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Analyzing the Fault Tolerance of Double-Loop Networks �

Jon M. Peha and Fouad A. Tobagi
Address: Carnegie Mellon University, Dept of ECE, Pittsburgh, PA 15213-3890

Phone: (412) 268-7126, Fax: : (412) 268-2860, e-mail: peha@ece.cmu.edu

ABSTRACT

This paper analyzes the fault tolerance of a class of double-loop networks referred to as forward-
loop backward-hop (FLBH), in which each node is connected via unidirectional links to the node
one hop in front of it and to the node S hops in back of it for some S. A new measure of fault
tolerance is described, along with techniques based on Markov chains to calculate upper and lower
bounds on the fault tolerance of this network topology quickly and e�ciently. The results of these
calculations provide a more precise description of network fault tolerance than has been achieved
with previously published techniques.

1 Introduction

Loop- or ring-based topologies have become increasingly important for local and metropolitan area
networks. Loops support simple and e�cient protocols. Their symmetry reduces the diversity of
hardware components needed, and their use of unidirectional point-to-point links allows e�cient
�ber implementations. Many network architectures have been designed with loop-based topolo-
gies, [1] including the 802.5 token ring, the Fiber Distributed Data Interface (FDDI) network, the
Distributed Queue Dual Bus (DQDB) with redundancy, and the Synchronous Optical Network
(SONET) ring. One great liability of the simple loop is that any single failure disrupts communica-
tion. As a result, there has been considerable research into methods of enhancing the fault tolerance
of a loop network, where fault tolerance is some measure of the likelihood that connectivity among
nodes is maintained despite failures. Liu et al. [2] proposed the Distributed Double Loop Computer
Network (DDLCN) which consists of two counter-rotating loops. (FDDI, DQDB, and SONET are
examples of a pair of counter-rotating loops.) This topology can tolerate any single failure and
a few multiple failures without any loss of connectivity. Various algorithms and protocols can be
used to perform recon�guration that will make use of redundant paths in a DDLCN. [3, 4, 5]

To further improve fault tolerance, topologies consisting of a loop with some redundant links
have also been explored. [6, 7, 8] One of these loop topologies is the forward-loop backward-hop
(FLBH) double-loop network, in which a node has outgoing links to the nodes one \forward" and
S \backward" for some S. [9, 10, 11, 12, 13, 14, 15] Thus, if the nodes of an N -node network
are numbered from 0 to N � 1, node i has outgoing links to node (i � 1) modulus N and node
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(i + S) modulus N . Figure 1 shows an FLBH network with N=15 and S=3. The links from i

to (i� 1) modulus N are referred to as short links, while the others are called long links. (To be
consistent with the analysis portion of this paper, a \forward" or short link goes in the negative
direction from node i to node i�1.) In the special case where S = 1, an FLBH network reduces to a
DDLCN. An FLBH network with S = 2 is referred to as a daisy chain. [16] An FLBH network with
S > 1 has many alternate paths for each source-destination pair, whereas the DDLCN has only
two. This makes some aspects of operation more complicated, especially routing, which is receiving
considerable attention. [20, 21, 22, 23] However, these additional paths o�er many advantages. For
the same hardware as the DDLCN, an FLBH network supports signi�cantly greater throughput
and smaller mean path distance across all source-destination pairs. [9, 10, 11, 12, 13, 14, 24] In
addition to performance, fault tolerance is an important advantage of FLBH networks. As a result,
FLBH networks have been considered for applications where reliability is essential, such as in space
systems [14] and military systems. (A further generalization would give node i outgoing links to
node i+S modulus N and node i�T modulus N for some S; T . However, allowing T : T 6= 1 only
complicates the topology, and does not reduce the average path length from source to destination.
[24])

Figure 1: FLBH Double-loop network. N=15, S=3.

In order to design a network that meets the fault tolerance requirements of its intended ap-
plication, it is necessary to de�ne a measure of fault tolerance appropriate for that particular
application, and to assess the measure for various network con�gurations. Considering that failures
may be described by some probabilistic model, in order to calculate the most appropriate measure
for any application, it would be necessary to determine the joint probability distributions that
node i is accessible to node j for all combinations of i and j. The only method known to determine
these joint distributions is complete enumeration, which is only tractable in very small networks.
It is therefore necessary to select a measure which corresponds to a network's ability to maintain
connectivity for a wide range of applications, and which can be calculated for large networks. The
measure of network fault tolerance chosen in this paper is f , the mean fraction of nodes accessible
to a node, given that the latter is up.

f = E[number of nodes accessible to a functioning source]=(N � 1)

For applications in which it is important to evaluate the probability of maintaining connectivity
between particular nodes, the probability P (k) that node k is accessible from a given functioning
node is also considered. Without loss of generality, this given node (the source) is de�ned to be
node 0 throughout the paper. The measure f can be expressed in terms of P (k) as follows.

f =
1

N � 1
�
N�1X
k=1

P (k) (1)

Fault tolerance of FLBH networks must be measured across the expected range of N for each value
of S under consideration. A network designer can then determine whether any FLBH network can
meet the intended application's requirements, and if so, a value of S can be selected that yields the
desired tradeo� between fault tolerance and other design objectives, such as throughput and ease
of recon�guration. [25]

