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Abstract

We study distribution free, nonparametric prediction bands with a special focus
on their finite sample behavior. First we investigate and develop different notions of
finite sample coverage guarantees. Then we give a new prediction band estimator by
combining the idea of “conformal prediction” (Vovk et al., 2009) with nonparametric
conditional density estimation. The proposed estimator, called COPS (Conformal
Optimized Prediction Set), always has finite sample guarantee in a stronger sense than
the original conformal prediction estimator. Under regularity conditions the estimator
converges to an oracle band at a minimax optimal rate. A fast approximation algorithm
and a data driven method for selecting the bandwidth are developed. The method
is illustrated first in simulated data. Then, an application shows that the proposed
method gives desirable prediction intervals in an automatic way, as compared to the
classical linear regression modeling.

1 Introduction

Given observations (Xi, Yi) ∈ Rd × R1 for i = 1, ..., n, we want to predict Yn+1 given
future predictor Xn+1. Unlike typical nonparametric regression methods, our goal is not to
produce a point prediction. Instead, we construct a prediction interval Cn that contains
Yn+1 with probability at least 1 − α. More precisely, assume that (X1, Y1), · · · (Xn+1, Yn+1)
are iid observations from some distribution P . We construct, from the first n sample points,
a set-valued function

Cn(x) ≡ Cn(X1, Y1, . . . , Xn, Yn, x) ⊆ R1 (1)

such that the next response variable Yn+1 falls inside Cn(Xn+1) with a certain level of confi-
dence. The collection of prediction sets Cn =

{
Cn(x) : x ∈ Rd

}
forms a prediction band.

The prediction set Cn(x) depends on the observed value Xn+1 = x, which shall be
interpreted as the estimated set that Y is likely to fall in, given Xn+1 = x. This extends
nonparametric regression by providing a prediction set for each x. Such a prediction set
provides useful information about the uncertainty. The problem of prediction intervals is
well studied in the context of linear regression, where prediction intervals are constructed
under linear and Gaussian assumptions (see, DeGroot & Schervish (2012), Theorem 11.3.6).
The Gaussian assumption can be relaxed using, for example, quantile regression (Koenker
& Hallock, 2001). These linear model based methods usually have reasonable finite sample
performance. However, the coverage is valid only when the linear (or other parametric)
regression model is correctly specified. On the other hand, nonparametric methods have the
potential to work for any smooth distribution (Ruppert et al. (2003)) but only asymptotic
results are available and the finite sample behavior remains unclear.
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Recently, Vovk et al. (2009) introduce a generic approach, called conformal prediction, to
construct valid, distribution free, sequential prediction sets. When adapted to our setting,
this yields prediction bands with a finite sample coverage guarantee in the sense that

P [Yn+1 ∈ Cn(Xn+1)] ≥ 1− α for all P, (2)

where P = P n+1 is the joint measure of (X1, Y1), · · · (Xn+1, Yn+1). However, the conditional
coverage and statistical efficiency of such bands are not investigated.

In this paper we extend the results in Vovk et al. (2009) and study conditional coverage as
well as efficiency. We show that although finite sample coverage defined in (2) is a desirable
property, this is not enough to guarantee good prediction bands. We argue that the finite
sample coverage given by (2) should be interpreted as marginal coverage, which is different
from (in fact, weaker than) the conditional coverage as usually sought in prediction problems.
Requiring only marginal validity may lead to unsatisfactory estimation even in very simple
cases. As a result, a good estimator must satisfy something more than marginal coverage. A
natural criterion would be conditional coverage. However, we prove that conditional coverage
is impossible to achieve with a finite sample. As an alternative solution, we develop a new
notion, called local validity, that interpolates between marginal and conditional validity, and
is achievable with a finite sample. This notion leads to our proposed estimator: COPS
(Conformal Optimized Prediction Set). We also show that when the sample size goes to
infinity, under regularity conditions, the locally valid prediction band given by COPS can
give arbitrarily accurate conditional coverage, leading to an asymptotic conditional coverage
guarantee.

Another contribution of this paper is the study of efficiency in the context of nonpara-
metric prediction bands. Roughly speaking, efficiency requires a prediction band to be small
while maintaining the desired probability coverage in the sense of (2). We study the effi-
ciency of our estimator by measuring its deviation from an oracle band, the band one should
use if the joint distribution P were known. We also give a minimax lower bound on the
estimation error so that the efficiency of our method is indeed minimax rate optimal over a
certain class of smooth distributions.

To summarize, the method given in this paper is the first one with both finite sample
(marginal and local) coverage, asymptotic conditional coverage, and an explicit rate for
asymptotic efficiency. The finite sample marginal and local validity is distribution free: no
assumptions on P are required; P need not even have a density. Asymptotic conditional
validity and efficiency are closely related and rely on some standard regularity conditions on
the density. Furthermore, all tuning parameters are completely data-driven.

The problem of constructing prediction bands resembles that of nonparametric confidence
band estimation for the regression function m(x) = E(Y |X = x). However, these are two
different inference problems. First note that non-trivial, distribution-free confidence bands
for the regression function m(x) = E(Y |X = x) do not exist (Low, 1997; Genovese &
Wasserman, 2008). On the other hand, in this paper we show that consistent prediction
bands estimation is possible under mild regularity conditions. Hence there is a distinct
difference between confidence bands for the regression function and prediction bands.
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Prior Work On Nonparametric Prediction Bands. The usual nonparametric prediction
interval takes the form

m̂(x)± zα/2
√
σ̂2 + s2 (3)

where m̂ is some nonparametric regression estimator, σ̂2 is an estimate of Var(Y |X), s is
an estimate of the standard error of m̂ and zα/2 is either a Normal quantile or a quantile
determined by bootstrapping. See, for example, Section 6.2 of Ruppert et al. (2003), Section
2.3.3 of Loader (1999) and Chapter 5 of Fan & Gijbels (1996). The assumption of constant
variance can be relaxed; see, for example, Akritas & Van Keilegom (2001). Other related
work includes Hall & Rieck (2001) on bootstrapping, Davidian & Carroll (1987) on variance
estimation and Carroll & Ruppert (1991) on transformation approaches. However, none of
these methods yields prediction bands with distribution free, finite sample validity. Fur-
thermore, these methods always produce a prediction set in the form of an interval which,
as we shall see, may not be optimal. In fact, we are not aware of any paper that provides
distribution free finite sample prediction bands with asymptotic optimality properties as we
provide in this paper. The only paper we know of that provides finite sample marginal
validity is the very interesting paper by Vovk et al. (2009). However, that paper focuses on
linear predictors and does not address efficiency or conditional validity.

Outline. In Section 2 we introduce various notions of validity and efficiency. In Section
3 we introduce our methods for prediction bands: the COPS estimator. We study the large
sample and minimax results of the method in Section 4. We discuss bandwidth selection in
Section 5. Section 6 contains some examples. Finally, concluding remarks are in Section 7.

2 Marginal, Conditional, and Local Validity

2.1 Marginal Validity and Prediction Sets

Prediction bands are an extension of nonparametric prediction sets (also called tolerance
regions). Suppose we observe n iid copies Z1, . . . , Zn of a random vector Z with distribution P
and we want a set Tn ⊆ Rd such that P [Zn+1 ∈ Tn] ≥ 1−α for all P . Let Zi = (Xi, Yi). Since
the probability statement in (2) is over the joint distribution of (X1, Y1), . . . , (Xn+1, Yn+1),
it is equivalent to

P [(Xn+1, Yn+1) ∈ Cn] ≥ 1− α, for all P. (4)

That is, equation (4) is exactly the definition of a prediction set for the joint distribution
(X, Y ). As a result, any prediction set for the joint distribution provides a solution, with
finite sample coverage, to the prediction band problem. In this subsection we pursue this
point further. In the following subsections we consider improvements.

