value of NONEVOKE for a select line could be

14

something other than the expected X. The final trait SUBMODNO is the submodule number of the

control point. A submodule is defined as the set of control points which are required to cause a

particular operation to be performed.

The third section of line 14 is a list of the operations which may be performed with the particular

module. This has the heading of CTLESEQ. In the above example the module may perform the

operations: INC,LOAD,READ,and CLEAR. The INCLOAD and CLEAR should be obvious as to what

the particular functions is. The READ is included so that any micro-operation which requires this

module as an input will be able to find out if any control lines need to be set in order to read the

contents of the register. In this case there are no output enable lines so there is no ESEQ (Evoke

SEQuence) for a READ. Some other devices might have such a line which must be controlled. To

further explain the CTLESEQ consider the INC operation. The EVOKLINE is a number which

indicates which of the EVALs (Evoke VALues) is the evoke control point for this particular operation.

The evokstep is the number of the ESEQ during which the operation is performed. If a particular

operation requires either an intricate setup or hold sequence on the control lines then it may require

more than a single ESEQ (control step) and EVOKSTEP should indicate which step the evoke is

actually performed. One such example might be the multiplication of two numbers by a special

function unit which requires the following steps: Load num1 in register A, Load num2 in register B,

Start the multiplication, Get the result. Such an example would have an ID of MULT and would require

four ESEQ steps.

The SUBMOD is the submodule number which is used by this operation. If there is more than one

submodule in this device then for the current operation (INC) there would be fewer control values

listed than the number of control lines for the device. MAXTIME is the time in nanoseconds required

for this module to perform the current operation.

ESEQ is a list of the steps which must be followed to perform the operation. If more than one step

is required for the operation then there is more than one ESEQ. Each ESEQ.n has a list of the EVALs

which the control points must be set to. There are as many entries in the EVAL list as there are

control lines in the submodule being used. The EVALs are listed in the same order as the CTLNAMEs

list but only the current submodule control points are included. If the line named LOAD of the above

example had been in submodule 2 then for the INC operation there would have been only four EVALs

listed. EVAL.1 would correspond to CTLNAME.1, and EVAL.2 with CTLNAME.2, EVAL.3 with

CTLNAME.4, EVAL.4 with CTLNAME.5. There would be no EVAL.5.

The BITVALUE is a character which indicates what type of control values should be used on the

particular control point. Possible values for BITVALUE are P(rising edge), N(falling edge), H(positive

pulse), L(negative pulse), S(select), X(don't care). The select is used for the select bits on a

15

multiplexer and the actual value stored in the microprogram is determined by the control allocator

from the path graph link selected. One of the advantages of this control information structure is that it

is a simple matter to determine the value of the bits to be stored in the micro-word.

The assumed model of the controller allows the user to squeeze some operations, which would

have required more than a single cycle in a simpler controller, into a single step (ESEQ). Note that in

this example the 74161 requires that the two count enable lines (ENBP and ENBT) be changed only

while the clock line is high. With the NONEVOKE value of the clock equal to H the select lines may be

changed to any value before the clock goes low then high (the rising edge is the evoke signal) to

perform the selected operation. If the controller could not have set the non-evoke value of the clock

line then this would have required two control steps.

16

5. The Steps of Control Allocation

The first main step that the control allocator does is to read the interconnection information from

the path graph and places it in an internal form which will allow for tracing through the data paths in

search of controllable devices. The micro-sequence table is also read into an internal form but at this

point it has not been optimized and there are some simple transformations which may be performed

upon it.

The first optimization is a macro-type of substitution of subroutine calls by the instructions of the

subroutine. If the subroutine is called only once throughout the micro-sequence table, then there is

no reason that a call is required. The subroutine code may be placed in-line. This macro substitution

optimizes in three ways, first each subroutine call is expanded into either two or four micro-ops

(depending upon the type of controller used). These extra micro-ops will not be required if there is no

call. Along with every call there must also be a return which requires either one or three micro-ops

(again depending upon the type of controller). If all of the subroutine calls can be removed from the

micro-sequence program in this manner then a much simpler controller may be used and further cost

savings will be realized. There are also cases when it would be advantageous to do macro

substitution even when a subroutine is called many times throughout the microprogram. If the

subroutine is very short then the overhead of a minimum of three micro-ops for each call would be

greater than the cost of the routine itself. Remember also that the extra hardware required to allow

for micro-subroutines, when eliminated, will reduce the cost of the micro-machine. There is a hidden

advantage to this type of transformation since with the subroutine instructions inserted in-line there

will be potentially more parallel operations and the machine may operate faster. This is due to the fact

that a call or return delimits a section of straight line micro-code and potential parallelism is only

allowed between micro-operations of the same straight line micro-sequence.

A second modification which is performed on the micro-sequence table at this point is the removal

of all the diverge and merge information which was included due to the way the ISP description was

written. The designer determined at the ISP level that some operations were independent and that

they could be done in parallel. This information would have been helpful if the allocator had been

sure that the designer knew how the design would be implemented, but this is impossible. The control

allocator will have to evaluate the micro-sequence program for potential parallelisms in a later step, so

if the designer has guessed right then the correct information will be recovered.

The micro-sequence has a control operation called PEND which indicates the end of a particular

routine. If the PEND for the main routine is executed then the machine should halt. The control

allocator converts the main routine's PEND into a operation which will stop the machine. PENDs

17

which do not delimit the main routine, are converted by the control allocator into a return from a

micro-subroutine. There is another control opcode called BAILOUT which is an instruction to cause

the control flow to leave the named routine. Currently the control allocator only allows static bailouts,

which are converted to branches to the end of active routine. ISPS allows for dynamic RESTARTS

and LEAVES which require that the control flow leave one of the calling routines, but not necessarily

at the same calling level each time it is executed. This type of control construct would require extra

hardware in the controller in order to label all of the routines and it was deemed too expensive to

include in any of the controller designs.

After all of these transformations have been performed upon the micro-sequence table there are

likely to be cases where a JOIN instruction indicates a branch to the next instruction. A micro-step

generated for this type of instruction is useless and if it is converted into a micro-op it will increase the

cost and reduce the speed of the controller. To avoid this, the last step of the micro-sequence

optimization is to remove such operations and clean up other instructions which would generate

no-op types of micro-ops.

At this point there is enough information in the micro-sequence table to select an efficient

micro-controller. Currently there is only one class of controller available, it is a microprogrammed

controller with a two phase clock system. The term two phase refers to the types of signals which

emanate from the controller and not to a system which will allow for two sequential operations to be

performed from a single micro-word fetch. There are three types of micro-controllers and the proper

one is selected by determining* the maximum number of subroutines which may be active at one time.

A diagram of these controllers is shown in Figure 5-1. All unconditional branch addresses are stored

as constants on an input to the multiplexer which is able to load the microprogram counter. The

conditional branch addresses are looked up in a Rom (mcarom) when necessary. The maximum

nesting level of the subroutines determines how large the micro-machine stack must be. At this point

the designer must select the option of having a micro-fetch/execute overlap cycle and accept the

additional costs for the extra hardware required to perform this type of operation.

5.1 Conversion of Data Operations Into Micro-ops

There are many types of data operations possible such as: binary, unary, operator, non-operator,

array access, device functions and some combinations of these. These operations range in

complexity from move to multiply. It is the problem of the control allocator to convert this wide range

of operations into device primitives which later will be used to specify how to control the devices. This

conversion is dependent upon certain aspects of the micro-sequence step itself, such as whether

there has been an operator specified or if the operation has been left for one of the registers to

18

MPAR1MX

MCAROM
STORAGE FOF
MICRO PGM
ADDRESSES

MHPCIMX /

REGISTER TO HOLD
THE RETURN ADDRESS
FOR A SINGLE SUBROUTINE
CALL

MCMPP,
MICROPROGRAM
COUNTER

MCROM

STORAGE FOF
THE MICRO-
PROGRAM

I MPJNftRFfi I
REGISTER TO HOLD THE
MICRO INSTRUCTION WHILE
THE NEXT ONE IS FETCHED

Controller type 1

MPSMnR

I MPJNftRFfi I

For micro-programs with single
level subroutine calls

Controller type 2

MICROS I ACK
SI ACK I'OIN I I~.M

STACK TO HOLD

RETURN ADDRESSES

For micro-programs with
multi-level subroutine calls

Controller type 3

Figu re 5 -1 : The micro-controllei*o

19

perform. If there is an operator then the control allocator assigns the operation to it and the

destination register is assigned the LOAD function. If the destination is not a register but instead a

memory array then the operation WRITE is used. If there is no operator defined then the operation

must be done in one of the source registers or in the destination register. This usually depends upon

the particular opcode.

In most cases each of the source registers is assigned the operation of READ so that if there are

output enable lines on that particular device they will be enabled by the controller. Since most

devices are able to perform only very basic functions there is a table in the control allocator which

maps the register transfer operations into basic functions. For example the add2c operation maps

into a simple ADD operation. This assumes that the module binder has found a device which will do a

two's complement add and has used it or it has determined that a simple adder will work (with

perhaps some modification of the data paths to assure two's complement operation). Table 5-1

contains the mapping of register transfer data operations into these basic functions.

The conversion of the data micro-sequence steps into micro-ops is the first difficult step of the

control allocation process. A fairly common one will make a good example:

#Z43(add):#Z:#10t#3(dest)v#4(srcl):#llv#6(src2):#12;

The opcode #243 is defined as the operation ADD. In this example the device #2 is an adder

which will be used to sum the numbers stored in the devices #4 and #5 . The result will be stored in

the device #3 . The numbers 10,1 Land 12 indicate some of the links over which the data must pass

for this operation. There is however additional information not included in this instruction which must

be determined from the path graph. First it must be determined if there are any unnamed devices

which are used to perform this operation, such as multiplexers in the data paths. For this example let

us assume that link #11 is an input to a multiplexer whose output connects to the input of the adder.

The control allocator must trace through the path graph to find which input of the multiplexer is being

used and store it and also remember that the multiplexer was used. All of the data path devices and

their associated operations which this micro-sequence step uses are stored in a device list. Once the

set of devices which this micro-sequence step requires is known then the allocator must determine

how many micro-steps are required. For this the module database is consulted. In this example the

allocator must find out how to cause the device # 2 to ADD. If it is an ALL) then there will be some

control bits to set to specific values. If # 2 were a simple adder such as a 7483 then there would be

no control bits and of course the micro-controller would not need to set any values for this device.

There are devices and operations which may require a setup sequence, and in such a case there will

be a series of steps which must be performed. Multiple control steps will cause the micro-sequence

instruction to generate more that a single micro-op. Ohce the number of steps required for the

c-sequence step is known and the steps have been fixec! relative to each other then the

20

Register Transfer Operation => Device primitive

test
eql
neq
lss
leq

geq
gtr
move
clear
noop
read
write
lshftd
rshftd
lrot
rrot
not
incr
deer
and
or
nand
nor
xor
eqv
add
sub
lshftl
rshftl
lshftO
rshftO
cone
neg2c
neglc
negsm
add2c
addle
addsm
sub2c

= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >

TEST
EQL
NEQ
LSS
LEO
GEQ
GTR
MOVE
CLEAR
NOP
READ
WRITE
SHIFTL
SHIFTR
ROTL
ROTR
NOT
INC
DEC
AND
OR
NAND
NOR
XOR
EQV
ADD
SUB
SHIFTL
SHIFTR
SHIFTL
SHIFTR
LOAD
NEG
NEG
NEG
ADD
ADD
ADD
SUB

subsm
sublc
mult2c
multic
multsm
div2c
divlc
divsm
mod2c
modlc
modsm
mult
div
mod
amove
amove2c
amovelc
amovesm
test2c
eql2c
neq2c
Iss2c
Ieq2c
geq2c
gtr2c
testlc
eql lc
neqlc
lsslc
leqlc
geqlc
gtrlc
testsm
eqlsm
neqsm
lsssm
leqsm
geqsm
gtrsm

= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >
= >

SUB
SUB
MULT
MULT
MULT
DIV
DIV
DIV
MOD
MOD
MOD
MULT
DIV
MOD
ALOAD
ALOAD
ALOAD
ALOAD
TEST
EQL
NEQ
LSS
LEQ
GEQ
GTR
TEST
EQL
NEQ
LSS
LEQ
GEQ
GTR
TEST
EQL
NEQ
LSS
LEQ
GEQ
GTR

Table 5 -1 : The mapping from register transfer instructions to device primitives

micro-op(s) may be generated. The steps are fixed in a relative position because if one of the devices

requires a single step and another requires three they must be evoked at the same time.

For each, micro-op a device list is generated which contains only those devices which the micro-op

needs. Each element of this list contains n flaq indicating whether the device is required as a source

21

or destination which will be important during the potential parallelism analysis step.