Section 2 presents the fault tolerance measures and calculation techniques used in previous
studies of FLBH networks. In the following section, a new approach to calculating the fault tolerance
measure f is presented. Finally, results for several sample networks are presented in Section 4, as
is the computer time required to achieve these results.
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2 Related Work

There have been several previous e�orts to determine the fault tolerance of FLBH networks.
Raghavendra et al. [8, 9, 12] use two measures which reect aspects of fault tolerance, but which
do not correspond directly to the probability of maintaining connectivity. They de�ne distance
from a source to a destination as the minimum number of hops that must be traversed to get from
the source to the destination. The �rst of their measures is the diameter of the network, i.e., the
largest distance across all possible source-destination pairs. This gives some indication of how reli-
able paths are, since longer paths generally tend to decrease fault tolerance. The second measure is
the number of minimum-length paths for a source-destination pair separated by a distance equal to
the diameter of the network. This measure gives some indication of the number of alternate paths
in the network, where a large number of alternate paths generally tends to increase fault tolerance.
They optimize both their measures of fault tolerance with respect to S, and they conclude that
the FLBH network where S is approximately

p
N is optimum for both measures, as well as for

delay and throughput characteristics [8, 9, 12], although it has since been shown that the network
diameter is not always minimized when S =

p
N . [26, 27] These measures are easy to calculate and

provide some insight into the fault tolerance of FLBH networks, but they have obvious limitations.
The minimum-length paths are not disjoint, so the measure of alternate paths does not reect the
fact that a single failure could block many paths. There are also many alternate paths that are
not minimum length, and the impact of these is not considered in either measure. Also, the only
paths considered are those between a source and destination that are separated by a distance equal
to the diameter of the network, which may indicate little about the fault tolerance across other
source-destination pairs.

In the case where S = 2 (the daisy chain), Grnarov et al. [16] found a technique to evaluate
a more direct measure of fault tolerance. They determined the probability that one node is ac-
cessible to another in the presence of failures given both are up (the terminal reliability) for each
possible pair of nodes. They assumed failures were independent. The algorithm used [28] requires
the enumeration of all possible paths from source to destination. The cut-sets are determined using
Boolean algebra manipulations of variables representing the links and nodes in each path. Unfor-
tunately, this technique does not extend well to FLBH networks with S > 2 because the number
of alternate paths is far greater.

Ibe [17] calculates a comparable measure of performance for some special cases of FLBH
networks. He compares the reliability of single-loop networks with station bypass, double-loop
networks with S = 1 (the simple DDLCN), and double-loop networks with S = N � 2. (The
latter is a \braided network" [18], as used in [19].) Links are assumed to be reliable, but nodes
can fail. When S = 1 or S = N � 2, node i is inaccessible to node i + j if and only if one or two
consecutive nodes between i and i+ j have failed, respectively. This greatly simpli�es analysis, but
the approach cannot be applied to other values of S.

In papers by Masuyama [29] and by Masuyama and Ichimori [30], the tolerance to node failures
(but not link failures) of FLBH networks with arbitrary S was evaluated by determining, for each
possible set of node failures, the exact number of node pairs (i; j) such that i can send a message
to j. This is done by enumerating all possible patterns of node failures, where a pattern is de�ned
by the distance between failures, and then counting the communicating source-destination pairs
for each pattern. Assuming failures are independent and identically distributed throughout the
network, it is then possible to determine the probability that a randomly chosen source can send a
message to a randomly chosen destination, given the number of failures that have occurred. They
dealt with double and triple node failures explicitly and conjectured results for larger numbers of

3



failures. The primary problem with this approach is that it is extremely di�cult to enumerate all
possible sets of failures and determine the resulting number of communicating source-destinations
pairs. In these two papers, the factor used to di�erentiate failure patterns is whether failures occur
S+1 nodes apart. Except when S = N=2, they claim that all functioning nodes can communicate
unless there is at least one pair of failures that occur S + 1 nodes apart. While this is the case for
double failures (if S 6= 1), it is incorrect for three or more failures. There are many failure patterns
other than failures occurring S+1 apart that can reduce the connectivity of a network, such as the
triple-failure case shown in Figure 2. Since their conjecture about networks with more than three
failures is based on the same premise, it is also incorrect. See [31] for a more detailed critique of
this approach.

Figure 2: An FLBH network in which not all functioning nodes can communicate, distance between
failures 6= S+1. N=16, S=2.

Smith and Trivedi [32] also evaluate the fault tolerance of FLBH networks using an approach
based on enumeration of fault sets. However, their measure of fault tolerance is di�erent: the
expected length of time before it is no longer possible for all N nodes to communicate with each
other, given that all nodes and links were initially up. The time before link failure is assumed to
be independent and exponentially distributed with identical mean for all links. The value of this
measure is easier to calculate by enumeration than is the measure used by Masuyama and Ichimori,
because it is su�cient to characterize failure sets that reduce the number of communicating nodes
without determining the extent of this reduction. Since any node failure makes it impossible for all
N nodes to communicate, this is only a useful measure by which to compare network topologies if
nodes are considered to be reliable. For the case Smith and Trivedi consider in which N = S2 (and
thus N must be a perfect square), they are able to prove some properties about the link failure sets
that disrupt communication. They then enumerate the failure sets with these properties. They
were able to do this exactly for N = 4 and N = 9, but for N > 9 the large number of failure sets
forced them to settle for upper and lower bounds. If they were to broaden their inquiry to include
values of S 6= p

N using the same approach, then, for a given N , they would get the same upper
and lower bounds on fault tolerance for all S. Thus, even when using a measure of fault tolerance
that is relatively simple to calculate by enumeration, and only considering link failures, the utility
of enumerative techniques is limited.

