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OPTIMIZATION STRATEGIES FOR FLEXIBLE CHEMICAL PROCESSES

I. E. Grossmann, K. P. Halemane and R. E. Swaney

Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, U.S.A.

Abstract. The objective of this paper is to give an overview of the
optimization strategies that are required when designing chemical processes
in which the existence of regions of feasible steady-state operation must
be ensured in the face of parameter variations. Two major areas are
considered: optimal design with a fixed degree of flexibility, and design
with optimal degree of flexibility. For the first area the problems of
multiperiod design, and design under uncertainty are analyzed. For the
second area the problem of deriving an index of flexibility in the context
of multiobjective optimization is discussed. As shown in the paper, the
major challenge in these problems lies in the development of efficient
solution procedures for large scale nonlinear programs which are either
highly structured, or otherwise involve an infinite number of constraints.

INTRODUCTION

Flexibility is one of the main concerns in the

design of chemical plants. The reason is that

for a design to be useful in practice it is

essential that the plant be able to satisfy

specifications and constraints despite variations

that may occur in parameter values during

operation. For example, in practice it is quite

likely that the amount and quality of the

feedstreams to the process will vary during

operation. This aspect will be particularly

critical when the plant has to process alternate

feedstocks as is commonly the case in many

chemical processes (see for instance Draaisma

and Mol. 1977; Rhoe and de Blingiers. 1979).

Other examples of changes that often occur

during plant operation include variations in the

ambient temperature, deactivation of catalysts,

fouling of heat exchangers, and wearout of

mechanical equipment such as pumps and

compressors. Therefore, it is clear that at the

design stage some degree of flexibility must be

introduced to ensure that the plant will be able

to cope with uncertain parameters during

operation.

Current address: Westinghouse R6J) Center,
1310 Beulah Road, Pittsburgh, U.S.A.

The usual approach that is used in practice is to

design and optimize chemical plants for nominal

values of the parameters. Since considerable

uncertainties in these values often exist,

empirical overdesign factors are used to provide

for flexibility in the operation of the chemical

•plant (Rudd and Watson, 1968>. However, it is

clear that with this approach not much insight

can be obtained as to the actual degree of

flexibility that is being achieved in the design.

Also, with this approach, it becomes difficult to

justify on economic grounds the extent of the

overdesign.

In the context of the theory of chemical process

design, the need for a rational method of

designing flexible chemical plants stems from

the fact that there is still a substantial gap

between the designs that are obtained with

currently available computer-aids and the designs

that are actually implemented in practice. The

major reason for this gap is that the computer-

aids do not explicitly account for operability

considerations at the design stage. This would

involve handling simultaneously the aspects of

flexibility, controllability, reliability and safety

of the chemical plant. It should be noted that

although some of these aspects are quite

similar, they actually correspond to different
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Multiperiod Design Problem

One way to introduce flexibility in a chemical
plant is to design it for a specified number N
of different operating conditions (Grossmann and
Sargent, 1979). For example, a plant may be
specified to process a variety of feedstocks,
produce different products, or operate at
different levels of capacity. The goal is then to
ensure that the plant will be able to meet the
specifications for N successive periods of
operation, requiring at the same time that the
plant be designed and operated so as to
optimize a given objective function, which is
typically a combination of the investment and
operating costs.

Very little has been discussed in the literature
about deterministic multiperiod problems.
Loonkar and Robinson (1970), Sparrow, Forder
and Rippin (1975), Oi, Itoh and Muchi (1979),
Suhami (1981), Suhami and Man (1982). Knopf,
Okos and Reklaitis (1980), Takamatsu, Hashimoto
and Hasebe (1981). discuss design procedures
that are applicable only to batch/semicontinuous
processes. This important class of problems in
which scheduling of operations is one of the
main issues will be covered in detail in this
Symposium by Professor Rippin (1982).
Grossmann and Sargent (1979) give a general
formulation for designing multipurpose chemical
plants which can also be applied to problems
described by the deterministic multiperiod
model. As shown below, this involves the
solution of a large nonlinear program, wherein
the main computational difficulty is due to the
large number of decision variables involved.

In order to formulate the multiperiod design
problem it is assumed that the plant is
subjected to piecewise operating conditions in N
successive time periods. Also, dynamic effects
are neglected, since the lengths of the transients
are considered to be much smaller than the time
periods for the successive steady states. The
optimal design problem is then given by the
following multiperiod nonlinear program

N

min C°(d) Ci(d.zi.xi.ti)

s.t. h'fd.z'.x'.f) * 0 1

g'td.z'.x'.t1) * oj

(1)

where
d is the vector of design variables representing

equipment sizes

z' is the vector of control variables in period i

x1 is the vector of state variables in period i

t1 is the length of time for each period i

h' is the vector of equations in period i

g' is the vector of inequalities in period i

r is the vector of inequalities that involve
variables of all periods

N is the number of periods

It should be noted that the vector of design
variables d remains fixed throughout the periods
of operation as it represents the sizes of the
units. Also, the control variables z1 represent
the degrees of freedom in the operation of the
plant, and therefore, they correspond to
variables that can be manipulated directly or
indirectly in the operation of the plant.

Since the dimension of h1 is the same as for x1,
the decision variables for the problem in (1) are
given by the design variables d, the control
variables z1. i=1,2,...N. and the lengths of periods
t\ i=1,2,...N. The main difficulty that arises in
the solution of this multiperiod problem is the

, fact that the number of decision variables can
become rather large as the number of periods N
increases. This implies that the computational
burden that would be required by using current
nonlinear programming algorithms could become
excessive, and also that the numerical solution
could be very difficult to obtain. However, it
should be noted that problem (1) has a very
special structure. Firstly, the objective function
is separable in the design variables and in the N
periods of operation. Secondly, since the
variables x1, z\ t1, are associated with the
corresponding period i, the constraints have a
bordered block-diagonal structure, where the
coupling variables are given by the vector d.
and the coupling constraints by the vector
r. Therefore, it is clear that an efficient
optimization algorithm ought to take advantage
of this structure in order to reduce the
computational requirements. As will be shown in
the next section algorithms can be developed
that accomplish this goal.

r(d.z1 .-zN .x\.-x2 .t \- .t1^



Projection-Restriction Strategy

Recentlyj Grossmann and Halemane (1980) have
developed a very efficient decomposition
scheme based on a projection-restriction
strategy for solving an important particular case
of problem (1). Namely, if one assumes that the
lengths of the periods t' are specified by the
designer and that the vector of inequalities r
only involves the design variables d, the
multipenod design problem is given by

N

( 2 )

i = 1.N

min C * C°(d) • > C'(d,z'.x')
d,z\z2....zN tT

s.t. h^d.z1,^) »0 1

g'td.z'.x1) ^ 0 J

r(d) * 0

Note that problem (2) also has a block-diagonal
structure, but it involves coupling in the
variables d only and no coupling in the
constraints. Although at first sight this problem
appears to be too specific, it turns out to be
one of the underlying formulations for solving
design problems under uncertainty as will be
shown later in the paper. Furthermore, the
formulation in (2) still has a wide applicability in
deterministic multiperiod design problems.

.1 m1 .2 ,2 , 3 , 3 ,4 .4

Fig. 1. Block-diagonal structure of the
constraints in problem (2) .

The decomposition technique proposed by
Grossmann and Halemane (1980) exploits two
basic features in this design problem. The first
one is the block-diagonal structure in the
constraints which is shown in Fig. 1. Since the
objective function C is separable in the N
periods, this implies that if the vector d is
fixed, the optimization problem decomposes in N
uncoupled subproblems. each having as decision

variables the control variables z1, i=1,2,...N. The
second feature that is exploited, and which is
strictly heuristic in nature, is that many of the
inequality constraints become active at the
solution. Clearly, this feature cannot be
expected to hold necessarily for any arbitrary
mathematical problem. However, in the context
of multiperiod chemical plant design this
condition seems to hold true in general. The
main reason for this is that cost functions tend
to be monotonic. and therefore, the optimal
solutions commonly lie at the boundary of the
feasible region (Westerberg and Debrosse, 1973).
Another important reason is that in the
formulation of multiperiod problems it is
necessary to treat most of the output variables
of the process in the form of inequalities in
order to introduce a positive number of degrees
of freedom (see Grossmann and Sargent, 1979).
Since these output variables (e.g. production
rates, purity specifications, target temperatures
and pressures) are normally fixed for the single
period problem, they will have a high tendency
to become active at the solution. In fact, the
observation that many inequalities do become
active at the solution has been confirmed
numerically in a number of example problems
(see Grossmann and Halemane, 1980).

