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Abstract. We present a framework to support consumable credentials in
a logic-based distributed authorization system. Such credentials convey
use-limited authority (e.g., to open a door once) or authority to utilize
resources that are themselves limited (e.g., to spend money). We design a
framework based on linear logic to enforce the consumption of credentials
in a distributed system, and to protect credentials from nonproductive
consumption as might result from misbehavior or failure. Finally, we give
several usage examples in the framework, and evaluate the performance
of our implementation for use in a ubiquitous computing deployment at
our institution.

1 Introduction

The use of formal logics to model (e.g., [17, 37]) or implement (e.g., [9]) dis-
tributed access-control decision procedures provides assurance that access con-
trol is implemented correctly [2]. Such assurance is beneficial in light of the
complex interactions that such systems are designed to accommodate, which
may involve policies constructed in a decentralized way and that utilize dele-
gations, roles and groups. Logic-based access-control systems typically express
these policy elements in digitally signed credentials, and use the credentials as
premises in a formal proof that a reference monitor’s policy is satisfied by the
credentials.

Despite significant attention to these systems in the last decade [40, 38, 4,
5], a natural form of access-control policy remains largely unexplored by this
line of research: policies that use consumable authority that can be exercised
only a limited number of times. Numerous types of authority are consumable,
typically because the real-world resource affected by exercising the authority is
itself consumable: e.g., the authority to spend money, or to sell theater tickets,
would fall into this category. As a tangible example, a job hosting service might
require a proof not only that a client’s submitted job is safe to execute [43], but in
addition that the client committed the required fee to the service to execute the
job. Existing decentralized access-control frameworks, which express authority
by way of digitally signed credentials that are easily copied, would permit a
client to utilize the same credential (and hence the same funds) for executing
multiple jobs.

In looking to extend prior work on access-control logics to support consump-
tion of authority, one is quickly led to linear logic, a type of logic in which an
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inference expends the premises that enabled it [31]. For example, a proof con-
structed in linear logic that a client’s job is safe to execute, which is dependent
on the client submitting payment, would consume the payment credentials. Once
the credential is used in a proof, it is consumed, thus making it unavailable for
use in future proofs. This accurately describes the corresponding real-world sce-
nario: money, once withdrawn from an account and applied to a purchase, is
spent and cannot be used again.

Using linear logic to model access-control systems is an interesting but rel-
atively straightforward exercise. Recent work has conclusively argued, however,
that implementing distributed access-control systems using logical frameworks
provides a significantly greater level of assurance of the systems’ correctness
than merely modeling these systems using logic [6, 9]. This greater assurance
is a product of bridging the gap between a system’s specification (which can
be easily modeled) and the system’s implementation (which departs from the
specification and therefore the model). To benefit from this greater assurance
of correctness for an implemented access-control system, we need to develop a
distributed linear-logic framework that we can use as the basis of this system.

This task is more complicated than building distributed frameworks that
implement classical or intuitionistic logic, as has been done heretofore. In these
previous frameworks and systems, as long as the appropriate credentials can be
located, proofs can be created and verified on different nodes and at different
times. In linear logic, however, a credential is transient, in that its use on one node
causes it to become unavailable throughout the entire system. Hence, the task
of implementing such a linear-logic based distributed system is more difficult.

In this paper we develop a decentralized logical framework for enforcing the
consumption of credentials. Our framework is very flexible in that it permits
the enforcement of arbitrary, even dynamically determined limits on the use of
credentials. For example, in a Chinese wall policy [16], a client that accesses one
resource is then precluded from accessing another for which the client, by virtue
of accessing the first resource, now has a conflict of interest. Our framework
could be used to implement this policy, consuming the client’s credential for the
second resource upon the client’s use of a credential for the first.

The high-level strategy for enforcing credential consumption in our frame-
work is to issue each consumable credential in such a manner that the credential’s
use requires the consent of another entity, its ratifier. The credential’s ratifier,
which is named in the credential itself, tracks the use of the credential and lim-
its that use accordingly. Though this high-level approach is unsurprising, its
conceptual simplicity is somewhat deceptive, due to several challenges that it
raises.

1. In a setting where the steps of constructing a proof of authority and checking
that proof are distinct [4], it is unclear what constitutes a credential use and
thus the moment at which a credential should be consumed. One possibility
is consuming the credential upon the assembly of a proof in which it is
a premise. Another possibility is consuming it when a reference monitor
checks the proof. As we will see in Section 3, neither of these alternatives
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is satisfactory, and we propose a third alternative that, we argue, is more
compelling.

2. For many types of consumable credentials, not only must the credential’s con-
sumption be enforced, but its availability must be protected against wasted
“consumption”. That is, a credential’s consumption should not occur with-
out the authorized party gaining the benefit of having used it. (A failure to
ensure such availability would be particularly of concern for, e.g., authority
to spend money.) In particular, if a credential is “used” during the construc-
tion of a proof, but the proof cannot be completed due to the lack of another
permission, then the credential should not be consumed (since no authority
was, in fact, exercised).1 Our approach to dealing with availability in our
framework draws on techniques from fair contract signing [11].

3. A hallmark of the proof-carrying authorization technique from which we start
[4] is that a reference monitor need not be changed even if the application-
specific logic in which proofs are constructed is changed. This benefit stems
from the reference monitor’s use of a checker for some base logic, in which
other application-specific logics can be defined. In building a framework to
enforce consumable credentials, we would like to retain this feature to the
extent possible, extending the reference monitor’s checker with constructs
that are resilient to changes in the underlying application-specific logic.

To summarize the contributions of this paper: We discuss our approach to
addressing the above issues, and detail the design and implementation of a frame-
work that supports consumable credentials. We also outline several use cases for
this framework, and evaluate the key facets of our implementation that affect
its performance.

2 Related Work

The study of logics for access-control gained prominence with the work on the
Taos operating system [3]. Since then, significant effort has been put into formu-
lating formal languages and logics (e.g., [3, 5, 14, 40]) that can be used to describe
a wide range of practical scenarios. Initially, the focus was on formulating log-
ics that would be able to describe common abstractions such as roles, groups,
and delegation without admitting any counter-intuitive behavior [2, 36, 35, 37]. In
many cases, these logics were designed to model an implemented access-control
system or policy-specification language [1, 3, 32, 33, 39]; the logics often included
modality (to express the viewpoints of different actors), the law of the excluded
middle, and some high-order features (typically, limited quantification over for-
mulas). The usefulness of mechanically generated proofs (e.g., that access to

1 Even a valid and complete proof may not be accepted, in which case we use extra-
logical means to restore the availability of any consumed credentials. As in the case
where a ticket holder is refused entry to a concert due to overcrowding, she should
expect reimbursement. We do not formally model this compensation process in the
logic, nor discuss it further in this paper.
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a resource should be granted) led to various efforts to balance the decidabil-
ity and expressiveness of access-control logics. These efforts resulted in various
first-order classical logics, each of which would describe a comprehensive but not
exhaustive set of useful access-control scenarios [5, 34, 38, 40], and more powerful
higher-order logics that served as a tool for defining simpler, application-specific
ones [4]. More recently, intuitionistic logics have been investigated as providing
a more accurate model of the real world than classical logics [30]. An increasing
amount of attention is spent on formally proving that particular access-control
logics are sound, not only with respect to some abstract model, but also with
respect to the reality the logics are intended to model [6, 30].