The primary di�culty with methods based on the enumeration of failure sets or the enumer-
ation of paths is the cardinality of the sets to be enumerated. In a network of N nodes, there are
a total of 3N elements (nodes and links) that can fail, so there are 8N failure sets. The number
of loop-free paths also goes up rapidly with N for S > 2. Since enumeration is only tractable for
very small networks, a technique is needed to calculate some useful measure of fault tolerance that
is not based on enumeration.

Hu and Hwang [33] successfully avoided enumeration through their choice of a measure for
fault tolerance: the probability that there exists some nodes i and j such that node i is functioning,
node j is functioning, and node i cannot transmit to node j. Although they did not calculate fault
tolerance with this measure, they sought the value of S that would minimize it. Nodes can fail with
equal and independent probabilities, and links are assumed to be reliable. They were able to solve
this problem if and only if N is even, in which case they conclude that S should equal N=2 � 1.
This result is apparent from the following observations. First, since we are only concerned with
the probability that two functioning nodes will not be able to communicate and not the extent to
which communications will be disrupted, double node failures will dominate cases of more than two
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failures. Second, as Masuyama observed, such a communications failure can only occur with two
node failures if those failures are S+1 apart. [29, 30] There are N node pairs that are S+1 apart,
unless N is even and S = N=2 � 1, in which case there are N=2 such node pairs. Consequently,
this measure of fault tolerance is optimized when S = N=2� 1. The problem is that the impact
of a two-node disruption is far more severe in the special case where S = N=2 � 1. In this case,
a functioning node will, on average, �nd less than half of the other functioning nodes accessible.
With any other choice of S between 1 and N � 1 (except N/2), one functioning node would lose
the ability to transmit, one would lose the ability to receive, and all other communications would
be una�ected. With this measure of fault tolerance, we would consider such a scenario a network
failure, whereas the case of 4 node failures would not be a network failure unless it happened to
interfere with communications. As an example, let a disruptive double-node failure occur when
N = 100. With S 6= N=2 � 1, a functioning node would �nd 95.3 of the other 97 functioning
nodes accessible on average. With S = N=2 � 1, it would �nd 48 accessible on average. The
poor fault tolerance achieved with S = N=2 � 1 when the extent of failure is considered will be
demonstrated in the �gures in Section 4. Moreover, S = N=2�1 has adverse e�ects on throughput,
delay [9, 10, 11, 12, 13, 14, 24], and recon�gurability [25], so there is incentive to �nd an approach
that estimates fault tolerance with smaller values of S.

3 Analysis

In this section, we calculate upper and lower bounds on the fault tolerance of FLBH networks given
the following.

RN = the probability a node is up.
RS = the probability a short link is up.
RL = the probability a long link is up.
N = the number of nodes in the network.
S = the skip distance.

As described in Section 1, fault tolerance is measured as follows.
P (k) = the probability that node k is accessible to node 0.
f = the expected fraction of nodes that are accessible to a given functioning node.

3.1 Approach

Without loss of generality, we can assume that a node is accessible to the source only if there is a
loop-free path from the source to that node, because the existence of a path that is not loop-free
implies the existence of one that is. Consequently, one type of path that need not be considered
in this analysis is one in which a long hop is followed or preceded by S or more short hops. All
remaining paths take one of two forms: paths consisting entirely of short links and paths with at
least one long link and no more than S � 1 consecutive short links. Since it is simple to determine
the probability that the one path to a given node containing only short links is up, we will initially
concentrate on the paths containing at least one long link.

Loop-free paths containing long links have two characteristics that can be used to simplify
analysis. First, a path from node 0 to node k must include at least one node from any block of
S consecutive nodes along the way. This means the path includes at least one node in the range
from node (i � S + 1) modulus N to node i for all i : 0 � i � k. Second, the �nal hops before
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reaching the destination node consist of a long hop followed by 0 to S� 1 short hops. Thus, a path
cannot extend more than S�1 nodes beyond the destination unless it traverses the entire loop and
approaches the destination once again from the direction of the source. This only occurs in multiple
cycle paths, where the number of cycles is de�ned as follows. Letting distance d = S�(number of
long hops)�(number of short hops), there are dd=Ne cycles in a path. See Figure 3 for an example
of a two cycle path. When this does occur, by the �rst property of these paths discussed above, a
path that traverses the entire network must include at least one of any S consecutive nodes in the
network. Assume that one could somehow determine whether or not some set of S consecutive nodes
are accessible to the source. If one also knew whether all of the nodes from these S consecutive
nodes to the node S � 1 past the destination were up, as well as the status of their associated
links, it would be possible to determine whether or not the destination was accessible to the source.
In particular, since the source is always accessible to itself, if one knew the accessibility of the
nodes 2 fN � S + 1; N � S + 2; : : : ; N � 1g, and whether the nodes 2 f1; 2; : : : ; k + S � 1g and
their associated links were up, it would be possible to determine whether k was accessible to the
source. The status of the nodes 2 fk + S; : : : ; N � Sg would be irrelevant. Given these properties,
it is possible to de�ne a node-indexed Markov process, the state of which contains information
pertaining to the accessibility of S consecutive nodes.

