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Abstract

We consider the edge formulation of the stable set problem. We characterize its
corner polyhedron, i.e. the convex hull of the points satisfying all the constraints
except the non-negativity of the basic variables. We show that the non-trivial
inequalities necessary to describe this polyhedron can be derived from one row of
the simplex tableau as fractional Gomory cuts. It follows that the split closure is not
stronger than the Chvátal closure for the edge relaxation of the stable set problem.
Keywords: Stable set, corner polyhedron, Chvátal closure, odd cycle inequality.

1 Introduction

Consider a simple graph G = (V,E), where V and E are the sets of n vertices and m
edges of G, respectively. A stable set (independent set, vertex packing) of G is a set of
pairwise non-adjacent vertices. For the sake of simplicity, we are going to assume that G
has no connected component defined by a single vertex. Then, a stable set corresponds
to an n-dimensional binary vector x that satisfies xu + xv ≤ 1, for all uv ∈ E. The set of
stable sets of G can be described by the mixed integer linear set

S(G) = {(x, y) ∈ Zn
+ × Rm

+ : Ax + y = 1}, (1)

where A is the edge-vertex incidence matrix of G, 1 is a vector of ones, x and y are
vectors of variables indexed by the vertices and the edges of G, respectively. The convex
hull of S(G) is called the stable set polytope. The set obtained from S(G) by relaxing
the integrality constraints will be denoted by R(G).

An important reason for studying methods to handle contraints of type (1) is that they
can model restrictions appearing in many optimization problems. Indeed, notice that set
packing and partitioning problems can be transformed into vertex-packing problems on
the intersection graph.
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A general approach to deal with mixed integer sets consists of solving the linear relax-
ation and adding cutting planes. Most commonly, these cutting planes are derived from
integrality arguments applied to a single equation. Intersection cuts are more general [4].
Recently, cutting planes derived from two or more rows have attracted renewed interest
[2, 6, 9], and it has been shown that they can better approximate the feasible set [3, 5].
Whether they are derived from one or more rows by integrality arguments, the known
cuts have in common the feature that they are valid for the corner polyhedra defined by
Gomory [14].

In the remainder, let B stand for the set of all (feasible or infeasible) bases of the
constraint matrix [A I]. The corner polyhedron associated with a basis B ∈ B, to be
denoted corner(B), is the convex hull of the feasible points of the relaxation of (1) where
the non-negativity constraints on the basic variables are discarded. A valid inequality for
corner(B) is valid for (1).

In this paper, we study the corner polyhedra for (1) and, consequently, investigate cuts
that can be derived from a basic solution of the linear relaxation of (1). We show that all
non-trivial valid inequalities necessary to the description of corner(B) can be derived from
one row of (1) as a Chvátal-Gomory cut [8, 13]. In addition, we relate the intersection of
the corner polyhedra associated with all bases, given by

corner(B) =
⋂
B∈B

corner(B),

to the split, Chvátal and {0, 1/2}-Chvátal closures relative to S(G). The Chvátal closure
is the intersection of R(G) with all the Chvátal inequalities, i.e. inequalities of the form
bλAcx ≤ bλ1c with λ ∈ Rm

+ [8]. When λ is restricted to be in {0, 1/2}m, the {0, 1/2}-
Chvátal inequalities and closure are similarly defined [7].

It follows from [1] that the polyhedron corner(B) is included in the split closure. In
turn, the split closure is included in the Chvátal closure, which is itself contained in the
{0, 1/2}-Chvátal closure. Here, we show the converse inclusions and obtain the following
theorem.

Theorem 1. For the stable set formulation (1), the {0, 1/2}-Chvátal closure, the Chvátal
closure, the split closure and corner(B) are all identical to

{(x, y) ≥ 0 : Ax + y = 1,
∑
v∈C

xv ≤ |C| − 1

2
,∀ induced odd cycle C of G}.