There is an important feature of the micro-sequence table which might not be apparent to the

reader. From the above description one might think that only one operation may be performed during

each micro-op. This is not true. A micro-op is only generated when a micro-sequence step indicates

that there should be an evoke signal. This is designated by the presence or a destination in the

micro-sequence step or the execution of a control operation. If there is nothing to evoke then the

micro-sequence step is called a chained micro-sequence v»iep and all of the control information which

it generates is saved and added to the immediately following step (which may itself be a chained

micro-sequence step). The number of steps in a chain is unlimited so that any combination of

operations may be performed in a single micro-operation.

5.2 The Conversion of Control Operations Into Micro-ops

The conversion of the control operations into micro-ops is not as simple a process as it was for

data operations. The allocator must convert each control operation into a data-transfer operation

which operates upon part of the micro-controller itself. The control operation JOIN is the simplest; all

that is necessary is that the new micro-address be jammed into the microprogram counter. If the

control operation is a conditional branch then the new address must be looked up in a table (rom) and

then placed in the microprogram counter. For calls to subroutines the old microprogram counter

must be stored (either in a register or on a stack) and the new one placed in the counter, while for

returns the old microprogram counter must be restored and the stack pointer changed. The action of

control operations is highly dependent upon the type of controller which has been selected and for

this reason the device primitives are built into the control allocator program.

The CALL micro-sequence instruction is a good example of the necessity of building these device

primitives into the control allocator. If a type 2 controller (Figure 5-1) is selected then the CALL

micro-sequence instruction is converted into two micro-ops:
iftcro-op 1 = Load MCSMDR ISave the old micro program address

Ificro-op2 = Select proper input of MCPCIMX

Load MCMPC ILoad the new microprogram address

If the controller selected was of the type 3 form then the call micro-sequence step is converted into

four micro-ops:

22

Micro-op 1 = Increment MCSSP Nncrement the micro stack pointer
Micro-op 2 = Select input # 1 of MCSMDIMX

Load MCMDR !Save the old microprogram address
Micro-op 3 = Write MCSSTK IStore old value on the stack
Micro-op 4 = Select the proper input of MCPCIMX

Load MCMPC ILoad the new microprogram address

In this example micro-op 1 for the type 2 controller and micro-op 2 for the type 3 controller perform

the same function but have different device primitives because in the type 3 controller there is an

extra multiplexer which must be controlled.

5.3 Micro-cycle Time Evaluation

Once a complete device list for a micro-op is available then the control allocator may determine the

time required to perform each micro-op. This timing measurement is necessary in order to determine

the optimal micro-cycle time. The minimum allowable micro-cycle time is defined as the maximum of

the following:

• The maximum time it takes to read a word out of the microprogram store when using the
microprogram counter as an address.

• The maximum time it takes to determine the next micro-address by accessing the
micro-address rom.

• The maximum time required to retrieve the next micro-address when a micro-subroutine
call or return is being executed.

• The minimum time required to perform any of the data operations in the data path section
of the machine.

The selection of the micro-cycle time has been left to the user but the control allocator measures all of

the operation times and reports the maximum and minimum times for the user to use in his selection.

In order to evaluate the time required for each micro-operation the control allocator must find the

slowest path over which data must pass from any source device to any destination device. To do this

the allocator evaluates the time required for data to propagate from each devices output to the output

of the device which follows it. The control allocator then finds the slowest path from each of the

source devices to a destination device and takes this as the operation time for this micro-operation.

The control allocator allow for the user to specify the desired micro-cycle time. When this has been

done the micro-operation program is reviewed and any micro-op which requires more time than the

specified cycle time will be divided into a series of micro-ops. Each of these will fit into the specified

micro-cycle time slot and each performs part of the original operation.

23

5.4 Control Graph Generation

At this point, the design description is a sequential list of micro-operations. It is highly probable

that this program contains at least two sequential micro-operations which have disjoint device sets,

and in most cases these two micro-ops may be executed in their original order or in a reversed order

without affecting the results of the program. Since these operations are hardware-independent they

may even be done at the same time with equivalent results. Two micro-operations are defined as

potentially parallel if the execution of both in parallel would cause the same results as when they are

executed in the original order. Potential parallelism is not limited to the combination of just pairs of

operations. If three micro-ops are all device independent and their execution ordering is

non-consequential then all three are defined as potentially parallel. The combination of serial

micro-ops into parallel operations will reduce both the length of the microprogram and its execution

time, and the control allocator will attempt to exploit such potential parallelism because of these

advantages.

In the previous paragraph, two rules were used to determine if micro-ops were potentially parallel.

They were, total device independence and execution order insensitivity. These are valid rules but

also excessively restrictive. Another set of rules is presented by Dasgupta [Dasg 76]. His rules

indicates that two micro-operations, MO,, and MO0 are potentially parallel if the following is true:

(SCa f l SK^ = <f>) A (SC^ PI SKa = <f>) A (SKa f l SK6 = <t>) A (U a f l Ub = <t>)

Where:

SC, = The set of source devices for micro-operation /
SK, = The set of sink devices (destinations) for micro-operation /

U, = The set of paths (links and operators) used in micro-operation /

This rule simply states that two micro-operations may be done in parallel if one's source is not the

destination of the other, and that they do not use the same links or write to the same destination. It is

slightly more comprehensive than the one presented at the beginning of this section because it also

considers the links and operators which the data must pass through. This rule does not, of itself,

detect cases where the interchanging of the order of execution would generate an incorrect result,

which may indicate that parallel operation would also be incorrect. To avoid such cases Dasgupta

only applies the rule to micro-ops which are in the same Straight Line Micro-code Segment. A SLMS

is defined as a section of the micro-operation program which has no branches in it. An equivalent

definition is: a section of the micro-op program which only contains data micro-ops (ie. no control

ops). If two congruent micro-ops of a SLMS satisfy Dasguptas rule then they are potentially parallel.

Dasgupta's rule is correct but still too restrictive to be used by the control allocator. There are

24

usually cases where two micro-ops use the same sources but different destinations and it is possible

to do both in parallel. His rule might not indicate that these were potentially parallel because of the

(Ua fl U/} = <(>) restriction. The optimal rule for potential parallelism detection indicates all micro-ops

which may be done in parallel with the available hardware and disallows combinations which would

produce incorrect results. This rule is dependent upon the controller which is used and a new rule

must be defined whenever a new controller style is implemented.

The rule used for this project is defined as follows:

For two micro-operations of the same SLMS where MO, precedes MO/f the micro-operations are

potentially parallel if the following is true.

(SC, f l SK, = <(>) A (SK, PI SK, = <f>)

and

If (SC, D SK, # <t>) then SAME, «- MO, !MO, is added to MO/s SAME list

and

If (SU, fl SU, = C * <f>) then the following must also be true, for all k: Ckfj = Ckf.

Where:

SU,7 = SC,, U U,r This is the set of all devices used in the micro-op
except for the destination devices.

SAMEn = A pointer in MO,, to the micro-operation(s) which it must never occur before.
C = The intersection of the source sets of the two micro-ops.

Cn = The function (device primitive) specified for the device Cn by MO,T7.

In simple terms this rule states that two micro-ops are potentially parallel if the preceding

micro-op's destination device(s) are different from the other's sources, and their destination devices

are different, and if they use any devices in common (SU,,) then these devices must be controlled in

the same manner for both operations.

The availability of the SAME, pointer allows for cases where the interchanging of the micro-ops

would affect the results of the program but their execution in parallel will yield correct results. The

SAME pointer does not necessarily point to a single micro-op, it may also point to a list of micro-ops

which the micro-op must never occur before.

25

The use of this potential parallelism rule may be demonstrated with a couple of examples:

Example 1

MO-1 A«-B
MO-2 C*-D
MO-3 E<-F
MO-4 D*-A

In this example MO-1 and MO-2 are device independent so they are potentially parallel. The same

is true for the combinations of MO-2 and MO-3, MO-1 and MO-3, and MO-3 and MO-4. Note that it is

not true that when MO-1 and MO-3, and MO-3 and MO-4 are potentially parallel that MO-1 and MO-4

are also potentially parallel. In this case the result of MO-1 is required by MO-4 and so they must be

sequential. In this example it is also true that MO-2 and MO-4 are potentially parallel but for this case

SAME4 is set to point to MO-2 indicating that MO-4 must not occur before MO-2.
Example 2

MO-1 D*-25
MO-2 B*-L
MO-3 A<-B+C
MO-4 L*-3
MO-5 C«-D

In this example the following combinations are potentially parallel: MO-1 and MO-2, MO-1 and

MO-3, MO-1 and MO-4, MO-3 and MO-4, MO-4 and MO-5, MO-2 and MO-5. There are also of

potentially parallel pairs of MO-2 and MO-4 in which SAME4 points to MO-2, and MO-3 and MO-5

where SAME6 points to MO-3. The combination of MO-2 and MO-5 is of little interest since it will never

be allowed to be parallel because SAME5 points to MO-3 which must follow MO-2.

5.4.1 Application of the potential paral lel ism rule

The procedure which is used by the control allocator is the fastest possible method which will test

for all potentially parallel operations. An approach which just compares each micro-operation with all

the others in the same SLMS is inefficient and rather expensive since the number of comparisons

grows polynomially as a function of the number of micro-ops in the SLMS.

The method used by the control allocator takes advantage of the fact that the micro-operation

program is ordered and that some comparisons may be ignored when certain conditions are found to

be true. These conditions may be seen in the following example.

26

MO-1 A«-B+C
MO-2 D*-A+K
MO-3 L«-A
MO-4 W<-D

Consider MO-4; comparing it with MO-3 they are found to be potentially parallel. Next, comparing it

with MO-2 it is found to not be potentially parallel. There is then no need to compare MO-4 with MO-1

since MO-4 must follow MO-2 and the relationship between MO-2 and MO-1 will determine how MO-4

and MO-1 will be related. The control allocator avoids the unnecessary comparisons by remembering

cases where this data dependency precludes any potential parallelism.

This procedure used by the control allocator is one of finding the range of potential parallelism for

each micro-operation. To do this first a base micro-operation is selected and it is compared with its

immediate predecessor. If these two are potentially parallel then the original micro-op and its

predecessor's predecessor are compared. This process continues to backtrack through the micro-op

program until a limit is found. A limit is defined as any one of the following: the beginning of the

micro-operation program, a micro-operation which is not potentially parallel with the base micro-op,

or the beginning of the SLMS. Once a limit is found an entry is made in a table which stores lists of

micro-ops which may be started immediately after each upper limit micro-op is completed. During the

search for the upper limit the SAME pointer may have had entries added to it. This does not constitute

an upper limit but the information about these listed micro-operations will affect some of the potential

parallelism in a later step.

The next step is to find the lower limit of each micro-operation. To do this a base micro-op is again

selected and successive following micro-ops are compared with the base until a limit is found. The

lower limit is defined as one of the following: the micro-op which is not potentially parallel with the

base micro-op, the end of the SLMS (the micro-op which follows the first control operation2), or the

end of the micro-operation program. The base micro-op is entered in a second table which contains

lists of micro-ops which must be completed before the lower limit micro-operation may be started.

This procedure is repeated for each micro-op in the program and when completed there are two

tables, one called the UPPER and a second called the LOWER, which contain all of the potential

parallelism information. For the control allocation project a graph structure was selected to represent

this information and the next step of the control allocation process is the generation of the Control

graph from these tables.

2
A slight modification of the definition of SLMS has been made for use by the control allocator The change is that the last

micro-operation of a SLMS may be a control operation. This allows for a control micro-operation to be performed in parallel
with a regular data o|>eration. This type of overlap is almost always taken advantage of in microprogrammed machines
because of the extra time which is required to generate the new microprogram address.

27

5.4.2 The Control Graph Model

The control graph is a representaion of the potential parallelism information which was determined

in the preceding step. It only represents the potential parallelism information and does not include

any control flow information (such as control ops) which one might normally associate with a control

graph. The control operations such as the IF statement were converted into data transfer operations

during the generation of the micro-operation program and their effect has not been lost but they do

not exist as control ops in the control graph.

There are three type of nodes in the control graph, Forks, Joins and Operations. The Operation

node is the most common and is defined as:

Operation Node = <Forward,Backward,Sequence number,Devicelist,Cgsame>

The fields Backward and Forward are pointers to other control graph nodes which must precede

and follow (respectively) this node in order of execution. With these fields the nodes of the control

graph are interconnected. The Sequence number is both a sequence number and a cross reference

to the micro-operation which this control graph node was generated from. Since there is a one to one

relationship between each control graph node and each micro-operation this number is unique for

each control graph node. The Devicelist is a list of the devices which this control graph node must

control. It is a subset of the device list which is contained in the micro-op and does not contain those

devices which have no control lines. Cgsame performs a similar function as that done by SAME in the

micro-ops, it points to the control graph node(s) which the current control graph node must never

occur before.

The fork nodes of the control graph indicate the start of two or more potentially parallel paths in the

control graph. It is defined as:

Fork Node = <Backward,List of followers>

The field Backward points back to the preceding control graph node. The list of followers is a list of

the control graph nodes which must follow this one.