The main steps involved in the projection-
restriction strategy, which is based on some
ideas proposed by Grigoriadis (1971) and Ritter
(1973) for linearly constrained problems, are as

• follows:

Step 1 - Find a feasible point d, z1, x1. i = 1,2,...N.
for problem (2).

Step 2 -

(Projection) Fixing the values of the vector d,
solve the N subproblems

min
z1

s.t. h'fd^x1) = 0

g'fd.z'.x1) £ 0

(3)

1,2,...N

Step 3 -

(Restriction) (a) For each subprobiem i, convert
the n^ inequality constraints g' that are active
in Step 2 into equalities and define

h1

gj, • g| «=1.2....N (4)



where h1. g1 are the redefined sets of equality
and inequality constraints, and gj are the sets of
inequality constraints that are not active in Step
2.

(b) Eliminate n' variables z'A from the vector

z1 * I I , so as to define

V ! - x«'

( 5 )

. i*1.2.~N

where z^ is the redefined vector of control
variables which results from eliminating the
vector z^ of n^ elements, and x1 is the
expanded vector of state variables.

Step 4 - Solve the restricted problem:

N

minimize C = C°(d) * T " C'(d,z' ,x')
-fc-* R R

d 'W"2R ( 6 )

r(d) £ 0

Step 5 - Return to Step 2 and iterate until no
further changes occur in the values of the
variables d and in the active set of constraints.

Note that in Step 4 the projection-restriction
strategy really consists in solving problem (2)
simultaneously for all variables, but in general
with a much smaller number of decision
variables, since many of these get eliminated by
the active constraints determined in Step 2.
Clearly, the effectiveness of this strategy relies
heavily on the number of inequality constraints
that actually become active at the solution.

Also, it should be noted that for effective
implementation of this procedure it is necessary
to find an initial feasible point in Step 1
efficiently, and to ensure nonsingularity in the
redefined system of equation h' in Step 3. For
the first point Grossmann and Halemane (1980)
have suggested an alternate optimization scheme
of design and control variables in which the sum
of squares of violation of constraints is
minimized. For the second point, they perform
an analysis on the reduced jacobian of the

system of equations to determine its maximum
rank. This scheme allows one to incorporate
only those active inequalities that lead to a non-
singular system of equations (see Halemane and
Grossmann. 1981b).

The results that have been obtained with the
projection-restriction strategy are extremely
encouraging. Grossmann and Halemane (1980) and
Avidan (1982) have found that with the proposed
projection-restriction strategy the computer time
varies only linearly in the number of periods.
This is in great contrast with the polynomial
increase (second to third degree) of computer
time that is experienced when no decomposition
is performed. The reductions in computer time
that have been obtained in an example of a
reactor with cooler and an example of a
flowsheet that involves a reactor, compressor
and two separators are of at least one order of
magnitude.

In order to substantiate the claims of
computational efficiency theoretically,
Grossmann and Halemane (1980) have developed
a model that represents the computation time
required with the decomposition scheme and
without it. With this model it was found that if
all the control variables are eliminated in the
restriction step, one can indeed prove that the
computer time has to be linear in the number of
periods. For the case when not all the control
variables are eliminated it is not possible to
obtain a theoretical solution in closed form.
However, it is possible to perform a parametric
study which shows the interesting result that as
the number of periods increases, the fraction of
control variables that must be eliminated to
ensure reduction in computer time with the
projection-restriction strategy decreases

exponentially. In other words, as long as some
fraction of the inequalities becomes active at
the solution (which is almost always the case)
very substantial savings in computer time can
be achieved with the projection-restriction
strategy.

Recently Avidan (1982) has implemented the
projection-restriction strategy in the general
purpose computer package FLEXPACK using as
the optimizer the variable-metric projection
method by Sargent and Murtagh (1973). One
interesting point that emerged from his work
was the fact that further reductions of computer
time in the decomposition strategy are possible
if the vector of design variables d is partitioned



in the capacity variables d (e.g. volumes
vessels, power of compressors) and in the fixed
design variables df (areas of exchange, number
of plates) as discussed in Grossmann and

Sargent (1979). Since the variables d are
defined by expressions of the form d . - max
{c }, where c is the i'th capacity required for
period i, the standard procedure is to replace
them by inequalities to avoid discontinuous
derivatives. However, since in problem (2) the
lengths of the time periods are fixed it is very
common that a given period i will define the
bottleneck for a given capacity variable d .
Since by solving the projection step the periods
where the bottlenecks occur can be identified,
one can replace each design variable d by the
dominant capacity, which in turn reduces the
problem size in the restriction step, particularly
if the majority of the design variables are
capacity variables. However, it is clear that this
procedure will only work if the periods where
bottlenecks occur remain the same in the
restriction step, and therefore caution should be
exercised when using this procedure.

Future directions. It is clear that the next step in
the area of multiperiod design problems would
be to derive a decomposition strategy for
problem (1) which involves the coupling
constraints r. This would be an important
development since that structure would fit the
multiproduct batch plant design problem
(Grossmann and Sargent, 1979). It is interesting
to note that if only a few variables occur in the
constraint r, for instance the lengths of periods
t. one could still apply the projection-restriction
strategy if those variables are treated as design
variables. However, this would increase the
number of decision variables in the restriction
step, and therefore, an extension of the
projection-restriction strategy for this case
would seem to be worth exploring.

Design under Uncertainty

In chemical plant design there are usually a
number of parameters for which there is
considerable uncertainty in their actual values.
For instance, these parameters can correspond to
internal process parameters such as transfer
coefficients, reaction constants, efficiencies or
physical properties. In addition, the uncertain
parameters can also be external to the process
such as specifications in the feedstreams. utility
streams, environmental conditions or economic
cost data.

The general form of the problem of design
under uncertainty is given by

min C(d,z,x,0)
d.z

s.t. h(d,z,x.0) * 0

g(d,z,x.0) £ 0

( 7 )

where d,z,x, are the vectors of design, control
and state variables, and 6 is a vector of p
parameters for which there is significant
uncertainty in their values.

There have been several approaches to the
problem of design under uncertainty reported in
the literature. They differ from eacn other in
terms of problem formulation as well as
solution strategies, since in principle the
problem of design under uncertainty is not well-
defined. Some authors consider the probability
distribution of the parameters as either known
or predictable, and minimize the expected value
of cost. Another approach consists in
transforming the problem into a deterministic
one, assuming that the parameters vary within
bounded ranges of values that are soecified by
the designer or by a statistical analysis. As it
will be shown in the next section, this latter
approach can be regarded as a generalization of
the multiperiod problem if the control variables
are allowed to be adjusted for the different
parameter realizations in order ro achieve
feasible operation. However, it is worthwhile to
first present a brief review on the extensive
previous work that has been published on the
problem of design under uncertainty.

In the earlier work, the stochastic approach was
the one that was most frequently used. For
instance, Kittrel and Watson (1966) assume that
probability distribution functions of the
parameters are available, and propose to select
the decision variables in the design so as to
minimize the expected value of cost. Wen and
Chang (1968) define the 'relative sensitivity' of
the cost as the fractional change in the cost
function from its nominal value. In selecting the
optimal design they minimize either the expected
value or the maximal probable value of this
relative sensitivity. Weisman and Holzman
(1972) incorporate a penalty in the cost function
involving the probability of violation for
individual constraints, and perform an
unconstrained minimization of the expected value
of the cost. Although they made an attempt to
minimize the probable violation of the



constraints, their formulation does not ensure a
lower limit on the probability of failure of any
given constraint, which in fact could be achieved
by using the formulation suggested by Charnes
and Cooper (1959) for chance constrained
optimization. Lashmet and Szczepanski (1974)
apply Monte Carlo simulation for determining
overdesign factors for distillation columns. They
perform a series of statistical experiments by
choosing random values of the parameters
(within the specified range), and in each case
determine the number of stages in the column
needed to meet the specifications. From these
data the overdesign factor is determined as the
additional number of stages corresponding to
90% cumulative distribution over that for
nominal design. Freeman and Gaddy (1975) define
dependability as the fraction of time that the
process can meet the specifications, and use it
as a criterion for selecting the optimum design.
They perform a stochastic simulation and
determine the optimum values of the decision
variables for different values of the parameters
chosen randomly. The expected value of the
cost corresponding to any given dependability
level that minimizes the expected cost is chosen
for the optimum design.