In this paper, a cycle is a sequence C = (v0, e1, v1, . . . , ek, vk = v0), where v1, v2, ..., vk

are distinct vertices and ei = vi−1vi, for i = 1, 2, . . . , k, are distinct edges. Such a sequence
is often called a circuit in the literature [11]. The cycle C is induced if every edge of the
graph connecting two vertices of C is an edge of C. It is odd if the number k of vertices
(and edges) is odd. In the remainder, as already used in Theorem 1, |C| stands for the
number of vertices of C. Also, we simply write v ∈ C or e ∈ C to mean that a vertex v
or an edge e is in C.

In order to obtain Theorem 1, we first describe a graph related to the basic matrix
in the next section. Section 3 is devoted to the characterization of the corner polyhedra,
whereas Section 4 relates them to the split, Chvátal and {0, 1/2}-Chvátal closures.
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2 The basic graph

Consider any basis B ∈ B, feasible or infeasible, and the corresponding nonbasic matrix
N . Let xB, yB and xN , yN represent the basic and nonbasic variables, respectively. The
vertices and edges indexing these variables will be respectively called basic and nonbasic.

Let us group the equations of (1) according to the basic and nonbasic edges to get

Āx + yN = 1, (2)

Âx + yB = 1, (3)

where A =

[
Ā

Â

]
. Since the non-negativity of the variables yB is discarded in the defini-

tion of corner(B), constraints (3) become redundant. So, let us focus on the first group
of constraints. Toward this end, we define the basic graph GB, which is obtained from G
by removing the basic edges. Notice that Ā is the edge-vertex incidence matrix of GB.
Actually, this relation can still be considered in the trivial case where all edges are basic.

Let Ci = (Vi, Ei), i = 1, 2, . . . , k, be the connected components of GB that are not
defined by a single vertex. If Ai is the |Ei| × |Vi| incidence matrix of Ci, then Ā can be
organized as

Ā =




A1

0
A2

. . .

Ak


 .

For every i = 1, 2, . . . , k, let us partition Ai = [Bi Ni], where Bi and Ni comprise the
columns of Ai that are indexed by the basic and nonbasic vertices, respectively.

Lemma 2. For every i = 1, 2, . . . , k, the matrix Bi is square and invertible.

Proof: We have that B =

[
B̄ 0

B̂ I

]
, where B̄ and B̂ are submatrices of Ā and Â, respec-

tively. Since B is a basis, B̄ must be invertible. Therefore,

B̄ =




B1

B2

. . .

Bk


 .

In addition, the rows and columns of each Bi must be linearly independent. So, each Bi

is square and invertible. 2

Now, we show that each connected component of GB is a tree or a 1-tree. A 1-tree is
a connected graph with exactly one cycle.

Lemma 3. For every B ∈ B, each connected component of GB is either a tree or a 1-tree
with an odd cycle. Each tree has exactly one nonbasic vertex. The vertices of every 1-tree
are all basic.
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Proof: If a connected component of GB is not a tree, it must be a component Ci, for some
i ∈ {1, 2, . . . , k} such that |Ei| ≥ |Vi|. By Lemma 2, this means that |Ei| = |Vi| and Bi is
the incidence matrix of Ci. Therefore, Ci is a tree together with an extra edge. Moreover,
the unique cycle of Ci must be odd because Bi is invertible [15].

The remaining part of the statement follows by observing the structure of B̄. It shows
that every basic vertex is in some component Ci, which has exactly |Vi| − |Ei| nonbasic
vertices. 2

From now on, let IB ⊆ {1, 2, . . . , k} be the set of indices of the 1-tree components of
GB. For i ∈ IB, the kernel of Ci, denoted by κi, is its unique cycle.