The join nodes indicates when two or more potentially parallel paths of the control graph must be

completed before another node may be started. The form of the join node is:

Join Node = <Forward,List of Predecessors>

The Forward field points to the control graph node which follows this node and the List of

Predecessors contains a list of the control graph nodes which must be done before this one is started.

There is nothing in the control graph structure which requires that the fork and join nodes be

28

paired. A control graph may contain a single fork which has ten potentially parallel legs, and four

joins which "collect" these legs when they are no longer potentially parallel. The forks only indicate

when potential parallelism starts, and the joins when it ends.

The generation of the control graph is a simple process once the UPPER and LOWER tables are

complete. The first step is to provide a control graph node for each micro-op in the program. The

forward and backward pointers are left empty at this time. The UPPER table is then processed. For

each entry in this table which has more than a single follower a fork is inserted in the control graph

which will branch to each of the followers. The pointers in the fork node point to all the correct places

so that the upper limit control graph node (and micro-op) are completed before the following nodes

are started. In cases where there is only a single follower then only the forward and backward

pointers of the affected control graph nodes are set. After all of the UPPER table has been processed

the LOWER table is used to place the joins in the control graph. For each entry in the table which has

more than one predecessor a join from the listed nodes is inserted in the control graph. When this

table has been finished all of the Forward and Backward fields will have been filled and the control

graph will be complete. Figure 5-2 shows the process of generating a control graph for the

microprogram used in Example 1 above.

The information which is contained in a control graph can be very confusing when it is not

represented in the graphical form. To demonstrate this and to further understand the power of the

control graph structure consider the control graph shown in Figure 5-3. If one does not consider the

constraints caused by the Cgsame pointers then there are 38 potential parallel combinations of two

micro-ops each in this example. A few of these are the combinations of 1 and 2T 2 and 10, 3 and 9, 5

and6, and 5 and 7. Combinations which are not allowed are ones such as 1 and 10, 2 and 9, or 4 and

7. When one considers the limits set by the Cgsame pointers then there are only 30 potential parallel

combinations of two nodes. This is caused by the Cgsame of node 11 which indicates that it must

never occur before node 9 and thus it is not really potentially parallel with nodes such as 5 and 7.

Note that node 11 is still potentially parallel with node 3 since node 9 and node 3 are potentially

parallel and the nodes 11 and 9 are also potentially parallel.

5.5 Micro-instruction Definition and Micro-word Formatting

This step of the control allocation process was not developed by the author of this report but since

it is an integral part of the process it will be outlined here. For a more detailed description of this step

and the problems associated with it see [Nagl 78].

The control graph contains a representaion of all of the potentially parallel combinations of

micro-ops which may occur. Since it only represents the potentially parallel combinations a decision

29

Original micro-op program

MO-1

MO-2

MO3

MO-4

A<-
C«-
E<-
D«-

B
D
F
A

Step 1
Generation of the CG nodes without

the forward and backward fields

filled in.

After processing the Upper table

Step 2

Micro-op node
numbers

MOO

MO 1

MO-2

MO-3

Micro op node
numbers

MO-1

MO-2

MO-3

MO-4

MO-5

Upper table
Micro op(s) which

must follow

1,2.3

4

Lower table
Micro-op(s) which

must precede

1
2.3.4

After processing the Lower table

Step 3

Figure 5-2: Steps in Control Graph generation

30

The solid lines indicate the same information which is contained
in the forward and backward fields. The dashed lines indicate
the the nodes which Cgsame points to. The numbered nodes
are the ordinary control graph nodes. The forks and joins are
represented by F and J respectively.

Figu re 5-3: An example control graph

must be made about which of the micro-ops will actually be performed in parallel. This decision is not

trivial because in most cases a micro-op may be potentially parallel with more than one other micro-op

and one combination may be better than the other. One method which may be used is to arbitrarily

combine micro-ops into micro-instructions. Operating in this manner it is possible to take advantage

of all of the potential parallelism of the micro-op program and thus generate the shortest possible

microprogram but the width of each micro-instruction may be wider than the width necessary if one

had been careful about combining the micro-ops.

31

In microprogrammed machines the width of the micro-instruction is a function of how the

instruction is formatted. In machines which have a horizontal word format each bit of the

micro-instruction contains the signal for a single control point of the digital system and the

micro-instruction has enough bits so that every control point may be controlled in a single word.

Obviously such words tend to be very wide and in such cases the micro-storage memory for a system

is a substantial part of the total controller cost. In machines which have a vertical word format the

micro-instruction contains fields which are decoded by the controller to generate the proper control

signals. A totally vertical machine has the control signals encoded so that only a single micro-op may

be performed by each micro-instruction. The advantage of encoding the micro-instruction is that the

width of the instruction is reduced which tends to reduce the cost of the microprogram memory. A

disadvantage is that only a single micro-operation may be performed during a micro-instruction and

thus any potential parallelism is not possible.

In most designs it is highly unlikely that there will ever be a need for a micro-instruction which will

be able to evoke every device at once (for which the horizontal format is required). It is also unlikely

that there will ever be a micro-operation program with no potential parallelism, for which a totally

vertical format would be the correct choice. Since neither extreme is expected the obvious solution is

to use a hybrid format which combines the advantages of both. This new format, which the control

allocator uses, allows for all the parallel micro-operations necessary but it also overlays or encodes

some bits to reduce the width of the control word. To use this new format care must be taken when

defining the micro-instructions so both the instruction definition and the formatting processes must

work together to reduce the cost of the controller while trying to generate the fastest possible

microprogram. The reason that this factor may be exploited by the control allocator is that the

controller has not been defined and the allocator may decide what formats the micro-instructions will

have. In systems which compile micro-instruction for predefined controllers the format of the

micro-instructions are already specified and the combination of micro-operations is limited to the

ones which will fit into the available formats.

The process of determining which micro-ops will be done in parallel can be thought of as a kind of

mental exercise with an imaginary control graph. Consider a control graph such as the one in Figure

5-3. The control graph nodes in this imaginary control graph are connected to each other by elastic

links. The nodes of the graph are allowed to move only up or down on the page and when moved the

elasticity of the links maintains their connections. The dotted arrows of the control graph (the cgsame

pointers) are special elastic links which must never have a negative slope. A negative slope is defined

as when the arrowhead is lower on the page than the tail. The time axis of this system starts at the top

of the page and the positive direction is towards the bottom of the page. Nodes which are above

others are performed before them when the control graph is converted into actual instructions. The

32

objective of this exercise is to move the control graph nodes relative to each other to see how they

interact and eventually to determine the best set of micro-instructions. A micro-instruction is defined

as any number of Cgnodes (not including the fork and join nodes) which lie on a horizontal line. For

the control graph of Figure 5-3 it is possible to configure the graph so that up to six micro-operation

are on the same horizontal line and thus in the same micro instruction. Figures 5-4 and 5-5 show two

other possible configurations of this same graph.

The method which the control allocator uses to select micro-ops for the micro-instructions is based

upon attraction weights. These weights are similar to the probability that two potentially parallel

micro-ops will be combined. The attraction weights are calculated for every combination of micro-ops

throughout the micro-op program and the pair with the highest weight are placed in the same

micro-instruction first. It is then necessary to then recalculate the potential parallelisms and attraction

weights since the action of combining two may restrict the range of other micro-ops in the program.

When the new attraction weights are know the pair with the highest value are combined and the

process is repeated until there are no more potential parallel pairs or the size of the micro-word is too

wide. If the width is the limiting factor then the routine creates a new micro-instruction format and

continues the process. With this procedure the micro-instructions will contain collections of

micro-ops which occur in parallel the most often throughout the complete micro-op program.

5.6 Control Signal Conditioning and Micro-word
Representation

When all of the micro-instructions have been defined only a few minor details remain which the

control allocator must address before it is done. The first is that the controller must be defined in

such a way that the two phase control signals which were assumed to be available in an earlier step

will be generated. To do this the control allocator must specify whether an AND or NAND gate should

be used to condition the phase 2 clock pulse for each of the evoke control points in the design. The

value of the NONEVOKE3 field for the particular control point, stored in the Module Database, is the

determining factor. For each control point which has a NONEVOKE value of H(high) a NAND gate is

specified and for each with a L(low) value the AND gate is specified.

If during the micro-word packing step more than one micro-instruction format was specified then

the control signal conditioning will also include the bit steering decoder which is placed between the

micro-instruction register and the control points of the design. This device just directs the evoke

control signals stored in the micro instruction to the proper devices of the data path and is itself

3Refer to section 4 2 for a description of what this field tepiesents

33

«- micro-ins 1

«- micro-ins 2

«-micro-ins 3

«- micro-ins 4

Figure 5-4; A modified control graph

34

micro-ins 1

• micro-ins 2

• micro-ins 3

«- micro-ins 4

«- micro-ins 5

«- micro-ins 6

•• micro-ins 7

«• micro-ins 8

«• micro-ins 9

micro-ins 10

micro-ins 11

The longest possible program, one micro-op per micro-instruction

Figure 5-5: Another modified control graph

35

controlled by a field of the micro-instruction.

One additional detail which must be considered is how to represent the micro-instruction in a form

which may be used by the builder of the digital system. The micro-instructions are internally

represented as collections of micro-ops which are just lists of device primitives. These primitives are

converted by the control allocator into the actual ones, and zeros which should be placed the

microprogram rom. To convert the device primitives into binary values the control allocator compares

the BITVAL for a particular control line of the CTLESEQ for the current device primitive to the

NONEVOKE value for the device. If these values are not the same then the value to be stored in the

microprogram rom is a one, if they are the same then the value is zero. This comparison is performed

for each control line of each micro-instruction and a table of these ones and zeros is printed in the

same file as the data path graph and the micro-sequence table. A table similar to this is also printed

which contains the programming for the micro-address rom. For this memory the values are just the

addresses in the microprogram which will be branched to during select instructions.

In the binary form the microprogram is difficult for a human designer to understand, so the control

allocator also provides an optional file which contains an english version of each micro-instruction.

Since each instruction was generated from a micro-operation which was itself generated from a

micro-sequence step they are all related and the control allocator prints the micro-sequence step for

each micro-instruction so that the user may relate it back to the original program.

36

6. Results

During the process of building the control allocator a few features of the control allocation process

became apparent. The first was that it is absolutely necessary that the data path graph be completely

bound before the micro-op program generation step can begin. The path graph must also contain the

hardware which makes up the controller. Unfortunately, details such as the size of the microprogram

are unknown at this early stage of the design so the control allocator must estimate the requirements

in order to bind the devices to physical hardware.

The second result was that the structure of the control graph allows for every potentially parallel

combination of micro-operations to be described. The control allocator itself always finds any

potential parallelism in a SLMS and so the control allocator using the control graph does not

introduce any restriction on the speed or cost of the digital design. If it had restricted the design then

one could not expect optimal designs from it.

In an effort to compare the controllers designed by the control allocator and the ones designed by

humans, a path graph which nearly matches the data paths of the PDP11/404 was generated by hand
5 . This path graph was then processed by the control allocator and the size of the generated

microprogram was compared with the one in the human-designed PDP-11/40. A problem in the

representation of digital systems was found which indicated a need for extensions in the data path

graph "language". It is presented here because the lack of specific features constrained the possible

designs which the control allocator was able to develop.

Thus, a third result is that there is a genuine need to be able to specify control lines in a data path

graph. This is not necessary when the path graph is being generated automatically but when one

wants to hand-code a path graph for an existing system, there may be some aspects of it which

cannot be described. In the PDP-11/40, for example, the ALU is in some cases controlled from the

micro-machine and in other cases its function is specified by decoding the instruction register. In the

machine-generated data path graph the control signals are the responsibility of the controller, so one

method to implement such an ALU control problem would be to leave the problem of connecting the

instruction register to the control lines of the ALU up to the control allocator. This would seem to be a

reasonable solution but there is no way to specify such a connection in the micro-sequence program.

Even if there was such an instruction, the data path allocator would be unable to completely specify it

(the data path allocator writes the micro-sequence program) since it does not even know that an ALU

PDP is a registered trademark of Digital Equipment Corporation

A diagiam of this Data Path and a listing of the Micro Sequence program are included in Appendix 1

37

would be used to perform the desired function and that the ALL) would require control signals.

The comparison of the automatically generated controller and the PDP-11/40 controller is

incomplete but the preliminary results indicate that the control allocator is performing well. In this

comparison an effort has been made to closely match the data paths of the human-designed

PDP-11/40 but to allow the control allocator to generate its own controller design. The optimization

routines which were written by Nagle were used to generate the fastest possible microprogram for the

micro-sequence specified [Nagl 78].

In one experiment 36 PDP-11/40 micro-words were implemented in a micro-sequence program.