It is to be noted that in the above methods no
distinction is made between the two types of
decision variables in the problem of optimal
process design. The design variables,
representing for example the sizes of equipment,
get their values assigned in the design stage,
and remain unaltered during the operation of the
plant. The control variables represent the
variables of the plant that can be adjusted in
the operation after the plant is installed. For
any given design, the optimal plant operation
itself can be considered as a means for meeting
the specifications while minimizing the operating
cost. Therefore, it requires an appropriate choice
for the values of control variables depending on
the values of the parameters being realized. In a
realistic strategy for optimal process design
under uncertainty, it is important to incorporate
this basic difference between design and control
variables into the mathematical formulation.

The following researchers have made a
distinction between design and control variables.
Watanabe, Nishimura and Matsubara (1973) apply
the concept of statistical decision theory by

- considering the problem of optimal process
design as a two-person statistical game between
Nature and the designer. They minimize a utility

function which is a convex combination of the
expected value and the maximum probable value
of cost. That is. they follow a strategy which is
intermediate between minimax strategy (maximal
probable value of cost is minimized) and Bayes'
strategy (expected value of cost is minimized).
Nishida, Ichikawa and Tazaki (1974) proposed a
minimax strategy wherein the maximum value of
the cost function, as obtained at the worst
parameter value in a specified range, is
minimized by selecting the appropriate design.
They view the design strategy as a game,
wherein the uncertainty in parameter values is
considered to result in the maximization of cost,
whereas the objective of the designer is to
minimize it. It is important to note that the
design they come up with actually corresponds
to the optimum solution for a particular (namely,
the economically worst) value of the parameters,
and therefore the design, cannot be claimed to
be optimal in an overall sense when the
parameters do take on different values. Also,
the feasibility of this design for other values of
the parameters cannot be guaranteed, since this
aspect is not explicitly considered in the
problem formulation.

Takamatsu, Hashimoto and Shioya (1973)
assumed that the parameters vary within
specified bounds, and minimize the deviation of
the objective function from its value at the
nominal solution, while satisfying the constraints
linearized around their nominal values. They
evaluate each constraint with a separate
parameter value that would result in the worst
violation of that constraint. In this way they
seek a design that would meet the specifications
with a single and common operating condition
for all the bounded parameter values. This
approach will tend to give conservative designs
since no advantage is taken of the fact that,
depending on the values of the parameters being
realized, the operation of the plant can be
manipulated in order to satisfy the
specifications in the most economical way.
Dittmar and Hartmann (1976) use a similar
approach as Takamatsu, Hashimoto and Shioya
(1973). but instead suggest the use of the same
extreme value of the parameter for all the
constraints. They determine the design margin
for each of these extreme values and select the
largest design margin so obtained.

Avriel and Wilde (1969) discuss different
strategies such as two-stage there-and-now).
wait-and-see, and permanently-feasible programs



when applied to design problems that

correspond to geometric programs. In a two-

stage stochastic program, the designer selects

values for the design variables (first stage), then

observes the actual realization of the uncertain

parameters. and accordingly chooses the

appropriate values for the control variables

(second stage). While selecting the values for

design variables in the first stage, it is essential

to ensure feasibility of the second stage sub-

program, namely that values of control variables

can be chosen to satisfy the constraints. The

objective is to minimize the expected value of

cost while selecting a feasible and optimal

design, which appears to be one of the most

suitable representations for the problem of

chemical process design under uncertainty. In the

wait-and-see strategy, the designer waits for an

observation of the uncertain parameters and then

chooses the optimal values for both design and

control variables. Here, each new value of the

parameters results in a corresponding optimal

design; or in other words, all decision variables

are treated as control variables. In the

permanently-feasible program. the designer

selects (a single set of) values for both design

and control variables which will be feasible for

every possible realization of the uncertain

parameters. Unlike the wait-and-see strategy,

here the values of neither design nor control

variables change with the variations in the

values of the uncertain parameters. That is, in

the permanently-feasible program, all decision

variables are treated as design variables. Avriel

and Wilde (1969) suggest a procedure for

obtaining the optimal design, which consists of

bounding the objective function value that would

be obtained at the solution of the two-stage

program by solving the wait-and-see program

and permanently feasible program. However, they

restrict their approach only to geometric

programming formulations. Malik and Hughes

(1979) apply a similar approach for general

process design problems, although there is no

guarantee on the feasibility of the design. Also,

the stochastic programming method they

propose, based on Monte Carlo simulation,

requires great computation effort. Johns,

Marketos and Rippin (1976) outline a design

strategy in which parameter uncertainty is

considered in addition to the possibility of

expansions through a two-stage multiperiod

formulation. However, they did not address the

problem of deriving an efficient solution

"procedure for handling these problems.

Among the more general purpose formulations

for optimization problems with uncertainty,

Friedman and Reklaitis (1975a,b) deal with the

case of linear programming problems that have

uncertainties in the coefficients of the

constraints. They show that this formulation can

be applied to problems such as planning future

operation policies for large interacting systems,

production scheduling, resource allocation and

determining optimum blending schemes. They

incorporate the required flexibility in their

system by allowing for possible future additive

corrections on the current decisions, and

optimize the system by applying an appropriate

cost-for-correction in the objective function. It

is interesting to see that they were able to

identify the need for different corrections for

different outcomes of the uncertain coefficients

in order to make the problem feasible, and

devise a procedure to achieve this in their

computations. One obvious drawback with their

approach is that it is applicable only to linear

systems. A second limitation with their approach

is that it cannot be applied directly to the

problem of optimal design of flexible chemical

plants, because in this case no additive

corrections can be applied on the design

variables. Instead, it is only the control

variables that can be manipulated, so as to meet

the specifications in spite of the variations in

the values of the uncertain parameters. Kilikas

and Hutchison (1980) use a linear process model

wherein the coefficients are considered to be

varying within specified bounds. Their approach,

however, would tend to select the optimum

value of their decision variables so as to

satisfy their constraints for only one set of

parameter values.

With any of the suggested approaches for

dealing with parameter uncertainties in process

design, one is always faced with the question

of whether the designed plant can in fact be

guaranteed to operate and satisfy specifications

for the entire range of parameter values

involved. This question, along with the fact that

the problem of optimal process design under

uncertainty is not well-defined, requires a

systematic procedure in formulating as well as

solving such design problems. First of all, it is

to be noted that apart from minimizing the cost,

the main concern of the design engineer is to

ensure feasible steady state operation of the

plant for every value of the parameters witnin

specified bounds. Grossmann and Sargent (1973)

propose a formulation that tries to incorporate



this objective. They approximate the expected
value of the cost by a weighted average of a
finite number of terms, assuming discrete
probabilities for a finite set of parameter
values. They select the optimum design by
minimizing this expected cost subject to
maximizing each of the individual inequality
constraints with respect to the parameters. In
their solution procedure a small set of extreme
values of parameters is selected by analyzing
the signs of the gradients of each of the
individual inequality constraints. and the
optimization is performed for this set of
parameter values, in the form of a multiperiod
design problem. However, t.u.eir approach cannot
always guarantee that the extreme values that
have been selected wi l l ensure feasibility of
operation for all the other parameter values. In
the next section the formulation proposed by
Halemane and Grossmann (1981c) is presented.
This formulation is an extension of the work by
Grossmann and Sargent (1978), and rigorously
ensures feasible operation for the specified set
of bounded parameter values.

Two-Stage Proqramminq Formulation

Assuming that bounded values of the uncertain
parameters are specified in problem (7), the
region T that is defined to contain all possible
values of these parameters is given by

{$ | 6L * 6 $ 6U) (8)

where 0L and 9U represent given lower and
upper bounds on 6. Of course the parameters
could also be dependent, in which case they
would typically be related by linear constraints.
However, for the sake of simplicity in the
presentation they wi l l be assumed to be
independent.

In order to derive the mathematical formulation
it is convenient to consider the design strategy
used by Halemane and Grossmann (1981c) as
being composed of two stages: an operating
stage and a design stage.