The study of prediction sets dates back to Wilks (1941), Wald (1943), and Tukey (1947).
More recently, the research on prediction sets has focused on finding statistically efficient
estimators in multivariate cases (Chatterjee & Patra, 1980; Di Bucchianico et al., 2001; Li
& Liu, 2008). Lei et al. (2011) study distribution free, finite sample valid and efficient
estimator of prediction sets. A thorough introduction to prediction sets can be found in
Krishnamoorthy & Mathew (2009).
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Figure 1: Joint prediction set and pointwise conditional coverage for bivariate independent
Gaussian. Left panel: the gray area is the optimal (with smallest Lebesgue measure) pre-
diction set with coverage 0.9, the two red lines are the upper and lower 5% quantiles of the
marginal distribution of Y . Right panel: the blue curve plots P (Y ∈ C(x)|X = x) against
x; the red line is the desired coverage level 0.9.

There are many different methods to construct prediction sets. A common measure of
efficiency is the Lebesgue measure and the optimal prediction set is the one with smallest
Lebesgue measure among all sets with the desired coverage level. It is well-known that the
optimal prediction set at level 1 − α (optimal refers to the one having smallest Lebesgue
measure) is an upper level set of the joint density:

C(α) =
{

(x, y) : p(x, y) ≥ t(α)
}
, (5)

where t(α) is chosen such hat P (C(α)) = 1 − α. As illustrated in the following example, an
optimal joint prediction can lead to an unsatisfactory prediction band.

Figure 1 shows the case of a bivariate independent Gaussian. According to (5), when
X, Y are independent standard normals, the level set for any C(α) is a circle centered at
the origin as described by the gray area in the left panel of Figure 1. But intuitively since
observing X provides no information about Y , the best prediction band at level α should be
C(x) = [−zα/2, zα/2], for all x, where zτ is the τ -th upper quantile of standard normal. This
band is the set between two red dashed lines in the left panel of Figure 1 for α = 0.1.

In prediction, another important notion of coverage is the conditional coverage P (Y ∈
C(x)|X = x). The pointwise conditional coverage P (Y ∈ C(x)|X = x) is plotted in the
right panel of Figure 1 for the joint prediction set (blue curve). We see that the “optimal”
joint prediction set tends to overestimate the set when x is in the high density area and to
underestimate for low density x. Let us now consider conditional validity in more detail.
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2.2 Conditional Validity

Only requiring (2) for prediction bands is not enough. We will refer to (2) as marginal
validity or joint validity. This is the type of validity used in Shafer & Vovk (2008). As
illustrated in the example above, it may be tempting to insist on a more stringent probability
guarantee such as

P(Yn+1 ∈ Cn(x)|Xn+1 = x) ≥ 1− α for all P and almost all x, (6)

which we call conditional validity. If the joint distribution of (X, Y ) is known, one can define
an oracle band as the counterpart of (2) for conditionally valid bands:

CP (x) =
{
y : p(y|x) ≥ t(α)(x)

}
(7)

where t(α)(x) satisfies ∫
1I
{
p(y|x) ≥ t(α)(x)

}
p(y|x)dy = 1− α.

We call CP = {CP (x) : x ∈ Rd} the conditional oracle band. It is easy to prove that CP
minimizes µ[C(x)] for all x among all bands satisfying infx P (Y ∈ C(x)|X = x) ≥ 1 − α.
Note that CP depends on P but does not depend on the observed data. For an estimator
Ĉ, asymptotic efficiency requires Ĉ(x) be close to CP (x) uniformly over all x:

sup
x
µ
[
Ĉ(x)4CP (x)

]
P→ 0. (8)

However, we will show that there do not exist any prediction bands Ĉ that satisfy both (6)
and (8). In fact, the following claim, proved in Subsection 8.2, is even stronger.

Let PX denote the marginal distribution of X under P . A point x is a non-atom for P
if x is in the support of PX and if PX [B(x, δ)]→ 0 as δ → 0, where B(x, δ) is the Euclidean
ball centered at x with radius δ. Let N(P ) denote the set of non-atoms. We show that if
Cn is conditionally valid then the length of Cn(x) is infinite for all x ∈ N(P ).

Lemma 1 (Impossibility of non-trivial finite sample conditional validity). Suppose that an
estimator Cn has 1− α conditional validity. For any P and any x0 ∈ N(P ),

P

(
lim
δ→0

ess sup
||x0−x||≤δ

µ[Cn(x)] =∞

)
= 1.

Thus, non-trivial finite sample conditional validity is impossible for continuous distribu-
tions. We shall instead construct prediction bands with an asymptotic version of (6) together

with finite sample marginal validity. We say that Ĉ is asymptotically conditionally valid if

sup
x

[
P(Yn+1 /∈ Cn(x)|Xn+1 = x)− α

]
+

P→ 0 (9)
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as n → ∞. Here, the supremum is taken over the support of PX . We note that if the
conditional density p(y|x) is uniformly bounded for all (x, y), then asymptotic conditional
validity is a consequence of asymptotic efficiency defined as in (8).

In Section 3 we construct a prediction band that satisfies:

1. finite sample marginal validity,

2. asymptotic conditional validity and

3. asymptotic efficiency.

Our method is based on the notion of local validity, which naturally interpolates between
marginal and conditional validity.

Definition 2 (Local validity). Let A = {Aj : j ≥ 1} be a partition of supp(PX) such that
each Aj has diameter at most δ. A prediction band Cn is locally valid with respect to A if

P(Yn+1 ∈ Cn(Xn+1)|Xn+1 ∈ Aj) ≥ 1− α, for all j and all P. (10)

Remark. From the insight of Lemma 1, it is possible to construct finite sample locally
valid prediction sets because X ∈ Aj is an event with positive probability and hence repeated
observations are available.

Remark. Consider the limiting case of δ → ∞, which can be thought as having A1 =
supp(PX), and local validity becomes marginal validity. On the other hand, in the extremal
case δ → 0, Aj shrinks to a single point x ∈ Rd, and local validity approximates conditional
validity. We also note that local validity is stronger than marginal validity but weaker
than conditional validity. We state the following proposition whose proof is elementary and
omitted.

Proposition 3. If C is conditionally valid, then it is also locally valid for any partition A.
If C is locally valid for some partition A, then it is also marginally valid.

The relationship between local validity and asymptotic conditional validity is more com-
plicated and is one of the technical contributions of this paper. In Section 3 we construct
a specific class of locally valid bands. In Theorem 9 of Section 4 we show that under mild
regularity conditions, these bands are also asymptotically conditionally valid. To summarize,
if C is locally valid then it is also marginally valid. And under regularity conditions, it can
also be asymptotically conditionally valid. See Figure 2.

How can we construct finite sample locally valid prediction bands? A straightforward
approach is to apply the method developed in Lei et al. (2011) to Pj ≡ L(X, Y |X ∈ Aj),
the joint distribution of (X, Y ) conditional on the event X ∈ Aj. Note that we are mostly
interested in the case maxj diam(Aj) → 0, therefore the marginal density of X within Pj
becomes increasingly close to uniform. Therefore, the approach can be simplified to finding
Cj ∈ R1, such that P (Y ∈ Cj|X ∈ Aj) ≥ 1− α. This approach is detailed in Section 3 and
analyzed in Section 4.

6



Marginal Validity Local Validity

Conditional Validity Asymptotic
Conditional Validity

Figure 2: Relationship between different types of validity.

3 Methodology

3.1 A Marginally Valid Prediction Band

We start by recalling the construction of joint prediction sets using kernel density together
with the idea of conformal prediction, as described in Lei et al. (2011), using the idea of
conformal prediction developed in Shafer & Vovk (2008), Vovk et al. (2005) and Vovk et al.
(2009). This approach is shown to have finite sample validity as well as asymptotic efficiency
under regularity conditions. Suppose we observe

Z1, . . . , Zn ∼ P

and we want a prediction set for Zn+1. The idea is to test H0 : Zn+1 = z for each z and
then invert the test. Specifically, for any z let p̂zn(·) be a density estimator based on the
augmented data aug(Z; z) = (Z1, . . . , Zn, z). Define

Cn ≡ Cn(Z1, . . . , Zn) = {z : πn(z) ≥ α}

where

πn(z) =
1

n+ 1

n+1∑
i=1

1I(σi(z) ≤ σn+1(z))

is the p-value for the test, σi(z) = p̂zn(Zi) for i = 1, . . . , n and σn+1(z) = p̂zn(z). The
statistic σi is an example of a conformity measure. More generally, a conformity measure
σi(z) = σ(aug(Z, z), Zi) indicates how well a data point Zi agrees with the augmented data
set aug(Z, z). In principle σ(·, ·) can be any function but usually it makes sense to use the
fitted residual or likelihood at Zi with respect to a model estimated from aug(Z, z).