These words consisted of the macro-instruction fetch and the source and destination processing

sections of the microprogram. The program was added to the data path graph for the 11 /40 and run

through the control allocator. The resulting automatically generated microprogram was 38 words

long and 62 bits wide. To relate these numbers to the human design one must note that it has a

micro-word width of 56 bits but that not all of these should be included in the comparison. The

PDP-11/40 micro-word fields called CLK, CB, CBAt and CD (which require a total of six bits) should

not be included because they are control lines for clock signals which were not implemented in the

data path description. With these bits removed the PDP-11 /40 micro-word is 50 bits wide which is still

a fairly close match to the 62 which the control allocator designed. Thus the size of the automatically

generated controller in total bits required was about 31% larger than the human design. This

comparison looks even better if one realizes that the PDP-11/40 is able to perform more than one

micro-op in a single micro-instruction and so the number of operations which were packed into 38

words of the control allocator's microprogram was potentially 72 and in actuality 44

micro-operations [Nagl 80].

A user of the control allocator should be primarily interested in the resulting controller designs but

consideration should also be given to the speed with which each design is generated. The control

allocator was run for a few different digital designs and the execution speed of specific sections of the

design process were measured. The execution times were recorded for the processes of

micro-operation program and control graph generation. Figure 6-1 is a graph of the results of these

runs. The four designs which were used in this test were the AM2909, MARK1, AM2910 and the

PDP-11/40. The first three designs were automatically generated and the path graph for the

PDP11 /40 example was hand generated.

PDP-11/40

C Control graph generation
M Micro op generation

1OO 15O 2OO 250 3OO 350 400
Number of Micro-operations

Micro-op and control graph generation times

Figu re 6-1 : Micro-op and control graph generation times as a function of micro-ops

39

7. Suggested Improvements for the Automated
Control Allocator

During the evolution of the control allocator some aspects of the problem have become apparent

which were not investigated due to their difficulty or the lack of time to properly address them. One of

the primary problems of the control allocation process which could be improved is the method by

which the micro-cycle clock speed is selected. Currently the times required for each micro-op are

calculated and the minimum and maximum are reported. The user then specifies a time which he

feels would be the best. A better solution to this problem would be a system which provides a

histogram of the micro-op execution times and the user would then select the cycle time which would

cause the least amount of wasted time. Even this method may be improved upon, however. One can

not assume that each micro-op will be executed with the same frequency in a digital system, since

some operations such as the instruction fetches will occur more often than instructions such as halts.

A system which measures the relative frequencies of each micro-operation and combines these

values with the operation times should be able to determine a micro-cycle clock speed which will

result in an optimal controller design.

Since the control allocator is only a tool and repeated processing of slightly modified digital

designs is probable it would be helpful if the control allocator could find sections of the

micro-sequence program which cause bottlenecks in the control graph. This information could be

used by the data path allocator to make changes in the data path structure so that the slower sections

of the micro-sequence program may be improved. Along the same lines the control allocator could

identify the execution speed of macro instructions of the digital system and report these so that the

slow ones could be speeded up by either modifications to the data path or instructions to some of the

other control allocator routines.

A third problem is that the current control allocator is only able to generate a controller for a single

process executing on a data path. In ISPS the designer is able to describe parallel independent

processes and the data path allocator is able to define the hardware for such ISP descriptions. The

control allocator is not able to handle this type of system and will not resolve or even recognize any

hardware conflicts which may arise. To solve this problem the control allocator would have to define

the additional control hardware which will do the arbitrating for it.

The current control allocator is limited by the restriction that multi-phase micro-instructions are not

allowed. This type of instruction format would allow for a higher density packing of micro operation in

the micro-instructions but also is much more difficult to process. An improved version of the control

allocator would design multi-phase-controllers which would be able to generate multiple sequential

40

operations from a single micro-instruction fetch. Such a system has the advantage that the speed of

the microprogram memory can be slower (and usually less expensive) without slowing down the

execution speed of that program.

41

8. Conclusions

The ideas and results presented in this report should lead the reader to the following conclusions.

• The automated generation of microprogrammed controllers from the CMU-DA data path
graph is a reality.

• The automated generation of controllers from any hardware description language is a
very strong possibility since the techniques presented here may be adapted to other
design automation programs.

• The control graph structure which is used to represent the potential parallelism of the
data paths does not restrict the design in any way.

• The control allocator is able to generate microprograms which are similar in size to those
which have been extensively hand optimized.

42

References

[Dasg 76] Dasgupta, S.
Parallelism in Microprogramming systems.
PhD thesis, Department of computer Science, University of Alberta, August, 1976.
Tech. Report TR76-7.

[DeWi 76] DeWitt, D. J.
A Machine Independent Approach to the Production of Horizontal Microcode.
PhD thesis, University of Michigan, August, 1976.
Tech. Report 76 DT4.

[DeWi 78] DeWitt, D. J.
The Complexity of Microprogram Optimization.
1978.

[Leiv 79] Leive, G.W. and Thomas, D.E.
The CMU Design System, Module Database-Users Guide
1979.

[Mall 78] Mallett, P. W.
Methods of Compacting Microprograms.
PhD thesis, University of Southwestern Louisiana, December, 1978.

[McFa 78] McFarland, M.C.
The Value Trace: A Data Base for Automated Digital Design.
Masters thesis, Carnegie-Mellon University, December, 1978.

[Nagl 78] Nagle, A.
Automatic Design of Micro-controllers.
In Proceedings of the 11th Annual Workshop on Microprogramming. IEEE

Computer Society, 1978.

[Nagl 80] Nagle, A., R. Cloutier,A. Parker.
Future Article on Control Allocation.
IEEE Transactions on Computers , 1980.

43

I. Appendix 1: The PDP-11 / 4 0 example

R<DES>

5'
3
o"
o

O
CO

S

siz

CDexp

CD

sr

c
«

8
-1

:

•-H

sr
a
Si
5"

• a

2.
^̂a
5'

CO

3
csed

o
0
•a
CD
C/3
CD

£

CD

•o
O

45

This is the hand generated micro-sequence table for the PDP11/40. It represents 185 of the

micro-words of the human designed machine.

MICRO 0PIRA110N SI QUINCE

1#1: #352(P1HG1N).#77 7(PI)P114O). '000000000;
#22O(RIAD):#10#3, ,#47(07):#247. ;
#21O(MOVF).#25(BAIUG).#10#3(RfGI0IUGR):#lOOS#lOl,;

I#133: #?20(RI AD).#31(TRl G70),#2(UNIHUS),#25(BAREG);
#210(MOVF),#26(INSTR),#31(1RIG'X.O):#115, ;
#210(MOVI) .#21(HRIG).#31(TRrGX0):#115.;
#22 1 (Win II),#10#3(RIGI 0IUGR).#53(13) .#31(TREGX0);
#220(RI Al)) :#10#3..#47(07) :#247 . ;
#200(II S I) : # 3 6 : # 1 5 2 0 # 1 5 3 , , # 4 2 2 (2) : # 2 2 2 . ;
#243(ADD):#16:#1O4.#25(HAREG).#10#3(REGL0REGR):#1OO0#1O1.#36(CONCAT):#1O7;
#220(RI AD):#10#3,,#47(07) :#247,;
#200(II S I) : # 3 6 : # 1 5 2 0 # 1 5 3 , . # 4 2 2 (2) : # 2 2 2 . ;
#243(AI)D):#16:#llO.#23(DIUG).#10#3(REGL0REGR):#lOO0#lOl.#36(concat):#lO7;
#221 (Will IT) ,#10#3(RrGI 0RIGR).#4 7(O7PC),#23(DREG);
#200(IEST):#15,,#26(INSIR):#130,#417(BUT37):#217;

L#4: #360(SIUCT).,#15(DECODF):#141..#775,50.1,#5.0.0.1.#6.1.0.1.#10.2.0,1.#11.3.0.
1,#12.4.0.1.#13.5.0.0.1.#165.6.0.1.#31.7.0.1,#20.8.0.1.#23.9,0.1.#21.10.0.1.#24.11.0.
1.#26.12.0.1.#112.13.0.1,#70.14.0.1.#101,15.0.1.#102,16.0.1.#104.17.0.1.#105.18.0.

l . # 1 3 0
l . # 7 7 7
l . # 1 4 2
l . # 1 5 0
I # 5 :

19,
26,
33
,40
,47

#115
#154
#777
#153
#161

.20,

.27,

.34,

.41,

.48,

,#122.21
,#131.28
,#160.35
.#143.42

1,#123.22.0.1.#125.23.0.1.#126.24.0.1.#127.25.0.
1.#136.29.0.1,#777,30.0.1,#134.31.0.1.#777.32.0.

1.#140.39.0.
1.#147.46.0.

I #6:

L#7:

L#10:

I#H:

l#12:

L#13:

1.#121.36.0.1.#164.37.0.1.#137.38.0
1,#144.43.0.1.#145.44,0.1.#146.45.0

#163.49,0;
#220(RIAD):#l®#3.,#26(INSIR):#127.;
#210(MOVI),#25(HARIG),#10#3(RIGI0IULR):#1OO8#1O1.;
#?20(RI Al)):#l»#3. .#26(INSI R) : #127 . ;
#200(II SI):#36:#1520#153.,#423(1OR2):#223.;
#?43(AI)l)):#H):#n0.#23(l)RIG).#18#3(RIGI«RIGR):^1008#101 ,#36(CONCAT) :#107 ;
#3O5(JOIN).#7;
#220(RIAD):#10#3..#26(1NSTR):#127.;
#2OO(II .S1):#36:#1520#153,.#423(1OR2):#223,;
#244(SUH):#16:#UO.#23(1)RFG),#10#3(REGL8REGR):#1OO8#1O1.#36(CONCAT):#1O7;
#220(RIAD):#10#3. ,#26(INSTR):#127.;
#200(I IST):#36:#1520#153. .#423(1OR2):#223. ;
#24 4(SUn):#l6:#1O4.#25(HARIG).#l0#3(RrGI8RrGR):#lOO0#lOl.#36(CONCAT):#lO7;
#27 1 (WH1 II).#1@#3(IUGL0RIGR).^26(1NS1R):#127.#23(I)REG);
#3b5(JOIN).#15; !250
#22O(RIAD):#10#3.,#26(INSTR):#127.;
#200(I IST) :#36:#1520#153 . .#422(2) :#222 . ;
#243(AI)D):#16:#HO.#23(I)IUG).#10#3(REGL0REGR):#1OO8#1O1.#36(CONCAT):#1O7;
#220(RI Al)):#10#3. ,#26(INSTR) :#127 . ;
#210(MOVI),#25(HARIG).#10#3(RIGI0RrLR):#lOO0#lOl.;
#221 (WHI II).#10#3(RIGI 0RIGR).#26(I NSI R) :#127 .#23(I) IUG);
#3G5(JOIN).#14; 1245
#?20(RI Al)):#10#3. .#26(1 NSI R) :#127 . ;
#?00(I I S I) :#36:#1G20#153 . .#422(2) :#222 . ;
#24 4(SUH)#H>.#HO.#23(l)RIG).#10#3(RrGI»RIGR):^lOO«#lOl .#36(CONCAI) :#107 ;
ff?2Q{\\\ AI)):#1»#3. ,#2G(I NSI R): #127 . ;
#200(II SI):#36:#lf)20#153. ,#422(2)#: #222 . ;
#244(SUn):#1G:#1O4.#25(liARIG).#10#3(Rf GI0RIGR):^1OO0#1O1.#36(CONCAI) :#107;
#721 (Will II) ,#10#3(RIGI 0RIGR).^2T)(INSI R) : #127 .#23(I)IU G) ;
#3G5(JO1N).#14; 1245
#220(RIAD):#10#3. .#26(INSIR) :#127. ;
#210(MOVI).#25(HARIG).#10#3(IUGI0RI I R) :#1009#101, ;
#3G5(JOIN).#15; 1247
#220(RI AI)):#1W#3. . #4 7(07) : #247 . ;
#700(11 S I) :#30 :#15?»#153 . ,#422 (2) :#222 . ;

46

^243(add):#16:#110.^23(DREG) v#l@^3(REGL0REGR):#1009#101 t#36(CONCAT):#107;
#221(WRIU).#10#3(REGI0REGR).#47(O7).#23(DREG);
#220(RtAD).#31(rRtG%0).#2(UNIBUS),#25(BAREG);
#210(MOVf) . #2 1 (HRI G) , #3 1 (I III G%0) : #115 . ;
#?20(RI Al)):#10#3. ,#2G(INSIN):#127.;
#243(AI)I)):#16:#11O,#2G(BARIG).#10#3(RIGL0RIGR):#1OO0#1O1 .#21 (BREG) : #1 448*145;
#365(join).#15; 1247

