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Abstract

We propose a novel variant of conjugate gradient based on theRepro-
ducing Kernel Hilbert Space (RKHS) inner product. An analysis of the
algorithm suggests it enjoys better performance properties than standard
iterative methods when applied to learning kernel machines. Experimen-
tal results for both classification and regression bear out the theoretical
implications. We further address the dominant cost of the algorithm by
reducing the complexity of RKHS function evaluations and inner prod-
ucts through the use of space-partitioning tree data-structures.

1 Introduction

Kernel methods, in their various incarnations (e.g. Gaussian Processes (GPs), Support
Vector machines (SVMs), Kernel Logistic Regression (KLR))have recently become a pre-
ferred approach to non-parametric machine learning and statistics. They enjoy this status
because of their conceptual clarity, strong empirical performance, and theoretical founda-
tions.

The primary drawback to kernel methods is their computational complexity. GPs require
the inversion of ann × n (covariance/kernel) matrix, implying a running time ofO(n3),
wheren is the size of the training set. SVMs require similar computation to solve the
convex program, although intense research has gone into fast, specialized approximations
[13].

State-of-the-art approaches to kernel learning revolve largely around two techniques: itera-
tive optimization algorithms, and learning within a subspace of the original problem spec-
ified Reproducing Kernel Hilbert Space (RKHS). In this work,we explore a novel variant
of conjugate gradient descent based on the RKHS inner product that we term Kernel Con-
jugate Gradient (KCG). Our results suggest that for kernel machines with differentiable
loss functions, KCG both theoretically and empirically requires fewer iterations to reach a
solution, with identical cost per iteration as the vanilla conjugate gradient algorithm.

We further address the dominant cost of the algorithm by reducing the complexity of RKHS
function evaluations and inner products through the use of space-partitioning tree data-
structures. The methods we present here are of particular importance in that they can be
used to further improve many existing kernel learning algorithms and approximations.



2 Reproducing Kernel Hilbert Spaces

This section briefly reviews the basic concepts behind Reproducing Kernel Hilbert Spaces
(RKHS) necessary to the discussion that follows.

An RKHS of functionsHk is a complete inner product space, known as a Hilbert space,
that arises from the completion of a set of basis functionsBk = {k(x, .) | x ∈ X},
wherek : X × X → R is a symmetric, positive-definite function known as the kernel,
andX is a (perhaps infinite) domain sometimes known as the index set. A common ker-
nel, and one used exclusively throughout our experiments, is the exponential Radial Basis

Function (RBF)k(x, x′) = e
−‖x−x

′‖2

2σ2 . The RKHS inner product between two functions
f =

∑

i αik(xi, .) andg =
∑

j βjk(xj , .) is defined as

〈f, g〉Hk
=

∑

i,j

αiβjk(xi, xj).

Central to the idea of an RKHS is thereproducing propertywhich follows directly from
the above definition. It states that the basis functionsk(x, .) ∈ Bk are representers of
evaluation. Formally, for allf ∈ Hk andx ∈ X , 〈f, k(x, .)〉Hk

= f(x). i.e. the evaluation
of f atx is the scalar projection off ontok(x, .). Note that there exists a simple mapping
φ : X → Bk between the domainX and the RKHS basisBk defined by the kernel as
φ(x) = k(x, .). It follows that for anyx, x′ ∈ X

〈φ(x), φ(x′)〉Hk
= 〈k(x, .), k(x′, .)〉Hk

= k(x, x′).

A complete overview of these concepts can be found in [1].