The intuition for Cn is the following. Fix an arbitrary value z. To test H0 : Zn+1 = z
we use the heights of the density estimators σi(z) = p̂zn(Zi) as a test-statistic. (Note that
σ1, . . . , σn+1 are functions of aug(Z, z).) Under H0, the ranks of the σi are uniform, because
the joint distribution of (Z1, ..., Zn, Zn+1) does not change under permutations. Hence the
vector (σ1, ..., σn+1) is exchangeable. Therefore, under H0, πn(z) is uniformly distributed over
[0, 1] and is a valid p-value for the test.1 The set Cn is obtained by inverting the hypothesis
test, that is, Cn consists of all values z that are not rejected by the test. It then follows that
P(Zn+1 ∈ Cn) ≥ 1− α for all P .

1More Precisely, it is sub-uniform due to the discreteness.
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In Lei et al. (2011), the density p̂zn is obtained from kernel density estimators with band-

width h. Lei et al. (2011) show that Ĉ(α) is also efficient meaning that it is close to C(α) with
high probability where C(α) is the smallest set with probability content 1− α as defined in
(5).

Computing Ĉ(α) is expensive since we need to find the the p-value πn(z) for every z.
Lei et al. (2011) proposed the following approximation C+

n to Cn—called the sandwich
approximation— which avoids the augmentation step altogether but preserves finite sample
validity. Let Z(1), Z(2), . . . , denote the data ordered increasingly by p̂(Zi). Let j = bnαc and
define

C+
n =

{
z : p̂(z) ≥ p̂(Z(j))−

K(0)

nhd

}
. (11)

Lei et al. (2011) show that Ĉ(α) ⊆ C+
n and hence C+

n also has finite sample validity. Moreover,
C+
n has the same efficiency properties as Cn if h is chosen appropriately. This result, known

as the “Sandwich Lemma”, provides a simple characterization of the conformal prediction
set Ĉ(α) in terms of the plug-in density level set. In this paper, a specific version of the
Sandwich Lemma for the conditional density is stated in Lemma 8. Thus, using the sandwich
approximation we get a fast method for constructing a valid band, based on slicing the joint
density.

Now let Z = (X, Y ). The x-slices of the joint region for Z define a marginally valid band.
Specifically, let Kx and Ky be two kernel functions in Rd and R1, respectively. Consider the
kernel density estimator: For any (u, v) ∈ Rd × R1:

p̂n;X,Y (u, v) =
1

n

n∑
i=1

1

hd+1
n

Kx

(
u−Xi

hn

)
Ky

(
v − Yi
hn

)
. (12)

For any (x, y) ∈ Rd×R1, let (X,Y) = (X1, Y1, . . . , Xn, Yn) be the data set and aug(X,Y; (x, y))

be the augmented data with Xn+1 = x and Yn+1 = y. Define p̂
(x,y)
n;X,Y be the kernel density

estimator from the augmented data:

p̂
(x,y)
n;X,Y (u, v) =

n

n+ 1
p̂n;X,Y (u, v) +

1

(n+ 1)hd+1
n

Kx

(
u− x
hn

)
Ky

(
v − y
hn

)
. (13)

Define the conformity measure

σi(x, y) := p̂
(x,y)
n;X,Y (Xi, Yi). (14)

and p-value

πi =
1

n+ 1

n+1∑
j=1

1I(σj(x, y) ≤ σi(x, y)) , for 1 ≤ i ≤ n+ 1. (15)

Let α̃ = b(n+ 1)αc/(n+ 1). Since (Xi, Yi)
n+1
i=1 are iid, by exchangeability, we have, for all i,

P(πi ≥ α̃) ≥ 1− α. (16)

8



Algorithm 1. Sandwich Slicer Algorithm

1. Let p̂(x, y) be the joint density estimator.

2. Let Zi = (Xi, Yi) and let Z(1), Z(2), . . . , denote the sample ordered increasingly
by p̂(Xi, Yi).

3. Let j = bnαc and define

C+
n (x) =

{
y : p̂(x, y) ≥ p̂(X(j), Y(j))−

Kx(0)Ky(0)

nhd+1

}
. (17)

Define
Ĉ(α)(x) = {y : πn+1(x, y) ≥ α̃} ,

where πn+1 ≡ πn+1 [aug(X,Y; (x, y))]. From (16) we have:

Lemma 4. Ĉ(α)(x) is finite sample marginally valid:

P
[
Yn+1 ∈ Ĉ(α)(Xn+1)

]
≥ 1− α for all P.

Now we use the sandwich approximation to the joint conformal region for (X, Y ). The
resulting band C+

n (x) is obtained by fixing X = x and taking slices of the joint region and
is then a marginally valid band. See Algorithm 1.

To summarize: the band given in Algorithm 1 is marginally valid. But it is not efficient
nor does it satisfy asymptotic conditional validity. This leads to the subject of the next
section.

3.2 Locally Valid Bands

Now we extend the idea of conformal prediction to construct prediction bands with local
validity. These bands will also be asymptotically efficient and have asymptotic conditional
validity. For simplicity of presentation, we assume that supp(PX) = [0, 1]d where supp(PX)
denotes the support of PX and we consider partitions A = {Ak, k ≥ 1} in the form of cubes
with sides of length wn. Let nk =

∑n
i=1 1(Xi ∈ Ak) be the histogram count.

Given a kernel function K(·) : R1 7→ R1 and another bandwidth hn, consider the esti-
mated local marginal density of Y :

p̂(y|Ak) =
1

nkhn

n∑
i=1

1I(Xi ∈ Ak)K
(
Yi − y
hn

)
.

The corresponding augmented estimate is, for any (x, y) ∈ Ak × R1,

p̂(x,y)(v|Ak) =
nk

nk + 1
p̂(v|Ak) +

1

(nk + 1)hn
K

(
v − y
hn

)
. (18)

9



Algorithm 2: Local Sandwich Slicer Algorithm

1. Divide X into bins A1, . . . , Am.

2. Apply Algorithm 1 separately on all Yi’s within each Ak.

3. Output C+
n (x): the resulting set of Ak for all x ∈ Ak.

For any (x, y) ∈ Ak × R1, consider the following local conformity rank

πn,k(x, y) =
1

nk + 1

n+1∑
i=1

1I(Xi ∈ Ak)1I
[
p̂(x,y)(Yi|Ak) ≤ p̂(x,y)(Yn+1|Ak)

]
, (19)

which can be interpreted as the local conditional density rank. It is easy to check that
the πn,k(x, y) has a sub-uniform distribution if (Xn+1, Yn+1) = (x, y) is another independent
sample from P . Therefore, the band

Ĉ(x) = {πn,k(x, y) ≥ α} (20)

for x ∈ Ak has finite sample local validity.

Proposition 5. For x ∈ Ak, let Ĉ(x) = {y : πn,k(x, y) ≥ α}, where πn,k(x, y) is defined as

in (19), then Ĉ(x) is finite sample locally valid and hence finite sample marginally valid.

Proof. Fix k, let {i1, ..., ink} = {i : 1 ≤ i ≤ n, Xi ∈ Ak}. Let (Xn+1, Yn+1) ∼ P be another
independent sample. Define ink+1 = n + 1 and σi` = p̂(x,y)(Yi` |Ak) for all 1 ≤ ` ≤ nk + 1.
Then conditioning on the event Xn+1 ∈ Ak and (i1, ..., ink), the sequence (σi1 , ..., σink , σink+1)
is exchangeable.

We call Ĉ the Conformal Optimized Prediction Set (COPS) estimator, where the word

“optimized” stands for the effort of minimizing the average interval length EXĈ(X).

We give a fast approximation algorithm that is analogous to Algorithm 1. The resulting
approximation also satisfies finite sample local validity as well as asymptotic efficiency as
shown in Section 4. See Algorithm 2.