I. Operating stage: Assuming that a given
design d has been selected, it is considered that
the plant wi l l be operated optimally while
satisfying the constraints of the process for all
possible realizations of the parameters in
T. Hence, the objective in this stage is to select

"Tor every realization 0€T, a control z which is
both optimal and feasible.

Clearly, for the given design d and for any

value of 6. the state variables can be expressed

as an implicit function of the control z from the

system of equations of the process.

h(d,z.x,0) * 0 =» x = x(d.z,0) (9)

Since the control variable z should be selected
so as to satisfy the specifications given by the
vector of inequality constraints,

g(d.z.x,0) = g(d,z,x(d.z,0),0) = f(d.z,0) < 0 (10)

the optimal operation of the plant that
minimizes the cost while satisfying the
constraints wil l be given by the nonlinear
program

min C(d,z.0)
z

s.t. fid.z.0) <> 0
(11)

The solution to this problem defines the cost
function C"(d.0) which corresponds to the
optimal operation of the plant for fixed values
of d.8. Furthermore, if the optimization is
performed for every realization #€T, the average
cost of operation wi l l be given by the expected
value E {C#(d,0)K

II. Design Stage: In order to achieve the basic

objective of feasible operation in the region of

parameters T, the design variable d must be

chosen so as to ensure that for every value of

d the control variable z in the operating stage

can indeed be selected to satisfy the constraints

in (11). Note that an improper selection of d can

lead to infeasible operation for some realization

of 6, in which case no selection of the control

z wi l l exist so as to satisfy the inequality

constraints in (11). Furthermore, in order to

achieve the optimal design, the design variable d

must be selected so as to minimize the

expected value of the optimal cost function

C*(d.#) over the entire region T.

This strategy for dealing with uncertainties in
design can be interpreted qualitatively in the
fol lowing way. In stage II , the designer selects
a design such that if in stage I the operator
properly adjusts the controls depending on the
realization of the parameter values, feasible and
optimal operation of the plant can be achieved
within the specified range of parameter values.



Note that the assumption made here is that
essentially perfect control of the plant can be
achieved, since for instance no noise is
assumed in the measurement of the parameters.
Although this could clearly be regarded as a
limitation of the strategy, it is considered that
at the design stage including more detailed
information on the control scheme would make
the problem virtually unmanageable. Despite the
limitation, it is clear that the strong point of the
strategy is that it does recognize explicitly that
chemical plants can be adjusted during operation
to achieve feasibility.

The strategy as stated above can be expressed
mathematically as the two-stage programming
problem,

minimize E { min C(d,z.£) | f(d,z,0) £ 0}
d del z

(12)
s.t. V *€T < Az ( V i€J I f (d.z.0) < 0 ~" '

where J = {1,2 m} is the index set for the
components of the vector of constraint
functions f. The constraint in (12) is denoted as
the feasibility constraint, because the existence
of a feasible region of operation in the region T
can be ensured if and only if this constraint is
satisfied. In fact, this logical constraint states
that for every point 0ET, in the space of
parameters, there must exist at least one value
for the vector z of control variables that gives
rise to non-positive values for all the individual
constraint functions. Qualitatively, this means
that irrespective of the actual values taken by
the parameters, the proposed plant of design d
the plant can be operated to satisfy the
specifications.

It is interesting to note that since there is an
infinite number of possible realizations for the
values of the parameters 6. and since the
optimal operation of the plant is implicitly
dependent on 6. the overall number of decision
variables involved in problem (12) is infinite.
This is because for every value of 6 an optimal
value of the control variables z is being chosen.
Also, note that the feasibility constraint
represents an infinite set of constraints since
the inequalities in (10) are defined for the
infinite set of values #€T. Therefore, problem
(12) corresponds to a two-stage nonlinear
infinite program.

A first step in simplification to make problem
(12) more amenable to solution is to perform a
discretization over the parameter space in order
to approximate the expected cost by a weighted
cost function (Grossmann and Sargent, 1978),
which reduces (12) to

minimize / w' C(d,z',0')

(13)
s.t. Uti.z',0') £ 0, i ' 1.2_..n

where the weights w1 correspond to discrete
probabilities for the selected finite number of
parameter points 0'£T, i=1,2,...n. These weights
could be derived from the joint probability
distribution function of the parameters, or they
could be selected to reflect subjective
probabilities assigned by the designer. Note that
in the case where a joint distribution function is
available, by suitable selection of the parameter
bounds one can also define a minimum level of
probability of parameter realization for which
feasible operation of the chemical plant is
guaranteed.

It is important to note that from a practical
point of view the simplification for the expected
cost as given in (13) does not represent a major
limitation. The reason is that by optimizing the
design for several parameter values one will
obtain designs that in general are not too
sensitive in the objective function to changes in
parameter values. This has been confirmed with
numerical examples reported by Grossmann and
Sargent (1978) and by Halemane (1982).

With the simplification in (13) the number of
decision variables is finite, since optimization is
performed over the vector d of design variables
and the finite number of vectors z1, Z2,...,zn of
control variables. The control variables z1 are
selected to satisfy the corresponding constraints
f(d.z'.0') £ 0, so as to achieve optimal feasible
operation at the point 0' of the parameter space.
Since the number of decision variables in (13) is
finite, but the number of constraints is infinite
because the feasibility constraint is still
imposed, problem (13) corresponds to a semi-
infinite programming problem (see Hettich. 1978;
Polak. 1981).



" It is interesting to note that if the feasibility
constraint is excluded in (13), the resulting
structure of the problem is equivalent to that of
the deterministic multi-period problem given by

(2). This problem could then be interpreted as
one where the plant operates in each period
with the parameter value d\ and with the length
of each period being proportional to w1. Since
this problem can be solved very efficiently with
.the projection-restriction strategy, a very
important question that arises is whether a finite
number of points in 0-space can be selected, so
that by ensuring feasibility of the design for
those points, one " can guarantee that the
feasibility constraint in (13) will be satisfied.

As shown by Halemane and Grossmann (1981a,c),
the answer to this problem is given by proving
firstly that the feasibility constraint in (13) is
mathematically equivalent to the subproblem

max mm
z

max f (d,z,0)
j (14)

They show that if the constraint functions
f.(d,z.0) are jointly convex in z and 6, the global
and local solutions to the subproblem in (14)
that lead to critical points 6C must Ire at
vertices of the polyhedron T in (8) that defines
the parameter space. This then implies that if
the design can be guaranteed to be feasible at
the vertices of T, it can also be guaranteed to
be feasible for all other 6£T.

Halemane and Grossmann (1981c) also show that
an interesting interpretation of the constraint in
(14) is given if one defines for a fixed d and 6
the function

f(d,0) min {u
z

f (d.z.0)
j (15)

Note that this function \id.9) provides a
measure of feasibility iy<0) or infeasibility (y>0)
for the chosen design d at the parameter value
6. Geometrically, y can also be interpreted as
the "depth" of the feasible region since it
measures the maximum deviation of the
constraint functions with respect to the zero
bound in (14). Furthermore, since the solution of
(14) is given when the function f{6.0) attains the
maximum over the set T, there can in general be
a finite number of critical parameter values 6C

for which the degree of feasibility is the
smallest. In the convex case, Halemane and
Grossmann (1981c) show that these critical
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points would correspond to some of the
vertices of the polyhedron T. These ideas can
be illustrated more clearly with the following
set of linear constraints

(16)

The feasible region for this set of constraints is
shown in Figure 2a for d - 1, and the
corresponding function f is shown in Figure 2b.
Note that f is nondifferentiable at 6 = 9/5. and
that it exhibits two local maxima at 6 = 1 and 6
« 2. It is clear from Figure 2a that the size of
the feasible region decreases at both extreme
points, 6 » 1 and 6 = 2, and gets enlarged
towards the interior point 6 = 9/5. The function
f plotted in Figure 2b reflects precisely this
information, since y is strictly negative for 1 <
6 < 2, and zero at the two extreme points. Thus,
there are in this case two critical points that
would have to be considered for design, which
are in fact the two extreme points of the
parameter 6.

0
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Fig. 2. Feasible region and o(d,0) for
constraints (16) with d • 1.