In this body of work on access-control logics, a credential is typically created
by digitally signing a formula (e.g., Alice digitally signs that she is delegating
her authority to Bob). Upon verification of the signature, the credential is repre-
sented as a predicate in the logic (e.g., Alice signed (. . .)), after which its use is
unencumbered (i.e., the predicate can be used as a premise in arbitrarily many
proofs and can no longer be made unavailable). This leads to some difficulty in
modeling standard revocation and expiration. To overcome this deficiency, the
logic is typically extended with mechanisms that allow for enforcement to occur
outside the logic. One such frequently used mechanism is to issue short-lived
certificates and use them to implement counter-signing of longer-lived certifi-
cates (e.g., Alice signed (countersigner signed (. . .) → . . .)). Although some-
times adequate, these methods are limited. Once a revocable certificate has been
counter-signed and deemed valid, the number and scope of its uses cannot be
further controlled. Similarly, these methods make it difficult to reason about
what may be true in the future or what may have been true in the past.

Though not previously researched in the context of logic-based access control,
consumability has been extensively studied in applications such as electronic
cash [21–23, 45, 48]. Preventing double-spending is an instance of our problem
in which the rules regarding consumption are simple: money can be spent only
once. As such, it is not surprising that our solution has certain elements in
common with these proposals, notably the use of an online server (the ratifier)
to enforce the consumption of a credential.2 While the technique we developed
can be used to implement an electronic payment system, that is by no means
the only application of consumable credentials, nor is such an application meant
to compete with work already done in electronic payment systems. The novelty
of our approach is the integration of this technique with a logic-based access-
control framework, and in implementing a general primitive for enforcing a range
of consumption policies for arbitrary consumable resources.

2 Detecting double-spenders does not require an online server [19, 24, 44, 50]. However,
merely detecting the misuse of authority is not sufficient for access control more
generally.
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3 Preliminaries and Goals

In this section we describe the goals of our consumable credential system. To do
so, we first present an illustrative access-control logic, discuss extending it with
consumable credentials, and then describe what it means to have a system that
implements it.

3.1 Logic-Based Access-Control

In this section we introduce a simple access-control logic, adapted from [8], that
is illustrative and will serve as a running example through the paper. Our access-
control logic is inhabited by terms and formulas. The terms denote principals
and strings, which are the base types of our logic.

The key() constructor elevates strings representing public keys to the sta-
tus of principals; key(pubkey) is the principal who owns the private key that
corresponds to pubkey. Principals may want to refer to other principals or to
create local name spaces—this gives rise to compound principals. We will write
Alice.secretary to denote the principal whom Alice calls “secretary.”

To affirm that a formula F is true, Alice signs it with her private key. The re-
sulting sequence of bits will be represented by the formula pubkeyAlice signed F .
If it can be inferred that Alice believes F , using inference rules of the logic, then
we write Alice says F .

To describe a resource that a client wants to access, we introduce the action()
constructor. The first parameter to this constructor is a string that describes
the desired action (e.g., “pay”). The second parameter is a list of qualifica-
tions of the desired action (e.g., 〈Bob, $100〉). To allow for unique resource re-
quests, the last parameter of the action() constructor is a nonce. A principal
believes the formula action(action , parameters ,nonce) if she thinks that it is
OK to perform action during the session identified by nonce. We will usu-
ally omit the nonce in informal discussion and simply say action(action) or
action(action , parameters).

Delegation is described with the speaksfor and delegate predicates.
Alice speaksfor Bob indicates that Bob has delegated to Alice his authority to
make access-control decisions about any resource or action.
delegate(Bob, Alice, action) transfers to Alice only the authority to perform the
particular action called action .

An environment Γ denotes a multiset of hypotheses, and the judgment Γ ` F

denotes that F can be proved from Γ . The following inference rules define how
new judgments can be derived.

Γ ` pubkey signed F

Γ ` key(pubkey) says F (says-i)
Γ ` A says (A.S says F )

Γ ` A.S says F (says-ln)

Γ ` A says (B speaksfor A) Γ ′ ` B says F

Γ, Γ ′ ` A says F (speaksfor-e)
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Γ ` A says (B speaksfor A.S) Γ ′ ` B says F

Γ, Γ ′ ` A.S says F (speaksfor-e2)

Γ ` A says (delegate(A, B,U )) Γ ′ ` B says (action(U, P, N))

Γ, Γ ′ ` A says (action(U, P, N)) (delegate-e)

In addition, several standard rules describe how hypotheses from Γ can be
used to prove that formulas F are true. These rules are typically implicit in the
study of access-control logics.

Γ, F ` F (hyp)

Γ, F, F ` G

Γ, F ` G (contr)

Γ ` G

Γ, F ` G (weak)

The hyp rule states that if the proof goal is available as a hypothesis then it
can be derived directly. In practice, each of the elements in environment Γ has
the form pubkey signed F , and is the projection of a verified digitally signed
certificate into the logical environment. The contraction and weakening rules
formalize the idea that a hypothesis may be used multiple times (contr) or
need not be used at all (weak). This is intuitively consonant with the nature of
digitally signed credentials, which can be copied and used without limit.

For the purpose of illustrating how these rules for manipulating hypotheses
allow us to use a single hypothesis twice, we introduce an additional rule.

Γ ` F1 Γ ′ ` F2

Γ, Γ ′ ` F1 ∧ F2 (and-i)

With the help of this rule, we can now construct the following derivation.

(hyp)
Γ, A signed F ` A signed F

(hyp)
Γ ′, A signed F ` A signed F

(and-i)
Γ, Γ ′, A signed F, A signed F ` (A signed F ) ∧ (A signed F )

(contr)
Γ, Γ ′, A signed F ` (A signed F ) ∧ (A signed F )

Notice that by the penultimate step we managed to derive (A signed F ) ∧
(A signed F ) only by assuming that we had two copies of A signed F as
hypotheses. The final step, through the application of the contr rule, explicitly
allows a single A signed F hypothesis to be sufficient.

3.2 A Linear Logic for Access-Control

In this section we augment our access-control logic to admit the use of “consum-
able” credentials.

The desire to strictly control the use of credentials is at odds with the contr
and weak rules introduced in Section 3.1. To describe the use of consumable
credentials, we borrow from linear logic the idea of a separate environment of
“linear” hypotheses [20]. A judgement will now have two multisets of hypotheses:
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the standard (reusable) hypotheses Γ , and the linear (consumable) hypotheses
∆. A judgement is now written as Γ ; ∆ ` F . The difference between Γ and ∆

is that contraction and weakening apply to Γ but not to ∆. The relevant rules
change as follows.

