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Abstract

We propose a novel variant of conjugate gradient based oRépeo-
ducing Kernel Hilbert Space (RKHS) inner product. An anelyd the
algorithm suggests it enjoys better performance projsetttien standard
iterative methods when applied to learning kernel machiBgperimen-
tal results for both classification and regression bear loaitheoretical
implications. We further address the dominant cost of therithm by
reducing the complexity of RKHS function evaluations andenprod-
ucts through the use of space-partitioning tree data{sires.

1 Introduction

Kernel methods, in their various incarnations (e.g. Gaumssirocesses (GPs), Support
Vector machines (SVMs), Kernel Logistic Regression (KLR3ye recently become a pre-
ferred approach to non-parametric machine learning arigtsta. They enjoy this status
because of their conceptual clarity, strong empirical grenfance, and theoretical founda-
tions.

The primary drawback to kernel methods is their computaficomplexity. GPs require
the inversion of am x n (covariance/kernel) matrix, implying a running time @fn?),
wheren is the size of the training set. SVMs require similar compiatato solve the
convex program, although intense research has gone irtsfeeialized approximations
[13].

State-of-the-art approaches to kernel learning revohgelg around two techniques: itera-
tive optimization algorithms, and learning within a subspaf the original problem spec-
ified Reproducing Kernel Hilbert Space (RKHS). In this wonle explore a novel variant

of conjugate gradient descent based on the RKHS inner ptdaaiove term Kernel Con-

jugate Gradient (KCG). Our results suggest that for kernetimmes with differentiable

loss functions, KCG both theoretically and empiricallyu&gs fewer iterations to reach a
solution, with identical cost per iteration as the vanikmpigate gradient algorithm.

We further address the dominant cost of the algorithm byciedithe complexity of RKHS
function evaluations and inner products through the usepatea-partitioning tree data-
structures. The methods we present here are of particufasrbance in that they can be
used to further improve many existing kernel learning dtgars and approximations.



2 Reproducing Kernel Hilbert Spaces

This section briefly reviews the basic concepts behind Ripriog Kernel Hilbert Spaces
(RKHS) necessary to the discussion that follows.

An RKHS of functionsH,, is a complete inner product space, known as a Hilbert space,
that arises from the completion of a set of basis functiBps= {k(z,.) | « € X},
wherek : X x X — R is a symmetric, positive-definite function known as the kérn
and X is a (perhaps infinite) domain sometimes known as the indexAseommon ker-

nel, and one used exclusively throughout our experimentig exponential Radial Basis

!
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Function (RBF)k(z,2’) = e~ 22 . The RKHS inner product between two functions
=2 aik(z;,.) andg = > Bjk(z;, ) is defined as

(90 = Y ciBik(zi, ;).
4,

Central to the idea of an RKHS is tlmeproducing propertyvhich follows directly from
the above definition. It states that the basis functibfis .) € Bj arerepresenters of
evaluation Formally, for allf € Hy andx € X, (f, k(z,.))n, = f(z). i.e. the evaluation
of f atx is the scalar projection of ontok(z, .). Note that there exists a simple mapping
¢ : X — By between the domai®’ and the RKHS basis;, defined by the kernel as
¢(x) = k(z,.). Itfollows that for anyx, 2’ € X

(P(2), 92" )3y = (K(z, ), k(2" ))m, = K(z,2").
A complete overview of these concepts can be found in [1].

A fundamental result first proven in [8] and then generalized3] is the Representer
Theoremwhich makes possible the direct minimization of a particelass of functionals.
It states that given a subsBt= {(z;,y;)}?, C X x R (i.e. the dataset), the minimizer
of a functional with the forn#[f] = c((z1, y1, f (1)) - -5 (@Tns Y, fzn))) + 9 (I f1I3,),
wherec : X x R? — R is arbitrary andy : [0, oo] — R is strictly monotonically increasing,
must have the fornf = > ..ep @ik(w;,.). A particularly useful RKHS functional in
machine learning for which this holds is

RU) = Y Uiy S(2)) + 2 U P )
=1

known as a regularized risk functional [13].

3 TheFunctional Gradient

Gradient based algorithms, such as steepest descentaditetrally defined with respect
to the gradient arising from the Euclidean inner producieen parameter vectors. There
are many ways in which a given regularized risk functional ba parameterized, though,
and each gives rise to a different parameter gradient. ihsewore natural to follow the
gradient defined uniquely by the RKHS inner product. We m&s$®me basic concepts
behind the functional gradient below.