Solution Procedure

As was shown in the last section, the two-stage
programming formulation with the feasibility
constraint is given by

w'C(d.z',0')

s.t. f(d.z',6H < 0 i * 1.2....n

max min max f (d.z.tf) £ 0
z j€J J

(17)



A direct solution procedure for this optimization
problem poses great difficulty since it involves
the max-min-max constraint, which as has been
shown in the example of Figure 2 involves a
non-differentiable global optimization problem
(see Danskin, 1967; Demyanov and Malozemov,
1974). Therefore, in order to derive a reasonable
solution procedure it is best to take advantage
of the fact that in the convex case feasibility of
this constraint can be guaranteed if the
constraint functions are forced to be feasible at
the vertices of the polyhedron T. Although this
procedure would be strictly valid only for the
convex case, it may also be valid in some
instances when nonconvex constraint functions
are involved.

functions.

Step 2 - Determine the design vector dk by
solving the problem

k

minimize y w C(d.z'.0')

s.t. f(d.z'.0') < 0. i = 1.2....Nk

(18)

using the projection-restriction strategy
for multiperiod-design problems.

Step 3 - Determine the critical parameter values
0c#k by solving for every vertex 01 in
T, the problem

Given that the objective is to ensure feasibility
for all the vertices of the set T, one approach
to solve problem (17) would be to reformulate it
as a multiperiod problem in which the 2P

parameter vertices are selected as the n points
for the design. However, this procedure could
clearly become very expensive computationally
if the number of parameters p is rather large
(e.g. p ^ 4). To circumvent this difficulty.
Halemane and Grossmann (1981c) have proposed
an iterative multi-period design algorithm that is
given by the following steps:

Step 1 - Set k = 0. Choose an initial set T
consisting of N vertices where N <?
2P . ° °

min {u | u £ f (dk.z.0'). j € J}

The vertex that gives rise to the
maximum value of y is then
determined and is denoted by #c>. If
p(dk,0c>) ^ 0, stop. Otherwise,
proceed to Step 4.

Step 4 - Incorporate the new critical point in
the design by defining

i ' ^ , - I V , I - <20>

set k * k • 1 and return to Step 2.

This can be achieved with small computing

requirements using the procedure suggested by

Grossmann and Sargent (1978), in which each

constraint is maximized individually by assuming

monotonicity. The gradients of >oQ of each of

the individual constraint functions f , j=1.2,...m,

with respect to the parameters 6 , k=1,2,...p, are

computed at Initial values of d and z, and the

signs of these gradients are analyzed. If for

each individual constraint function f , the

gradient df.ldO^ > 0, the upper bound du^ is

selected for the parameter 6 . whereas if

9f 730 < 0 the lower bound d^ is selected.

Clearly, for zero gradients either choice of the

bounds is possible. Since each constraint may

lead to a different vertex, the set of vertices

obtained for all constraints is finally merged

into the smaller set of vertices T by using a
o

set covering formulation (see Garfinkel and
Nemhauser, 1972). It should be noted that if the
constraint functions f., are monotonic in the
parameters $ , these vertices will correspond to
the maximization of individual constraint

•Note that at the termination of this algorithm
the design will necessarily be feasible for all
values of parameters, because it will be feasible
for the critical parameter values. Also, the
algorithm has to terminate in a finite number of
iterations since there can only be a finite
number of critical parameter points. The initial
vertices predicted in Step 1 by the method of
Grossmann and Sargent (1978) will often yield
very good guesses for which only one global
iteration in the algorithm may be required. It is
also important to note that the minimizations in
(19) may not have to be performed until
completion for all vertices, as they can be
stopped when f reaches a negative value in
which case the existence of a non-empty
feasible region is detected. Thus, by the above
considerations this algorithm should provide in
general a more efficient method of solution than
the case when all the vertices are included in
problem (18). Halemane and Grossmann (1981c)
have applied this algorithm to two example
problems, each one involving five uncertain



parameters: a heat exchanger network and a
reactor with a cooler. The computational
requirements were modest since no more than
two global iterations of the algorithm were
required to obtain the optimal and feasible
solutions.

The efficiency of the above algorithm could be
enhanced further by making use of the following
provisions. Firstly, the number of parameter
points that must be considered in Step 2 could
be kept relatively small at each iteration of the
algorithm if some of the vertices are eliminated
when new ones are added in Step 3. The
obvious criterion would be to discard those
vertices that have the smallest negative value of
f. since they are the ones that are most likely
to remain feasible for small changes in the
design vector d. However, there is clearly no
guarantee that these vertices would become
infeasible in the next iteration in which case
they would have to be included in Step 2 again.

The second provision would be related to the
problem of having to solve problem (19) for
each one of the vertices of the set T, which can
clearly become a major burden in the
computations if the number of parameters p is
large. For instance, for p = 10, 1024 vertices
need to be analyzed, whereas for p * 20 the
number of vertices is 1,048,576. In order to
overcome this problem, if one assumes
convexity in the constraints, a lower bound on p
for each vertex i can be computed very
efficiently by solving (19) with the constraint
functions linearized at the nominal point (zN, 0N).
That is, the lower bound y' at vertex i would be
given by

f\ * min u
z

u a f (dk.zN,
j

df

dz

8f
(21)

where clearly f* will yield a rigorous lower
bound since the convex functions f (dk,z,#) will
be greater or equal than the corresponding
linearized functions in (21). Note that the
computation of these lower bounds involves the
solution of a parametric linear programming
problem in which only the right hand side is
modified at the different vertices. Hence, the
solution of the linear program would require
very few simplex iterations at the successive

- vertices (Hillier and Lieberman, 1980). Preliminary
numerical results (Swaney, 1982) indicate that

the quality of these bounds is very good. These
bounds could be used either as a heuristic to
avoid solving (19) in Step 3, or otherwise they
could be used within a rigorous bounding
procedure since an upper bound y't can be
computed by simply evaluating the constraint
functions at the control variables z predicted by
(21). Unfortunately, numerical results have
indicated that the quality of these upper bounds
is not very good. Further investigation would
be required to test the effectiveness of this
procedure.

Discussion on locating critical parameter points

Clearly one of the major difficulties involved in
the problem of design under uncertainty is the
selection of a finite number of critical points
whose feasibility will ensure feasibility for the
whole set of parameters T. Ideally, one would
like a procedure by which the critical parameters
could be predicted a priori. At the simplest
level one could think of using intuition or
engineering judgment to do that, for instance by
selecting what would appear to be the "worst"
parameter values (e.g. low transfer coefficients,
low efficiencies, high flowrates, etc.). However,
as has been shown with the heat exchanger
network example by Grossmann and Sargent
(1978). this selection is not always trivial since
in their problem the feasible design is not
obtained by selecting the lower bounds for the
heat transfer coefficients which would be

1 normally regarded as the "worst" values.

A further complication, as was illustrated in the
example of Fig. 2. is that there may be several
critical points that may have to be considered
for the design. A procedure that can predict
several points a priori is the one suggested by
Grossmann and Sargent (1978). This procedure
predicts the critical points by analyzing the sign
of gradients of the constraints, as was outlined
in Step 1 of the algorithm. However, although
this procedure is very often successful, it may
in some cases fail to predict the right set of
critical parameter values. In order to gain some
insight as to why this may happen, and also to
try to understand under which conditions a
single critical point exists. consider the
following set of three linear constraints that
involve two control variables, two parameters
and one design variable:



(22)

2. i * 1.2.

Since these constraint functions are linear, their
gradients are independent of the initial point
chosen for such calculations; and since they are
monotonic in 6, the maximization of each of
these functions can be performed by analyzing
these gradients. It is clear that the three
constraint functions get maximized at the three
different vertices dy ' [2.1], d2 - [1,2] and 03

* [1,1] respectively. In order to show that these
vertices can lead to designs that may be
infeasible, consider problem (15) for establishing
the feasibility at a given design d, and
parameter 6. which yields

f(d.d) * min u
z

s.t. f * -z i • 26 y - 6 < u

(23)

tf - -i/j r.>.X_

+ *l - t» .«:

Fig. 3. Feasible region for the
constraints in (22) with
d - 3.