Γ, F ; · ` F (hyp) Γ ; F ` F (hyp2)

Γ, F, F ; ∆ ` G

Γ, F ;∆ ` G (contr)

Γ ; ∆ ` G

Γ, F ; ∆ ` G (weak)

As before, the contr and weak rules allow unmetered use of the reusable
hypotheses Γ . However, the lack of corresponding rules about the restricted
hypotheses ∆ means that each hypothesis in ∆ must be used exactly once.
Hence, if a particular digital certificate represents a consumable credential, we
will project the corresponding hypothesis into ∆, whereas Γ will be inhabited
by the projections of unrestricted credentials. A multi-use consumable credential
that is used several times in a proof will require that the appropriate number of
copies be added to ∆. Notice that the derivation of (A signed F )∧(A signed F )
shown in the previous section will still work only if the A signed F hypothesis
is in the unrestricted environment Γ . If it were in ∆, the contr rule used in the
last step of the derivation could not be applied, and the derivation would fail,
enforcing the principle that each hypothesis in ∆ can be used only once.

3.3 Consuming Credentials

We would now like to consider how to utilize this linear access-control logic
in the implementation of access control in a distributed system. In the access-
control context, the hypotheses of a proof are credentials, and the proof shows
that a policy (the proved formula) is satisfied by the credentials. The primary
challenge introduced when this proof involves linear hypotheses is enforcing their
consumption. Within the context of a single proof this is straightforward, as the
reference monitor that is checking the proof can employ a linear proof checker,
making sure that the hyp2 rule is used to derive F exactly the number of times
that it is present as a hypothesis in ∆.

In the scenarios that motivate our study, however, consumption of F should
not be limited to one proof, but rather should be global. In particular, these
scenarios are populated by principals who issue credentials, generate proofs, and
verify proofs that they have communicated to each other. A proof generated by
one principal is typically sent to a second principal as part of a request to access
a resource controlled by that principal. In these scenarios, we must prevent not
only the profligate use of a particular consumable credential within a single
proof, but also such a credential’s use in arbitrarily many different proofs that
may be created or verified by different principals.

This cannot be enforced through locally checking a proof alone; some dis-
tributed coordination must take place. More fundamentally, the moment of “use”



8

at which the credential should be “consumed” is a subtle design decision with
significant ramifications. One possibility is to consume a credential when a proof
containing it is verified by a reference monitor. However, this makes it impossible
to determine whether a proof is valid or invalid by simple examination; rather,
validity becomes a temporal notion. Another alternative would be to consume
the credential during proof construction when the linear inference rule hyp2 is
used. However, proof construction is a distributed search process that explores
numerous potential paths for proving a result,3 terminating when one of these
paths succeeds [8]. Since most of the explored paths do not lead to successful
proofs, consuming credentials upon each application of linear inference rules in
this search process would quickly consume most credentials without any benefit
being realized from them.

For these reasons, we reject both of these design options, and explore a third
option in this paper. In this design, hypothesis consumption occurs as a step
after the main search process for constructing a proof is completed, but before
the proof is checked. Intuitively, the proving process prior to this step proceeded
under the implicit assumption that the consumable credentials ∆ used in the
proof are valid. The last stage of the proving process is then to explicitly verify
that the consumable credentials are in fact available and to mark their uses,
and, if appropriate, render the credentials unavailable for future proofs. This
transforms a potential proof of access (a proof of the formula F ) into an actual
proof (a proof of �F ).

Γ ;∆ ` M : F Γ ′; · ` ratified(∆, M, F )

·; · ` box(C, M) : �F (box-i)

Here, M denotes the proof term that describes the derivation of F . The
proof term is implicitly present in every judgement, but when we do not make
use of it, we omit it for clarity. box(C, M) is the proof term that describes the
derivation of �F ; it encapsulates the digital certificates C that give rise to the
environments Γ , Γ ′, and ∆.

Informally, we refer to the application of this rule as “boxing” the proof of F .
A boxed proof may be checked on any host and arbitrarily many times. The key
part of boxing F is demonstrating that the consumable credentials have been
ratified. As we will see in Sections 4 and 5, ratified has both a logical and an
extra-logical meaning, and is implemented partly by a distributed operation that
enforces the use of the consumable credentials that gave rise to ∆. Since it may
be possible to construct different proofs that prove the same goal, ratification is
performed with respect to both a goal F and the corresponding proof term M .
All proofs of access in our system are of goals of the form �F , and are verified
with respect to hypotheses in Γ , Γ ′, and ∆. The certificates C that give rise to Γ ,
Γ ′, and ∆ are packaged with the logical proof M of F to form the self-contained

3 While the proof search problem is of central importance to such a system, research
has been done in systems similar to ours yielding tractable solutions to the search
problem which apply to our system as well [26].
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proof term box(C, M), which can be verified in the absence of any hypotheses
and without consulting any external credentials.

Suppose that each consumable credential δ is created with an allowed number
of uses #δ. The main property required of boxing is captured by the following
safety condition:

Bounded Use Let formulas �F1, �F2, . . . be those formulas proved via the
box-i rule, and let ∆1, ∆2, . . . be the linear environments used in those ap-
plications of box-i. Then, the multiset

⋃
i
∆i contains at most #δ instances

of δ.

In addition to this bounded-use property, for boxing to be useful it also must
be atomic, i.e., either boxing succeeds, in which case all hypotheses in ∆ are used,
or boxing fails and none of the hypotheses in ∆ are used. This property and its
implementation will be discussed in Section 5. Another interesting property is
one that describes the idea that bounded resources have either been used or are
still available for use; however, except in how it directly relates to atomicity, we
do not discuss this further in the current paper.

4 A Distributed Framework for Linear Access-Control

Logics

In this section we describe a general distributed framework that supports the
use of linear access-control logics like the one described in Sections 3.2 and 3.3.

One of our main goals is to make our framework general, that is, capable
of encoding not just our access-control logic but also other access-control logics
with consumable credentials. A way to achieve this flexibility is to base the
system on a more general logic which allows various application-specific logics
to be expressed within it. This approach has been employed previously [4] using
higher-order logic [25].

The first issue to be resolved is the choice of base logic for our system.
Our access-control logic differs from previous ones in that it supports linear
reasoning. We have several options in deciding on a base logic that can support
this additional feature. One option is to follow previous work in using a standard
higher-order logic, which has been shown capable of expressing linear logics [46].
However, because higher-order logic has a different native notion of judgment,
such an encoding of linear logic may be inelegant. A second option is to use a logic
that melds the features of linear and higher-order logic [42]. The third possibility,
and the one that we choose, is to use a metalogic such as LLF [18]. In this case,
we can either encode our linear access-control logic in LLF directly, or encode a
linear higher-order logic in LLF and then encode our access-control logic in this
intermediate logic. Each of these two options has advantages; what is relevant
for the current work is that we have a base logic with standard linear-logic
notions of judgment and consumption of hypotheses. Not coincidentally, these
notions embody the rules described in Section 3.2 for manipulating hypotheses
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in our linear access-control logic. Additionally, the base logic either supports
directly or allows us to define standard connectives such as implication (→,
which in the context of linear logic is traditionally denoted by (), conjunction
(∧, traditionally denoted by ⊗), and quantification (∀, ∃).