A fundamental result first proven in [8] and then generalizedin [3] is the Representer
Theorem, which makes possible the direct minimization of a particular class of functionals.
It states that given a subsetD = {(xi, yi)}ni=1 ⊂ X × R (i.e. the dataset), the minimizer
of a functional with the formF [f ] = c((x1, y1, f(x1)), . . . , (xn, yn, f(xn)))+ g(‖f‖2Hk

),
wherec : X×R2 → R is arbitrary andg : [0,∞]→ R is strictly monotonically increasing,
must have the form̃f =

∑

xi∈D αik(xi, .). A particularly useful RKHS functional in
machine learning for which this holds is

R[f ] =

n
∑

i=1

l(xi, yi, f(xi)) +
λ

2
〈f, f〉Hk

(1)

known as a regularized risk functional [13].

3 The Functional Gradient

Gradient based algorithms, such as steepest descent, are traditionally defined with respect
to the gradient arising from the Euclidean inner product between parameter vectors. There
are many ways in which a given regularized risk functional can be parameterized, though,
and each gives rise to a different parameter gradient. It seems more natural to follow the
gradient defined uniquely by the RKHS inner product. We review some basic concepts
behind the functional gradient below.

The functional gradient may be defined implicitly as the linear term of the change in a
function due to a small perturbationε in its input [10]

F [f + εg] = F [f ] + ε〈∇F [f ], g〉+ O(ε2).

Following this definition using the RKHS inner product〈., .〉Hk
allows us to define the

kernel gradient of a regularized risk functional [13]. We use three basic formulae that can
be easily derived from this definition:



1. Gradient of the evaluation functional.DefineFx : Hk → R asFx[f ] = f(x) =
∑

i αik(xi, x). Then∇kFx[f ] = k(x, .).

2. Gradient of the square RKHS norm.DefineF〈.,.〉 : Hk → R as F〈.,.〉[f ] =

‖f‖2Hk
= 〈f, f〉Hk

. Then∇kF〈.,.〉[f ] = 2f .

3. Chain rule.Let g : R → R be a differentiable function, and letF : Hk → R be
an arbitrary differentiable functional. Then∇kg(F [f ]) = g′(F [f ])∇kF [f ].

A straight forward application of the above formulae bringsus to the following result. The
kernel gradient of a regularized risk functional (Equation1) is

∇kR[f ] =

n
∑

i=1

∂

∂z
l(xi, yi, z)|f(xi)∇kFxi

[f ] + λf (2)

=
n

∑

i=1

∂

∂z
l(xi, yi, z)|f(xi)k(xi, .) + λ

n
∑

i=1

αik(xi, .) (3)

=

n
∑

i=1

(

∂

∂z
l(xi, yi, z)|f(xi) + λαi

)

k(xi, .). (4)

Equation 4 allows us to easily find the kernel gradient of the following two well known
functionals used throughout the remainder of this paper.

1. Kernel Logistic Regression (KLR)[16]. Let y ∈ {−1, 1}. Then

Rklr [f ] =

n
∑

i=1

log
(

1 + eyif(xi)
)

+
λ

2
〈f, f〉Hk

(5)

⇒ ∇kRklr [f ] =

n
∑

i=1

(

λαi +
yi

1 + e−yif(xi)

)

k(xi, .). (6)

2. Regularized Least Squares (RLS)[12].

Rrls [f ] =
1

2

n
∑

i=1

(yi − f(xi))
2 +

λ

2
〈f, f〉Hk

(7)

⇒ ∇kRrls [f ] =

n
∑

i=1

(f(xi)− yi + λαi)k(xi, .). (8)

4 The Kernel Gradient in Parametric Form

It is important to note that Equation 4 shows a special case ofthe property that for function-
alsF [f ] = c((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + g(‖f‖2Hk

) for which theRepresenter
Theoremholds,∇kF [f ] =

∑n
i=1 γik(xi, .) for appropriateγi ∈ R. In other words, the

kernel gradient ofF is represented in the finite-dimensional subspaceSD = span{BD}
of Hk. A gradient descent type method throughSD then amounts to modifying the coeffi-
cientsαi of the current functionf by γi. That is

f̃ ← f − λ∇kF [f ]⇔ α̃i ← αi − λγi,

just as a standard gradient descent algorithm would. The difference is that the coefficients
γi for the kernel gradient are not the same as those of the parameter gradient. One can
verify that they differ by∇αF [f ] = Kγ whereK is the kernel matrix. This relation can



Algorithm 1 Kernel Conjugate Gradient

1: procedure KCG(F : Hk → R, f0 ∈ Hk, ε > 0)
2: i← 0
3: g0 ← ∇kF [f0] =

∑n
j=1 γ

(0)
j k(xj , .)