Figure 3 gives a plot of the feasible region for
the set of constraints in (22). with a design d =
3, wherein the values of y obtained from (23)
are also given for each of the four vertex
points of the parameter-space. Since the
constraint functions are linear and hence convex,
the critical parameter points must lie at a
vertex. Clearly, from the values of f in Fig. 3.
6* » [2,2] is the critical point, since y attains
its maximum at this vertex. Also note in Fig. 3

1 2 3

Fig. 4. Feasible region for the
constraints in (22) with
d - 4.

that the design d = 3 is found to be feasible for
the three vertices predicted by maximization of
constraints. 9y = [2,1], S2 = [1,2] and 03=[1.1],
whereas it is infeasible for the critical
parameter point - namely the vertex 6* = [2,2].
To make the design feasible for the critical
point as well, consider that the design variable
is increased to d = 4. The feasible region and
the value of f for the four vertices are again
shown in Fig. 4 for this value of d = 4, where
as it can be seen the design is just feasible for
the critical point, whereas a finite region of
feasibility exists for all other points in the
parameter space. Thus, by ensuring the

feasibility of the design for the critical
parameter values as predicted by the max-min-

' max constraint, it is possible to guarantee the
overall feasibility of the design for every
parameter value within the specified range.

In order to gain some further insight as to why
the maximization of individual constraint
functions will not always lead to correct critical
points, assume that for all #£T the same
common (single) set of values z is selected for
the control variables. It then follows that the
max-min-max constraint reduces to

max max f (d,z.0)
J

(24)

which is equivalent to

max f i
J

(25)



Thus, if for the design d it is possible to select
a control 2. feasible and common for all 06T.
then some of the parameter points predicted by
maximization of individual constraints will
correspond to those (critical points) predicted by
the max-min-max constraint. However, it is
clear that in general different controls z may
have to be selected for different realizations of
6 to maintain feasibility and, therefore, by
maximization of the individual constraint
functions one may not always predict the
correct critical points in a design.

Another interesting question about locating

critical points is to determine the conditions

under which only a single critical point will need

to be considered for the design. To analyze

this case assume that for a given design d, the

set of constraint functions is linear and given

by:

a B

k=1

b z • c
jk k j

0,

(26)

j - 1,2,...m
J

The critical point 6C is given by the solution to
the problem:

max min u
6€T z

s t -

(27)

k*1

b
j k \

Assume that for any SET the problem

f{6,6) * min u
z

s.t.

(28)

u. j = 1.2....m
k=1

has the same set of active constraints (e.g. the
first r. r £ m).

The Kuhn-Tucker conditions for the above
minimization problem then yield

(a) 1 0, j

(b) 0

(c)

' k

b z
jk k

(29)

c . j - 1,2....r| • 1

Since the value of u at the minimum determines
), it follows that

r • 7 X ( Z % *k

(30)

-. - . , )

From this expression it is clear that y(d.d) is
linear and hence monotonic in 8. for the chosen
design d. Therefore the maximization of f in
(30) will lead to a single critical point. Note that
in (29) the active constraints are determined by
the values of the multipliers X , which are in
turn obtained from the subset (a).(b), and since r
£ m. a necessary condition for having the same
set of constraints to be active for every 0£T
would be: m ^ n • 1. In general, a necessary
and sufficient condition would be to have the
values of all the multipliers X (j=1,2,...m) uniquely
determined by the system (29). Furthermore, if
for every k, signOy/90^) = sign(a ) for some
constraints j, then these constraints are

.maximized at the point defined by max f(d,d),
and under these conditions the maximization of
individual constraints with respect to 0 would
lead to the critical points.

To illustrate these ideas consider the set of
constraints given by (22). The solution to (29 a,b)
yields X s X - X - *1/3. indicating that the three
constraints are active for all 9. Furthermore,
from (30) the value for y is obtained as fi6,d) -
1/3(^1 • 6 - d), indicating that p(d,0) is indeed
monotonic in 6, and that maximization of f
results in the single critical point given by 6A =
[2,2]. Note that the signs of the gradients
3f/B$} and dflBQ are both positive, whereas
there is no constraint in (22) that satisfies this
condition. Therefore, in this case since the
monotonicity of f cannot be related with the
monotonicity of the individual constraint
functions f , the maximization of individual

i
constraint functions does not predict the right
critical parameter value. From the analysis
presented above, it would be most interesting to
investigate whether for nonlinear constraints



with special structure the property of
monotonicity of y also holds when the same
set of constraints remains active for all the
vertices in T.

Future directions. As has been shown above, it
is the aspect of feasibility that greatly
complicates the two-stage programming
formulation for the design problem under
uncertainty. In the case when feasibility can be
ensured by considering only the vertices in T,

the proposed algorithm provides a reasonable
way of tackling the problem. However, there is
no question that there is still great incentive to
enhance the efficiency of this algorithm and
some of the provisions suggested above should
be explored further. The greatest challenge,
however, would be to devise a procedure that
could also handle the nonconvex case for which
the critical point may not correspond to a
vertex. This would require the solution of the
nondifferentiable global optimization problem
that is involved in the max-min-max constraint,
which at the present time appears to be an
extremely difficult problem to tackle.

DESIGN WITH OPTIMAL DEGREE OF FLEXIBILITY

In the first part of the paper procedures were
outlined which treat the case of design for a
fixed degree of flexibility. In that case the
required flexibility is pre-specified. either by a
discrete set of required operating conditions or
by requiring feasibility of operation when a set
of uncertain parameters can vary between fixed
bounds. The more general problem is to
determine the design which possesses the
optimal degree of flexibility. Solution of this
problem requires a quantitative characterization
of the property of flexibility.

For the flexibility of a design to be "optimal"
requires that the economic advantages of
flexibility be balanced in relation to its cost.
As stated before, flexibility as a design attribute
represents the ability of a design to
accommodate variations: with a higher degree
of flexibility, the range of tolerable variations is
greater. The uncertain parameters which

describe the variations may be considered as
random variables, and conceptually their
realizations may be described in terms of their
joint probability distribution. It follows then

- that a design featuring a higher degree of
flexibility will have a lower probability of
encountering infeasible operation. Since there

will be an economic penalty incurred when
infeasibilities prevent successful operation, there
is strong motivation to provide a design with an
adequate degree of flexibility.

Conceptually one could construct a nonlinear
program with an objective function which
involves the expectation of the composite
economic cost. including penalties for
infeasibility. In theory the solution to that
stochastic program would determine the optimal
degree of flexibility. The practical problems of
such an approach are two-fold. First, the
combined occurrence of the feasibility constraint
and the expectation operator make the above
program one of great mathematical difficulty.
Second, it is doubtful that either the probability
distributions of the uncertain parameters or the
economic penalties for infeasibility will ever be
known very accurately in a practical plant design
situation. For these reasons the complex
stochastic program as outlined can hardly be
justified, and pragmatic simplifications are in
order.

Fig. 5. Trade-off curve for flexibility
and cost.

A key step towards simplification is the
separation of the composite objective function*
into two components: minimizing capital and
operating costs on the. one hand, and maximizing
flexibility on the other. The resulting
formulation then takes the form of a
multicriterion optimization problem, with
annualized cost and degree of flexibility as two
simultaneous objective functions. The standard
procedure would then be to construct a trade-off
curve relating flexibility to cost as shown in Fig.
5 (see Clark and Westerberg, 1982). This could
be done for instance by using the * -constrained
method where one objective is optimized while
the other objective is set to the limit < which
is varied parametncally (Haimes. Hall and



Freedman. 1975). Examination of the curve
would allow the assessment of an appropriate
trade-off, thereby establishing an "optimal"
degree of flexibility. The principal requirement in
such a procedure is that a quantitative measure
for the degree of flexibility be available. This
need of a metric for flexibility is the motivation
for the flexibility index described below.

An Index of Flexibility

The problem at hand is to construct a scalar
metric whose value for any fixed design
characterizes the size of the region of feasible
operation in the space of uncertain parameters.
Since for each realization of the parameters
control variables will be adjusted to attain
feasibility of operation (if possible), the feasible
region in 0-space may be defined as

(3D

'where the vector of inequalities f(d,z.#) £ 0
define feasibility in (z, 0)-space. In general the
actual shape of this region could be rather
complex, being defined by a boundary whose
points are determined implicitly by the equation
f{6.&) = 0 (see Fig. 6), while the function p(d.tf)
is itself the result of the nonlinear program
shown in equation (15). A particular example of
this region which corresponds to the set of
constraints in (22) with d = 4, is shown in Fig.
7.

