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Amitabh Basu∗ Gérard Cornuéjols † Giacomo Zambelli‡

March 2009

Abstract

We show that, given a closed convex set K with the origin in its interior, the
support function of the set {y ∈ K∗ | ∃x ∈ K such that xy = 1} is the pointwise
smallest sublinear function σ such that K = {x |σ(x) ≤ 1}.

1 Introduction

Let K be a closed, convex set with the origin in its interior. A standard concept in
convex analysis [1, 2] is that of gauge (sometimes called Minkowski function), which is
the function γK defined by

γK(x) = inf{t > 0 | t−1x ∈ K}, for all x ∈ Rn.

By definition γK is nonnegative. It is also sublinear, another classical concept that
we define next. A function σ : Rn → R is positively homogeneous if σ(tx) = tσ(x) for
every x ∈ Rn and t > 0, and it is sublinear if it is convex and positively homogeneous.
One can readily verify that K = {x | γK(x) ≤ 1}.

Given any sublinear function σ such that K = {x |σ(x) ≤ 1}, it follows from positive
homogeneity that σ(x) = γK(x) for every x where σ(x) > 0. Hence σ(x) ≤ γK(x) for all
x ∈ Rn. In this paper we introduce a sublinear function ρK such that K = {x | ρK(x) ≤
1} and ρK(x) ≤ σ(x) for all x ∈ Rn.

The polar of K is the set K∗ = {y ∈ Rn |xy ≤ 1 for all x ∈ K}. Clearly K∗ is closed
and convex, and since 0 ∈ int(K), it is well known that K∗ is bounded. In particular,
K∗ is a compact set. Also, since 0 ∈ K, K∗∗ = K.
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Given any T ⊂ Rn, the support function of T is defined by

σT (x) = sup
y∈T

xy, for all x ∈ Rn.

It is straightforward to show that support functions are sublinear [1]. It is well known
that γK is the support function of K∗ (see [1] Proposition 3.2.4).

We define our function ρK as the support function of the set

K̂ = {y ∈ K∗ | ∃x ∈ K such that xy = 1}.

Note that K̂ is contained in the relative boundary of K∗. By definition

ρK(x) = sup
y∈K̂

xy, for all x ∈ Rn.

Note that ρK is sublinear. Furthermore we will show that K = {x | ρK(x) ≤ 1}. The
next theorem shows that ρK is the smallest function with these two properties.

Theorem 1 Let K ⊂ Rn be a closed convex set containing the origin in its interior.
For every sublinear function σ such that K = {x | σ(x) ≤ 1}, we have ρK(x) ≤ σ(x) for
every x ∈ Rn.

Note that the recession cone of K, which is the set rec(K) = {x ∈ K | tx ∈
K for all t > 0}, coincides with {x ∈ K |σ(x) ≤ 0} for every sublinear function σ
such that K = {x |σ(x) ≤ 1}. In particular ρK(x) can be negative for x ∈ rec(K), so in
general it is different from the gauge.

For example, let K = {x ∈ R2 |x1 ≤ 1, x2 ≤ 1}. Then K∗ = conv{(0, 0), (1, 0), (0, 1)}
and K̂ = conv{(1, 0), (0, 1)}. Therefore, for every x ∈ R2, γK(x) = max{0, x1, x2} and
ρK(x) = max{x1, x2}. In particular, ρK(x) < 0 for every x such that x1 < 0, x2 < 0.

2 Proof of Theorem 1

We will need Straszewicz’s theorem [3] (see [2] Theorem 18.6). Given a closed convex set
C, a point x ∈ C is extreme if it cannot be written as a proper convex combination of
two distinct points in C. A point x ∈ C is exposed if there exists a supporting hyperplane
H for C such that H ∩ C = {x}. Clearly exposed points are extreme. We will denote
by ext(C) the set of extreme points and exp(C) the set of exposed points of C.

Theorem 2 Given a closed convex set C, the set of exposed points of C is a dense subset
of the set of extreme points of C.
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Let K be a closed convex set with the origin in its interior. Let σ be a sublinear
function such that K = {x |σ(x) ≤ 1}. The boundary of K, denoted by bd(K), is the
set {x ∈ K | σ(x) = 1}.
Lemma 3 For every x /∈ rec(K), σ(x) = ρK(x) = supy∈K∗ xy. In particular, K =
{x | ρK(x) ≤ 1}.
Proof. Let x /∈ rec(K). Then t = σ(x) > 0. By positive homogeneity, σ(t−1x) = 1, hence
t−1x ∈ bd(K). Since K is closed and convex, there exists a supporting hyperplane for
K containing t−1x. Since 0 ∈ int(K), this implies that there exists ȳ ∈ K∗ such that
(t−1x)ȳ = 1. In particular ȳ ∈ K̂, hence by definition ρK(x) ≥ xȳ = t.