Having settled on a suitable base logic, the embedding of the operators (such
as delegate) and rules (such as delegate-e) of our application-specific logic
into the base logic is straightforward, and similar to that of previous work [4].
Difficulties arise when we tackle the elements of our logic that have more than
just a local meaning, i.e., elements whose meaning is defined with respect to the
entire, distributed system. In particular, we must answer the following questions:
(1) What exactly is a consumable credential? and (2) What is the logical and
operational meaning of ratified?

Before we proceed to formally codify consumable credentials and ratifying,
let us revisit their intuitive meanings, which are linked. Ratification is the step of
generating a proof of access in which the consumption of consumable credentials
used by the proof is globally enforced. Ratification transforms a potential proof
into an actual proof through verifying that each of the consumable credentials
is in fact still available to be used. Since every credential, including consumable
ones, is issued by some principal, it seems reasonable for that principal, or his
proxy, to be responsible for keeping track of whether or not the credential has
been consumed. Ratification will therefore have to involve communicating with
each of a set of principals that are responsible for the consumption-accounting
of the certificates involved in the proof.

Clearly, there are extra-logical aspects to the implementation of ratification
and consumable certificates. The immediate question, however, is whether rat-
ification and consumable certificates need to be new primitives in the logic, or
whether it is possible and useful to at least partially define them with respect
to already-present primitives. In our quest to develop a general framework for
resource-consuming access-control logics, we would prefer the latter.

A consumable credential is one whose ultimate validity is determined only
at time of ratification. That is, the credential’s potential meaning is from the
outset sufficiently clear that we can reason using it and create almost-complete
proofs; at the same time, a final step will be necessary for that meaning to be
formally realized. These requirements are captured by the following definition.

A signedA′ F ≡ A signed (∀M∀G.consents(A′, F, M, G) → F )

From the moment it is created by A, it is clear that this credential represents
A authorizing the statement F . At the same time, it can be logically proved that
A authorizes F only if it can first be demonstrated that a ratifier A′ confirms that
the credential is still valid (i.e., has not been consumed), by issuing a ratification
credential (consents(A′, F, M, G)). To tie the use of a consumable credential to
a particular proof, the ratification credential includes both the proof goal G and
the proof M . To make it possible to delay this confirmation until the last step
of proof construction, we extend our application-specific logic with the following
rule.



11

Γ ;∆ ` pubkey signedA F

Γ ; ∆ ` key(pubkey) says F (says-i2)

This rule allows us to reason with consumable credentials by temporarily as-
suming that they are valid. As we will see, the ratification that takes place during
application of the box-i rule will require that we provide a ratification credential
for each consumable credential in the proof. As discussed in Sections 3.1 and 3.2,
the premise of the says-i2 rule, pubkey signedA F , can be derived only if the
corresponding hypothesis exists in the environment ∆.

The definition of the consents predicate varies between different ratification
protocols; these are discussed in detail in Section 5. The parameters to consents

include the statement, F , of the consumable credential, the proof goal G towards
which the credential is being used, and the actual proof M of that goal. The
latter pieces are necessary to tie the ratification of a credential to its use in a
particular proof; otherwise, a credential could be ratified as part of one proof,
then extracted from that proof and reused. In the most straightforward case,
consents can be implemented as the simple credential,

consents(A′, F, M, G) ≡ A′ signed 〈F, M, G〉 (1)

Ratification should be possible only if all uses of consumable credentials in
a potential proof are valid. The implementation of this operation as a protocol
carried out by different nodes of a distributed system is described in Section 5.
This protocol will involve conveying to each ratifier the consumable credentials
to be used and convincing them that all ratifiers involved in an execution of
the protocol are ratifying credentials that are used within the same proof. These
properties, then, we would also like to capture by our definition of what it means
for the credentials ∆ to be ratified.

Γ ; · ` ratified(·, M, G) (rat1)

Γ ; · ` consents(A′, F, M, G) Γ ; · ` ratified(∆, M, G)

Γ ; · ` ratified((∆, A signedA′ F ),M, G) (rat2)

Informally, if a linear environment is empty (·) then it is considered ratified
with respect to any proof M of a goal G (rat1). Otherwise, ratification is defined
recursively (rat2): a linear environment (∆, A signedA′ F ) is considered rati-
fied if the consumable credential A signedA′ F has a corresponding ratification
credential (consents(A′, F, M, G)), and if the remainder of the linear environ-
ment (∆) can also be ratified. Since each ratification credential is issued with
respect to the current proof and proof goal, each ratifier can inspect the proof
before consenting to the use of a consumable credential within that proof. The
ratifier can also count and record the number of uses of a consumable credential
in the proof, and give or withhold its consent accordingly.
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Given this, a proof of access is constructed as follows. First, a client Alice
requests from Bob that he grant her access to a resource. Bob responds with
the statement of the theorem Alice must prove; typically, the statement is of
the form �(Bob says action(action)). Alice proceeds to construct a proof of
Bob says action(action) using consumable credentials Charlie signedRCharlie F1

and Danielle signedRDanielle F2. Once Alice has completed this subproof, she
contacts the ratifiers of Charlie’s and Danielle’s credentials, sending them the
(not yet boxed) subproof of Bob says action(action) and requesting that each
ratify the credential for which it is responsible. Upon verifying that the credential
submitted for ratification has not been consumed, each ratifier records the use of
the consumable credential and produces the appropriate ratification credential.
This enables Alice to prove that the multiset of consumable credentials has been
ratified and thereby that �(Bob says action(action)). Alice sends this proof
to Bob, along with all the relevant consumable credentials and their ratification
credentials. After verifying the proof, Bob grants Alice access to the desired
resource.

Our implementation of consumable credentials uses on-line servers (the rati-
fiers) to validate credentials, which raises the question of whether the consumable
credentials themselves could simply be issued immediately prior to the time they
are needed. Such an approach, however, would prohibitively curtail the ability to
reason a priori about consumable credentials during the construction of proofs.
Our techniques are also related to countersigning; the advantage of our approach
lies in that we carefully address what it means to consume multiple different cre-
dentials in the course of creating a single proof. This is done in such a way to
prevent both the reuse of these credentials in other proofs and their needless
consumption in the course of constructing proofs that will ultimately fail; this
latter point is discussed further in the next section.

To help it determine whether or not to ratify a particular credential, a ratifier
will typically keep state on a per-credential basis (e.g., the use count). Though
this is an additional burden on the ratifier, it is no more than the burden that
is typically placed on normal credential issuers. Additionally, in many cases the
per-credential state will have to be kept only as long as the credential remains
unconsumed and has not yet expired. Because of this, in the scenarios we envi-
sion, we expect the burden of keeping state to be light.