4: h0 ← −g0

5: while 〈gi, gi〉Hk
> ε do

6: fi+1 ← fi + λihi whereλi = arg minλ F [fi + λhi]

7: gi+1 ← ∇kF [fi+1] =
∑n

j=1 γ
(i+1)
j k(xj , .)

8: hi+1 ← −gi+1 + ηihi whereηi =
〈gi+1−gi,gi+1〉H

k

〈gi,gi〉H
k

= (γ(i+1)−γ(i))T Kγ(i+1)

γ(i)T Kγ(i)

9: i← i + 1
10: end while
11: return fi

12: end procedure

be derived by defining the gradient as the direction of steepest ascent for a “small” change
in coefficientsα:

∇F [α] = max
γ

F [α + γ] s.t. ‖γ‖ < ε.

It can be shown that taking‖γ‖2α asγT γ gives the vanilla parameter gradient∇αF , while
defining the norm with respect to the RKHS inner product‖γ‖2Hk

=
∑

i,j γiγjk(xi, xj) =

γT Kγ gives the functional gradient coefficients∇kF = K−1∇αF . (See [7] for the deriva-
tion of gradient w.r.t. arbitrary metrics.)

5 The Kernel Conjugate Gradient Algorithm

Both in theory and in practice it is understood that conjugate gradient (CG) methods out-
perform standard steepest descent procedures [15]. These techniques have been used pro-
fusely throughout machine learning, in particular, for regularized risk minimization and
kernel matrix inversion [4][13].

In this section, we present an algorithm we term Kernel Conjugate Gradient (KCG) that
takes advantage of conjugate direction search while utilizing the RKHS inner product
〈f, g〉Hk

= αT Kβ. Algorithm 1 gives the general (nonlinear) KCG algorithm inPolak-
Ribière form [15].

Note that the computational complexity per iteration of KCGis essentially identical to
that of the more conventional Parameter Conjugate Gradient(PCG) algorithm. Intuitively,
while the kernel inner product takes timeO(n2) compared to theO(n) vanilla inner product
used by PCG, KCG is correspondingly more efficient in the gradient computation since
∇αF [f ] = Kγ, where∇kF [f ] =

∑

i γik(xi, .). It is possible in the case of RLS to step
through an iteration of each algorithm and show that the running time is entirely equivalent.

We emphasize that despite its somewhat involved derivation, the implementation of this
algorithm is just a simple extension of PCG. The differencesamount to only a change of
inner productαT β →

∑

i,j αiβjk(xi, xj) = αT Kβ, and a different, though in some ways
simpler, gradient computation. We also point out that the line optimization (step6) can be
solved in closed-form in the case of quadratic risk functionals (e.g. RLS). For starting point
f =

∑

i αik(xi, .) and search directionh =
∑

i γik(xi, .) we have

arg min
λ

F [f + λh] = −αT Kγ

γT Aγ
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Figure 1: The first plot shows the relative performances of KCG and PCG in minimizing
the KLR risk functional using theUSPS dataset. This plot is in log scale to emphasize the
improved conditioning of KCG. The remaining three plots show relative convergence rates
of the RLS upper bound in linear scale. KCG provides a significantly tighter bound in all
cases.

whereA is the Hessian of the quadratic functional when parameterized byα. Note that
this formula differs from that derived from the parameter gradient (−αT γ/γT Aγ) only
in the numerator’s inner product, as is a common theme throughout this algorithm. The
theoretical and experimental results given below suggest that there is little reason why one
should prefer PCG to KCG in most kernel algorithms.