Remark 6. In the approach described above, the local conformity measure is p̂(x,y)(v|Ak). In
principle one can use any conformity measure that does not need to depend on the partition
Ak, as long as the symmetry condition is satisfied. For example, one can use either the
estimated joint density p̂(x,y)(u, v) or the estimated conditional density p̂(x,y)(v|u). We note
that when diam(Ak) is small, these choices of conformity measure are close to each other
since pX(x) and p(·|x) change very little when x varies inside Ak.

Remark 7. Although one can choose any conformity measure, in order to have local valid-
ity the ranking must be based on a local subset of the sample. When Ak is small and the
distribution is smooth enough, the local sample (Xi` : 1 ≤ ` ≤ nk) approximates independent
observations from p(·|X = x) for x ∈ Ak, which can be used to approximate the conditional
oracle CP (x).

10



4 Asymptotic Properties
In this section we investigate the asymptotic efficiency of the locally valid prediction band

given in (20). The efficiency argument is similar for other choices of conformity measures,
such as joint density or conditional density. Again, we focus on cases where supp(PX) =
[0, 1]d and A is a cubic histogram with width wn. The conformity measure is p̂(x,y)(Yi|Ak)
for x ∈ Ak, where p̂(x,y)(v|Ak) is defined as in equation (18) with kernel bandwidth hn.

4.1 Notation

In the subsequent arguments, pX(·) denotes the marginal density of X, p(y|x) the condi-
tional density of Y given X = x, and p(y|Ak) the conditional density of Y given X ∈ Ak. The

kernel estimator of p(y|Ak) is denoted by p̂(·|Ak) and P̂ (·|Ak) is the empirical distribution
of (Y |X ∈ Ak).

The upper and lower level sets of conditional density p(y|x) are denoted by Lx(t) ≡ {y :

p(y|x) ≥ t} and L`x(t) ≡ {y : p(y|x) ≤ t}, respectively; L̂k(t), L̂
`
k(t) are the counterparts of

Lx(t) and L`x(t), defined for p̂(·|Ak). As in the definition of conditional oracle, t
(α)
x is solution

to the equation Px(Lx(t)) = 1−α. Its existence and uniqueness is guaranteed if the contour
{y : p(y|x) = t} has zero measure for all t > 0. Finally we let Gx(t) = Px(L

`
x(t)).

4.2 The Sandwich Lemma

Heuristically, p̂(y|Ak) ≈ p(y|x) for x ∈ Ak when diam(Ak) is small and p(y|x) varies
smoothly in x. As a result, the estimated densities p̂(x,y)(Yi|Ak) can be viewed as roughly a

sample from p(Y |x), and hence Ĉ(x) approximates the conditional oracle CP (x). First we

show that Ĉ(x) can be approximated by two plug-in conditional density level sets (Lemma
8). For a fixed Ak ∈ A, conditioning on (i1, ..., ink), let (X(k,α), Y(k,α)) be the element of
{(Xi1 , Yi1), ..., (Xink

, Yink )} such that p̂(Y(k,α)|Ak) ranks bnkαc in ascending order among all
p̂(Yij |Ak), 1 ≤ j ≤ nk.

Lemma 8 (The Sandwich Lemma (Lei et al., 2011)). For any fixed α ∈ (0, 1), if Ĉ(x) is

defined in (20) and ||K||∞ = K(0), then Ĉ(x) is “sandwiched” by two plug-in conditional
density level sets:

L̂
(
p̂
(
X(k,α), Y(k,α)|Ak

))
⊆ Ĉ(x) ⊆ L̂

(
p̂(X(k,α), Y(k,α)|Ak)− (nkhn)−1ψK

)
, (21)

where ψK = supx,x′ |K(x)−K(x′)|.

The Sandwich Lemma provides simple and accurate characterization of Ĉ(x) in terms of
plug-in conditional density level sets, which are much easier to estimate. The asymptotic
properties of Ĉ(x) can be obtained by those of the sandwiching sets.

4.3 Rates of convergence

To show the asymptotic efficiency of Ĉ(x), it suffices to show efficiency for both sand-
wiching sets in Lemma 8. We need regularity conditions to quantify and control the approx-
imations p(y|x) ≈ p(y|Ak), p̂(y|Ak) ≈ p(y|Ak), and L̂k(t) ≈ Lx(t).

11



The following assumption puts boundedness and smoothness conditions on the marginal
density pX , conditional density p(y|x), and its derivatives.

Assumption A1 (regularity of marginal and conditional densities)

(a) The marginal density of X satisfies 0 < p0 ≤ pX(x) ≤ p1 <∞ for all x.

(b) For all x, p(·|x) is Hölder class P(β, L). Correspondingly, the kernel K is a valid kernel
of order β.

(c) For any 0 ≤ s ≤ bβc, p(s)(y|x) is continuous and uniformly bounded by L for all x, y.

(d) The conditional density is Lipschitz in x: ||p(·|x)− p(·|x′)||∞ ≤ L||x− x′||.

The Hölder class of smooth functions and valid kernels are common concepts in nonpara-
metric density estimation. We give their definitions in Appendix 8.1. Assumptions A1(b)
and A1(c) implies that p(·|Ak) is also in a Hölder class and can be estimated well by kernel
estimators. A2(d) enables us to approximate p(·|x) by p(·|Ak) for all x ∈ Ak.

The next assumption gives sufficient regularity condition on the level sets Lx(t).

Assumption A2 (regularity of conditional density level set)

(a) There exist positive constants ε0, γ, c1, c2, such that

c1(t2 − t1)γ ≤ Gx(t2)−Gx(t1) ≤ c2(t2 − t1)γ,

for all t
(α)
x − ε0 ≤ t1 ≤ t2 ≤ t

(α)
x + ε0.

(b) There exist positive constants t0 and C, such that 0 < t0 < infx t
(α)
x and µ(Lx(t0)) < C

for all x.

Assumption A2(a) is related to the notion of “γ-exponent” condition introduced by Polonik
(1995) and widely used in the density level set literature (Tsybakov, 1997; Rigollet & Vert,
2009). It ensures that the conditional density function p(·|x) is neither too flat nor too

steep near the contour at level t
(α)
x , so that the cut-off value t

(α)
x and the conditional density

level set CP (x) can be approximated from a finite sample. As mentioned in Audibert &
Tsybakov (2007), if Assumption A1(b) also holds, the oracle band CP (x) is non-empty only
if γ(β ∧ 1) ≤ 1, which holds for the most common case γ = 1. Part (b) simply simply puts
some constraints on the optimal levels as well as the size of the level sets.

The following critical rate will be used repeatedly in our analysis.

rn =

(
log n

n

) β
β(d+2)+1

. (22)

The rate may appear to be non-standard. This is because we are assuming difference
amounts of smoothness on y and x. This seems to be necessary to achieve both marginal
and local validity. We do not know of any procedure that uses a smoother construction
and still retains finite sample validity. The next theorem gives the convergence rate on the
asymptotic efficiency of the locally valid prediction band constructed in Subsection 3.2.

12



Theorem 9. Let Ĉ be the prediction band given by the local conformity procedure as described
in (20). Choose wn � rn, hn � r

1/β
n . Under Assumptions A1-A2, for any λ > 0, there exists

constant Aλ, such that

P
(

sup
x∈X

µ
(
Ĉ(x)4CP(x)

)
≥ Aλr

γ1
n

)
= O(n−λ),

where γ1 = min(1, γ).

Thus, in the common case γ = 1, the rate is rn. The following lemma follows easily from
the previous result.

Lemma 10. Under assumptions A1 and A2, the local band is asymptotically conditionally
valid.

Remark 11. It follows from the proof that the output of Algorithm 2 also satisfies the same
asymptotic efficiency and conditional validity results.

4.4 Minimax Bound

The next theorem says that in the most common case γ = 1, the rate given in Theorem
9 is indeed minimax rate optimal. We define the minimax risk by

inf
Ĉ∈Cn,α

sup
P∈P(β,L)

EPµ
[
Ĉ(x)4C(x)

]
(23)

where Cn,α is the set of all valid prediction sets, and P(β, L) is the class of distributions
satisfying A1 and A2 with γ = 1. We can obtain a lower bound on the minimax risk by
taking the infimum over all set estimators Ĉ, as in the following result.