Figure 3: 2 cycle path in an FLBH network. N=10, S=3.

Let Z(0) be a vector of S elements which denotes the accessibility from the source of the nodes
2 fN �S+1; N �S+2; : : : ; N�1; 0g. If a node is accessible to the source, then the corresponding
element is assigned an O; otherwise it is assigned an X. For i : 0 < i < N , let Z(i) also be a vector
of S elements which indicates the accessibility of the nodes 2 f(i�S+1)modN; : : : ; ig, using paths
with some restrictions; Z(i) is de�ned from Z(0) and the state of the nodes 2 f1; 2; : : : ; ig and their
associated links as follows. Let k be a node 2 f(i� S + 1)modN; : : : ; ig. If node k is up, and there
exists a node j 2 fN � S; : : : ; N � 1; 0g such that j is accessible to the source, and there exists
a path from j to k that includes no nodes 2 fi + 1; i + 2; : : : ; N � Sg, then the element in Z(i)

corresponding to node k is assigned an O. If node k is up, and it is accessible to node i via short
links, but there does not exist a node j 2 fN � S; : : :; N � 1; 0g such that j is accessible to the
source, and there exists a path from j to k that includes no nodes 2 fi+ 1; i+ 2; : : : ; N � Sg, then
the element corresponding to node k is assigned an &. Otherwise, an X is assigned. An O indicates
that node k is de�nitely accessible to the source, and an X indicates that node k is de�nitely not
accessible to the source. An & indicates that node k is accessible if and only if node i is accessible,
a fact that cannot be ascertained based only on Z(0) and the status of the nodes 2 f1; 2; : : : ; ig,
because the only possible paths to node i go through node i + 1. Note that in the special case
where i = 0, because i is by de�nition accessible to the source, the de�nition of Z(i) reduces to the
de�nition given for Z(0).

It is possible to determine Z(i) from Z(i�1) and the status of node i, the link from node i to
node i� 1, and the link from node (i� S) modulus N to node i. Thus, assuming the status of this
node and links is known, the process Z(i) is Markovian and deterministic. If node i is down, it is
marked with an X. If it is up, node i� S is accessible to the source, and the link from node i� S
is up, then node i is marked with an O. Otherwise, it is marked with an &. The accessibility of a
node 2 fi� S + 1; : : : ; i� 1g must be the same in Z(i) as in Z(i�1) unless it was marked with an
&. In this case, if node i is accessible from the source and the link from node i to node i� 1 is up,
it is marked with an O. On the other hand, if node i is inaccessible (marked X), or the link from
node i to node i� 1 is down, then it should be marked with an X. Otherwise, the label remains &.
Note that in Z(i), no node marked with either an X or an O can be preceded by a node marked
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with an &. As a result, the cardinality of the state space is 2S+1 � 1 rather than 3S .

For a given failure set, the process Z can be used to determine which nodes are accessible
even if the accessibility of the nodes 2 fN � S + 1; : : : ; N � 1g are not initially known. In this
deterministic case, P (k) is 0 or 1 for all k. The procedure will now be described, followed by

an example. Let Z
(0)
0 be the state where only the source is accessible. Proceed to Z

(N�1)
0 using

the step-by-step mechanism described above. Z
(0)
1 is then calculated from Z

(N�1)
0 in a manner

similar to the typical single-step transition, except that the new node (the source) is automatically

considered accessible and marked with an O. The nodes marked as accessible in Z
(0)
1 are those

that can be reached via single cycle paths that begin with a long link or via the path containing

only short links. With another iteration of this process, the nodes marked as accessible in Z
(0)
2

are those marked as accessible in Z
(0)
1 , as well as the rest of the nodes that can be reached with

single cycle paths and those that can be reached with double cycle paths beginning with a long
link. A path can have no more than S cycles, since a loop-free path must begin each cycle with a

di�erent node 2 fN � S + 1; : : : ; N � 1; 0g. Thus, after S iterations, Z
(0)
S must equal the desired

Z(0), and consequently all Z(i) can be found. Since a path containing long links can extend no
more than S � 1 nodes beyond a destination without traversing the entire network again, node k
is only accessible via paths containing long links if the �rst element of Z((i+S�1)modN) is an O.

The process will now be demonstrated on the network of Figure 3 in which N = 10, S = 3,

and nodes 2 and 9 have failed. Initially, Z
(0)
0 is chosen so that only the source is accessible, i.e.

Z
(0)
0 = XXO. Because node 1 is up, but is not accessible via the long link from node 8, node 1 is

accessible if and only if it can be reached through node 2, which is not yet known. Consequently,

Z
(1)
0 = XO&. Next, when the failed node 2 is considered, it is clear that node 1 and node 2 are

both inaccessible, so Z
(2)
0 = OXX. Note that node 1 is actually accessible, but not from single-cycle

paths that begin with a long link, which are the only paths included in this iteration. Node 3 is

accessible via the long link from node 0, so Z
(3)
0 = XXO. Continuing the process, Z

(4)
0 = XO&,

Z
(5)
0 = O&&, Z

(6)
0 = OOO, Z

(7)
0 = OOO, Z

(8)
0 = OOO, Z

(9)
0 = OOX. Finally, Z

(0)
1 = OXO. By

repeating the entire process a second time with Z
(0)
1 = OXO instead of XXO, the two-cycle path

to node 1 will be included, i.e. Z
(3)
1 = OXO, whereas Z

(3)
0 = XXO.