5 Atomicity

The outline of the ratification protocol described in Sections 3.3 and 4 overlooks
the possibility that the protocol fails, either because a ratifier finds that the
credential it is being asked to ratify is already consumed, or because a ratifier is
unavailable. If this were to happen, some consumable credential might be marked
as used by its ratifier, even though the proof of �(Bob says action(action)),
and thus accessing the resource, fails. To avoid this, in this section we refine the
ratification protocol to implement the following property, in addition to Bounded
Use:
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Atomicity The ratification protocol for �F is atomic, in that either the ratifier
for each consumable credential δ ∈ ∆ records each of the uses of δ in the
proof of �F—and in this case the proof of �F succeeds—or none of the
ratifiers records any such uses.

Recall that each ratifier produces a digitally signed ratification credential to
ratify each use of the consumable credential for which it is responsible. Imple-
menting the contribution of these digital signatures atomically for the goal F

can be achieved by running a multiparty contract-signing protocol (e.g., [11, 29])
among the ratifiers for the consumable credentials used in the proof of F . Infor-
mally, a contract-signing protocol is one in which either all honest signing parties
obtain a contract bearing all parties’ signatures, or no one does. In our context,
each ratifier participates in a contract-signing protocol with the other ratifiers to
contribute its ratification credential. Each ratifier engages in the protocol only
if the consumable credential for which it is responsible is not yet consumed,
and registers a use of the credential if and only if the contract-signing protocol
succeeds.

There are many contract-signing protocols that can achieve our requirements.
That said, the particular protocol in use may require that we adjust the definition
of consents(A′, F, M, G) to accommodate the possible outputs of the protocol.
In particular, deterministic contract signing protocols typically employ a trusted
third party to settle disputes among the signers.4 The trusted party generally
has the power to either “force” a signature from a participant who has promised
in previous rounds to sign the contract, or to terminate the protocol and ensure
no one receives a signed contract. So-called “optimistic” protocols seek to avoid
contacting the third party except in exceptional cases.

Such contract-signing protocols can be distinguished by whether or not the
contract output by the protocol enables a verifier to determine if a party’s sig-
nature was forced by the third party. If so, then the third party is visible in
the protocol (e.g., [10]); if not, it is invisible (e.g., [29]). If the protocol ensures
an invisible third party, then the definition of consents(A′, F, M, G) need not
separately accommodate runs in which the third party is consulted and runs in
which it is not; e.g., the definition in (1) would suffice. However, if the third
party is visible, then the definition of consents(A′, F, M, G) would consist of
two disjuncts, one for the case when the third party is not consulted and one for
the case in which it is. This latter disjunct is protocol-dependent and so we do
not detail the alternatives here, but formulating this disjunct is straightforward
for the third-party-visible contract signing protocols of which we are aware.

Another issue in the use of a contract-signing protocol that employs a third
party is the question of what third party to use. While this choice is orthogonal
to our techniques, we caution the reader against using the prover in this role, i.e.,
the component requesting access and so applying the box-i rule in the context
of assembling a proof. In most applications, this component would gain greater

4 There are probabilistic protocols for performing contract signing that do not employ
a trusted third party, but they have an error bound at least linear with the number
of rounds [13].
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authority (e.g., unlimited use of a consumable credential) by misbehaving in
the role of the third party in the contract signing protocol. For this reason,
better choices include utilizing the reference monitor that will check the proof,
or alternatively implementing the third party using a multiparty implementation
among the ratifiers themselves. This latter alternative requires an assumption
that a majority of the ratifiers behave honestly, but in this case the contract-
signing protocol can be particularly efficient [10].

6 Example

Using the concepts described in this paper it is easy to implement a number
of applications that use consumable resources. Money is one of the easiest con-
sumable resources to think about, and indeed these techniques can be used to
develop a payment system within a logic-based access-control framework. While
we are not proposing this example system as an alternative to iKP [12], SET [47],
NetBill [49] and other electronic commerce protocols, it does serve to illustrate
the expression and manipulation of consumable resources in a logic-based access-
control framework.

As an example, imagine Alice walks into a store, fills her shopping cart with
items and proceeds to check out. Instead of giving the clerk cash or a credit card,
she instead presents him with a proof that the store will be given its money.

In this scenario, Bob, the store owner, is the reference monitor. He controls
the items in his store, and will only release them once he has been given a proof
of payment. Just as with credit card payments, Bob doesn’t need the money
immediately, but he needs to be convinced that when he later submits the proof
Alice gave him to his bank, he will be paid.

When Alice approaches the counter and begins to check out, Bob issues her
a challenge describing the proof of payment that she must produce.

G = � ACH says action(pay , 〈Bob, $100〉,nonce)

The challenge contains a nonce that is used to ensure freshness, enforce that
the consumable credentials were boxed with respect to this proof, and also to
serve as a transaction identifier. Since Bob cares chiefly that he is paid and not
who will pay him, the challenge requires the payment to be authorized by the
Automated Clearing House (ACH), a trusted authority that facilitates transfers
between banks. Alice’s task is now to construct a proof of payment. She starts
the proving process by stating her willingness to pay Bob.

C0 = Alice signed action(pay , 〈Bob, $100〉,nonce)

Alice must now demonstrate that there exists a chain of delegate and
speaksfor relations from herself to the ACH. She has reason to believe such
a chain exists because she has an account in good standing with a bank that has
been certified by the ACH.
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During proof generation Alice obtains the following credentials.

C1 = KBankA signed (key(KAlice) speaksfor key(KBankA).Alice)

C1 = KACHBC signed (key(KBankA) speaksfor key(KACH).BC.BankA)

C3 = KACH signed delegate(key(KACH),key(KACH).BC, pay)

C4 = KACHBC signed delegate(key(KACH).BC,key(KACH).BC.BankA, pay)

The first two credentials describe the speaksfor relationships between Alice and
her bank and between her bank and the Bank Certifier (BC) of the ACH. Cre-
dentials C3 and C4 form a delegation chain from the ACH to its Bank Certifier,
and from there to Alice’s bank (BankA). Using these delegations, any pay state-
ment made by BankA has the authority of being made by the ACH; in other
words, BankA is accredited by the ACH.

Alice must now find a delegation statement allowing her to spend money
from her account.

C5 = KBankA signedKRBankA
delegate(key(KBankA),key(KBankA).Alice, pay)

This credential differs from the others in that it is consumable—Alice is allowed
to withdraw money only while her account has a positive balance. With this
credential, Alice can construct the subproof

M : ACH says action(pay , 〈Bob, $100〉,nonce)

All that remains is to ratify credential C5 and invoke the box-i rule to finish
the proof. To obtain the ratification credential for C5, Alice submits the proof
to BankA’s ratifier, RBankA, which is named in that credential. The ratifier
deducts $100 from Alice’s account and transfers that money to the ACH. He
also creates the following ratification credential.

