7-1991

Almost Markov processes in Monte Carlo simulation of biological molecules

Robert H. Swendsen
Carnegie Mellon University, swendsen@andrew.cmu.edu

Djamal Bouzida
Carnegie Mellon University

Shankar Kumar
University of Pittsburgh - Main Campus

Follow this and additional works at: http://repository.cmu.edu/physics
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
ALMOST MARKOV PROCESSES IN MONTE CARLO
SIMULATION OF BIOLOGICAL MOLECULES

by

Robert H. Swendsen
Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213

Djamal Bouzida
Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213

Shankar Kumar
Department of Biological Sciences
University of Pittsburgh
Pittsburgh, PA 15260

WORKSHOP ON CALCULUS OF VARIATIONS AND
NONLINEAR MATERIAL BEHAVIOR
November 1-4, 1990

Research Report No. 91-121-NAMS-27

July 1991
Almost Markov Processes in Monte Carlo
Simulation of Biological Molecules

Robert H. Swendsen
Department of Physics, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213

Djamal Bouzida
Department of Physics, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213

Shankar Kumar
Department of Biological Sciences, University of Pittsburgh.
Pittsburgh, Pennsylvania 15213

Abstract

Computer simulation is an important tool for investigating properties of biological molecules. This paper presents newly-developed optimization techniques that take into account the inhomogeneity and anisotropy essential to the structure and function of biological molecules to produce highly efficient simulations.

During the past few decades, computer simulations have become an increasingly important tool for the study of thermodynamic systems [1]. Extremely rapid advances in both hardware and simulation techniques have improved the accuracy of such calculations and broadened the range of problems considered.

An important area of computer simulation at the borders of medicine, biology, chemistry, and physics is the study of macromolecules [2, 3]. Because of the large number of atoms and the complexity of the interactions, even today’s largest supercomputers are not yet sufficiently powerful to deal with all the problems of interest. Consequently, new approaches to these problems are needed to increase the efficiency of these calculations.
In this paper, we present a new approach we have developed. We have achieved substantial improvement in both the efficiency and reliability of the simulations, but our approach has also opened up some interesting mathematical questions about the nature of an approximation we have introduced.

The computer simulation methods currently in use (molecular dynamics and Monte Carlo) were originally developed for treating fluids. They naturally made use of the simplifying feature that fluids are isotropic and homogeneous. Unfortunately, macromolecules have neither property, which leads to a large decrease in efficiency.

A Monte Carlo simulation stores an explicit configuration of the system, in this case, a large molecule. The algorithm is a stochastic process that consists of moving atoms, or groups of atoms, to simulate the thermal motion of the system. It is usual to consider only Markov processes, in which the transition probabilities depend only on the current configuration of the system, and not on its history. This enables the use of a theorem that if a condition on the transition probabilities is satisfied (detailed balance) and the system is ergodic (any configuration can be reached from any other configuration in a finite number of steps with non-zero probability), then the simulation will correctly reproduce the thermal distribution (in the limit of infinite computer time).

In setting up a simulation, there are generally one or two global parameters that must be specified to optimize the efficiency. These are normally determined during a preliminary simulation, and then fixed during the simulation proper.

In order to take into account the inhomogeneity and the local anisotropy, we have used data accumulated during the simulation to determine parameters for optimizing moves of individual atoms. This necessarily relaxes the Markov condition, because the new transition probabilities depend on the recent history of the simulation [4]. Empirical studies demonstrate that the almost Markovian nature of the simulation does not introduce any systematic errors, but a mathematical proof is still missing.

To develop the new method, we approximate the local potential by an anisotropic simple harmonic oscillator of the form

\[H = \frac{1}{2} \sum_{ij} k_{ij} x_i x_j \]

where \(k_{ij} \) represents the spring constants. A transformation matrix, \(D_{ij} \), is
used to generate moves in an ellipsoid given by

\[d_i = \sum_j D_{ij} v_j \]

(2)

where \(v_j \) is a random vector chosen from a unit sphere. The optimum jump size scales as the contours of constant energy and is determined by a dimensionless parameter, \(F \), given by

\[F^2 = \frac{1}{2} \beta \sum_{ij} k_{ij} d_i d_j \]

(3)

where \(\beta = \frac{1}{k_BT} \). \(F \) is a scale factor chosen to optimize the efficiency of the simulation. The effective values of \(k_{ij} \) are determined from the simulation using

\[[\Delta E d_i d_m] = \frac{1}{2} \sum_{ij} k_{ij} [d_i d_j d_i d_m] \]

(4)

where \(\Delta E \) denotes the change of energy for an attempted move \(d_i \) and the square brackets indicate an average over all attempted moves, whether or not they were accepted. The matrix \(D_{in} \) is then obtained from

\[D_{in} = F \sqrt{\frac{2}{\beta \lambda_n}} V_n \]

(5)

where \(\lambda_n \) is an eigenvalue of \(K_{ij} \) and \(V_n \) is the corresponding normalized eigenvector. \(D_{ij} \) is updated periodically to adapt to the changing local environment of each atom. This method, which we denote as Dynamically Optimized Monte Carlo (DOMC) turns out to be remarkably robust when applied to a wide variety of Hamiltonians.

As a simple test for systematic error, we simulated a one-dimensional simple harmonic oscillator, and used DOMC with very short cycles. Averaging over only 1 MC-step/cycle, we find a large systematic error of 42%. However, with even 2 MC-steps/cycle, the error is reduced to 3%, and for 3 MC-steps/cycle, it is just over 1%. No systematic error was measurable for 4 MC-steps/cycle. Since we have generally used more than 10 MC-steps/cycle in our work, the systematic error appears to be negligible.

We have already applied this method to a large number of systems, including highly anisotropic oscillators and biomolecules ranging from adenosine (one of the bases of DNA) to complex proteins such as the Bovine
Pancreatic Trypsin Inhibitor (BPTI). Our programs have included additional refinements beyond the scope of this paper to take long-wave-length fluctuations into account more effectively. Results have been very good, with large improvements in efficiency.

Work is continuing to extend this approach and prospects are extremely promising. Efforts to analyze the almost Markovian nature of these algorithms and provide a clear understanding and estimation of the systematic errors is an important aspect of this research.

Acknowledgment: We would like to acknowledge support by the National Science Foundation Grant No. DMR-9009475[RHS and DB] and NIH Grant No.GM25671 [SK]. We would also like to thank the Pittsburgh Supercomputer Center for supercomputer time under Grant DMB890026P [SK].

References

[4] S. Shumway and J. P. Sethna (Bull. Am. Phys. Soc. 35 500 (1990)) have presented a novel technique for optimizing MC moves. It is different from ours, but it also uses an almost Markovian process to optimize the simulations.
Almost Markov Processes in Monte Carlo Simulation of Biological Molecules

Title: Almost Markov Processes in Monte Carlo Simulation of Biological Molecules

Authors: Robert H. Swendsen, Djamal Bouzida & Shankar Kumar

Performing Organization: Carnegie Mellon University
Department of Mathematics
Pittsburgh, PA 15213

Sponsoring Agency: U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

Abstract: Computer simulation is an important tool for investigating properties of biological molecules. This paper presents newly-developed optimization techniques that take into account the inhomogeneity and anisotropy essential to the structure and function of biological molecules to produce highly efficient simulations.