The functional gradient may be defined implicitly as the dingerm of the change in a
function due to a small perturbatienn its input [10]

F(f +eg] = FIf] + (VF[f],g) + O(€).

Following this definition using the RKHS inner produgct.), allows us to define the
kernel gradient of a regularized risk functional [13]. We tisree basic formulae that can
be easily derived from this definition:



1. Gradient of the evaluation functiondDefine F, : H; — R asF,[f] = f(z) =
> aik(xy, x). ThenV F,[f] = k(x, ).

2. Gradient of the square RKHS nornDefine F;  : Hry — R asF, ,[f] =
1£113,, = (f> f)w.. ThenViF y[f] = 2f.

3. Chainrule.Letg : R — R be a differentiable function, and Iét : H; — R be
an arbitrary differentiable functional. Thé&h.g(F[f]) = ¢'(F[f]) Vi F[f]-

A straight forward application of the above formulae bringgo the following result. The
kernel gradient of a regularized risk functional (Equatl)ris

ViR[f] =
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Equation 4 allows us to easily find the kernel gradient of wieo#ing two well known
functionals used throughout the remainder of this paper.

1. Kernel Logistic Regression (KLR)6]. Lety € {—1,1}. Then

Rilf] = ilog (14 1) + 247, fhre 5)
= ViRulf] = zj; (/\ai + %) k(i .)- (6)
2. Regularized Least Squares (RLBY].
Ralfl = 33 @ 0D )
= ViRus[f] = i(f(xi) — i + Aoy )k (zi, ). (8)

1=1
4 TheKerne Gradient in Parametric Form

Itis important to note that Equation 4 shows a special catigegbroperty that for function-
alsFf] = e((z1,y1, f(21))s -« o, Xy Yn, [(20))) —l—g(HfH%‘k) for which theRepresenter
Theoremholds, V, F[f] = Y7, v:k(z;, .) for appropriatey; € R. In other words, the
kernel gradient of?” is represented in the finite-dimensional subspsse= span{Bp}
of Hy. A gradient descent type method througih then amounts to modifying the coeffi-
cientsq; of the current functiorf by ~;. Thatis

[ — f=AViF[f] & a; — a; — My,

just as a standard gradient descent algorithm would. Therdifce is that the coefficients
~; for the kernel gradient are not the same as those of the ptgagmdient. One can
verify that they differ byV, F[f] = K~ whereK is the kernel matrix. This relation can



Algorithm 1 Kernel Conjugate Gradient

1: procedure KCG(F : Hy — R, fo € Hi, € > 0)

2 i+ 0

3 go— ViFlfo =Y, 7 Vk(x;,.)

4 ho— —go

5 WhiIe<gi,gi>Hk > edo

6 .fi+1 — .fz + \ih; WhereAi = arg miny F[fz + )\hl]
7 gir1 — VeF[fia] = 300, 1V k()

8

(git1=9i,9i41)r;, (yOFD T for (141)
(9i,9i) F DT K~ )

hit1 < —git1 + nih; wheren; =
9: t— i+ 1
10: end while
11: return f;
12: end procedure

be derived by defining the gradient as the direction of stetegmeent for a “small” change
in coefficientsu:
VF[a] = max Fla+ 7] s.t. ||| < e.
ol

It can be shown that takingyy||2 asy?~y gives the vanilla parameter gradient, I, while
defining the norm with respect to the RKHS inner prodjdf;, = >y Vivik(@i, xy) =
+T K+ gives the functional gradient coefficients, F = K 'V, F. (See [7] for the deriva-
tion of gradient w.r.t. arbitrary metrics.)

5 TheKernel Conjugate Gradient Algorithm

Both in theory and in practice it is understood that conjagatdient (CG) methods out-
perform standard steepest descent procedures [15]. Téetsgiques have been used pro-
fusely throughout machine learning, in particular, forukegized risk minimization and
kernel matrix inversion [4][13].

In this section, we present an algorithm we term Kernel Cgaije Gradient (KCG) that
takes advantage of conjugate direction search while mijizhe RKHS inner product
(f,9)n, = oT K. Algorithm 1 gives the general (nonlinear) KCG algorithmFalak-
Ribiere form [15].

Note that the computational complexity per iteration of K&Gessentially identical to
that of the more conventional Parameter Conjugate Gra{fR&G) algorithm. Intuitively,
while the kernel inner product takes tirién?) compared to thé(n) vanilla inner product
used by PCG, KCG is correspondingly more efficient in the igratddcomputation since
VoF|[f] = K, whereV, F|[f] = Y. vik(x;,.). Itis possible in the case of RLS to step
through an iteration of each algorithm and show that theingitime is entirely equivalent.