3 The Corner polyhedron

The corner polyhedron associated with a basis B of the stable set formulation (1) is the
convex hull of the points satisfying the relaxation where the non-negativity constraints
on the basic variables are discarded, that is

corner(B) = conv{(x, y) : Ax + y = 1, xN ≥ 0, yN ≥ 0, x ∈ Zn}. (4)

Using (2)–(4), it follows that

corner(B) = conv{(x, y) : Āx + yN = 1, xN ≥ 0, yN ≥ 0, x ∈ Zn, (5)

Âx + yB = 1}. (6)

Since yB is not restricted in sign and appears only in constraints (6), we have that

corner(B) = {(x, yN , yB) : (x, yN) ∈ conv{Āx + yN = 1, xN ≥ 0, yN ≥ 0, x ∈ Zn},
Âx + yB = 1}.

Notice that this expression can also comprise the trivial case where all edges are basic.
In this case, matrix Ā and vector yN do not exist, which leads to corner(B) = {(x, y) :
Ax + y = 1, x ≥ 0}.

By defining P (B) = {x ∈ Zn : Āx ≤ 1, xN ≥ 0}, we can simplify the expression of the
corner polyhedron as

corner(B) = {(x, y) : x ∈ conv(P (B)), Ax + y = 1}. (7)

Also, we can rewrite
P (B) = {x ∈ Zn : Ãx ≤ b}, (8)

where

Ã =

[
B̄ N̄

0̂ −2I

]
, b =

[
1
0

]
,

and Ā = [B̄ N̄ ] is a partition of Ā according to (xB, xN).
Using expression (8), we can view P (B) as the set of integral solutions of a system

defined by the edge-vertex incidence matrix Ã of a bidirected graph [12]. Such a graph is
formed by GB together with a loop for each nonbasic vertex.

4



The definition of cycle in graphs extends directly to bidirected graphs [12]. However, a
cycle in a bidirected graph is called odd if it has an odd number of edges whose endpoints
are both positive or both negative according to the incidence matrix [11, 12].

By Lemma 3, each connected component of the bidirected graph associated with P (B)
has exactly one odd cycle (a loop was included in each tree component of GB). This
property can be used to readily describe the convex hull of P (B) by means of the following
result by Gerards and Schrijver [12]. See also Schrijver [11, Section 68.6b], where an odd
K4-subdivision is defined as a subdivision of the complete graph with four vertices such
that each triangle has become an odd cycle.

Theorem 4 ([12, 11]). If M is the p×q edge-vertex incidence matrix of a bidirected graph
with no odd K4-subdivision and b ∈ Zp, then

conv{x ∈ Zq : Mx ≤ b} =

{x ∈ Rq : Mx ≤ b,
1

2

∑
v∈C

∑
e∈C

Mevxv ≤ b1
2

∑
e∈C

bec, for each odd cycle C}.

Since the bidirected graph defining P (B) is such that each connected component has
exactly one cycle, it does not contain a K4-subdivision. Therefore, the above theorem
gives the following statement.

Corollary 5. For every B ∈ B, conv(P (B)) = {x : Āx ≤ 1, xN ≥ 0,
∑

v∈κi
xv ≤

(|κi| − 1)/2, ∀i ∈ IB}.
Corollary 5 together with (7) imply the following characterization of the corner poly-

hedron.

Theorem 6. For every B ∈ B, the corner polyhedron of (1) associated with B is

corner(B) =

{
(x, y) : Ax + y = 1, xN ≥ 0, yN ≥ 0,

∑
v∈κi

xv ≤ |κi| − 1

2
≤ 1, ∀i ∈ IB

}
.

Theorem 6 can also be proved without appealing to Theorem 4 by characterizing
the matrix B̄−1, which essentially gives the basis inverse. Actually, we can show that
each column of the coefficient matrices of B̄−1Āx + B̄−1yN = B̄−11 has its entries either
in {0,±1} or in {0,±1/2}. This special structure also leads to the characterization of
conv(P(B)) and, consequently, the statement of Theorem 6.

Remark 7. Each odd cycle inequality appearing in the description of the corner polyhe-
dron is a {0, 1/2}-Chvátal inequality. Indeed, it can be obtained with the Chvátal procedure
by taking a linear combination of the constraints xu + xv ≤ 1, for all e = uv ∈ κi, with
multipliers λe = 1/2, for all e ∈ κi.