Theorem 12 (Lower bound on estimation error). Let P(β, L) be the class of distributions
on [0, 1]d × R1 such that for each P ∈ P(β, L), PX is uniform on [0, 1]d, and satisfies
Assumptions A1-A2 with γ = 1. Fix an α ∈ (0, 1), there exist constant c = c(α, β, L, d) > 0
such that

inf
Ĉ

sup
P∈P(β,L)

EPµ
[
Ĉ(x)4C(x)

]
≥ crn.

Hence, our procedure achieves the same rate as the lower bound and so is minimax
rate optimal over the class P(β, L). The proof of Theorem 12 is in Section 8.4 and uses a
somewhat non-standard construction.

5 Tuning Parameter Selection
In the band given by (20), there are two bandwidths to choose: wn and hn. Note that

since each bin Ak can use a different hn to estimate the local marginal density p̂(·|Ak), we
can consider hn,k, allowing a different kernel bandwidth for each bin.

Since all bandwidths give local validity, one can choose the combination of (wn, hn,k) such
that the resulting conformal set has smallest Lesbesgue measure. Such a two-stage procedure

13



Algorithm 3: Bandwidth Tuning for COPS

Input: Data Z, level α, candidate sets W , H.

1. Split data set into two equal sized subsamples, Z1, Z2.

2. For each w ∈ W
(a) Construct partition Aw.

(b) For each k and h construct local conformal prediction set Ĉ1
h,k, each at level

1− α, using data Z1.

(c) Let h∗w,k = arg minh∈H µ
(
Ĉ1
h,k

)
, for all k.

(d) Let Q(w) = 1
n

∑
k nkµ

(
Ĉ1
h∗w,k,k

)
.

3. Choose ŵ = arg minQ(w); ĥŵ,k = h∗ŵ,k.

4. Construct partition Aŵ. For x ∈ Ak, output prediction band Ĉ(x) = Ĉ2
ĥŵ,k,k

, where

Ĉ2
h,k is the local conformal prediction set estimated from data Z2 in local set Ak.

of selecting wn and hn,k from discrete candidate sets W = {w1, ..., wm} and H = {h1, ..., h`}
is detailed in Algorithm 3. To preserve finite sample marginal validity with data-driven
bandwidths, we split the sample into two equal-sized subsamples, and apply the tuning
algorithm on one subsample and use the output bandwidth on the other subsample to obtain
the prediction band.

Following Remark 6, one can use different conformity measures to construct Ĉ. In prin-
ciple, the above sample splitting procedure works for any conformity measures.

It is straightforward to show that the band Ĉ constructed as above using data-driven
tuning parameters is locally valid and marginally valid, because the bandwidth (w, h) used

is independent of the training data Z2. From the construction of Ĉ, it will have small excess
risk if the conformal prediction set is stable under random sampling. Then asymptotic
efficiency follows if one can relate the excess risk to the symmetric difference risk. A rigorous
argument is beyond the scope of this paper and will be pursued in a separate paper.

6 Data Examples
In this section we apply our method to some examples.

6.1 A Synthetic Example

The procedure is illustrated by the following example in which d = 1, and

X ∼ Unif[−1.5, 1.5] ,
(Y |X = x) ∼ 0.5N [f(x)− g(x), σ2(x)] + 0.5N [f(x) + g(x), σ2(x)] ,

(24)

14



where

f(x) =(x− 1)2(x+ 1),

g(x) =2
√
x+ 0.5× 1I(x ≥ −0.5),

σ2(x) =1/4 + |x|.

For x ≤ −0.5, (Y |X = x) is a Gaussian centered at f(x) with varying variance σ2(x). For
x ≥ −0.5, (Y |X = x) is a two-component Gaussian mixture, and for large values of x, the
two components have little overlap.

The performance of prediction bands using local conformity is plotted and compared
with the marginal valid band in Figure 3, with n = 1000, α = 0.1. The conformity measure
used here is p̂(x,y)(Yi|Xi). The locally valid prediction band is constructed by partitioning
the support of PX into 10 equal sized bins, whereas the marginally valid band is constructed
by a global ranking with the same conformity measure. We see that although the locally
valid band has larger Lebesgue measure, it gives the desired coverage for all values x. The
marginally valid band over covers for smaller values of x, and under covers for larger values
of x. We also plot the effect of bandwidth on the size of prediction set (lower left panel of
Figure 3).

6.2 Car Data

Next we consider an example on car mileage. The original data contains features for about
400 cars. For each car, the data consist of miles per gallon, horse power, engine displacement,
size, acceleration, number of cylinders, model year, origin of manufacture. These data have
been used in statistics text books (for example, DeGroot & Schervish (2012), Chapter 11)
to illustrate the art of linear regression analysis. Here we reproduce the linear model built
in Example 11.3.2 of DeGroot & Schervish (2012), where we want to predict the miles per
gallon by the horse power. Clearly, the relationship between miles per gallon and horse
power is far from linear (Figure 4) so some transformation must be applied prior to linear
model fitting. It makes sense to assume, both from intuition and data plots, that the inverse
of miles per gallon, namely, gallons per mile, has roughly a linear dependence on the horse
power.

In the right panel of Figure 4 we plot the level 0.9 prediction band obtained from the
linear regression prediction band. The overall coverage is reasonably close to the nominal
level. However, due to the non-uniform noise level, the band is too wide for small values of
horse power and too narrow for large values. In the left panel, we plot the nonparametric
conformal prediction band using conformity measure p̂yh(Yi|Xi) to enhance smoothness of
the estimated band. Such a band is asymptotically close to the one given in (20). The
bandwidths are hx = 14 and hy = 1.4. The partition A is constructed by partitioning
the range of horse power into several intervals to ensure each set Ak contains roughly same
number of sample points. Here the tuning parameter is the number of partitions and is set
to 8.

The advantage of our method is clear. First, it automatically outputs good prediction
bands without involving choosing the variable transformation. The tuning parameters can
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Figure 3: Conditional and marginal prediction bands. The bottom left panel shows the
relationship between bandwidth and Lebesgue measure of the prediction band. The bottom
right panel shows the conditional coverage of the estimated set Ĉ(x) as a function of x.
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Figure 4: Level .9 prediction bands using local conformal prediction (left) and linear regres-
sion with variable transformation (right).

be chosen in either an automated procedure as described in Algorithm 3, or by conven-
tional choices (kernel bandwidth selectors). Second, the conformal prediction band is truly
distribution free, with valid coverage for all distribution and all sample sizes.

7 Final Remarks
We have constructed nonparametric prediction bands with finite sample, distribution

free validity. With regularity assumptions, the band is efficient in the sense of achieving the
minimax bound. The tuning parameters are completely data-driven. We believe this is the
first prediction band with these properties.

An important open question is to establish a rigorous result on the asymptotic efficiency
for the data-driven bandwidth. A sketch of such an argument can be given by combining two
facts. First, the empirical average excess loss n−1

∑
k nkµ(Ĉh,k) is a good approximation to

the excess risk E
[∫

µ(Ĉh,k(x))PX(dx)
]

for all w and h. This problem is technically similar

to those considered by Rinaldo et al. (2010) in the study of stability of plug-in density level
sets and prediction sets. Second, one can show that the excess risk provides an upper bound
of the symmetric difference risk E(Ĉ4CP ), as given in Lei et al. (2011) (see also Scott &
Nowak (2006)).

The bands are not suitable for high-dimensional regression problems. In current work, we
are developing methods for constructing prediction bands that exploit sparsity assumptions.
These will yield valid prediction and variable selection simultaneously.
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8 Appendix
In the appendix, we give supplementary technical details.

8.1 Technical Definitions

Now we give formal definitions of some technical terms used in the asymptotic analysis,
including Hölder class of functions and valid kernel functions of order β. These definitions can
be found in standard nonparametric inference text books such as (Tsybakov, 2009, Section
1.2).

Definition 13 (Hölder Class). Given L > 0, β > 0. Let ` = bβc. The Hölder class Σ(β, L)
is the family of functions f : R1 7→ R1 whose derivative f (`) satisfies

|f (`)(x)− f (`)(x′)| ≤ L|x− x′|β−`, ∀ x, x′.