L#165: #22O(RFAD):#10#3, .#47(07): #247 , ;
#200(11 SI):#36:#1520#153.,#422(2):#222.;
#243(add) :#16:#1 10. #23 (1)1(1 G).#10#3(lll.GI0KL Gil):#100G# 101 ,#36(CONCAl):#107;
#221(WRITI).#10#3(RtGI 0RrGR).#47(07).#23(DREG);
#220(RI AI)).#31(TRIGX0) .#2 (UN I BUS) ,#25(BAREG);
#210(MOVI).#21(MlLG).#31(IMG%0):#115.;
#22O(RI Al)):#10#3. ,#26(I NSTR) :#127 , ;
#243(ADD):#16:#11O,#25(BARIG),#10#3(RIGL0RIGR):#1OO0#1O1,#21(BREG):#1440#145;

L#14: #220(111 A D) . #31 (I III GZO) .#2 (UN I BUS) ,#25(BAREG);
#210(MOVl) ,#21 (BRIG) ,#31(MM G%0):#115, ;
#221(write),#10#3(regI0regr),#51(11 source),#31(TRFG%0);
#22O(RTAI)):#10#3. .#51 (11 source):#251. ;
#210(MOVL).#25(BARlG).#l8#3(RrGL8RFLR):#l008#l0l.;

I #15: #220(111 AD), #31 (I HI GXO) . #2 (UN I BUS) .#2 5(BARLG);
#210(M0Vl).#21(BRLG).#31(IRLGXO):#115,;
#221(write).#18#3(regl0regr),#51(11 source).#31(TREGXO);
#200(HST):#15. ,#26(INS1 R) :#130 .#41 5(BUF35): #215 ;

L#16: #360(select).,#15(decode):#157,.#765.16.1.#62.0.0.1.#61,1,0.1.#65.2,0.1,#31,3,0,
1.#20.4.0.1.#23.5.0.1.#21,6.0.1.#24.7.0.1.#2 5.8.0.1,#70,9.0.1.#101,10.0.1.#102.11,0.
1.#104.12.0.l.#105.13.0.1.#106.14.0.1.#17.15.0;
L#17: #210(MOVI) . #23(I)IUG) ,#2 1 (BRI G) : #1 448#151; ;

#221(write).#10#3(reg1»regr),#51(11 source),#23(DREG):#116;
#200(USr):#15. ,#26(INST It) :#130 , #416(BUI 3 6) : #216;
#360(SI I IC1), ,#15(1)1 CODI):#157, .#755. 15. 1 .#62.0.0.1 .#61 . 1 .0.1 .#65.2,0.1 ,#31,3,0,
0,1,#23.5.0.1.#21.6.0.1.#24.7.0.1,#25.8.0.1.#70.9.0.1.#101,10.0.1.#102.11,0.l,#20.4

l.#104,
L#20:

12.0.1.#105.13.0.1.#106,14.0;
#220(RI Al)):#10#3. .#26(I NSTR): #260. ;
#210(MOVI),#25(BAIUG),#10#3(RLGL0RLLR):#1OO0#1O1 (;
#220(RIAD):#1»#3.,#?6(1NSIR):#260,;
#200(11 SI):#3(»:#1:i2«#103. .#423(1OR2):#223. ;
#243(AI)l)):#16:#I10.#23(DRIG).#18#3(RrGI8REGR):#1009#101 .#36(C0NCA1):#107;
#365(JOiN),#22; 1260

I#31: #220(IUAD):#18#3. .#26(1 NSTR):#260 . ;
#210(MOVl).#25(BARIG),#18#3(RrGI.8RELR):#1008#101.;
#365(JOIN).#30; 1266

L#21: #220(RFAD):#18#3,,#26(1NSTR):#260.;
#200(irSl):#36:#1620#153..#423(10R2):#223.;
#244(SUB):#16:#11O.#23(l)RIG).#10#3(RFGI0RrGR):#lOO9#1Ol .#36(CONCA1):#IO7;
#220(RI Al)):#10#3, ,#26(INSIR):#260. ;
#200(11 SI):#36:#1520#153..#423(10R2):#223.;
#244(SUB):#16:#104,#2r3(BARIG).#l«#3(RIGI 0RI GR) : #1009#101 .#36(C0NCAI) :#107;

L#22: #221(WRI\V).#10#3(REG10REGR).#26(1NSTR):#260.#23(DREG):#116;
#365(J01N).#30; 1267

I#23: #220(RIAD):#10#3.,#2G(INSfR):#260.;
#210(M0VI).#25(BARIG).#10#3(RIGI0IUIR):#1OO8#1O1.;
#2?0(RI Al)):#10#3. ,#26(INS1R) :#260. ;
#200(II SI):#36:#1520#153..#422(2):#222.;
#243(AI)D):#1(5:#11O.#23(l)RIG).#1»#3(RIGI0RIGR):#1OO0#1O1.#36(concat):#lO7;
2 2 1 (W R I I I) . # 1 0 # 3 (R I G I 0 R I G R) . # 2 6 (I N S I R) : # 2 6 0 . # 2 3 (D R I G) : # 1 1 6 ;
3 6 5 (J O I N) . # 2 7 ; 1264

I # 2 4 : # 2 2 0 (R I A D) : # 1 0 * 3 , . # 2 G (I N S I R) : # 2 6 0 . ;
#200(II SI) : # 3 (5 : # 1 5 2 0 # 1 5 3 . , # 4 2 2 (2) : #222 . ;
2 4 4 (S U B) : # 1 6 : # 1 O 4 , # 2 ^) (B A R I G) . # 1 0 # 3 (R I G I 0 R I G R) : # 1 O O 0 # 1 O 1 , # 3 6 (C O N C A 1) : # 1 0 7 ;
#220 (I I I AD) : # 1 0 0 3 . ,#2G(INS IR) : # 2 6 0 . ;
#200(11 S I) : # 3 G : # 1 5 2 0 # 1 5 3 . , # 4 2 2 (2) : # 2 2 2 . ;
2 4 4 (S U B) : # 1 6 : # l 1 O . # 2 3 (D R I G) . # 1 0 # 3 (R r C i l 0 R r G R) : # 1 O O 0 # 1 O 1 . # 3 6 (C O N C A l) : # 1 0 7 ;
2 2 1 (W R I I I) . # 1 0 # 3 (R I G I 0 R I G R) . # 2 6 (I N S 1 R) : # 2 6 0 . # 2 3 (D R I G) : # 1 1 6 ;
3 6 f t (J O I N) . # 2 7 ; 1264

I # 2 5 : # 2 2 0 (R I A D) : # 1 0 # 3 . . # 4 7 (0 7) : # 2 4 7 . ;

47

#21O(MOVC).#25(BAREG),#10#3(REGL0REGR):#1OO0#1O1,;
L#26: #22O(RFAD):#10#3,,#47(O7):#247.;

#2OO(HS1):#36:#1520#153..#422(2):#222.;
#243(ADD):#16:#110,#23(DRIG) ,#10#3(REGt0IU GR):#1OO0#1O1 f #36(concat) :#107 ;
#221(WRIU).#10#3(RrGL0REGR).#47(O7PC).#23(DRrG):#116;
#220(RrAD).#31(lRrG%0),#2(UNIBUS).#25(BAREG);
#210(MOVI).#21(BREG).#31(1REGXO):#115.;
^220(IU AD): ̂1»/Sf3 . .#26(INSTR) :#260 , ;
#243(ADD): #16 :#104,#25(HARIG),#10#3(RTGl0RTGR): #1OO0#1O1 .021 (DREG) :#1440#145;
#350(If),,#26(1NSIH):#261.,#30.2,#30,#27;

L#2 7: #22O(READ).#31(TRFGXO).#2(UN1BUS),#25(BAREG);
#221(WRnE).#18#3(RIGt0RIGH).#52(12DEST) .#31(TREGXO);
#22O(Rl.AI)):#10#3. .#52(12dest) :#252 , ;
#210(MOVr),#25(HARrG).#10#3(RIGI8REI R):tf10OG/HOl,;

I #30 : #2 2 0(Rl. AD), #3 1 (I HI G%0) , #2 (UN I BUS) . #25(BAREG);
#210(MOVE).#21(BRIG).#31(IRLGXO):#115.;
#221(WRIir),#10#3(RIGL0R!GR)f#52(12DIST).#31(TREGXO);
#200(TEST):#15,.#26(lNSTR):#130.#413(BUT33):#213;
^360(select).,#15(decode):#157.,#745,15.1.#33.0.0.1.#35.1,0.1.#40.2,0.1.#41,3,0.

1.#43.4.0.t.#44.5.0,l.#45.6.0.1,#46.7.0.1,#50.8.0.1.#51.9,0.1,#53.10.0.1.#55,11,0,
1.#56.12.0,J,#34,13,0.1,#32,14,0;
L#32: #21O(MOVE):#16.#23(DREG).#21(BREG):#1440#151.;

#221(WR11I).*10#3(KIGI 0RIGR).#52(12dest):#252,#23(DREG):#116;
#200(UST):#15. ,#26(INSTR) : #130 .#414(BUI 34) : #214;
#360(se1ect)..#15(decode):#157..#735.14,1.#33.0,0.1.#35.1.0.1.#40,2.0,1,#41.3.0,

4,0.1.#44.5.0.1.#45,6.0.1.#46.7.O.I.#50.8,0.1.#51.9.0.1,#53.10.0,1,#55,11,0,
12.0.1.#34,13,0;

1,#43.
l.#56,
L#33: #22O(RrAD):#10#3.,#52(12dest):#252.;

#232(decr):#16:#11O.#23(dreg).#10#3(regl0regr):#lOO0#lOl.;
#21O(move).#3O(pscary),#2O0#23(10dreg):#12O0#117.;
#365(join),#36; 1367

L#34: #21O(move):#16.#23(dreg).#21(breg):#15O0#151,;
#365(join).#36; 1367

1#35: #2O4(neg2c):#16.#23(dreg).#21(breg):#1440#145.;
L#36: #212(noop); falter the condition codes
I #37 : #210(move).#31(I Rl G7.0) ,#23(dreg) :#114 . ; (write out the data

#221(wr i I ») ,#?(unibus).#25(bareg) v#31(IRI'GXO):
#3G5(join).#121; 116 this should be a butl6

L#40: #220(RfAD):#10#3.,#52(12dest):#252.;
#232(decr):#16:#llO.#23(dreg).#10#3(regl0regr):#lOO0#lOl.;
#365(join).#42; !253

1#41: #254(neg2c):#16.#23(dreg).#21(breg):#1440#145.;
L#42: #21O(move).#3O(pscary).#2Off#23(10dreg):#12O0#117,;

#212(noop); !set the condition codes sps=l
#210(M0VI).#21(HRIG).#23(l)inG):#116. ; !SPS = 3
#21O(move):#16.#23(dreg).#21(breg):#15O0#147,;
#3<55(join).#37; 1375

L#43: #22O(IUAD):#10#3. .#26(INS1R) : #127 . ;
#235(and):#16:#11O.#23(DRrG).#10#3(REGL0REGR):#lOO0#lOl,#21(BREG):#1440#145;
#365(joln),#36; 1367

I#44: #22O(IU AD):#1R#3,.#51(11 source):#251.;
#23r>(and):#16:#11O.#23(ORIG).#10#3(R(Gl0RIGR):#1OO0#1Ol.#21(BRrG):#1440#t45;
#365(join) .#36; 1367

I#45: #22O(RIAD):#1G#3.,#26(INS1R):#127,;
#21O(move).#21(breg).#10#3(regl0regr):#121.;
#30r)(joln),#47; 1365

I#46: #220(RIAD):#1W#3..#51(11 source):#251.;
#21O(move),#21(brey).#10#3(reg!0regr):#121.;

I #47: #??()(Rl Al)):#l»#3. .#fi2(12clesl) : #252 . ;
#244(SUB):#1O:#11O.#23(I)RIG).#10#3(IUGL0RIGR):#1OO0#1O] .#21 (BRI G): #1440#145;
#3G5([join).#36; 1367

I#50: #220(IU AD):#1«#3.,#26(INSIR):#127.;
#235(and):#16:#t1O.#23(l)RIG).#10#3(RrGI0IUGR):#lOO0#1O1.#2l(BRIG):#1440#145;
#3()f>(joln).#52; 1254

I #51: #220(RI AD):#1»#3..#51(11 source):#261.;
#235(and):#16:#11O.#23(DRIG).#10#3(IUGI0RIGR):#1OO0#lOl.#21(BRI G):#1440#146;

48

L*52: #210(MOVE).#21(BREG).#23(DREG):#116,; !SPS=1
#210(MOVt).#21(BREG),#23(DRrG):#116,; !SPS*3
#210(move):#16.#23(dreg),#21(breg):#1508#147,;
#365(join).#37; 1375

1*53: #210(move):#16,,#21(breg):#1448#145.;
#?10(inovo).#?0&#?3(l G d r e g) . * 1 6 (a l u) : * 1 3 4 . * 1 6 (a 1 u) : * 1 1 0 ;
*210(move) , *30(pscary) , *208*23(I8dreg) : *1208*117 . ;
#210(MOVI) .#21(BIUG),*208*23(l 8l)Rf G) :#1208#l 17 . ;
#210(move):#16.#23(dreg),#21(breg):#1508*151,;