Furthermore, for any y ∈ K∗, (t−1x)y ≤ 1, hence xy ≤ t, which implies t ≥
supy∈K∗ xy. Thus

ρK(x) ≥ t ≥ sup
y∈K∗

xy ≥ sup
y∈K̂

xy = ρK(x),

where the last inequality holds since K̂ ⊂ K∗, hence equality holds throughout. ¤

Lemma 4 Given an exposed point ȳ of K∗ different from the origin, there exists x ∈ K
such that xȳ = 1 and xy < 1 for all y ∈ K∗ distinct from ȳ.

Proof. If ȳ 6= 0 is an exposed point of K∗, then there exists a supporting hyperplane
H = {y | ay = β} such that aȳ = β and ay < β for every y ∈ K∗ \ {ȳ}. Since 0 ∈ K∗

and ȳ 6= 0, β > 0. Thus the point x = β−1a ∈ K∗∗ = K satisfies the statement. ¤

Lemma 5 For every x ∈ Rn, ρK(x) = supy∈K̂∩exp(K∗) xy.

Proof. We first show that ρK(x) = supy∈K̂∩ext(K∗) xy. Given y ∈ K̂ we show that there

exists an extreme point y′ of K∗ in K̂ such that xy ≤ xy′. Since y ∈ K̂, there exists
x̄ ∈ K such that x̄y = 1. The point y is a convex combination of extreme points y1, . . . , yk

of K∗, and each yi satisfies x̄yi = 1. Thus y1, . . . , yk ∈ K̂, and xyi ≥ xy for at least one
i.

By Straszewicz’s theorem (Theorem 2) the set of exposed points in K∗ is a dense
subset of the extreme points of K∗. By Lemma 4, all exposed points of K∗ except
the origin are in K̂, hence exp(K∗) ∩ K̂ is dense in ext(K∗) ∩ K̂. Therefore ρK(x) =
supy∈K̂∩exp(K∗) xy. ¤

A function σ is subadditive if σ(x1+x2) ≤ σ(x1)+σ(x2) for every x1, x2 ∈ Rn. It is easy
to show that σ is sublinear if and only if it is subadditive and positively homogeneous.

Proof of Theorem 1. By Lemma 3, we only need to show σ(x) ≥ ρK(x) for points
x ∈ rec(K). By Lemma 5 it is sufficient to show that, for every exposed point ȳ of K∗

contained in K̂, σ(x) ≥ xȳ.
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Let ȳ be an exposed point of K∗ in K̂. By Lemma 4 there exists x̄ ∈ K such that
x̄ȳ = 1 and x̄y < 1 for all y ∈ K∗ distinct from ȳ. Note that x̄ ∈ bd(K).

We observe that for all δ > 0, x̄ − δ−1x /∈ rec(K). Indeed, since x ∈ rec(K),
x̄ + δ−1x ∈ K. Hence x̄ − δ−1x /∈ int(K) because x̄ ∈ bd(K). Since 0 ∈ int(K) and
x̄− δ−1x /∈ int(K), then x̄− δ−1x /∈ rec(K). Thus by Lemma 3

σ(x̄− δ−1x) = sup
y∈K∗

(x̄− δ−1x)y. (1)

Since x̄ ∈ bd(K), σ(x̄) = 1. By subadditivity, 1 = σ(x̄) ≤ σ(x̄ − δ−1x) + σ(δ−1x).
By positive homogeneity, the latter implies that σ(x) ≥ δ − δσ(x̄ − δ−1x) for all δ > 0.
By (1),

σ(x) ≥ inf
y∈K∗

[δ(1− x̄y) + xy],

hence
σ(x) ≥ sup

δ>0
inf

y∈K∗
[δ(1− x̄y) + xy].

Let g(δ) = infy∈K∗ δ(1 − x̄y) + xy. Since x̄ ∈ K, 1 − x̄y ≥ 0 for every y ∈ K∗. Hence
δ(1− x̄y) + xy defines an increasing affine function of δ for each y ∈ K∗, therefore g(δ)
is increasing and concave. Thus supδ>0 g(δ) = limδ→+∞ g(δ).

Since K∗ is compact, for every δ > 0 there exists y(δ) ∈ K∗ such that g(δ) = δ(1 −
x̄y(δ)) + xy(δ). Furthermore there exists a sequence (δi)i∈N such that limi→+∞ δi = +∞
and the sequence (yi)i∈N defined by yi = y(δi) converges, because in a compact set every
sequence has a convergent subsequence. Let y∗ = limi→+∞ yi.

We conclude the proof by showing that σ(x) ≥ xy∗ and y∗ = ȳ.

σ(x) ≥ sup
δ>0

g(δ) = lim
i→+∞

g(δi)

= lim
i→+∞

[δi(1− x̄yi) + xyi]

= lim
i→+∞

δi(1− x̄yi) + xy∗

≥ xy∗

where the last inequality follows from the fact that δi(1 − x̄yi) ≥ 0 for all i ∈ N.
Finally, since limi→+∞ δi(1 − x̄yi) is bounded and limi→+∞ δi = +∞, it follows that
limi→+∞(1 − x̄yi) = 0, hence x̄y∗ = 1. By our choice of x̄, x̄y < 1 for every y ∈ K∗

distinct from ȳ. Hence y∗ = ȳ. ¤
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