Fig. 7. Plot of region R for the set
of constraints in (22) with
d » 4.

Since in general the geometry of the feasiDie
region as given in (31) is difficult to treat in a
meaningful way, the following approach is
proposed. It may be assumed that the uncertain
parameters will vary independently of each
other.2 It makes sense then to analyze the
feasible region R in terms of the maximum
ranges over which the parameters may vary
independently of each other while still remaining
inside the feasible region. Geometrically this
approach corresponds to inscribing a hyper-
rectangle within the feasible region as shown in
Fig. 6. The size of the feasible region is then
characterized by the lengths of the sides of the
rectangle. The remaining difficulty is that the
rectangle is not uniquely determined; trade-offs
can result by increasing the range of some
parameters while decreasing the range of others.

F••tibia

t
X.

-f<4.») - 0

Fig. 6. Hyper-rectangles contained
in the feasible region R.

The solution is to supply a set of scaling
factors which in effect determine the
proportions of the rectangle. With these factors
in hand, positive and negative variations in the
uncertain parameters may be expressed as
scaled deviations from a given nominal value:

*N.a (32)

The point 0N specifies some nominal operation
that will be feasible; the scaling factors A ~ #
and L~d, that represent expected positive and

1

negative deviations may well differ from each
other, since the nominal values dN may not lie at
the centers of their parameter ranges. One may

If the set of parameters tn **• O''?--a! P'os'em forma avon
art depenoent. men onnciDai component a-»a'v$t$ mav oe
employed to obtain an maepenoent set.



then consider the feasible region expressed in
the space of the scaled parameters as shown in
Fig. 8. In the scaled space the rectangle
appears as a hypercube, centered at the nominal
point (located at the origin). The dimension of
the largest hypercube which may be inscribed
within the feasible region may then be adopted
as the desired measure of the size of the
region. The index of flexibility, F, is therefore
defined as one-half the length of a side of that
hypercube. Note that this hypercube has the
property that for any of the parameter points
contained in it. the existence of control
variables which meet the design specifications
and constraints is guaranteed.

,
t f i

Fig. 8. Maximum hypercube contained in
the feasible region R.

The choice of appropriate scaling factors in (32)
requires some comment. Arbitrary choice of the
scales will of course give unsatisfactory results.
For instance, one might consider scaling
parameter deviations in proportion to their
nominal values, in effect giving equal weight to
equal percentage changes for all parameters. To
give the same weight, for example, to a
percentage change in temperature as to a
percentage change in flowrate would in most
cases be inappropriate. Referring again to Fig.
6, the flexibility index implies a rectangular
region in the space of uncertain parameters
inside of which feasible operation is guaranteed
for all combinations of parameter realizations.
By considering the probability distributions of
the parameters one could in theory compute the
total probability that parameter realizations will
Tie "within the rectangle by integrating the joint
probability density function over the rectangular

region. Since it is this probability of feasibility
which is the underlying objective of flexibility, it
would make sense to define the rectangle in a
way which tends to maximize that probability
for a given cost. Usually only approximate
knowledge of the individual probability
distributions will be available, so that a rigorous
maximization will not be possible. However, it
is reasonable to expect that some estimate of
range or variance measure will be available for
each parameter, to be specified by the design
engineer based on experience, statistical data, or
rule-of-thumb target values. An appropriate
choice of scaling factors would be to use these
variances or range estimates- directly; this choice
has the following heuristic support.

Consider the problem of defining one corner of
a rectangle in a space of two parameters as
shown in Fig. 9. Given probability distributions,
contours may be constructed representing the
locus of corners for rectangles which enclose
the same total probability. Since the individual
probability distributions will usually be unimodal,
these contours will be concave; examples for
normal and uniform distributions are shown in
the Fig. 9. By invoking the traditional convex
cost argument. another contour may be
envisioned which represents the locus of corners
for rectangles corresponding to designs of
constant cost. Since this cost contour will
usually be convex, the rectangle which
maximizes the probability of feasibility will have
its corner located near the "knee" of a
constant-probability contour. By scaling in
proportion to the square-root of the variance of
the individual distributions, the rectangle corner
is positioned along a ray which passes through
the "knees". By virtue of this the direct use of
the variance estimates as scaling factors is
deemed reasonable.

Thus, the index of flexibility F represents the
size of a scaled hypercube region of guaranteed
feasibility, with that size being an approximate
representation of the total probability that
parameter realizations will be feasible.

In order to evaluate the index of flexibility F, an
appropriate mathematical formulation is
necessary. Assuming that the state variables x
are eliminated as in equation (9). the
specifications and constraints for a fixed design
d are given by the vector of inequalities Hd.z.i/J
£ 0, where the control vector z is to be
adjusted for different realizations of the vector



a) Normal Distribution

b) Uniform Distribution

Fig. 9. Scaling of deviations
through distribution functions

of uncertain parameters 6 to achieve feasible

operation. It is not necessary to introduce the

variables h+ . «T . i * i....p explicitly, since a

single scalar variable <5 may be used to

characterize the hypercube of feasible deviations

T « {d\dN - OL'S

(33)

The flexibility index, F, for a given design, d. is
then given by the semi-infinite programming
problem

F « max Z

s.t.

where the first constraint imposes the feasibility
condition for all 6 values that lie within the

- hypercube T. Using the equivalent formulation
for the feasibility condition in (14), this problem
may also be formulated as

F « max 3

s.t. max min max f (d.z.0)
0€T 2 jGJ '

(35)

f 1

As shown by Swaney and Grossmann (1982), the
problem in (35) exhibits two important
properties. The first is that if the constraints
are jointly convex in z and 6, the maximum of
the feasibility constraint lies at one or several
of the vertices of the hypercube T given by (33).
The second one is that the function y given by
equation (15) (which provides a measure of
feasibility) is zero at these vertices. These
properties are illustrated in Fig. 8, where the
hypercube touches the boundary y{6.6) - 0 at
one of its vertices. Note that this vertex may
be interpreted as a critical parameter value
which identifies a worst-case condition for the
design.

An Efficient Vertex Enumeration Procedure

The formulation in (35) provides the definition of
the flexibility index for a chemical plant of
fixed design. As in the case of design under
uncertainty, the max-min-max constraint is the
major source of difficulty when seeking an
efficient solution method for (35). However, by
assuming that the critical parameter values must
•occur at vertices of the hypercube, the problem
is simplified considerably. Swaney and
Grossmann (1982) have recently developed an
efficient search method to find the smallest of
the maximum tolerable parameter deviations for
all vertex directions.

Basically they consider the following
subproblems

max 5

s.t. M.i.8) i 0

0 • 6" *

k € V (36)

where (A#)k is the vector of deviations that lead
to vertex k and V is the set of vertices of the
hypercube T. They show that these subproblems
define points on the boundary of the feasible
region y{6.6) £ 0. The value for F is then taken
as o * min J .



In order to avoid solving each subproblem in
(36) explicitly, the approach suggested by
Swaney and Grossmann (1982) takes advantage
of the fact that the o^ value need only be
determined for the critical, or worst-case,
vertices. Since o > o for those vertices which
do not belong to the worst case set. two points
may be noted for non-worst-case vertices: 1)
The actual value <3 is unimportant, and 2) The
point 6 ' 0N • oiA&)k lies within the feasible
region. Therefore, the worst-case set may be
identified by testing vertices for feasibility at 3
- 0N • J(A#)k. A procedure may then be
constructed wherein the suboroblems in (36) for
each vertex can usually be replaced by a much
easier feasibility test. Basically, the vertices
are searched in a sequence; feasibility of each
vertex is checked at the point 6 - 0N • o(A#)k

where <S is the current upper bound on o (based
on o for the vertices in the current estimate of

k

the worst-case set). If the vertex is infeasible
at <5, then the value of o is obtained by
solving (36), the vertex enters the worst-case
set. and the bound 1 is updated. If the vertex
is feasible at o, the search proceeds to the next
vertex.

A good initial estimate for the worst-case
vertex direction may be obtained by determining
at the nominal parameter 6N the steepest-ascent
direction of the feasibility measure f(6.6). This
would involve the following steps:

Step 1. Determine at 6H the control zN such
that

mm u
z

(37)
s.t. u £ f (d.0N,z) j 6 J

Step 2. For small positive perturbations A # .
i=1.2,...p. along each i'th coordinate in the
parameter space determine

f « mm u
z

s.t. u * f (d.zN,0N) •
J

df Bf

(38)

J€J

Step 3. Select the vertex direction A # * such
that (Ar)T A0* > 0. where Af1 = fx - fN, i=1,2...p.