1*54: *212(noop); !set the condit ion codes sps=2
3 6 5 (j o i n) . # 3 6 ; 1367

1*55: *210(move):*16:*134,*20(I) . * 2 1 (b r e g) : * 1 5 0 8 * 1 4 7 , ;
#210(movo) .#30(pscary) , *20«*23(IGdreg):*1208*117, ;
#210(MOVI), *2 1 (MU G) . *20»*23(I QI)RJG):*1208*117,;
#210(move): *16.*23(dreg) ,#21(brec>) :*1 508*147.;
*365(join),*54; 1277

1*56: *211(clear).*23(dreg),,; !this should be a sign extend
1*57: *210(move),*30(pscary),*23(dreg):*116.; Jailer the condition codes sps=3

*221(WIUir),*18*3(IMGI 0RLGN),#26(1NSIR) :*260 ,*23(DREG) :*il6;
L*60: #365(join).*1; !000 this should be a but 27
1*61 : *220(IU Al)):*1fl*3. .*51 (11 source): *251.;

#210(move).*21(breg),*18*3(reg18regr):*121.;
*220(Rf AD):*10*3. ,*26(J NSIR): *260 . ;
*244(SUH):*16:*110.*23(DRfG),*18*3(REGI8RrGR):*1008*101.*21(BREG):*1448*145;
*365(join),*57; 1360

L*62: *220(HI AD):*18*3,,*26(INS1R):*26O.;
*210(move).*21(breg),*18*3(reg18regr):*121,;
*220(HI Af)):*18*3. .*51(11 source) :*251, ;
*235(and):*16:*110.*23(DREG).*18*3(REGI8REGR):*1008*101.*21(BREG):*1448*145;

L*151: *200(1tS1):*15.,*26(1NSIR):*130,*411(BUI 31):*211;
*360(select).,*15(decode):*262..*735.3.1.*57,0.0.1,*63.1.0,1,*64.2,0;

1*63: *221(write).*l(regl).*26(instr):*260,*23(dreg):*116;
*365(join).*60; !to but 27

L*64: *212(noop); !alter the condition codes sps=3
*365(join).*60; !to but 27

I *65: *220(RI AD):*18*3..*51(11 source):*251,;
*2IO(mov«):*16.*23(dr«g).*18*3(r«gl8regr):*103,;

1*66: *210(move):*16,*21(breg),*23(dreg):*116.;
*221(WRlir).*16*3(RtGI 8RrGR).*52(12DES1)f*23(dreg):#116;
*2OO(11S1):*15,,*26(INSIR):*130,*400(BUT20):*200;
*360(select).,*15(decode):*262.,*735.4.1,*t.0.0.1.*133,1.0.1,*134.2,0,1,#67,3,0;

L*67: *210(move):*16,*23(dreg).*21(breg):*!468*147,;
*2l0(move):*16.*21(breg).*23(dreg):*116.;
#221 (Will 11) .*18*3(IUGI 8RIGR).^52(12DrSl).*23(dreg): #116;

1*152: *200(II SI):*15,,*26(INSIR):*130,*407(BUI27):*207 ;
*360(seIect)..*15(decode):*262..*735.3.l.*1.0.0.1.*133.1.0.1.#134.2.0;

L*70: #220(RIAD):*18*3..*26(1NSTR):*260,;
#210(MOVI).*25(BAIUG).#18*3(REGI 8RFI R) :*1008*101. ;

1*71: #221(WRITE),*18*3(R[GI8IUGR)t*26(lNSTR):*260.*23(DREG):#116;
L#74: #200(11 ST):*15. ,*26(I NSI It) : #130 . *4O2(BU1 22) :*202 ;

#360(select)..#15(decode):*262..#735.4.1.#72.0.0.1.#75.1.0.1.#76.2.0.1.#100.3,0;
L#72: *220(RIAD):#1S*3.,*51(11 source):*251.;

*210(move):*16.*23(dreg).*1«*3(regl8regr):*103.;
1*73: #212(noop); falter the condition codes sps=3

3 6 5 (j o i n) . # 3 7 ;
1 * 7 5 : #220(111 A l)) : # 1 9 # 3 . , # 2 6 (I NSI It) : * 1 2 7 , ;

*200(M S I) : *36 :*1528* i r>3 . , *436(00R2) : * 2 3 6 . ;
* 2 4 3 (A I) l)) : * 1 6 : * 1 1 0 . * 2 3 (D R r G) . * 1 8 * 3 (R I G I 8 I U G R) : # 1 0 0 8 # 1 0 1 .#36(CONCA1) : # 1 0 7 ;
#212(noop); taller the condition codes sps=3
*365(join).*37;

1*76: *270(RIAD):#18*3.,*51(11 source):*251.;
#210(move),#21(breg),#1fl*3(reg18regr):*121.;

1*77: #210(move):#16,#23(drog).*21(breg):*!508*147,;
*212(noop); (alter the condition codes sps=3
#365(Join).#37;

I #100: *220(RI Al)):*18*3. ,*26(INS I R): *127 . ;

49

*21O(move),*21(breg),*10*3(regl0regr):#121,;
#365(join),*77;

L*101: *22O(READ):*10*3.,*26(INSTR):#26O,;
#210(MOVI).*25(BARfG).*10*3(REGL0RELR):*lOO0#lOl,;
#22O(READ):*10*3. , *26(INSFR) :*260 . ;
* 2 0 0 (T E S T) : * 3 6 : # 1 5 2 0 * 1 5 3 . . # 4 ? 3 (1 O I ? 2) - # 7 ? 3 . ;
#243(AOD):*16:*llO.*23(DRLG).*1»#3(RIGI0RIGR):*lOO0*lOl f*36(CONCAT):*lO7^
* 3 6 5 (j o 1 n) , * 7 1 ;

1*102: #220(Rf Al)):*10#3. ,*26(INSIR) :*260. ;
*210(MOVI).*25(BAHIG).*1»#3(RIGI Hill I II) : 01000*101 , ;
#220(READ):#10*3.,*26(INSTR):*260.;
*2OO(IES1) : *36:*1520*153. . *422(2) : *222. ;
*243(ADI)) : *16:*nO.*23(l) IUG).*10*3(RIGl0RIGR):* lOO0*lOl ,*36(concat) :# lO7;
*221(WRMI) ,#10*3(111 Gl 0RIGR).*26(INS1R):#260,*23(DREG):*116;

L*103: *220(Rf AU),*31(I Rf G7.0) ,*2(UN1BUS), *25(BARFG);
#2 10 (MOV!) , *2 1 (Dili G) . *31 (1 RE GXO): * 115 , ;
*22 1 (Will I E) . * 10*3 (III GL0RIGR),*52(12DES1),*31(IREG%0);
*220(READ):#10*3. , *52(12desl) : *252. ;
*210(M0VI).#25(BAREG),*10*3(REGL0RELR):*1OO0*1O1,;
* 3 6 5 (j o i n) . * 7 4 ;

1*104: *220(RIAO):*10*3, ,*26(INSIR) :*260 , ;
*200(HSF) : *36: *1520*153 . ,*423(10R2) :*223 . ;
*244(SUH):*16:*1O4.*25(HARrG).*10*3(REGL0REGR):*lOO0*lOlv*36(CONCAT):*lO7;
*22O(RrAD):*10*3 . , *26(INSIR) : *260, ;
*200(TESl) : *36:*1520*153. . *423(10R2) : *223, ;
*244(SUB):*16:*l lO.*23(DRIG).*10*3(RtGL0RIGR):*lOO0*lOl (*36(CONCAT):*lO7;
* 3 6 5 (j o i n) , * 7 1 ;

L*105: * 2 2 O (R I A D) : * 1 0 * 3 . . * 2 6 (I N S I R) : * 2 6 0 , ;
* 2 0 0 (T F S T) : * 3 6 : * l 5 2 0 * 1 5 3 , t * 4 2 2 (2) : * 2 2 2 , ;
*244(SUB):*16:*1O4.*25(BAR[G).*10*3(REGL0RFGR):*1OO0*1O1,*36(CONCAT):*1O7;
*22O(RrAI)):*10*3. . *26(1NS1 R): *260 , ;
* 2 0 0 (U S T) : * 3 6 : * 1 5 2 0 * 1 53. .*422(2) :*222 . ;
*244(SUB): *16 : *110. *23(Dili G) . *10*3 (III GL0RIGR):*! 000*101 t*36(C0NCAT): #107;
#221(WfUTL).*10*3(IUGL0RLGR).*26(INS1R):*26O.*23(DRr.G):*116;
*3 (55 (jo in) . *103 ;

1*106: *22O(RrAI)):*10*3. ,*47(07) :*247 , ;
*2 1()(MOVI) .*2r>(BAII IG).*10*3(RIGI0RIGR):*1000*101. ;
*220(ll l Al)) : *10*3, ,*4 7(07) :*247 . ;
* 2 0 0 (r F S T) : * 3 6 : * 1 5 2 0 * 1 5 3 . , * 4 2 2 (2) : * 2 2 2 , ;
*243(ADO):*16 : *110.*23(Dil iG) , *10*3(REGL0RTGR) : * l000*101 , *36(concat) :#107;
*221(WRITt) .*10*3(RIGL0RrGR).*4 7(O7PC).*23(DREG):*116;

L*107: *220(RLAI)).*31(I Rf GXO) . *2 (UNI BUS) .*25(BAREG);
*210(MOVE),#21(BRE G),*31(1REGXO):*115,;
*221(WRI1I) ,*10*3(RIG10RIGR),*52(12DfST),*31(IREGXO);
#200(US1) : * 1 5 . ,#26(I NSIII) :*130 ,*77(BU1 1 7) :*177 ;
3 6 0 (s e l e c t) , , * 1 5 (d e c o d e) : * 2 6 3 . , # 7 3 5 . 2 . 1 . # 1 1 0 , 0 , 0 . 1 . # 1 1 1 , 1 , 0 ;

L#110: *22O(IUAI)) : *10*3 . . *26(INS1R): *26O. ;
*243(ADD):*16:*1O4.*25(BAIUG),*10*3(RFGE0IUGR):*1000*101,*21(BREG):*1440*145;
2 0 0 (T E S T) : * 1 5 . . * 2 6 (I N S F R) : * 1 3 0 . * 4 0 1 (B U T 2 1) : * 2 0 1 ;
*360 (SGlec t) . . #16 (decode) :#262 , . #735 .4 .1 .#72 .0 .0 .1 ,#75 .1 ,0 , l , #76 .2 .0 .1 ,#100 ,3 ,0 ;

1*111 : #220(RI AD): #10*3. ,*2f>(INS1 R) :*260 . ;
*243(ADD):*16:*1O4.*25(BAIUG),*10*3(III Gl 0111 GR) :*1OO0*101 ,*2 1 (BRI G) :*1440*145 ;
#365 (jo in) . *103 ;

1*112: *220(RI Al)) :*10*3. , *26(1 NS1 R) : *127 . ;
*21() (move) : *16 .#23(dreg) . *10*3(regl0regr) : * lO3. ;
* 3 6 5 (j o i n) , * 6 6 ;

1*114: *22()(RI Al)) :*10*3, . *47(07) : *247 . ;
#200(II SI): #3(5 :*1520*1 5 3 . .*422(2) : *222 . ;
2 4 3 (add) : * I 6 : * 1 1 O . * 2 3 (D I I I G) . * 1 0 * 3 (II I G l 0111 G R) : * 1 0 0 0 * 1 0 1 , * 3 6 (C 0 N C A T) : * 1 0 7 ;
2 2 1 (W I I I M) . # 1 0 # 3 (R I G 1 0 R I G I I) . # 4 7 (O 7) . # 2 3 (D I I L G) : # 1 1 6 ;
* 3 6 5 (j o i n) . # 1 0 7 ;

l # 1 1 5 : * 2 2 () (R I A l)) : * 1 0 * 3 , , * 2 6 (1 NS1 R) : * 2 6 0 . ;
2 1 0 (M 0 V I) : * 1 6 : # 1 1 O . * 2 3 (I) R I G) . * 1 0 * 3 (R I G 1 0 R H R) : # 1 O O 0 # 1 O 1 , ;

I # 1 1 6 : #21 () (MOVI) . # ? 1 (I I I I I G) . # 2 3 (1)111 G) : # 1 1 6 . ;
7 2 1 (Wi l l I I) . # 1(4*3 (I I I G l 0 R I G R) . * 5 O (1 0 l e m p) . * 2 3 (I) I U G) : * 1 1 6 ;

I * 1 1 3 : *? () () (I I S I) : * 1 f > . . * ? () (I N S I I I) : # I 3 O . # 7 5 (I I U I 1 5) : * 1 7 [) ;