In the non-deterministic case in which each node and link is considered up with some given a
priori probability, one way to �nd P (k) is to enumerate all possible failure sets and their probability
distribution, use the above procedure to determine accessibilities, and then to calculate the average
P (k). However, this would constitute an enumerative method, and not the most e�cient one. The
speed of this calculation could be improved if it were possible to work with all of the failure sets
simultaneously. Computational complexity would be reduced from O(N8N) to O(N).

One might conceive of an approach to achieve this as follows. Z(0) is found in distribution. A
method is found of calculating the distribution of Z(i+1) from the distribution of Z(i). Z is then a
node-indexed (discrete-time) Markov process. The transition probability from Z(i) to Z(i+1) clearly
depends on the probability that node i+ 1 and some attached links are up, i.e. RN , RL, and RS .
Section 3.2 and 3.3 will demonstrate how an approach such as this can be used to get upper and
lower bounds on fault tolerance. However, this approach cannot be used to derive the desired results
exactly, for the following reasons. Since the accessibility of the nodes 2 fN � S + 1; : : : ; N � 1g
depends on the status of links and nodes throughout the network, there is a correlation between
Z(0) and the probability that any link or node is up. Consequently, given Z(0) or the distribution
of Z(0), the a posteriori probability that any link or node is up does not equal the known a priori
probability. These probabilities are the basis of the transition probabilities of the stochastic process.
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Consequently, the stochastic Markov process Z cannot be said to exactly correspond to a physical
quantity. Moreover, the distribution of Z(0) is not known in the �rst place. These complications
make an exact calculation of P (k) using the stochastic process Z impractical. Sections 3.2 and 3.3
show that it is possible to make certain simplifying assumptions that allow us to calculate lower
and upper bounds for P (k), respectively, in O(N) using the stochastic Markov process Z.

3.2 Lower Bound

A lower bound on P (k) can be found by restricting possible source-destination paths to exclude
some possible paths. As previously described, paths can have up to S cycles. Since there are few
failure sets that block all single-cycle paths without blocking multiple-cycle paths as well, a good
lower bound for P (k) can be achieved by determining the probability that a node is accessible from
the source using only single-cycle paths with long links or paths consisting entirely of short links. In
single-cycle paths, the only way a path can include a long link out of a node 2 fN�S+1; : : : ; N�1g
is if the path goes from the source to that node using only short links. The probability that such a
path can go through any of these S� 1 nodes does not depend on the status of node i or any of its
links for all i 2 f1; 2; : : : ; N�Sg. Thus, if only single-cycle paths are considered, a distribution can
be found for Z(0) that is independent of the up-down status of nodes 2 f1; : : : ; N � Sg and their
associated links. (The special case where the destination is one of the nodes 2 fN�S+1; : : : ; N�1g
requires a minor variation which will be described later in this section.) Thus, Z is a Markovian
stochastic process and its transition probabilities are based on the a priori probabilities of link and
node failure. Let ~b denote the distribution of Z(0). For this lower bound, the probability that Z(0)

is in a given state is simply the joint probability that the nodes 2 fN � S + 1; : : : ; N � 1g can be
accessed with paths containing only short links, which is easy to calculate. As N grows large with
respect to S, the probability that multicycle paths exist decreases, and this lower bound approaches
the exact solution.

The single step transition probabilities from Z(i�1) to Z(i) are a function of the probability
that node i is up, the probability that the link from node i to node i� 1 is up, and the probability
that the link from node i � S + 1 modulus N to node i is up. Figure 4 shows the entire state
transition probability matrix, A, for S=2. RN is the probability that a node is up; RS is the
probability that a short link is up; RL is the probability that a long link is up. For this matrix it
is assumed that failures are independent and identically distributed. If failures are not identically
distributed, Z is a non-homogeneous process, and A depends on the current node, i. Dependent
failures can only be accommodated with this approach if the dependence can be accounted for in
the transition matrix. For example, perhaps the fact that node i � 1 failed makes it more likely
that node i also failed. In this case, the probability of node failure would be higher when Z(k) has
an X in its last component.

As long as the S � 1 nodes before the source and the S � 1 nodes after the destination do not
overlap, i.e., k < N � 2S+1, the distribution of Z(i) is simply ~bAi. For k in this range, we now use
this fact to derive P (k). We will subsequently return to the case where k � N�2S+1. To determine
whether node k is accessible, it is necessary to examine the state of the nodes 2 fk; : : : ; k+S� 1g,
since some paths to node k must go from k� 1 to k + S � 1 and then back to k through the short
links. Thus, node k is accessible via a loop-free path containing at least one long link if and only
if Z(k+S�1) has an O in the �rst component. Let ~Vo(i) be a 1� (2S+1 � 1) column vector with one
element corresponding to each possible state of Z. The element of ~Vo(i) corresponding to a given
state equals 1 if that state has an O in the ith component of the state vector, and otherwise it
equals 0. Let PL(k) be the probability that node k is accessible via a loop-free path that includes
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state OO OX XO XX O& X& &&