Remark: If f ∈ Σ(β, L), then f can be uniformly approximated by its local polynomials
of order `. Define

f (`)
x0

(x) = f(x0) + f ′(x0)(x− x0) + ....+
f (`)(x0)

`!
(x− x0)`.

Then

|f(x)− f (`)
x0

(x)| ≤ L

`!
|x− x0|β.

Definition 14 (Valid Kernels of Order β). Let β > 0 and ` = bβc. Say that K : R1 7→ R1 is
a valid kernel of order β if the functions u 7→ ujK(u), j = 1, ..., `, are integrable and satisfy∫

K(u)du = 1,

∫
ujK(u)du = 0, j = 1, ..., `.

Remark: The relationship between a Hölder class Σ(β, L) and a valid kernel K of order
β is that for any p ∈ Σ(β, L), and h = o(1), ||p−p?Kh||∞ ≤ L

`!
hβ, where ? is the convolution

operator and Kh(x) = h−1K(x/h).

8.2 Proof of Lemma 1

Proof of Lemma 1. For simplicity we prove the case where d = 1. Let

TV(P,Q) = sup
A
|P (A)−Q(A)|

denote the total variation distance between P and Q. Given any ε > 0 define

εn = 2[1− (1− ε2/8)1/n].

From Lemma A.1 of Donoho (1988), if TV(P,Q) ≤ εn then TV(P n, Qn) ≤ ε.

Fix ε > 0. Let x0 be a non-atom and choose δ be such that 0 < PX [B(x0, δ)] < εn where
εn = 2[1− (1− ε2/8)1/n]. It follows that TV(P n, Qn) ≤ ε.
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Fix B > 0 and let B0 = B/(2(1− α)). Define another distribution Q by

Q(A) = P (A ∩ Sc) + U(A ∩ S)

where
S =

{
(x, y) : x ∈ B(x0, δ), y ∈ R

}
and U has total mass P (S) and is uniform on {(x, y) : x ∈ B(x0, δ), |y| < B0}. Note that
P (S) > 0, Q(S) > 0 and TV(P,Q) ≤ εn. It follows that TV(P n, Qn) ≤ ε.

Note that, for all x ∈ B(x0, δ),
∫
C(x)

q(y|x)dy ≥ 1−α implies that µ[C(x)] ≥ 2(1−α)B0 =
B. Hence,

Qn

(
ess sup
x∈B(x0,δ)

µ[C(x)] ≥ B

)
= 1.

Thus,

P n

(
ess sup
x∈B(x0,δ)

µ[C(x)] ≥ B

)
≥ Qn

(
ess sup
x∈B(x0,δ)

µ[C(x)] ≥ B

)
− ε = 1− ε.

Since ε and B are arbitrary, the result follows.

8.3 Proofs of asymptotic efficiency

Lemma 15. Given λ > 0, under condition A2 and A4, there exists numerical constant ξλ
such that,

P
(

sup
k
||p̂(·|Ak)− p(·|Ak)||∞ ≥ ξλrn

)
= O(n−λ).

Proof. for any fixed k, Yi1 , ..., Yink is a random sample from P (y|Ak) conditioning on nk.

Let p̄(y|Ak) be the convolution density p(·|Ak) ?Khn(·), then using a result from Giné &
Guillou (2002), there exists numerical constants C1, C2 and ξ0 such that for all ξ ≥ ξ0,

P
(
||p̂(·|Ak)− p̄(·|Ak)||∞ ≥ ξ

√
log nk/(nkhn)

)
≤ C1h

C2ξ2

n . (25)

On the other hand, by Hölder condition of p(y|x) and hence on p(·|Ak), we have:

||p̄(·|Ak)− p(·|Ak)||∞ ≤ Lhβn.

Put together with union bound on all Ak ∈ An

P
(
∃k : ||p̂(·|Ak)− p(·|Ak)||∞ ≥ ξ

√
log nk/(nkhn) + Lhβn

)
≤ C1h

C2ξ2

n w−dn .

Consider event E0:
E0 = {b1nwdn/2 ≤ nk ≤ 3b2nw

d
n/2},

where the constants b1 and b2 is defined as in Assumption A1(a). By Lemma 20 we have

P(Ec
0) ≤ C3w

−d
n exp(−C4nw

d
n),
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with constants C3, C4 defined in lemma 20.

On E0 and for n large enough we have√
log nk
nkhn

≤ 2

√
2β + 1

c1 [β(d+ 2) + 1]

√
log n

nwdnhn
.

Note that under Assumption A4,
√

logn
nwdnhn

= hβn = rn.

Let

ξλ = 2

√
2β + 1

c1 [β(d+ 2) + 1]

√λ(β(d+ 2) + 1) + βd

C2

∨
ξ0

+ L,

where the constant c1 is defined in Assumption A1(a), C2 defined in equation (25), and L
defined in A2(a).

Then we have

P
(

sup
k
||p̂(·|Ak)− p(·|Ak)||∞ ≤ ξλrn

)
≥P

(
sup
k
||p̂(·|Ak)− p(·|Ak)||∞ ≤ (ξλ − L)

√
log n

nwdnhn
+ Lhβn, E0

)

≥P

sup
k
||p̂(·|Ak)− p(·|Ak)||∞ ≤

ξλ − L

2
√

2β+1
c1[β(d+2)+1]

√
log nk
nkhn

+ Lhβn, E0


≥1− P

∃k : ||p̂(·|Ak)− p(·|Ak)||∞ ≥
ξλ − L

2
√

2β+1
c1[β(d+2)+1]

√
log nk
nkhn

+ Lhβn

− P(Ec
0)

=1−O(n−λ),

Corollary 16. Let Rn(x) = ||p̂n(y|Ak)− p(y|x)||∞, then for any λ > 0, there exists ξ1,λ > 0
such that

P
[

sup
x∈Bk

Rn(x) ≥ ξ1,λrn

]
= O(n−λ).

Proof. First by Lipschitz condition A2(c) on p(y|x),

||p(y|Ak)− p(y|x)||∞ ≤
√
dLwn.

Note that wn = rn, the claim then follows by applying Lemma 15 and choose ξ1,λ =

ξλ +
√
dL.
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Lemma 17. Let
Vn(x) = sup

t≥t0

∣∣∣P̂ (L`x(t)|Ak)− P (L`x(t)|x)
∣∣∣ ,

then, for any λ > 0, there exists ξ2,λ such that

P
(

sup
x∈X

Vn(x) ≥ ξ2,λr
γ1
n

)
= O(n−λ),

with γ1 = min(γ, 1).

Proof. Consider a fixed Ak and an x ∈ Ak. Note that {L`x(t) : t ≥ t0} is a nested class of
sets with VC dimension 2. By classical empirical process theory, for all B > 0 we have

P

(
sup
t

∣∣∣P̂ (L`x(t)|Ak)− P (L`x(t)|Ak)
∣∣∣ ≥ B

√
log nk
nk

)
≤ C0n

−(B2/32−2)
k , (26)

for some universal constant C0.

On the other hand∣∣P (L`x(t)|Ak)− P (L`x(t)|x)
∣∣ =

∣∣∣∣∫
L`x(t)

(p(y|Ak)− p(y|x))dy

∣∣∣∣
≤
√
dLwnµ(Lx(t))

≤
√
dLwnµ(Lx(t0))

≤ CL
√
dwn, (27)

where the constant C is defined in Assumption A3(b).

Note that on E0 we have
√

log nk/nk = o(rn) and hence
√

log nk/nk ≤ rn for n large
enough.

Consider any x′ ∈ Ak.∣∣∣P̂ (L`x′(t)|Ak)− P (L`x′(t)|x′)
∣∣∣

≤
∣∣∣P̂ (L`x′(t)|Ak)− P̂ (L`x(t)|Ak)

∣∣∣+
∣∣∣P̂ (L`x(t)|Ak)− P (L`x(t)|x)

∣∣∣+
∣∣P (L`x(t)|x)− P (L`x′(t)|x′)

∣∣
≤||p̂(·|Ak)||∞µ

(
L`x(t)4L`x′(t)

)
+ Vn(x) + |Gx(t)−Gx′(t)|

≤||p̂(·|Ak)||∞
c2(2L)γ

t0
wγn + Vn(x) + C

√
dLwn +

c22
γLγ+1

t0
wγn, (28)

where the last step uses Lemma 18 to control µ
(
L`x(t)4L`x′(t)

)
and Gx(t)−Gx′(t).