50

#360(select).,#15(decode):#263,.#735,2,1,#120.0,0.l.#l17,1,0;
L#117: #22O(READ):#10#3..#46(O6sp):#246.;

#2OO(11S1):#36:#1520#153..#422(2):#222.;
#244(sub):#16:#llO.#23(l)RFG)f#10#3(REGL0REGR):*lOO0*1Ol,*36(CONCAT):*lO7;
#22O(READ):#10#3.,#46(O6sp):#246,;
#200(US1):#3fi:#15?0#153, ,#422(2):#222, ;
#244(SUIO:#16:#1O4.#25(HAIUG).#10#3(IUGI0HIGR):#1OO0#1O1.#36(CONCAT):#1O7;
#221(WRIir),#10#3(IUGI 0RI GR) t#46(06sp),#23(DRIG):#116;
#22O(IUAD):#10#3, ,#26(INSIR) :#127 , ;
#21O(n!Ove):#16,#23(dreg).#18#3(reg10regr):#lO3,;
#210(move)(#31(1RFG

<X.0).#23(dreg):#114(; lwrite out the data
#221(write).#2(unibus),#25(bareg).#31(IRtGXO);
#22O(RLAI)):#10#3, .#47(0 7): #247 , ;
#21O(movf»),#21(breg).#10#3(regl0regr):#121,;
#210(move):#16.#23(dreg),#21(breg):#1460#147,;
#2?1(WR]IT),#10#3(RIGL0RIGH).#26(1NS1R):#127.#23(DREG):#116;

L#120: #22O(READ):#10#3. ,#50(10temp): #250 , ;
#21O(move):#16.#23(dreg).#10#3(reg10regr):#lO3,;
#221(WR111),#10#3(RtGI0RIGR),#47(07pc).#23(DREG) :#116;

L#121: #200(11 SI):#15.,#26(INS1R):#130.#76(DU!16):#176;
#360(select)..#15(decode):#263..#735.2.1.#133.0.0,1.#134,1,0;

I #122: #220(RT Al)):#10#3. ,#26(INSTR):#260. ;
#200(n SI):#36:#1520*153.,#422(2):#222.;
#243(AI)l)):#16:#11Ot#23(DRFG).#l0#3(REGI0REGR):#lOO0#1O1 ,#36(concat) :'#107 ;
#221(WIUH) ,#10*3(HLGl 0IUGR).#26(INSIR) :#260 .#23(DREG): #116;
#22O(RIAD):#10#3. ,#26(INSIR) : *260. ;
#200(HS?):#36:#1520#153, ,#422(2) : #222 . ;
#244(SUH):#16:#11O.#23(DREG).#10#3(REGL0REGR):#1OO0#1O1.#36(CONCAT):#1O7;
#365(join).#116;

I #123: #2?0(RI Al)):#l»#3. ,#26(INSTR):#260 . ;
#210(MOVI).#25(I3ARIG).#10#3(IUGLGRI I R) :#1009#101, ;
#220(RLAI)):#18#3. .#26(INSIR) :#260. ;
#200(11 SI):#36:#1528#153..#422(2):#222.;
#243(ADD) :# 16 : #110 ,#23(I)IU G). #10#3(IUGL8REGR): #100G#101 ,#36(concat): #107;
#221 (WIU II) .#1®#3(RIGIORIGR).#26(INS1 R) :#260 .#23(DIUG) :#116;

I#124: #220(RI AD).#31(TIUGZ0).#2(UNIHUS),#2 5(BAREG);
#? 1 0(MOVI) . #2 I (HIM G) . #3 1 (I Rl CX0) : # 1 1 5 . ;
#221(write).#10#3(regl0regr).#5O(lOtemp).#31(lREG%O);
#365(join).#113;

L#125: #22O(RrAD):#10#3..#26(INSTR):#260.;
#200(USI):#36:#1520#153. .#422(2) :#222 . ;
#244(SUH):#16:#11O.#23(I)REG).#10#3(R(GI0REGR):#1OO0#1O1,#36(C0NCAF):#107;
#221(WRI1E).#1G#3(RLG10RIGR).#26(INSIR):#260,#23(DRLG):#116;
#365(join).#116;

I #126: #220(IU AI)):#1W#3. ,#26(INSIR) :#260. ;
#200(11 SI):#36:#1520#153.,#422(2):#222.;
#244(SUH) : #16: #104 ,#25(HAREG) .#10#3(REGI.0REGR) :#1009#101. #36(CONCAT): #107;
#220(RI Al)):#10#3. ,#26(INSIR) :#260. ;
#200(TCSI):#36:#1520#153.,#422(2):#222.;
#244(SUH):#1O:#11O.#23(I)RIG).#10#3(RIGI0IUGR):#1OO0#1O1.#36(CONCAT):#1O7;
#221 (WRI II).#10#3(IUGI0RIGR).#26(INSI R) : #260 .#23(I)RI G): #116;
#365(join).#124;

I #127: #220(RI Al)):#10#3. .#47(07) :#247 . ;
#200 (MSI):#36:#1520#153..#422(2):#222.;
#243(add):#16:#11O.#23(l)RIG).#10#3(RIGI0RIGR):#lOO0#lO1 .#36(CONCAl):#107;
#221 (WRI II) t#1(4#3(l l l Gl 8 R I G R) . # 4 7 (0 7) ,#23(I)R I G) : # 1 1 6 ;

-#220(1(1 AD) . #31 (IR IGX0) ,#?(UN IHUS) ,#25(HAREG) ;
#210(MOVI) . # 2 1 (H R I G) . # 3 1 (I R l G Z 0) : # 1 1 5 , ;
#??1(WI IMI) . # 1 0 # 3 (R I G I 8 R I G R) . # 5 0 (10 temp) . #31 (1 RTGXO) :#116 ;
#220 (R I A I)) :#1W#3, , # 2 6 (I N S I R) : # 2 6 0 . ;
2 4 3 (a d d) : # 1 6 : # 1 10 .#23(1)111 G) . # 1 0 # 3 (REGI 0Rt GR): #1OO0#1O1 .#2 1 (Bill G) : # 1 4 4 0 # 1 4 5 ;
3 6 5 (j o i n) . # 1 1 6 ;

I # 1 3 0 : # 2 2 0 (R I A D) : # 1 0 # 3 . , # 4 7 (0 7) : # 2 4 7 . ;
#200(11 S I) : # 3 6 : 0 1 5 2 0 * 1 5 3 . . # 4 2 7 (2) : # ? 2 2 . ;
2 4 3 (a d d) : # 1 6 : # 1 1 O f # 2 3 (l) R i r .) f # 1 0 # 3 (R I G I 0 R I G R) : # 1 O O 0 # 1 O 1 .#36(CONCAI) : # 1 0 7 ;
#2? 1(WRI II) .#19*3(1(1 Gl 0 K I G R) . # 4 7 (O 7) . # 2 3 (!) R I G) : # 1 1 (5 ;

51

#220(READ),#31(TREGX0).#2(UNIBUS),#25(BAREG);

#210(MOVE).#21(BREG).#31(TREG%0):#115.;

#221(WRIU).#18#3(REGI8REGR).#50(10temp).#31(TREG%0):#115;

#220(RFAD):#18*3.,#26(1NS1R):#260,;

#243(add):*] 6:0110. #23(DREG),#18#3(REGL8REGR):#1008#101,#21(BREG):#1448*146;

#220(RFAD):#18#3. .#26(1 NSFR): #260 . ;

2 4 3 (A D D) : # 1 6 : # 1 0 4 . # 2 5 (B A R I G) , # 1 8 # 3 (R l G L 8 R I . G R) : # 1 0 0 8 * 1 0 1 . # 2 1 (B R E G) : # 1 4 4 8 * 1 4 5 ;
3 6 5 (j o i n) , # 1 2 4 ;

L * 1 3 1 : # 2 2 0 (R E A D) : # 1 8 # 3 , . # 2 6 (I N S F R) : # 2 6 0 , ;
#210(MOVF) : # 1 6 : # 1 1 0 . # 2 3 (D R E G) . # 1 8 # 3 (R E G L 8 R n R) : # 1 0 0 8 # 1 0 1 . ;
#221(WRITE).#18#3(REGI 8REGR),*47(07pc),*23(DREG):#116;

#220(IUAD):#18#3, ,#46(06sp):#246. ;

#210(MOVI),#25(HARLG).#18#3(RIGI8REGR):#1008#101.;

#22O(RFAD):#1G#3,.*46(06sp):*246.;

#200(ItST):#36:#1528*153.,#422(2):#222,;

#243(ADD):#16:#110.*23(DRLG).*18#3(REGl8REGR):#1008#101f#36(concat):#107;

2 2 1 (W I U U) . # 1 8 # 3 (R I G I 8 R I G R) . # 4 6 (0 6 s p) . # 2 3 (DREG): #116;
#220(IU AD) ,#31 (TRIGZ0) .#2 (UNI BUS),#25(BAREG);
#?21(WRT1F),#18#3(IUGI 8RFGR).#26(INSTR):#260,#31(TREGXO):#115;

#365(join).#121;

I #132: #220(M Al)):#18#3. , #4 7(07) : #247 , ;

#210(MOVE).#25(»ARr:G).#18#3(REGL8REGR):#1008#101.;

#3G5(join),#133;

I#134: #2OO(1FST):#15..#26(JNSfR):#130,#406(BUT26):#206;

#360(select).,*15(decode):*262..#735.4,1.#777.0.0.1.#777.1.0.1,#777,2,0,1.#135,3,0;

L#135: #220(HFAD):#18*3..#47(07):#247.;

#210(MOVI).#25(»AREG).#18#3(RrGL8REGR):#1008#101,;

3 6 5 (j o i n) . # 1 3 3 ;
L#136: #220(IU A D) : # 1 8 # 3 . , # 4 6 (0 6 s p) : # 2 4 6 . ;

#210(MOVf) .#25(UAIUG) .#18#3(RfGI8REGR) :#1008#101 , ;
#220(RI A l)) :#18#3. . #46(06sp): #246 , ;
2 0 0 (l l S T) : # 3 6 : # 1 5 2 8 # 1 5 3 , . # 4 2 2 (2) : # 2 2 2 . ;
#243 (ADD) :#16 :#110 .#23 (D IUG) .#18#3 (R IG I 8RI G R) : # 1 0 0 8 # 1 0 1 , # 3 6 (c o n c a l) : # 1 0 7 ;
#221 (WR1 FT) .#1Q*3(HI.GI 8RFGR) . #46(06sp) .#23(DREG) :#116;
#220(111 AD). #31 (lltl GXO) . #2(UN I BUS) .#25(BARFG) ;
2 2 1 (W I U i r) , # 1 8 # 3 (R I G I 8RI GR) ,#47(07PC) .#31(1REGXO):#115;
#?20(RI AD) ://1«#,?. . #4(>(()(>sp): #246 . ;
#210(M0VI) .#2r) (l iARIG) .#18#3(IUGI8REGR):#1008#101. ;
#220(IU A D) : # 1 8 # 3 . . # 4 6 (0 6 s p) : # 2 4 6 . ;
2 O O (1 F S 1) : # 3 6 : # 1 5 2 8 # 1 5 3 . , # 4 2 2 (2) : # 2 2 2 . ;
#243(ADD):#16:#110.#23(DRIG) .#18#3(RFGI 8REGR) :#1008#101 ,#36 (concat) :#107 ;
2 2 1 (W R ! l b) . # l « # 3 (R I G I 8 I U G R) . # 4 6 (0 6 s p) , # 2 3 (D R I G) : # 1 1 6 ;
#220(RFAD) .#31(IR IGXO) .#2(UN I BUS),#25(BAREG);
#210(move) .#3()«#3?8#338#34(psword) .#31(IRIGXO) : * 1 1 6 . ;
3 6 5 (j o i n) . # 1 3 4 ;

L#13 7: #220(111 AD) :#18#3 . . #4 7(07) :#247 . ;
#243(ADD):#16:#U0.#23(DREG).#18#3(REGF8REGR):#1008#101.#21(BREG):#1468#147;
2 2 1 (W R H t) ,#18#3(IUGI 8REGR) ,#4 7(07pc) .#23(DRIG) :#116;
#220(RF.AD):#18#3. ,#47(07) :#247 . ;
#243(ADD):#U>:#110.#23(DRFG) .#18#3(RIGI8 IUGR):#1008#101 .#21 (ItRI G): #1468#147 ;
#221 (WRI I I) . # I 8 # 3 (R (G I 8 R I G R) . # 4 / (0 7 p c) . # 2 3 (l) R I G) : # 1 1 6 ;
3 6 5 (j o i n) . # 1 2 1 ;