The above results imply that each non-trivial inequality necessary to describe the
corner polyhedron is a fractional Gomory cut that can be derived from a row of the
simplex tableau related to a basic vertex in the cycle of a 1-tree component. Even if we
consider the tighter relaxation of (1) where only constraints yB ≥ 0 are discarded, we
cannot get stronger cuts. Indeed, if we keep the non-negativity of the (basic) variables
associated with the vertices, we can still use Theorem 4 to see that only the trivial
inequalities xB ≥ 0 can be obtained in addition to those describing corner(B).
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4 The Chvátal closure

Theorem 6 and Remark 7 show that the only non-trivial inequalities needed to define
corner(B) are {0, 1/2}-Chvátal inequalities. They all have the form

∑
v∈C xv ≤ (|C|−1)/2,

where C is an odd cycle of G. If this cycle is not induced in G, the corresponding inequality
is dominated by

∑
v∈C′ xv ≤ (|C ′| − 1)/2, where C ′ is an odd cycle of G induced by a

subset of vertices of C. This is the key point to characterize the Chvátal closure of S(G),
as follows.

Let C denote the set of all the induced odd cycles of G. For every C ∈ C, form the
submatrix BC of [A I] given by

BC =

[
AC 0
0 I

]
,

where AC is the edge-vertex incidence matrix of C and I is related to the edges of G not
in C. Notice that BC is invertible and B−1

C 1 ∈ {1/2, 1}m, which implies that BC is a
feasible basis. Let us denote by B+ = {B ∈ B : B−11 ≥ 0} the set of feasible basis and
by BC = {BC : C ∈ C} its subset corresponding to C. Also, for any B′ ⊆ B, let corner(B′)
stand for the intersection of the corner polyhedra associated to all bases in B′, that is,

corner(B′) =
⋂

B∈B′
corner(B).

Lemma 8. corner(B) ⊆ corner(B+) ⊆ Rn
+ × Rm

+ .

Proof: We only need to prove the second inclusion. First, note that corner(B+) ⊆
corner(I) ⊆ Rn

+ × Rm. Now, for each edge e = uv of G, consider the submatrix Be

of [A I] defined by the column of A indexed by u and the columns of I indexed by
E \ {e}. Notice that Be ∈ B+. In addition, by Theorem 6, ye ≥ 0 is a valid inequality for
corner(Be). Since corner(B+) ⊆ ∩e∈Ecorner(Be), the result follows. 2

Lemma 9. corner(B) = corner(B+) = S̄(G), where

S̄(G) =

{
(x, y) ≥ 0 : Ax + y = 1,

∑
v∈C

xv ≤ |C| − 1

2
,∀C ∈ C

}
.

Proof: If C = ∅, the result trivially follows by Theorem 6 and Lemma 8. The same
statements imply that

corner(B) ⊆ corner(B+) ⊆ corner(BC) ∩ (Rn
+ × Rm

+ ) = S̄(G).

To obtain equalities in the expression above, it suffices to note that there is always a subset
of the vertices of any non-induced odd cycle C that defines an induced odd cycle C ′ ∈ C.
Then, the inequality

∑
v∈C′ xv ≤ (|C ′|−1)/2 is tighter than

∑
v∈C xv ≤ (|C|−1)/2, which

shows that S̄(G) ⊆ corner(B). 2

Lemma 9 and the fact that all inequalities needed in the description of corner(B) are
{0, 1/2}-Chvátal inequalities lead to the following more complete version of the theorem
stated in the introduction.
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Theorem 10. For the stable set formulation (1), S̄(G), the {0, 1/2}-Chvátal closure, the
Chvátal closure, the split closure, corner(B+) and corner(B) are identical.

We should stress that the equivalences stated in Theorem 10 may not be valid for
other formulations of the stable set problem. For instance, for a quasi-line graph the split
closure of the clique formulation of the stable set problem coincides with the convex hull
of the integer solutions and is strictly contained in the Chvátal closure [10].
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