OO
OX
XO
XX
O&
X&
&&

2
666666664

RN �RL 1� RN 0 0 RN (1 �RL) 0 0
0 0 RN �RL 1� RN 0 RN (1�RL) 0
0 1� RN 0 0 RN 0 0
0 0 0 1� RN 0 RN 0

RNRLRS 0 RNRL(1�RS) 1� RN 0 RN (1� RL)(1� RS) RN (1� RL)RS
0 0 0 1� RN 0 RN (1� RS) RN �RS

0 0 0 1� RN 0 RN (1� RS) RN �RS

3
777777775

Figure 4: State transition probability matrix, A, for S=2.

a long link. For k < N � 2(S � 1),

PL(k) = ~bAk+S�1~Vo(1) (2)

Node k is accessible by paths using long links and by paths containing only short links. Since
these two cases are not disjoint, it is necessary to determine the probability that the node is
inaccessible by paths that use long links, given that it can be reached with the path containing
only short links. This situation can only occur when there is an & in the element of Z(k+S�1)

corresponding to node k, and the S�1 nodes before the source are all initially accessible. Analogous
to ~Vo(i), let ~V&(i) be a state vector such that the component of ~V&(i) corresponding to a given

state equals 1 if and only if the ith component of that state is a &. ~[state] is a 1 � (2S+1 � 1)
column vector containing all 0's except in the component corresponding to state, which is 1. For
k < N � 2(S � 1),

P (k) = ~bAk+S�1 ~Vo(1) + ~[OO : : :O]Ak+S�1 ~V&(1) (RS RN )
N�S�kRS (3)

When k � N � 2(S � 1), the calculation of P (k) must account for the fact that the S � 1
nodes before the source overlap the S � 1 nodes after the destination. A node that is both one of
the S � 1 before the source and one of the S � 1 after the destination is said to be in the overlap.
A path may include a node in the overlap in one of two ways: either near the source, in which case
it is accessible from the source using only short links, or near the destination, in which case the
destination is accessible to the node using only short links. For a particular failure set, if the only
paths from source to destination containing long links include a given node both near the source
and near the destination, then the only loop-free path is the one containing only short links. This
destination should be considered inaccessible using paths with long links, or else the failure set
will be counted twice in P (k). The nodes between the source and the destination in the direction
of the short links are divided into two groups: those that are allowed to be near the source in
source-destination paths considered in this calculation, and those that can be near the destination.
An equal break (to the extent possible) produces the most accurate results. For example, if node
0 is, as usual, the source, and node N � 3 is the destination, then there are two nodes to divide.
Node N � 2 can only be used near the destination, and N � 1 only near the source. In this case,
node N � 2 is considered inaccessible near the source, and node N � 1 is considered inaccessible
near the destination.

A node j is made inaccessible before the source by making the probability that Z(0) is in
a state in which node j is accessible equal to 0. Let ~bN�j;X be the appropriate vector derived
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from ~b accordingly. For all the states in which node j is accessible, the corresponding element in
~bN�j;X is 0. For the other states, the element in ~bN�j;X is the same as in c~b, where c is chosen so

that the elements of ~bN�j;X sum to 1. Let ~bN�j;XO be the initial state vector derived from ~b by
forcing to 0 not only states in which node j is accessible but also the states in which the nodes
2 fj+1; j+2; : : : ; N� 1g are not accessible. This vector is used to calculate the probability that a
node is inaccessible from the source with paths that contain long links, but is accessible through the
path with only short links. To ignore paths using some of the nodes after the destination, rather
than determining whether there is an O or & in the �rst element of Z(k+S�1), one determines
whether there is an O or & in the ith position of Z(k+S�i) . For N � 2(S � 1) � k,

P (k) = ~b(N�k+1)div2;X A(N+k�1)div2 ~Vo((k + 2S �N + 1)div2) +

~b(N�k+1)div2;XO A(N+k�1)div2 ~V&((k + 2S �N + 1)div2) �
(RS RN)

(N�k)div2 RS (4)

In summary, a lower bound on P (k) is calculated as follows. The transition matrix A is
determined from RN , RL, and RS . The distribution ~b of Z(0) is found from RN and RS based on
the assumption that the nodes 2 fN � S + 1,. . . ,N � 1g are only accessible if they are accessible
via the path of short links. P (k) is calculated for k < N � 2(S � 1) using Equation 3. Otherwise,
P (k) is calculated using Equation 4.

3.3 Upper Bound

As with the lower bound previously discussed, the correlation between the probability that nodes
and links are up and the distribution of Z(0) must be eliminated. This correlation is caused by
multicycle paths. To achieve an upper bound, we must calculate P (k) in a way that includes all
failure sets in which a path from source to destination exists, and possibly some where no such
path exists. A necessary but insu�cient condition for a node's accessibility is that the node must
be up, and at least one incoming link must be as well. Thus, a simple upper bound can be achieved
by assuming that there is a path to a node 2 fN � S + 1; : : : ; N � 1g that is up and has at
least one functioning incoming node. The ~b corresponding to this assumption is easy to calculate.
Moreover, since there is no correlation between the up and down status of any two network elements,
there is no correlation between the Z(0) resulting from this assumption concerning accessibility and
the transition probabilities of the stochastic process. As with the lower bound, Z(i) is therefore
Markovian with transition probabilities that are based on a priori probabilities of node and link
failure.