We emphasize that despite its somewhat involved derivatiemimplementation of this
algorithm is just a simple extension of PCG. The differerem@®unt to only a change of
inner product” 8 — 3=, - i f;k(z;, 2;) = o K3, and a different, though in some ways
simpler, gradient computation. We also point out that the bptimization (steg) can be
solved in closed-form in the case of quadratic risk fundaisrfe.g. RLS). For starting point
f=>,a;k(z;,.) and search directioh = > _, v;k(x;, .) we have

al K~
T Ay

argmkinF[f—l-/\h] =
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Figure 1: The first plot shows the relative performances of3&hd PCG in minimizing
the KLR risk functional using th&/SPS dataset. This plot is in log scale to emphasize the
improved conditioning of KCG. The remaining three plotswitelative convergence rates

of the RLS upper bound in linear scale. KCG provides a siganifily tighter bound in all
cases.

where A is the Hessian of the quadratic functional when parametéri® «. Note that
this formula differs from that derived from the parameteadient (-a”~/y* A~) only
in the numerator’s inner product, as is a common theme throwigthis algorithm. The
theoretical and experimental results given below sughesthere is little reason why one
should prefer PCG to KCG in most kernel algorithms.

6 Experimental Results- Kernel Conjugate Gradient

We bench-marked KCG against PCG for both classification agdession tasks. In all
cases, KCG significantly out performed PCG.

Ouir first test was performed using KLR on th8PS dataset (with a training/test size of
7291/2007) for the common one-vs-all task of recognizirgdigit4. We used a length

scale hyperparameter= 5 as was used in [12] for RLS classification, and a regulaopati
constant\ = 0. Figure 1 summarizes the results in log scale.

Second, we used RLS for both regression and classificatiog trseeAbal one andSoi |
datasets in addition to thésPS dataset. Thabal one dataset consisted of 3133 training
examples and 1044 test examples in 8 attributes. Our expetahsetup was equivalent to
that in [14]. TheSoi | dataset contained three-dimensional examples of soil példén
areas of Honduras partitioned into a training set of size91a#@l a test set of size 383. The

1See UCI repositoryht t p: / / www. i ¢s. uci . edu/ nl earn/ ML.Repository. ht



latter dataset and corresponding hyperparameiets (.1514 ando = 0.296283) were
provided by [5].

Again, the results are summarize in Figure 1. For RLS, theistsea quadratic
1
pa) = QaT(K +Aa —yla

that can provide a lower bound to the regularized risk [4}[18s theory suggests (see
below) the upper bound under KCG converges comparably Wwi#Hdwer bound, while
the upper bound under PCG lags considerably behind. Thifiamfaster convergence
under a gap termination criterion [13].

7 KCG Analysis

The kernelized conjugate gradient algorithm was derivethfa normative point of view
where it was argued thaf, g)+;, defined the natural notion of inner product in the RKHS
and hence for the optimization procedure. The strong eogdiperformance of KCG noted
in the previous section, while in some sense not surprisimgngyve are using the “right”
inner product, deserves some analysis. We examine heradze tase (as in RLS) where
the analysis is more transparent, although similar rebolis near the optima of non-linear
risk functionals.

We note a classic bound on the error reduction of CG (see [9]),

VE—1\"
ledla <2 (Y221 ) Beola

where A is the Hessian of the quadratic with corresponding comtliiambers, and
|z||la = 27 Az is known as the energy norm ef Loosely speaking, this gives a run-
ning time complexity oD (/) for PCG.

We start by analyzing the effective condition number of K@G .with essentially all vari-

ants of CG, the algorithm’s dynamics can be described ingarfa preconditioning to the
spectrum of the Hessian [15]. It can be checked that KCG isvabpnt to an implicitly pre-

conditioned conjugate gradient algorithm with precomdiér K. The following theorem
relates the running time of PCG to KCG in light of the boundegibove.