C6 = KRBankA signed 〈delegate(key(KBankA),key(KBankA).Alice, pay),M,

goal(key(KACH) says action(pay , 〈Bob, $100〉,nonce))〉

With this credential in hand, Alice can prove

ratified({C5}, ACH says action(pay , 〈Bob, $100〉,nonce)

Applying the box-i rule she completes the proof

� ACH says action(pay , 〈Bob, $100〉,nonce)

and submits it to Bob for verification. Bob, convinced he will be paid for the
items in Alice’s cart, releases them to Alice. Bob will later show the proof to his
bank, which in turn will hand it over to the ACH, which will actually transfer
the funds to Bob’s account. The Bank records the nonce in the statement of
Bob’s proof to prevent Bob from cashing the proof again. The full proof can be
seen in Appendix A.2.
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7 Implementation

At the time of this writing, we are in the process of deploying a distributed
authorization framework called Grey [7] to control access to offices and other
physical space on two floors (more than 30,000 square feet) of a new building
at our institution. To support this, during building construction each door was
equipped with an electric strike controlled by an embedded computer. A user
exercises her authority to open a door via her smartphone, which connects to the
embedded computer using Bluetooth, and receives a goal to prove (including a
nonce). The smartphone utilizes a distributed proving system (similar to the one
described in [8]) to generate the proof, possibly with help from other smartphones
that hold necessary credentials, and ships this proof to the embedded computer in
order to open the door. Our plans include deploying Grey-capable smartphones
to roughly 100 building residents.

We have developed the linear logic framework presented here as a means to
implement access-control policies that the Grey system presently cannot. This
includes, for example, the ability to delegate authority to open an office once (see
Appendix A.1). As we expand this testbed to include vending machines, the need
for a distributed authorization system supporting consumable credentials (e.g.,
denoting money) will only grow.

We have completed a prototype implementation of a contract-signing proto-
col via which consumable credentials are ratified (see Section 5). In our prototype
implementation, proofs of access are represented in the LolliMon language [41],
which supports the linear connectives crucial for defining our consumable creden-
tials. To verify the validity of proofs—including that each consumable credential
in the environment ∆ is used exactly once—ratifiers and reference monitors use
a LolliMon interpreter as a proof checker. For the scenarios that we consider,
proofs that depend on consumable credentials can be generated by a syntax-
driven backward-chaining algorithm such as the one we have employed in Grey
so far [8].

As discussed in Section 5, a ratifier is invoked with a proof for a formula G.
If the proof is valid, the ratifier then engages in the contract-signing protocol
to ratify the credentials for which it is responsible (assuming it consents to
their use). As such, the contract-signing protocol and the verifying of proofs
by the ratifiers account for the primary additional costs incurred during proof
generation in a distributed proving system such as the one we use [8]. The
LolliMon interpreter that we use for proof verification is sufficiently fast for the
proofs we consider that it is not a bottleneck, and we do not discuss it further
here.

The contract-signing protocol that we have implemented [29] offers strong
properties that make it ideally suited for our system: it guarantees atomic-
ity regardless of the number of ratifiers that fail or misbehave (provided that
the trusted third party does not), and it implements an invisible third party
T . To achieve these properties, however, the protocol utilizes significant ma-
chinery: the protocol running among n ratifiers involves O(n3) messages in
O(n2) rounds. Each message is accompanied by an efficient noninteractive zero-
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knowledge proof [15] regarding its contents, the details of which we omit. The
cost of each zero-knowledge proof in the protocol is dominated by 9 modular
exponentiations by the prover, and 12 by the verifier. Of most relevance here,
however, is the form of the final contract signature (i.e., consents(A′, F, M, G),
where F is the content of the credential being ratified and M is a proof term
describing the derivation of the proof goal G of the proof of access) by a ratifier
A′: this final contract signature is a zero-knowledge proof that an ElGamal ci-
phertext [27], if decrypted using T ’s private key, would yield a particular target
plaintext.5 This proof can be constructed either by the ratifier A′ who created
the ciphertext, because it knows the ephemeral key used in the encryption, or
by the trusted third party T , because it knows the private key with which to
decrypt the ciphertext; see Garay et al. [28] for details.
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Fig. 1. The latency of the ratification protocol as a function of the number of ratifiers,
measured from the standpoint of a client invoking the box-i rule in order to complete
a proof of access.

The common-case latency (i.e., when the third party is not invoked) of our
current prototype as a function of the number of participating ratifiers is shown
in Figure 1. In these tests, each ratifier executed on a separate 2.8 GHz Pen-
tium 4 computer. The latency of the ratification protocol is measured from the
standpoint of a node invoking the box-i rule in order to complete a proof of
access, and includes the cost of contacting all the ratifiers, carrying out the rat-
ification protocol, and delivering ratification credentials to the client. A typical
access-control proof involving consumable resources would likely depend on at

5 If g is the generator of a multiplicative group G of prime order q, then the ElGamal
ciphertext of m ∈ G under public key y ∈ G is (gr, myr), where r ∈ Zq is a random
“ephemeral key” generated anew for each encryption. The private key that enables
decryption is x = logg y.
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most two consumable credentials (and a greater number of reusable credentials),
so the ratification cost for such a proof would be comparatively low; e.g., the
sample proofs in Appendix A.1 and Appendix A.2 each make use of only a single
consumable credential. A breakdown of the component costs of ratification as
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Fig. 2. Breakdown of costs involved in the ratification protocol for each of the five
ratifiers participating in it.

measured on each of five ratifiers engaging in a contract-signing protocol is shown
in Figure 2. The ratification protocol we implemented is asymmetric in that cer-
tain ratifiers create and verify more zero-knowledge proofs than other ratifiers;
as a consequence, some ratifiers spend a majority of their time waiting to receive
messages (Network/Waiting). Other major costs in the ratification protocol are
generating the zero-knowledge proofs (ZKP Creation) communicated between
the ratifiers, as well as verifying them (ZKP Verification). Note that the cost of
the contract-signing protocol dominates the proof-checking time of the subgoal
F : a proof of F containing 5 reusable and 5 linear credentials is verified by each
ratifier in approximately 50 ms, with an additional 45 ms required to verify the
validity of the digital certificates that the proof depends on.

The costs shown in Figure 1 are particularly pronounced because we imple-
mented the prototype of our contract signing entirely in Java, for which each such
modular exponentiation is significantly slower than an optimized native imple-
mentation. For this reason, we will soon enhance our implementation to perform
these operations natively, and will report numbers for this implementation in
the final version of the paper.
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A Sample Proofs

A.1 One-Time Delegation

This example extends the current framework already in place at our institution
(see Section 7). The two parties involved, Bob and Alice, both carry smartphones
capable of generating proofs of access and communicating with the embedded
doorend computers. Bob is a graduate student working for Alice. Alice is out of
town, but Bob needs to get into her office to borrow a book. Alice would like to
delegate to Bob the authority to open her door once, but only once. After Bob
has used the delegation to open the door, he cannot use it again. In the current
system, such a delegation is impossible.

In order to let Bob get into her office, (CIC-2525), Alice creates a consumable
credential.

C0 = KAlice signedKRAlice
delegate(key(KAlice),key(KBob),CIC 2525 )

Bob now walks up to Alice’s door and asks it to open. The door responds with
a challenge.