L#140: #220(RI A D) : # 1 8 # 3 . . # 2 6 (1NSIR):#12 7 . ;
#200(I I SI) : # 3 6 : # 1 5 2 8 # 1 5 3 . . # 4 2 1 (1) : # 2 2 I . ;
2 4 4 (s u b) : # 1 0 : # 1 1 0 . # 2 3 (l) R I G) . # 1 « # 3 (R I G I 8 R I G R) : # 1 0 0 8 # 1 0 1 , # 3 6 (c o n c a l) : # 1 0 7 ;
#221 (WIU II) .#1t i#3(KIGI 8RIGR) .#20(1 NSIR) :#127 ,#23(DRI.G);
#220(RI A l)) :#18#3 . ,#55(1 3) : #255. ;
#200(11 SI) . # 3 6 : # 1 5 2 8 # 1 5 3 . ,#433(shjc13) :#233 . ;
#235(Anl)) :#1O:#1 IO. *23 (DRIG) . *18*3 (R IGI8RIGR) :#1OO8#1O1 ,#36(C0NCA1) : # 1 0 7 ;
#210(MOVI).#21(BRIG),#23(I)IUG):#116.; ISPS = 3

#200(MSI):#15,.#26(INS IR):#130.#72(BUI12):#172;

#300(select).,*H>(decode):*263.,#735.2.1.#141.0.0.1.#121.1,0;

I#141: #220(RI AD):#18#3;.#4 7(07):#24 7,;

#244(sub):#16:#110,#23(DRIG).#18#3(RIGI8IUGR):^1008#10l.#21(HR! G):#144fl#146;

#221(WIU1I) .#18#3(RIGI 8RI GR) .#4 7(07pc) .#23(DRrG) :#116;
#22O(R IAD) :#18#3 . . #4 7(07) : # 2 4 7 . ;

52

#244(sub):#16:#110f#23(DREG) .#18#3(REGL8REGR):#1008#101,#21(BREG):#1449*146;
#221(WRITE),#18#3(REGL8REGR),#47(07pc),#23(DREG):#116;
#365(join).#121;

L#142: #220(RIAD):#18#3. .#53(13 instr) :#253 . ;
#200(UST):#36:#1528#153.,#432(sbcl2):#232,;
#235(AND):#16:#110.#23(DIUG).#18#3(RrGI8RrGR):#1008#101.#36(concat):#107;
#21O(MOVI),#21(BRIG).#23(DRlG):#116f ;
#230(not):#16.#23(dreg),#2l(breg):#1448*145,;
#21O(MOVt),#21(BRLG).#23(DREG):#116.;
#235(AND):#16:#110.#23(DRrG),##308#328#338#34(status):#274,#21(breg):#1448#145;
#210(move).#308#328#338#34(psword).#23(dreg):#116,;
#365(join).#121;

I #143: #220(111. AD): #19*3, ,#53(13 instr):#253 . ;
#200(fISl):#36:#1528#153.,#432(sbcl2):#232,;
#235(AND):#16:#110.#23(DRrG).#18#3(RrGL8REGR):#1008#101,#36(concat):#107;
#210(MOVI).#21(BRrG),#23(DREG):#116, ;
#236(OH):#16:#110,#23(DHLG).##308#328#338#34(status):#274,#21(breg):#1448#145;
#710(move).#308#328#338#34(psword).#23(dreg):#116', ;
#365(join).#121;

L#144: #220(RI Al)):#18#3, ,#26(INSTR) :#260 . ;
#21O(movG).#21(breg),#10#3(reg18regr):#121.;
#22O(RrAI)):#10#3, ,#26(1NSIR) :#127 , ;
#243(A()[)):#16:#110.#23(DR(G)>#18#3(RLGL8RLGR):#]008#101t#21(BREG):#1448#145;
!this operation is a function of the Instr reg
#365(join).#151; !to but31

I #145: #220(RI Al)):#10#3. ,#26(INS1 R) :#12 7 . ;
#210(move). #21 (b reg). # 10#3(reg 18reg r): #121,;
#22O(RLAI)):#10#3. ,#26(1NS1R):#26O, ;
#244(SUB):#16:#110.#23(DRrG).#18#3(REGL8REGR):#1008#101.#21(BREG):#1448#145;
#365(join).#152; !to but27

I#146: #22O(RIAI)):#10#3, ,#26(INS I R): #260 . ;
#2l0(move).#2I(breg).#18#3(regl8regr):#121.;
#210(move):#16.#23(dreg).#21(breg):#1508#151.;
#365(join).#152; !to but27

L#147: #220(Rl AD):#1«#3..#26(1NS1R):#260,;
#232(decr):#16:#110.#23(dreg).#18#3(regl8regr):#1008#101,;
!this operation should be a function of the instr
#210(move)t#30(pscary).#23(dreg):#116f;
#365(join).#151; !to but31

I#150: #220(RI AD):#18#3.,#26(INSTR):#260.;
#210(move).#21(breg).#18#3(reg18regr):#121,;
#254(neg2c):#16:#110.#23(dreg).#18#3(regl9regr):#1008#101(;
#365(jo in) ,#151; !to but31

1#153: #211(c1ear) .#23(dreg) t , ; !th1s should be a sign extend
#365(jo in) .#57;

L#154: #200(HST):#36:#1529#153. .#420(sbcOO) :#220, ;
#210(M0VI.):#16:#110.#23(DRtG).#36(concat):#107.;
#221(WRIII).#18#3(RLGIflREGR),#54(14vect),#23(DRFG):#116;

I#155: #220(RrAD):#18#3..#54(14vect):#254,;
#200(TISr):#36:#152»#153. .#422(2):#222.;
#243(AI)D):#16:#1O4.#25(BAIUG).#10#3(RIGI8IUGR):#1OO8#1O1(#36(CONCAT):#1O7;

I #156: #220(HI Al)).#31(I Rl GX0). #2(UNIBUS) ,#25(BARIG);
#221 (WRI II) .#1ft#3(RIGI (9HIGR).#50(10temp) ,#31 (IRf GX0);
#220(RI Al)):#10#3. . #46(06sp): #246. ;
#200(I I SI):#36:#152W#153..#422(2):#222.;
#244(sub): #16: #110,#23(DRIG).#18#3(RIGl 8RI.GR):#1008#101.#36(CONCAT):#107;
#220(111 Al)):#1«#3. ,#46(06sp): #246. ;
#200(11 SI):#36:#152fl#153..#422(2):#222.;
#?44(siih):#U):#1O4.#75(HARIG).#10#3(RIGI8IUGR):#lOO8#1O1 .#36(CONCA1) :#107 ;
#721 (Will II) .#IH#3(KIG1 Hill Gil).#46(0Gsp).#23(l)RLG);
#210(mov«).#23(drog).#3O«#320#330#34(psword):#2 74.;
#210(move).#31(I Rl G"/.O) .#23(dreg): #1 14 . ; Iwrlte out the data
#221(write),#2(un I bus).#25(bareg),#31(IREGXO);
#212(noop); !mm=04
#220(RI Al)):#10#3. . #46(06sp) :#246. ;
#200(II SI):#36:#1520#153..#422(2):#222,;

53

#244(sub):#16:#110,#23(DREG).#10#3(REGL0REGR):#1000*101.#36(CONCAT):#107;
#22O(READ):#10#3.t#46(06sp):#246,;
#2OO(TES1):#36:#1520#153..#422(2):#222,;
#244(sub):#16:#lO4,#25(BARrG).#10#3(REGI0REGR):#lOO0#lOl.#36(CONCAT):#lO7;
#221(WRlU),#10#3(REGL0REGR).#46(O6sp).#23(DREG);
#220(RIAD):#10#3.,#47(07):#247,;
#210(MOVl),#23(DRIG).#10#3(RIGI0REGR):#1OO0#1O1.;
#210(move).#31(TRIG*.0)t#23(dreg):#114, ; IwrUe out the data
#221(write),#2(unibus),#25(bareg).#31(TREGX0);
#22O(RFAD):#10#3,,#50(10temp):#250.;
#21O(move).#3O0#320#330#34(psword).#10#3(regl0regr):#lOO0#lOl.; !$ps=0
#22O(RLAD):#10#3. .#50(10temp): #250 . ;
#21O(move).#3O0#320#330#34(psword).#l0#3(reg10regr):#lOO0#lOl.; !sps=7

I#157: #220(RIAD):#10#3.,#54(14vect):#254,;
#210(MOVE).#25(DARI G). #10#3(IUGI 0REGR):#1OO0#1O1,;
#220(RKAD),#31(IRIGXO),#2(UNI BUS),#25(BAREG);
#221(WRITE) f#10#3(RtGL0RtGR),#47(O7pc).#31(TIUGXO);
#200(TFS1) :#15. .#26(lNSTR) :#130.#61(BUr01) :#161;
3 6 0 (s e l e c t) , . # 1 5 (d e c o d e) : # 2 6 3 . , # 7 3 5 , 2 , 1 . # 7 7 7 , 0 . 0 , 1 , # 1 3 4 , 1 , 0 ;

L#160: #2OO(IEST):#36:#1520#153.,#420(sbcOO):#220, ;
#210(MOVE) :# l6 :#110 .#23(DRIG) t #36(conca t) :# l07 , ;
#221(WRllE),#10#3(REGL0RrGR).#54(14vect).#23(DREG):#116;
3 6 5 (j o i n) , # 1 5 5 ;

L#161: #22O(RrAD):#10#3, ,#26(INSTR):#260. ;
#210(move) :#16, ,#10#3(reg l0 regr) :#1OO0#1O1. ;
2 l O (m o v e) . # 2 O 0 # 2 3 (l 0 d r e g) t # 1 6 (a 1 u) : # l 3 4 . # 1 6 (a 1 u) : # l l O ;
#210(move).#30(pscary),#2O0#23(10dreg):#12O0#117,;
#210(MOVt).#21(BRLG),#2O0#23(10I)REG):#12O0#117. ;
#21O(move):#16.#23(dreg).#21(breg):#15O0#151t;
#221(WRITr).#10#3(RIGI 0RfGR).#26(INSTR):#260,#23(DREG):#116;

L#162: #212(noop); !aller the condition codes spss2
#365(join).#152: !to but27

L#163: #22O(RtAD):#10#3,.#26(INSTR):#26O,;
#21O(MOVE).#21(BRIG).#10#3(RIGL0RELR):#1OO0#1O1,;
#210(move):#16.,#21(breg):#15O0#147,;
#21O(inove).#2O0#23(I0dreg) ,#16(alu) :#134 ,#16(alu) :#110;
#210(move).#30(pscary).#23(dreg):#116.;
#210(MOVI).#21(HniG).#2O0#23(lffl)RrG):#12O0#117.;
#21O(move):#16.#23(dreg),#21(brog):#1440#151.;
#221(WR]1f),#10#3(RCGL0R(GR).#26(INSIR):#260,#23(DREG):#116;
#365(jo in),#162;

L#164: #220(RIAD):#10#3,,#53(13instr):#253,;
#243(AI)D):#16:#nO.#23(l)REG).#10#3(REGL0REGR):#lOO0#lOl.#21(BREG):#1440#145;
#210(MOVr).#21(BRIG).#23(l)RlG):#116f ;
#220(Rl AD):#10#3,,#47(07):#247.;
#243(ADD):#16:#nO,#23(DRFG).#10#3(REGL0REGR):#lOO0#lOl,#21(BREG):#1460#147;
#22O(READ):#10#3,,#47(07):#247,;
#243(ADD):#16:#1O4.#25(BARIG).#10#3(REGI0REGR):#1OO0#1O1.#21(BREG):#1460#147;
#221(WRnr).#10#3(REGL0REGR).#47(O7pc).#23(DRtG):#116;
#220(RI Al)):#10#3. .#47(07): #247 . ;
#200(11 SI):#36:#1520#153.,#422(2):#222.;
#243(ADD) :#1(i: #110. #23(0111 G).#10#3(RIGI 0RI GR) :#100»#101 ,#36(CONCAI):#107;
#221(WRIII).#10#3(IUGI 0RIGR).#46(O6sp).#23(DRIG):#116;
#220(Rl AD):#10#3..#45(05R5):#245.;
#210(move):#1O.#23(dreg),#10#3(regI0regr):#103.;
#220(RI A l)) . #31 (Mil CX0) ,#2(UNIBUS) .#25(BARrG) ;
#221(WIN I I) .#1G#3(RIGI G R I G R) . # 4 5 (0 6 R 5) . # 3 1 (I R I G X O) ;
2 2 1 (W R I I I) . # 1 0 # 3 (R I G I 0 I U G R) . # 4 7 (O 7 p c) . # 2 3 (d r e g) : # 1 1 6 ;
3 6 5 (j o l n) . # 1 2 1 ;

I # 7 7 5 : # 3 7 3 (S M I R G I) . # 4 ;
L #7 7 7 #35 1 (l»l Nl)) . # 1 (Pl)l> 1140) ;

	Carnegie Mellon University
	Research Showcase
	1-1-1980

	Control allocation : the automated design of Digital Controllers
	Richard J. Cloutier
	Recommended Citation