6 Experimental Results - Kernel Conjugate Gradient

We bench-marked KCG against PCG for both classification and regression tasks. In all
cases, KCG significantly out performed PCG.

Our first test was performed using KLR on theUSPS dataset (with a training/test size of
7291/2007) for the common one-vs-all task of recognizing the digit 4. We used a length
scale hyperparameterσ = 5 as was used in [12] for RLS classification, and a regularization
constantλ = 0. Figure 1 summarizes the results in log scale.

Second, we used RLS for both regression and classification using theAbalone andSoil
datasets in addition to theUSPS dataset. TheAbalone dataset1 consisted of 3133 training
examples and 1044 test examples in 8 attributes. Our experimental setup was equivalent to
that in [14]. TheSoil dataset contained three-dimensional examples of soil pH levels in
areas of Honduras partitioned into a training set of size 1709 and a test set of size 383. The

1See UCI repository:http://www.ics.uci.edu/ mlearn/MLRepository.html



latter dataset and corresponding hyperparameters (λ = 0.1514 andσ = 0.296283) were
provided by [5].

Again, the results are summarize in Figure 1. For RLS, there exists a quadratic

p(α) =
1

2
αT (K + λI)α− yT α

that can provide a lower bound to the regularized risk [4][13]. As theory suggests (see
below) the upper bound under KCG converges comparably with the lower bound, while
the upper bound under PCG lags considerably behind. This implies faster convergence
under a gap termination criterion [13].

7 KCG Analysis

The kernelized conjugate gradient algorithm was derived from a normative point of view
where it was argued that〈f, g〉Hk

defined the natural notion of inner product in the RKHS
and hence for the optimization procedure. The strong empirical performance of KCG noted
in the previous section, while in some sense not surprising given we are using the “right”
inner product, deserves some analysis. We examine here the linear case (as in RLS) where
the analysis is more transparent, although similar resultshold near the optima of non-linear
risk functionals.

We note a classic bound on the error reduction of CG (see [9]),

‖ei‖A ≤ 2

(√
κ− 1√
κ + 1

)i

‖e0‖A,

whereA is the Hessian of the quadratic with corresponding condition numberκ, and
‖x‖A = xT Ax is known as the energy norm ofx. Loosely speaking, this gives a run-
ning time complexity ofO(

√
κ) for PCG.

We start by analyzing the effective condition number of KCG.As with essentially all vari-
ants of CG, the algorithm’s dynamics can be described in terms of a preconditioning to the
spectrum of the Hessian [15]. It can be checked that KCG is equivalent to an implicitly pre-
conditioned conjugate gradient algorithm with preconditionerK. The following theorem
relates the running time of PCG to KCG in light of the bound give above.

Theorem. Let κPCG be the condition number ofRrls (Equation 2), and letκK be the
condition number of the kernel matrixK = [k(xi, xj)]i,j . Then the condition num-
ber κKCG resulting from preconditioning the RLS risk functional byK has the relation
κPCG = κKκKCG.

Proof. Let σ1 ≥ σ2 ≥ . . . ≥ σn be the eigenvalues ofK. The condition number of
K is thenκK = σ1/σn. The Hessian ofRrls is A = KT K + λK and has eigenvalues
σ2

i + λσi = σi(σi + λ), given in terms of the eigenvalues ofK. This implies

κPCG =
σ1

σn

(

σ1 + λ

σn + λ

)

= κK
σ1 + λ

σn + λ
.

SinceK is symmetric, positive-definite, the preconditioned Hessian becomesK−1A =
K−1(KT K + λK) = K + λI, with corresponding eigenvaluesσi + λ. Thus,κPCG =
κKκKCG. 2

The condition numberκK of K is typically very large. In particular, as the regulariza-
tion constant decreases, the asymptotic bound on the convergence of PCG approaches the
square of the bound on KCG. Alternatively, as the regularization constant increases,κKCG

approaches1 implying anO(1) convergence for KCG, while the convergence of PCG re-
mains bounded below byO(κK).