G = � Alice says action(CIC 2525 , 〈open〉,nonce)

The challenge includes a nonce, generated by the doorend computer, that will
be used to ensure freshness of the response. Bob then generates the following
credential.

C1 = KBob signed action(CIC 2525 , 〈open〉,nonce)

From C0 and C1, Bob can construct a proof of

M : Alice says action(CIC 2525 , 〈open〉,nonce)

which he submits for ratification. If this is the first time Bob has tried to use
the delegation, his request will be ratified, and he will receive a ratification
credential.

C2 = KRAlice signed 〈delegate(key(KAlice),key(KBob),CIC 2525 ),M,

goal(key(KAlice) says action(CIC 2525 , 〈open〉,nonce))〉

The proof of

ratified({C0},key(KAlice) says action(CIC 2525 , 〈open〉,nonce))

is straightforward, though slightly tedious, and will be omitted for readability.
We will simply denote the proof of ratified by ratified-i*, identifying the
ratifying credential, (C2), that corresponds to the consumable credential, (C0),
listed in the arguments. Bob then uses the box-i rule to complete the proof.
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C0 = KAlice signedKRAlice
delegate(key(KAlice),key(KBob),CIC 2525 )

C1 = KBob signed action(CIC 2525 , 〈open〉,nonce)

C2 = KRAlice signed 〈delegate(key(KAlice),key(KBob),CIC 2525 ),M,

goal(key(KAlice) says action(CIC 2525 , 〈open〉,nonce))〉

1 key(KAlice) says delegate(key(KAlice),key(KBob),CIC 2525 ) says-i2(C0)

2 key(KBob) says action(CIC 2525 , 〈open〉,nonce) says-i(C1)

3 key(KAlice) says action(CIC 2525 , 〈open〉,nonce) delegate-e(1, 2)

4 ratified({C0}, key(KAlice) says action(CIC 2525 , 〈open〉,nonce)) ratified-i*(C2)

5 � key(KAlice) says action(CIC 2525 , 〈open〉,nonce) box-i(3, 4)

A.2 Commerce

The following is an example proof of Alice paying Bob $100. In order for the
payment to be accepted, the buyer (Alice) must generate a proof that the Au-
tomated Clearing House (ACH) says action(pay, 〈Bob, $100〉, nonce). The cre-
dentials necessary to complete the proof are C0–C6 below.

In order to initiate a purchase, the buyer (Alice) requests from the seller
(Bob), the items in her shopping cart. Bob responds with a challenge to prove
the boxed goal

�ACH says action(pay , 〈Bob, $100〉,nonce)

Bob generates the nonce to ensure freshness, enforce that boxing was per-
formed with respect to this proof instance, and also to act as a transaction
identifier. First, Alice generates credential C0. During proof generation, Alice
obtains credential C1–C5. Using these she will generate a nearly complete proof,
which she will submit to BankA’s ratifier for him to generate the final necessary
credential (C6). Once Alice has all of the credentials, she completes the proof
and submits it to Bob. Bob will check the proof, and if successful, release the
articles in Alice’s shopping cart.

Credential C0, signifies Alice’s willingness to pay Bob. Credentials C1, and C2

create speaksfor relationships between Alice and her bank, and between the
bank and the Bank Certifier (BC) of the ACH. Credential C3 and C4 establish
the delegation chain from the ACH through its Bank Certifier to Alice’s bank
(BankA), the authority to make pay statements.

Credential C5 is a consumable delegation from the bank to Alice. This cre-
dential requires ratification with respect to the proof

M : ACH says action(pay , 〈Bob, $100〉,nonce)
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at which point Alice will obtain ratification credential C6. Using this credential,
it is straightforward but tedious to prove

ratified({C5}, ACH says action(pay , 〈Bob, $100〉,nonce))

We will omit the details for readability, and simply indicate the proof of ratified

by ratified-i*, noting the ratifying credentials that correspond to the consum-
able credentials listed as arguments.

Alice then invokes box-i, completing the proof.

C0 = KAlice signed (action(pay, 〈Bob, $100〉, nonce))

C1 = KBankA signed (key(KAlice) speaksfor key(KBankA).Alice)

C2 = KACHBC signed (key(KBankA) speaksfor key(KACH).BC.BankA)

C3 = KACH signed (delegate(key(KACH),key(KACH).BC, pay))

C4 = KACHBC signed (delegate(key(KACH).BC,key(KACH).BC.BankA, pay))

C5 = KBankA signedKRBankA
(delegate(key(KBankA),key(KBankA).Alice, pay))

C6 = KRBankA signed 〈delegate(key(KBankA),key(KBankA).Alice, pay),M,

goal(key(KACH)says action(pay, 〈Bob, $100〉, nonce))〉

1 key(KBankA) says key(KAlice) speaksfor key(KBankA).Alice says-i(C1)

2 key(KACH).BC says key(KBankA) speaksfor key(KACH).BC.BankA says-i(C2)

3 key(KACH) says delegate(key(KACH),key(KACH).BC, pay) says-i(C3)

4 key(KACH).BC says delegate(key(KACH).BC,key(KACH).BC.BankA, pay) says-i(C4)

5 key(KBankA) says delegate(key(KBankA),key(KBankA).Alice, pay) says-i2(C5)

6 key(KAlice) says action(pay , 〈Bob, $100〉, nonce) says-i(C0)

7 key(KBankA).Alice says action(pay , 〈Bob, $100〉, nonce) speaksfor-e2(6, 1)

8 key(KBankA) says action(pay , 〈Bob, $100〉, nonce) delegate-e(7, 5)

9 key(KACH).BC.BankA says action(pay , 〈Bob, $100〉, nonce) speaksfor-e2(8, 2)

10 key(KACH).BC says action(pay , 〈Bob, $100〉, nonce) delegate-e(9, 4)

11 key(KACH) says action(pay , 〈Bob, $100〉, nonce) delegate-e(10, 3)

12 ratified({C5},key(KACH) says action(pay , 〈Bob, $100〉, nonce)) ratified-i*(C6)

13 � key(KACH) says action(pay , 〈Bob, $100〉, nonce) box-i(11, 12)

A.3 Registration

Here we present an example utilizing consumable credentials in the framework
of class registration. Consumable credentials are used both to limit the number
of students signing up for a class, and to ensure that any class a student is
trying to register for does not conflict with other classes he is already taking.
This is done by modeling both the seats in a class and the timeslots in a weekly
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schedule as consumable resources. Additionally, students are allowed to take only
a limited number of credit hours in each semester. Each student must, therefore,
also prove that by adding this class to their schedule, they will not surpass that
limit. Assuming all these things are true, the student should be able to generate
the necessary proof to register for a class.

In order to facilitate this proof, we augment our logic with the following
inference rules.

Γ ; ∆ ` F

Γ ;∆ ` A says F (says-i3)

Γ ; ∆ ` A says F → G Γ ′; ∆′ ` A says F

Γ, Γ ′; ∆, ∆′ ` A says G (says-imp-e)

These rules are quite common in access-control logics and are compatible
with the other rules we have described.