It should be noted that if y(d.6) is monotonic in
"97 the initial estimate will lead to the correct
critical vertex for defining the flexibility index

F. However, since the property of monotonicity
cannot be expected to hold in general, feasibility
must be checked for all the other vertices.

To establish feasibility at a given point d
requires only thai some z be found for which
f(d.z.O) ^ 0. The z value which solves equation
(15) would be a sufficient choice, and a solution
procedure applied to (15) will serve as an
effective feasible point procedure. However, as
was discussed in the algorithm for design under
uncertainty it is in general not necessary to find
an optimal solution for (15); any point z for
which u ^ 0 will establish feasibility. The
procedure may thus be halted as soon as the
condition u < 0 is obtained, with the result that
in many cases feasibility will be established
with less work than would be required to solve
(15) completely. Clearly, for infeasible vertices,
termination with u > 0 will result.

Significant economy in performing the feasibility
tests may be achieved by taking advantage of
the fact that the same set of active constraints
will apply to many vertices in the feasibility
subproblems. By carefully ordering the sequence
of vertex examination, the computational work
required to locate a feasible z can be minimized.
A heuristic procedure for vertex sequencing
which provides an initial sequence, as well as an
evolutionary re-ordering method has been
developed and is described in Swaney and
Grossmann (1982) who apply it to an example
•problem. It is also interesting to mention that
this vertex enumeration procedure could be
applied in Step 3 of the algorithm that was
presented for design under uncertainty.

A Bounding Procedure

The rigorous evaluation of F requires that the
location of the pointis) where the inscribed
hypercube touches the boundary of the feasible
region be determined. In the above procedure it
was assumed that the critical points will lie at
vertices of the hypercube. and that they could
therefore be identified by searching among the
set of all vertices. Unfortunately, if the number
of parameters p becomes large the method can
become expensive, since the number of vertices
to be analyzed increases as 2D.

The important question that arises, then, is
whether a procedure can be derived for
evaluating the flexibility index F which does not
necessarily require analyzing all of the vertices



in the parameter space. Provided one is willing
to assume convexity in the feasible region, it is
possible to derive a bounding procedure that can
accomplish this objective. This bounding

procedure is based on two observations. First,
a valid upper bound on F is given by a
hypercube centered at the origin which contains
on at least one of its faces any point belonging
to the boundary of the feasible region. Second.
if convexity in the region is assumed, a lower
bound may be obtained by determining the
largest hypercube that can be inscribed in a
polytope that is contained within the feasible
region, and whose vertices lie on the boundary.
This suggests the following procedure whose
first three steps are depicted in Fig. 10:

min (40)

1

y * / J"7

Y
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Fig. 10. Lower and upper bounds for
maximum hypercube

Step 1. For a fixed value of d, the maximum
positive and negative deviations for each
parameter are obtained by solving the following
2p subproblems:

max 3*
i

s.t.

Step 3. A lower bound F is obtained by
determining the largest hypercube that is
contained in the polytope defined by the
deviations uT «T i=1....p obtained in step 1. This
hypercube may be determined as follows:

a) For each parameter i calculate

1

s min{ o *,6 "}

where s (41)

which will define a vertex k taken in the
directions s from the nominal point.

b) The equation aT 5 - 1 then describes the
hyperplane containing that face of the polytope
which is closest to the nominal point (origin).

c) Solve for the lower bound F using a15 = 1
by setting 3. = signU )F.

Step 4. a) An improved upper bound F is
obtained by solving (36) along the vertex
direction which corresponds to the face of the
current polytope that is closest to the origin
(e.g. in the first iteration the direction is defined
by (41)).

b) If F = F, or the bounds are within a specified
tolerance, stop. Otherwise go to step 5.

Step 5. a) The polytope contained within the
feasible region is expanded by incorporating the
additional boundary point found in step 4.

b) The lower bound F is updated by inscribing
the largest hypercube in the expanded polytope.
Return to step 4.

max 5" (39)
z

s.t. f(d.z.0N,...,0N-
i i

Step 2. A valid upper bound F for the
flexibility index is given by the smallest
deviation obtained in step 1.

It should be noted that this bounding procedure
requires solving at least 2p * 1 optimization
subproblems for determining the boundary
points. Therefore, it is clear that potential
computational gains can only be achieved if the
number of parameters p. is strictly greater than
two. Also, since there is no guarantee that for
some cases (e.g. symmetric regions) all of the
vertices will not have to be analyzed, the
efficiency of this bounding procedure is



unpredictable. Nevertheless, in a number of
instances the procedure would require analyzing
only a small number of vertices, and if the
exact determination of F is not required it could
still be a useful tool. Finally, since the
assumption of convexity is crucial in
establishing the validity of the lower bound, the
vertex enumeration procedure presented in the
previous section is of more general applicability.

Future directions. It is clear that the flexibility
index defined above is only one possible choice.
Although this index has the advantage of a
meaningful physical interpretation, it might be*
worthwhile to explore other options which, for
instance, do not require the definition of a
nominal point. As for the solution procedures, \
more computational experience is required to
test their effectiveness. Also, it would be
particularly important to develop an efficient
numerical procedure for solving the bicriterion
optimization problem of minimizing cost and
maximizing flexibility.

GENERAL REMARKS

This paper has attempted to present a unified
approach for the problem of design of flexible
chemical plants. As has been shown, this area
offers a number of very interesting possibilities
at both theoretical and practical levels.

On the theoretical side, the problems in
flexibility give rise to optimization problems
that involve large numbers of decision variables
and/or an infinite number of constraints. The
distinct feature of these optimization problems
is that the major difficulty lies in the feasibility
constraints, as opposed to the case where
designs are optimized for a single nominal
parameter value. It is clear that there is still
much work required to derive efficient
optimization strategies for solving the
challenging problems that arise in flexible
design. More research is required to improve
the computational efficiency of the methods that
have been described in the paper for multiperiod
design, design under uncertainty and the
flexibility index. Also more work is required to
extend these methods, or develop new ones, for
handling the nonconvex case. An avenue that is
also worthwhile exploring for the development
of strategies is the use of computer graphics
which can yield interesting insights into ihe
feasibility and movement of constraints (see
Arkun and Stephanopoulos. 1979; Etzkorn and

Arkun, 1982). It is interesting to note that in
the field of electrical engineering very
substantial progress has been made in problems
related to flexibility, such as in the problem of
design centering, tolerancing and tuning of
electronic circuits (see Bandler. 1974; Bandler,
Lui and Tromp. 1976; Brayton, Director, Hachtel
and Vidigal, 1979; Director and Hachtel. 1977;
Madsen and Schjaer-Jacobsen, 1978; Polak and
Sangiovanni. 1979; Mayne, Polak and Voreadis,
1982). However, it should be noted that the
nature of these problems is somewhat different
from the ones encountered in chemical process
design. The emphasis in the work in electrical
engineering has been on manufacturing where the
uncertainties arise in the design variables.
Another crucial difference in these problems is
that in most cases no control variables as
considered in this paper are included.

On the practical side, the area of flexibility adds
a new important dimension to the field of
optimization of chemical processes. The reason
is that since in this area the main concern is
the feasibility of operation of the plant, there is
the possibility of obtaining designs that are not
only economically attractive, but perhaps more
importantly, sufficiently robust to satisfy design
specifications despite uncertainties in the
parameter values. Since this would seem to be
the overriding concern of design engineers (see

Blau, 1981), it is expected that systematic
procedures for flexible design could have an

'important impact in practice. Furthermore, it
should be clear that the aim of these procedures
is not only to determine rational overdesigns,
but also to provide tools that can be used to
help close the gap that currently exists between
the activities of design and control of chemical
plants. It is clear ihat before performing a
detailed analysis on the dynamics and control of
a process, it is first of all necessary to
determine whether in fact feasible operation
over a finite range of parameters can be
attained with a proposed design. In principle
these tools for flexible design could also be
used to synthesize systematically flexible
process flowsheets, although there is clearly
much more research work required to accomplish
this goal.
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