It is informative to note that the decrease in computationalcomplexity from PCG to KCG
(O(κ1/2) to O(κ1/4)) is the same as that seen from steepest descent to PCG (O(κ) to
O(κ1/2)) [9].

8 Tree-Augmented Algorithms

For many stationary kernels, it is often the case that the majority of the basis functions
in BD are nearly orthogonal. This often stems from a relationshipbetween the degree
of orthogonality of two basis functionsk(x, .), k(x′, .) ∈ BD and the Euclidean distance
betweenx andx′. This is often the case when using the exponential RBF kernelgiven
above, in which the orthogonality between two basis functions increases exponentially with
the square Euclidean distance between the two points‖x− x′‖2.

Previous work has shown how the evaluation of RKHS functionsf(x) =
∑

i αik(xi, x)
can be made fast when this holds usingN -body type algorithms [6][2]. Intuitively, the
idea is to store the training data in a space-partitioning tree, such as a KD-tree [11] as was
use in our experiments below, and recursively descend the tree during evaluation, pruning
negligible contributions. The maximum and minimum impact of each set of pruned points
can be easily calculated resulting in upper and lower boundson the evaluation error. We
demonstrate how such data-structures and algorithms can beused to reduce the per iteration
O(n2) computational cost of both KCG and PCG during learning as well as evaluation.

The inner loop computational bottleneck of KCG is in evaluating functions and
calculating the kernel inner product. If we rewrite the RKHSinner product as
〈f, g〉Hk

=
∑

i,j αiβjk(xi, xj) =
∑

i αig(xi), then reducing the computational com-
plexity of RKHS function evaluations will simultaneously encompass both of these bot-
tlenecks. Similarly, the iteration complexity of PCG is dominated by the computa-
tion of the parameter gradient. We can rewrite the parametergradient as∇αF [f ] =
[∇kF [f ](x1),∇kF [f ](x2), . . . ,∇kF [f ](xn)]T (see 4), reducing the complexity to that of
finding∇kF [f ] ∈ Hk and evaluating itn times. As was the case with the algorithms as
previously described, the tradeoff still balances out so that the per iteration complexity is
essentially equivalent between KCG and PCG using tree-augmented function evaluation.

Noting [f(x1), . . . , f(xn)]T = Kα suggests that the closed form quadratic line minimiza-
tion for both the upper and lower bounds of RLS under either KCG or PCG can easily be
augmented as well by expanding the HessiansAu = KT K + λK in the case of the upper
bound andAl = K + λI in the case of the lower bound. Such a tree-augmented closed
form line minimization was used in the RLS experiments described below.

9 Experimental Results - Tree-Augmented Algorithms

For these experiments, in addition to using theSoil dataset described in section 6, we
performed large scale RLS regressions on variable sized subsets of aPugetSound ele-
vation map2 using hyperparametersλ = 0.1/n andσ2 = kN/(nπ), wheren is the size
of the training set, andN is the size of the entire height map. In this case, we chose
N = 500× 500 = 250, 000, andk = 15. The largest resulting datasets were on the order
of 100,000 points. It should be noted that the näive implementation in this case did not
cache kernel evaluations in a kernel matrix as such matricesfor datasets aboveO(15, 000)
points proved intractable for the machine on which the experiments were performed.

Figure 2 shows that tree-augmentation significantly outperforms the näive algorithm. Ex-
trapolating from the plot on the right, trees make possible accurate kernel learning on

2http://www.cc.gatech.edu/projects/large models/
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Figure 2: These plots compare the performance of tree-augmented KCG to a non-caching
näive implementation on theSoil dataset (left) and progressively larger training set sizes
from thePugetSound dataset (right).

datasets orders of magnitude larger than anything previously attempted.
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