It is possible to improve the upper bound by using a di�erent method for calculating ~b. Recall
the deterministic case in which we determined the accessibility of all nodes by beginning with a
Z(0) in which only the source was up, and using it iteratively to �nd more accurate Z(0)'s. In
S iterations, we had exact results. This process can also be done probabilistically rather than
deterministically, using the transition matrix A, to �nd a distribution for Z(0). After the �rst
iteration, the distribution ~b would indicate the accessibility of the nodes described in Z(0) via single
cycle paths that begin with long links and via paths containing only short links. However, in the
second cycle, ~b would not describe accessibility via one and two cycle paths in the manner of the
deterministic case. ~b at this point is based on some failure sets in which a given node or link is up
in the �rst cycle (or iteration) and down in the second cycle, and vice versa. Consider such a failure
set where the up-down status of link or node j changes from the �rst cycle to the second while we
are trying to determine whether or not node N � 1 is accessible. If element j was down in the �rst
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cycle, the resulting accessibility of node N � 1 can only be improved compared with the case where
j's status does not change. If j was up in the �rst cycle, but was not needed in order to �nd a
path to node N � 1, then its status in this cycle was irrelevant, and a change in its status from one
iteration to the next would not matter. Finally, if j was up in the �rst iteration and was needed to
�nd a path to N � 1, then nothing is lost by precluding its use in subsequent iterations, since to
do so would cause a loop in the path. Thus, assuming independence of the up-down probabilities
in di�erent iterations will result in an upper bound for P (k).

Let B be the matrix associated with the transition from Z(N�1) to Z(0), such that node 0 is
automatically accessible to the source. The only random element is whether the attached short
link is up, so that any nodes marked with an & are also accessible.

~b = ~[X : : :XO](AN�1B)
S

(5)

Unfortunately this requires a great deal of computation. A related upper bound which is somewhat
higher but requires signi�cantly less computation can be achieved by allowing an in�nite number
of iterations. This ~b is calculated by �nding an eigenvector.

~bAN�1B = ~b (6)

If there is no overlap between the S � 1 nodes before the source and the S� 1 nodes after the
destination, calculation of the upper bound is identical to calculation of the lower bound, except
that a di�erent ~b is used. Thus for k < N � 2(S � 1), Equation 3 produces an upper bound.

To complete the analysis, P (k) must be determined for k � N � 2(S � 1). There are two
cases: k > N � S and k � N � S. For k � N � S, the only problem with the above equation is
that the S� 1 nodes before the source and the S � 1 nodes after the destination overlap. Consider
the case where the overlap contains exactly one node. The paths from source to destination that
begin with S � 1 consecutive short links will go through this node, as will the paths that end with
S � 1 consecutive short links. To consider this node as two di�erent nodes, one before the source
and the other after the destination, produces an upper bound. It is never true that a path must
go through the node in both places, since such a path would include a loop. If the only loop-free
path to the destination for a particular failure pattern is the path containing only short links, and
a path does exist that traverses the entire network and includes a node in the overlap twice, then
this failure pattern would be counted twice in our basic equation for P (k): once for the path with
the loop and once for the path without it.

For the upper bound, it is therefore acceptable to assume that link and node status near the
source is independent of that near the destination when calculating the probability that a node is
accessible by a path using long links. However, independence cannot be assumed in the second
half of the equation which calculates the probability that a node is accessible using only short links
but inaccessible using paths containing long links. Thus, for this part of the equation, the state
of Z should not be considered at Z(k+S�1). Instead, the S � 1 nodes before the source are simply
excluded from the �nal state of Z in the same manner we excluded some nodes in the overlap
when calculating the lower bound. If there are i � 1 nodes in the overlap, it must be determined
whether there is an & in the ith element of Z(k+S�i) rather than the �rst element of Z(k+S�1). For
N � 2(S � 1) � k � N � S,

P (k) = ~bAk+S�1 ~Vo(1) + ~[OO : : :O]AN�S ~V&(k �N + 2S)(RS RN)
S�1RS (7)

If k > N � S, then the S � 1 nodes before the source include the destination, and the S � 1
nodes after the destination include the source. Because of the latter condition, paths that include
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the source twice must be explicitly removed from consideration. This is done by using Z(N�1) rather
than Z(k+S�1) for the nodes in this range. Because k+S� 1 � N , Z(k+S�1) would inappropriately
include information pertaining to the accessibility of the source. The initial state vector, ~b, must
also be changed from the one used for k � N �S, because a path to destination node k should not
pass through node k along the way; this would form a loop. Thus the probability that Z(0) is in a
state where node k is already accessible should be zero. ~bN�k;X and ~bN�k;XO are de�ned as they
were for the lower bound. For N � S < k,

P (k) = ~bN�k;XA
N�1~Vo(k + S + 1�N) +

~bN�k;XOA
k ~V&(S)(RS RN)

N�k�1RS (8)

In summary, an upper bound on P (k) is calculated as follows. First, ~b must be determined.
For a simple upper bound, ~b is calculated from RN , RS , and RL assuming that the node is accessible
if a node and at least one incoming link are up. For the Eigenvector bound, ~b is determined from
Equation 6. An even more accurate upper bound can be found by calculating ~b using Equation 5.
Once ~b and A are determined, P (k) is calculated using Equation 3, Equation 7, and Equation 8,
for k < N � 2(S � 1), N � 2(S � 1) � k � N � S, and N � S < k, respectively.