Lemma 15 implies that, except for a probability of O(n−λ), supk ||p̂(·|Ak)||∞ = L + o(1)
with L defined in A2(b). Combining (26), (27), and (28), we have, for some constant ξ2,λ

P
(

sup
x
Vn(x) ≥ ξ2,λr

γ1
n

)
= O(n−λ),

where γ1 = min(γ, 1).
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Lemma 18. Under assumptions A1-A3,

sup
k

sup
t≥t0,x,x′∈Ak

|Gx(t)−Gx′(t)| = O(wγ∧1n ).

Proof.

Lx(t)4Lx′(t)
={y : p(y|x) > t, p(y|x′) ≤ t} ∪ {y : p(y|x) ≤ t, p(y|x′) > t}
={y : t < p(y|x) ≤ t+ Lwn, p(y|x′) ≤ t} ∪ {y : t− Lwn < p(y|x) ≤ t, p(y|x′) > t}
⊆{y : t− Lwn < p(y|x) ≤ t+ Lwn}, (29)

where the first step uses the fact that ||p(·|x) − p(·|x′)||∞ ≤ L||x − x′|| and the constant L
is from Assumption A2(c).

|Gx(t)−Gx′(t)|
≤
∣∣P (L`x(t)|x)− P (L`x(t)|x′)

∣∣+
∣∣P (L`x(t)|x′)− P (L`x′(t)|x′)

∣∣
= |P (Lx(t)|x)− P (Lx(t)|x′)|+

∣∣P (L`x(t)|x′)− P (L`x′(t)|x′)
∣∣

≤µ(Lx(t))||p(·|x)− p(·|x′)||∞ + ||p(·|x′)||∞µ(L`x(t)4L`x′(t))

≤C
√
dLwn + L

Gx′(t+ Lwn)−Gx′(t− Lwn)

t0

≤C
√
dLwn +

c22
γLγ+1

t0
wγn, (30)

where the constant L is from Assumption A2 and (c2, C, γ) are defined in Assumption A3.

We complete the argument using Cadre et al. (2009) and Lei et al. (2011).

Lemma 19. Fix α > 0 and t0 > 0. Suppose p is a density function satisfying Assumption
A3(a). Let p̂ be an estimated density such that ||p̂−p||∞ ≤ ν1, and P̂ be a probability measure

satisfying supt≥t0

∣∣∣P̂ (L`(t))− P (L`(t))
∣∣∣ ≤ ν2. Define t̂(α) = inf{t ≥ 0 : P̂ (L̂`(t)) ≥ α}. If

ν1, ν2 are small enough such that ν1 + c
−1/γ
1 ν

1/γ
2 ≤ t(α) − t0 and c

−1/γ
1 ν

1/γ
2 ≤ ε0 (where c1, γ

are constants in Assumption A3(a)), then∣∣t̂(α) − t(α)∣∣ ≤ ν1 + c
−1/γ
1 ν

1/γ
2 . (31)

Moreover, for any t̃(α) such that |t̃(α) − t̂(α)| ≤ ν3, if 2ν1 + c
−1/γ
1 ν

1/γ
2 + ν3 ≤ ε0, then there

exist constants ξ1, ξ2 and ξ3 such that

µ
(
L̂(t̃(α))4L(t(α))

)
≤ ξ1ν

γ
1 + ξ2ν2 + ξ3ν

γ
3 .

Proof. The proof follows essentially from Lei et al. (2011), which is a modified version of the
argument used in Cadre et al. (2009).
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For t ≥ t0, let L̂`(t) = {y : p̂(y) ≤ t}. By the assumptions in the lemma we have

L`(t− ν1) ⊆ L̂`(t) ⊆ L`(t+ ν1)

⇒ P̂ (L`(t− ν1)) ≤ P̂ (L̂`(t)) ≤ P̂ (L`(t+ ν1))

⇒ P (L`(t− ν1))− ν2 ≤ P̂ (L̂`(t)) ≤ P (L`(t+ ν1)) + ν2.

Hence,
P̂ (L̂`(t(α) − ν1 − c−1/γ1 ν

1/γ
2 )) ≤ P (L`(t(α) − c−1/γ1 ν

1/γ
2 )) + ν2 ≤ α,

where the last step uses Assumption A3(a).

Therefore, we must have t̂(α) ≥ t(α) − ν1 − c
−1/γ
1 ν

1/γ
2 . A similar argument gives t̂(α) ≤

t(α) + ν1 + c
−1/γ
1 ν

1/γ
2 . This proves the first part.

For the second part, note that

L̂(t̃(α))4L(t(α)) = {y : p̂(y) ≥ t̃(α), p(y) < t(α)} ∪ {y : p̂(y) < t̃(α), p(y) ≥ t(α)}.

By the assumption on t̃(α) and the first result,

{p̂(y) ≥ t̃(α)} ⊆ {p(y) ≥ t(α) − 2ν1 − c−1/γ1 ν
1/γ
2 − ν3},

{p̂(y) < t̃(α)} ⊆ {p(y) < t(α) + 2ν1 + c
−1/γ
1 ν

1/γ
2 + ν3}.

As a result,

µ
(
L̂(t̃(α))4L(t(α))

)
≤ µ

({
y : |p(y)− t(α)| ≤ 2ν1 + c

−1/γ
1 ν

1/γ
2 + ν3

})
≤ t−10 c2(4ν1 + 2c

−1/γ
1 ν

1/γ
2 + 2ν3)

γ ≤ ξ1ν
γ
1 + ξ2ν2 + ξ3ν

γ
3 ,

where (ξ1, ξ2, ξ3) are functions of (t0, c1, c2, γ).

Proof of Theorem 9. The proof is based on a direct application of Lemma 19 to the density
p(·|x) and the empirical measure P̂ (·|Ak) and estimated density function p̂(·|Ak).

Here we use L̂ for upper level sets of p̂(·|Ak) and omit the dependence on k.

Conditioning on (i1, ..., ink), then one can show that the local conformal prediction set

Ĉ(α)(x) is “sandwiched” by two estimated level sets:

L̂
(
p̂
(
X(iα), Y(iα)|Ak

))
⊆ Ĉ(α)(x) ⊆ L̂

(
p̂(X(iα), Y(iα)|Ak)− (nkhn)−1ψK

)
,

where ψK = supx,x′ |K(x)−K(x′)|. So the asymptotic properties of Ĉ(α)(x) can be obtained
by those of the sandwiching sets.

Recall that (X(iα), Y(iα)) is the element of {(Xi1 , Yi1), ..., (Xink
, Yink )} such that p̂(Y(iα)|Ak)

ranks bnkαc in ascending order among all p̂(Yij |Ak), 1 ≤ j ≤ nk. Let t̂(α) = p̂(X(iα), Y(iα)).
It is easy to check that

t̂(α) = inf
{
t ≥ 0 : P̂

(
L̂`(t)

∣∣Ak) ≥ α
}
.
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Consider event

E1 =

{
sup
x
Rn(x) ≤ ξ1,λrn, sup

x
Vn(x) ≤ ξ2,λr

γ1
n

}
,

where ξ1 and ξ2 are defined as in the statement of Corollary 16 and Lemma 17. We have
P(Ec

1) = O(n−λ).

Let ν1 = ξ1,λrn, ν2 = ξ2,λr
γ1
n . Note that rn → 0 as n→∞, so for n large enough, we have

ν1 and ν2 satisfying the requirements in Lemma 19. Let ν3 = 0 in this case, then we have,
for some constants ξ′1,λ, ξ

′
2,λ, that

P
(

sup
x
µ
(
L̂(t̂(α))4Lx(t(α))

)
≥ ξ′1,λr

γ
n + ξ′2,λr

γ1
n

)
= O(n−λ),

which is equivalent to

P
(

sup
x
µ
(
L̂(t̂(α))4Lx(t(α))

)
≥ ξ′λr

γ1
n

)
= O(n−λ),

for some constant ξ′λ independent of n.