Theorem. Let kpce be the condition number aR,.;; (Equation 2), and lekx be the

condition number of the kernel matri’ = [k(x;,z;)];;. Then the condition num-
ber kxc¢ resulting from preconditioning the RLS risk functional Byhas the relation

RpCcG = RKRKCG-

Proof. Letoy > o9 > ... > o, be the eigenvalues adk. The condition number of

K is thenkx = o1/0,. The Hessian ok, is A = KTK + AK and has eigenvalues
0? + \o; = 0;(0; + A), given in terms of the eigenvalues &f. This implies

o1 <01—|—)\> o1+ A

HPCG:U—n o F A = K0n+)\-

Since K is symmetric, positive-definite, the preconditioned Hasdbecomed —1 A
K Y KTK + M\K) = K + M, with corresponding eigenvalues + \. Thus,xpcc
KKKKCG-

ol

The condition numbek i of K is typically very large. In particular, as the regulariza-
tion constant decreases, the asymptotic bound on the gewes of PCG approaches the
square of the bound on KCG. Alternatively, as the reguléibnaconstant increasesxca
approaches implying anO(1) convergence for KCG, while the convergence of PCG re-
mains bounded below b9 (k).



It is informative to note that the decrease in computatianaiplexity from PCG to KCG
(O(k'/?) to O(k'/*)) is the same as that seen from steepest descent to BCG (o
O(x/2)) [9].

8 Tree-Augmented Algorithms

For many stationary kernels, it is often the case that theritgjof the basis functions
in Bp are nearly orthogonal. This often stems from a relation&t@fween the degree
of orthogonality of two basis functions(z, .), k(z’,.) € Bp and the Euclidean distance
betweenz andz’. This is often the case when using the exponential RBF kegiveh
above, in which the orthogonality between two basis fumgiocreases exponentially with
the square Euclidean distance between the two pfints ' ||%.

Previous work has shown how the evaluation of RKHS functipfxs = >, a;k(z;, x)
can be made fast when this holds usiNgbody type algorithms [6][2]. Intuitively, the
idea is to store the training data in a space-partitionieg,tsuch as a KD-tree [11] as was
use in our experiments below, and recursively descend ¢leedwiring evaluation, pruning
negligible contributions. The maximum and minimum impactach set of pruned points
can be easily calculated resulting in upper and lower boondhe evaluation error. We
demonstrate how such data-structures and algorithms cagelokto reduce the per iteration
O(n?) computational cost of both KCG and PCG during learning as ase¢valuation.

The inner loop computational bottleneck of KCG is in evahgtfunctions and
calculating the kernel inner product. If we rewrite the RKHi$her product as
(f,9m, = 22, qiBik(zi,xj) = 2, aig(z;), then reducing the computational com-
plexity of RKHS function evaluations will simultaneouslp@mpass both of these bot-
tlenecks. Similarly, the iteration complexity of PCG is daated by the computa-
tion of the parameter gradient. We can rewrite the parangrdient asV,F[f] =

[V F[f](x1), Vi F[f](x2), .., Vi.F[f](z,)]" (see 4), reducing the complexity to that of
finding V. F[f] € Hj and evaluating it times. As was the case with the algorithms as
previously described, the tradeoff still balances out s the per iteration complexity is
essentially equivalent between KCG and PCG using tree-antgd function evaluation.

Noting[f (1), ..., f(z.)]* = Ka suggests that the closed form quadratic line minimiza-
tion for both the upper and lower bounds of RLS under eitheGKeE PCG can easily be
augmented as well by expanding the Hessidps= K7 K + M\K in the case of the upper
bound and4; = K + AI in the case of the lower bound. Such a tree-augmented closed
form line minimization was used in the RLS experiments desd below.

9 Experimental Results- Tree-Augmented Algorithms

For these experiments, in addition to using 8w | dataset described in section 6, we
performed large scale RLS regressions on variable sizesessilof aPuget Sound ele-
vation map using hyperparameteps = 0.1/n ando? = kN/(nr), wheren is the size

of the training set, andV is the size of the entire height map. In this case, we chose
N = 500 x 500 = 250,000, andk = 15. The largest resulting datasets were on the order
of 100,000 points. It should be noted that the naive impletat@on in this case did not
cache kernel evaluations in a kernel matrix as such matiicetatasets abow@ (15, 000)
points proved intractable for the machine on which the erpemts were performed.

Figure 2 shows that tree-augmentation significantly odigpers the naive algorithm. Ex-
trapolating from the plot on the right, trees make possiltleusate kernel learning on

2htt p: / / www. cc. gat ech. edu/ proj ect s/ | ar genodel s/



Soil - tree-augmention

Iteration time comparison

log scale risk

Iteration time (minutes)

30 4 50 60 o 1 2 3 4 5 6 7 8 & 10
time (seconds) Size training set x10"

(] 10 20

Figure 2: These plots compare the performance of tree-anigué&CG to a non-caching
naive implementation on thoi | dataset (left) and progressively larger training set sizes
from thePuget Sound dataset (right).

datasets orders of magnitude larger than anything preliettempted.
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