Alice wants to register for CS101, which meets on Monday, Wednesday, and
Friday from 8:00 to 9:00 AM. To do so, she contacts the registrar, requesting
that she be placed in the class. The registrar responds with a challenge:

� Registrar says action(register , 〈Alice,CS101 ,F ′05 , 4 credits〉,nonce)

When Alice’s registration period began, she was given credentials C0–C2,
along with similar ones for all weekly timeslots. The registrar, being in charge
of seat assignments, also gave Alice credential C3. She obtained credential C4

during proof generation, and generated credential C5 herself. The registrar also
gave her credential C6, specifying a subgoal Alice must prove before registration.

C0 = KCalendar signedKRCal
action(timeslot , 〈Alice,F

′

05 , Monday , 0800–0900 〉)

C1 = KCalendar signedKRCal
action(timeslot , 〈Alice,F

′

05 , Wednesday , 0800–0900 〉)

C2 = KCalendar signedKRCal
action(timeslot , 〈Alice,F

′

05 , Friday , 0800–0900 〉)

C3 = KRegistrar signedKRSeat
action(seat , 〈F ′

05 , CS101 〉, nonce)

C4 = KRegistrar signedKRCredit
delegate(key(KRegistrar),key(KAlice), credit hours)

C5 = KAlice signed action(credit hours , 〈Alice,F
′

05 , 4 credits〉, nonce)

C6 = KRegistrar signed (∀A.(key(KCalendar) says action(timeslot , 〈A,F
′

05 , Monday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈A,F
′

05 ,Wednesday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈A,F
′

05 ,Friday , 0800–0900 〉)

∧ key(KRegistrar) says action(seat , 〈F ′

05 , CS101 〉,nonce)

∧ key(KRegistrar) says action(credit hours , 〈A,F
′

05 , 4 credits〉,nonce))

→ action(register , 〈A,CS101 , F
′

05 , 4 credits〉,nonce))

This last credential can be thought of as requiring the student to be free on
Monday, Wednesday, and Friday from 8:00 to 9:00 AM, a free seat to be available
in the class, and the student to have 4 available credit hours for which they may
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sign up. Note that we omit nonces from action() statements where they are
unnecessary (e.g., C0–C2).

Alice now has enough credentials to prove

M : Registrar says action(register , 〈Alice,CS101 ,F ′05 , 4 credits〉,nonce)

She then submits this proof for ratification of the consumable credentials it
contains. Assuming all of the ratifiers consent to the use of their credentials,
Alice will receive credentials C7–C11, allowing her to complete the proof.

C7 = KRCal signed 〈action(timeslot , 〈Alice,F
′

05 , Monday , 0800–0900 〉),M,

goal(key(KRegistrar)says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))〉

C8 = KRCal signed 〈action(timeslot , 〈Alice,F
′

05 , Wednesday , 0800–0900 〉),M,

goal(key(KRegistrar)says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))〉

C9 = KRCal signed 〈action(timeslot , 〈Alice,F
′

05 , Friday , 0800–0900 〉),M,

goal(key(KRegistrar)says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))〉

C10 = KRSeat signed 〈action(seat , 〈F ′

05 ,CS101 〉,nonce),M,

goal(key(KRegistrar)says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))〉

C11 = KRCredit signed 〈delegate(key(KRegistrar),key(KStudent), credit hours),M,

goal(key(KRegistrar)says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))〉

Again we will omit the details of the proof of ratified and simply indicate
ratifying credentials. We also combine steps as noted simply to save space.

1 key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Monday , 0800–0900 〉) says-i2(C0)

2 key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Wednesday , 0800–0900 〉) says-i2(C1)

3 key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Friday , 0800–0900 〉) says-i2(C2)

4 key(KRegistrar) says action(seat , 〈F ′

05 ,CS101 〉, nonce) says-i2(C3)

5 key(KRegistrar) says delegate(key(KRegistrar),key(KAlice), credit hours) says-i2(C4)

6 key(KAlice) says action(credit hours , 〈Alice,F
′

05 , 4 credits〉,nonce) says-i(C5)

7 key(KRegistrar) says action(credit hours , 〈Alice,F
′

05 , 4 credits〉,nonce) delegate-e(5, 6)

8 key(KRegistrar) says says-i(C6)

(∀A.(key(KCalendar) says action(timeslot , 〈A,F
′

05 , Monday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈A,F
′

05 , Wednesday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈A,F
′

05 , Friday , 0800–0900 〉)

∧ key(KRegistrar) says action(seat , 〈F ′

05 , CS101 〉,nonce)

∧ key(KRegistrar) says action(credit hours , 〈A,F
′

05 , 4 credits〉,nonce))

→ action(register , 〈A,CS101 , F
′

05 , 4 credits〉,nonce))
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9 (∀A.(key(KCalendar) says action(timeslot , 〈A,F
′

05 , Monday , 0800–0900 〉) imp-i

∧ key(KCalendar) says action(timeslot , 〈A,F
′

05 ,Wednesday , 0800–0900 〉) forall-e(8)

∧ key(KCalendar) says action(timeslot , 〈A,F
′

05 ,Friday , 0800–0900 〉)

∧ key(KRegistrar) says action(seat , 〈F ′

05 , CS101 〉,nonce)

∧ key(KRegistrar) says action(credit hours , 〈A,F
′

05 , 4 credits〉,nonce))

→ action(register , 〈A,CS101 , F
′

05 , 4 credits〉,nonce))

→ ((key(KCalendar) says action(timeslot , 〈Alice,F
′

05 ,Monday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Wednesday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Friday , 0800–0900 〉)

∧ key(KRegistrar) says action(seat , 〈F ′

05 , CS101 〉,nonce)

∧ key(KRegistrar) says action(credit hours , 〈Alice,F
′

05 , 4 credits〉,nonce))

→ action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))

10 key(KRegistrar) says says-i3

((key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Monday , 0800–0900 〉) says-imp-e(8, 9)

∧ key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Wednesday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Friday , 0800–0900 〉)

∧ key(KRegistrar) says action(seat , 〈F ′

05 , CS101 〉,nonce)

∧ key(KRegistrar) says action(credit hours , 〈Alice,F
′

05 , 4 credits〉,nonce))

→ action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce))

11 key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Monday , 0800–0900 〉) and-i(×4)(1–4, 7)

∧ key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Wednesday , 0800–0900 〉)

∧ key(KCalendar) says action(timeslot , 〈Alice,F
′

05 , Friday , 0800–0900 〉)

∧ key(KRegistrar) says action(seat , 〈F ′

05 , CS101 〉,nonce)

∧ key(KRegistrar) says action(credit hours , 〈Alice,F
′

05 , 4 credits〉,nonce)

12 key(KRegistrar) says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce) says-i3

says-imp-e(10, 11)

13 ratified({C0, C1, C2, C3, C4}, 12) ratified-i*(C7–C11)

14 � key(KRegistrar) says action(register , 〈Alice,CS101 , F
′

05 , 4 credits〉,nonce) box-i(12, 13)

Upon checking the proof, the registrar would then register Alice for CS101, as
desired.