Now let t̃(α) = t̂(α)− (nkhn)−1ψK . Applying Lemma 19 with ν3 = ν3,n = (nkhn)−1ψK , we
obtain, for some constants ξ′′j,λ, j = 1, 2, 3,

P
(
µ
(
L̂(t̂(α))4Lx(t(α))

)
≥ ξ′′1,λr

γ
n + ξ′′2,λr

γ1
n + ξ′′3,λν

γ
3,n

)
= O(n−λ).

Note that on E0, ν3,n = o(rn), so the above inequality reduces to

P
(
µ
(
L̂(t̂(α))4Lx(t(α))

)
≥ ξ′′λr

γ1
n

)
= O(n−λ).

The conclusion of Theorem 9 follows from the sandwiching property:

µ
(
Ĉ(α)(x)4Lx(t(α)x )

)
≤ µ

(
L̂
(
t̂(α)
)
4Lx(t(α)x )

)
+ µ

(
L̂
(
t̃(α)
)
4Lx(t(α)x )

)
,

where t̂(α) = p̂(X(iα), Y(iα)) and t̃(α) = t̂(α) − (nkhn)−1ψK .

Lemma 20 (Lower bound on local sample size). Under assumption A1:

P
(
∀k : b1nw

d
n/2 ≤ nk ≤ 3b2nw

d
n/2
)
≥ 1− C3w

−d
n e−C4nwdn ,

where C3 = 2 [Diam(supp(PX))]d and C4 = b21/(8b2+4b1/3) with b1, b2 defined in Assumption
A1(a).

Proof. Let pk = PX(Ak). Use Bernstein’s inequality, for each k,

P (|nk − npk| ≥ t) ≤ exp

(
− t2/2

npk(1− pk) + t/3

)
.

The result follows by taking t = c1nw
d
n/2 and union bound.
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8.4 Proof of Theorem 12

In the following proof we focus on the rate and ignore the tuning on constants. The proof
uses Generalized Fano’s Lemma and the construction follows these key steps.

1. Let the marginal of X be uniform on [0, 1]d. Divide [0, 1]d into cubes of size w > 0.

2. Choose a density function p0(y) such that:

(a) p0(y) is symmetric and Hölder smooth of order β.

(b) There exists y0 < 0 and δ > 0, such that p′0(y) = 1 for all y ∈ (y0 − δ, y0 + δ).

3. For x ∈ Aj, let xj be the center of Aj. Define conditional density:

p(y|x) = p(y, x−xj) = p0(y)+h(x−xj)K

(
y − y0

h
1
β (x− xj)

)
−h(x−xj)K

(
y + y0

h
1
β (x− xj)

)
,

where h(x) is a function defined on Rd with support on [−w/2, w/2]d, attaining its
maximum at 0, and satisfying ||h′||∞ ≤M <∞, h′(x) = 0 for ||x||∞ ≥ w/2. In partic-
ular, take h(x) = wη(2x/w), where η(x) is a d-dimensional kernel function supported
on [−1, 1]d. It is easy to verify that the following conditions hold:

(a) p(·|x) is a density function for all x.

(b) p(y|x) is Hölder smooth of order β. This can be verified by noting that both p0

and h(x− xj)K
(

y−y0
h

1
β (x−xj)

)
are Hölder smooth of order β.

(c) |p(y|x)− p(y|x′)| ≤ L||x− x′||. This can be verified by noting that∣∣∣∣ ∂∂xp(y|x)

∣∣∣∣
=

∣∣∣∣h′(x)K

(
y − y0

h1/β(x− xj)

)
− h(x)K ′

(
y − y0

h1/β(x− xj)

)
1

β
h−

1
β
−1(x− xj)(y − y0)

∣∣∣∣
≤||h′||∞||K||∞ + ||h′||∞||K ′||∞

∣∣∣(y − y0)h− 1
β (x− xj)

∣∣∣
≤||h′||∞||K||∞ + ||h′||∞||K ′||∞

4. For j = 1, ..., w−d, let Pj be the distribution of (X, Y ) such that

(a) PX is uniform.

(b) pj(y|X = x) = p0(y) for x /∈ Aj.
(c) pj(y|X = x) = p(y|x) for x ∈ Aj.

We can verify that the Lipschitz condition |p(y|x)− p(y|x′)| ≤ L||x− x′|| still holds if
we require h′ = 0 on the border of the histogram cube.
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5. (Pairwise separation) For i 6= j, The conditional density level sets at p0(y0) differ at
least ch for some constant c (Consider pj(y|X = xj) and pi(y|X = xj) and note that
they corresponds to the same level α as prediction bands).

6. (K-L divergence) Let h = h(0). Condition (b) in step 2 implies that there exists a
constant c > 0 such that infy:|y−y0|≤h1/β p0(y) ≥ c for h small enough. For any i 6= j,∫

log
p0(y)

p(y|xj)
p0(y)dy

=−
∫ y0+h1/β

y0−h1/β
log

(
1 +

hK((y − y0)/h1/β)

p0(y)

)
p0(y)dy

−
∫ −y0+h1/β
−y0−h1/β

log

(
1− hK((y + y0)/h

1/β)

p0(y)

)
p0(y)dy

≤−
∫ y0+h1/β

y0−h1/β

(
hK((y − y0)/h1/β)

p0(y)
− h2K2((y − y0)/h1/β)

p20(y)

)
p(y)dy

+

∫ −y0+h1/β
−y0−h1/β

(
hK((y + y0)/h

1/β)

p0(y)
+
h2K2((y + y0)/h

1/β)

p20(y)

)
p(y)dy

≤2

c
h2+

1
β

∫ 1

−1
K2(u)du = Ch2+

1
β .

As a result
KL(Pi||Pj) ≤ Ch2+

1
βwd.

7. Using the generalized Fano’s lemma (see also Tsybakov (2009, Chapter 2)):

inf
Ĉ

sup
P

EP sup
x
µ(Ĉ(x)4C(x)) ≥ h

2

(
1− Cnh2+

1
βwd + log 2

−d logw

)
, (32)

where the supremum is over all P such that p(y|x) is Lipschtiz in x in sup-norm sense,
and p(y|x) is Hölder smooth of order β.

Choosing h = w = c(log n/n)1/(d+2+1/β) with constant c small enough, we have

inf
Ĉ

sup
P

EP sup
x
µ(Ĉ(x)4C(x)) ≥ c′

(
log n

n

) 1

d+2+ 1
β
.

Note that the choice h � w is required by the condition

hK(0) = p(y0|xj)− p(y0|xj + w/2) ≤ Lw.

26



References
Akritas, M. G., & Van Keilegom, I. (2001). Non-parametric estimation of the residual

distribution. Scandinavian Journal of Statistics , 28 (3), 549–567.
URL http://dx.doi.org/10.1111/1467-9469.00254

Audibert, J., & Tsybakov, A. (2007). Fast learning rare for plug-in classifiers. The Annals
of Statistics , 35 , 608–633.

Cadre, B., Pelletier, B., & Pudlo, P. (2009). Clustering by estimation of density level sets
at a fixed probability. manuscript.

Carroll, R. J., & Ruppert, D. (1991). Prediction and tolerance intervals with transformation
and/or weighting. Technometrics , 33 (2), pp. 197–210.
URL http://www.jstor.org/stable/1269046

Chatterjee, S. K., & Patra, N. K. (1980). Asymptotically minimal multivariate tolerance
sets. Calcutta Statist. Assoc. Bull., 29 , 73–93.

Davidian, M., & Carroll, R. J. (1987). Variance function estimation. Journal of the American
Statistical Association, 82 (400), pp. 1079–1091.
URL http://www.jstor.org/stable/2289384

DeGroot, M., & Schervish, M. (2012). Probability and Statistics . Addison Wesley.

Di Bucchianico, A., Einmahl, J. H., & Mushkudiani, N. A. (2001). Smallest nonparametric
tolerance regions. The Annals of Statistics , 29 , 1320–1343.

Donoho, D. L. (1988). One-sided inference about functionals of a density. The Annals of
Statistics , 16 , 1390–1420.

Fan, J., & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications . Chapman
and Hall.

Genovese, C., & Wasserman, L. (2008). Adaptive confidence bands. The Annals of Statistics ,
36 , 875–905.
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