4 Results

In order to evaluate our calculated bounds on fault tolerance, we wish to compare them with exact
values for f . These values are found by enumerating all possible failure sets. For a given failure set,
we use a recursive ooding routine which works as follows. When the routine is called on node i, it
declares i accessible. It then examines the two outgoing links from node i and the two associated
nodes. If an outgoing link is up, the associated node j is up, and node j is not presently declared
accessible, the routine is called on node j. The program begins with no nodes marked accessible
by calling the routine on the source. By determining which nodes are accessible for each failure
set, as well as the probability that each failure set occurs, the average number of accessible nodes
f can be found.

Figure 5 shows the fault tolerance f of an 8-node network with RN=.9, RS=.97, and RL=.93,
as a function of S. All failures are assumed to be independent. Both upper bounds, the lower
bound, and the exact value of f are shown. For S � 4, the lower bound is close to the exact
solution, more so than the upper bound. The simpler upper bound seems to perform almost as
well as the eigenvector-based method, so the improved accuracy of the eigenvector-based method
may often not be worth the computation time.

Figure 5: Fault tolerance, f , vs. skip length, S. 8 nodes, RN=.9, RS=.97, RL=.93.

The lower and upper bounds are always exactly correct for S = 1. This is because the initial
vector Z(0) contains only one element which indicates the accessibility of the source node. This
node is always accessible by de�nition, which means that the distribution ~b is known with certainty
and the a priori and a posteriori probabilities of failure are equal for all network elements. As
S increases, the accuracy of both bounds tends to decrease. This is because, for both upper and
lower bounds, approximations are used for the accessibility of the S � 1 nodes before the source,
and for the 2(S � 1) destination nodes for which there are nodes in the overlap. As S increases, so
do the e�ects of these approximations. The lower bound is also generally more accurate than the
upper bound; the inaccuracies in the estimated f caused by ignoring multiple cycle paths are not
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as great as those caused by assuming some paths exist simply because the destination node and
one incoming link are up. This is useful since in practice, it is the lower bound that typically must
be guaranteed.

The accuracy of f is especially poor for S > N=2, since this overlap problem occurs with every
node in the network. If desired, this easily can be remedied by altering the analysis slightly. A
backward hop of S is the same as a forward hop of N � S. If S > N=2, then Z(0) should be an
N � S element vector, each element of which indicates the accessibility to the source of the nodes
j 2 f0; 1; : : : ; N �S� 1g, i.e., the N �S nodes in the positive direction from the source as opposed
to the S nodes in negative direction. Single step state transitions would go in the direction that
we have de�ned as negative, i.e., Z(i) would be a function of the status of node i and its associated
links and Z(i+1), as opposed to Z(i�1). The rest of the analysis would proceed analogously. From
the �gure, it is clear that the shape of the curve for the exact solution is roughly symmetric with
respect to S = N=2, although fault tolerance is slightly better for S = N=2� j than S = N=2 + j

where 0 < j < N=2. The evaluation of fault tolerance for networks with S � N=2 is generally less
important, since network performance (throughput and delay) in this region has been shown to be
inferior, [8, 9, 10, 11, 12, 13, 14] and fault tolerance is expected to be as well. [8, 9, 12]

An evaluation of the accuracy of the upper and lower bounds would be more meaningful in
a network with more than eight nodes. Unfortunately, it is di�cult to get an exact solution for
larger networks, since an exact calculation of fault tolerance for a network with only nine nodes and
potential link and node failures takes about 36 hours of computation on the Sun 3/80 workstations
used for this research. To allow the exact calculation of f in a larger network, reliable links are
used, thereby reducing the number of elements that can fail from 3N to N . Figure 6 shows results
for a 20-node network with node failures but no link failures. Even with S = N=2� 1, both the
upper and lower bound are accurate to within less than 4%. From the exact curve, it is also clear
that N = S=2 � 1 = 9 is not optimal with respect to this measure as Hu and Hwang found [33];
fault tolerance is better with any value of S from 3 to 8. In addition, there is little di�erence
between the two upper bounds, indicating that the simpler to calculate would probably su�ce in
this example. Figure 7 shows the lower and upper bounds on a larger network of 50 nodes with
unreliable links as well as nodes. This example shows how fault tolerance increases very quickly
with S when S is small, and then plateaus. For the 50-node network, although the lower bound of
f peaks at S = 6, any value of S such that 4 � S � 9 would produce roughly the same results.

Figure 6: Fault tolerance, f , vs. skip length, S. 20 nodes, RN=.9, RS=1, RL=1.

Figure 7: Fault tolerance, f , vs. skip length, S. 50 nodes, RN=.9, RS=.97, RL=.93.

Figure 8 shows the upper and lower bounds of P (k) for the 50-node network with S = 6.
Except for the nodes 2 f1; 2; : : : ; S � 1g, the variation of P (k) is relatively small, which is a useful
characteristic of the network. It means that there are no node pairs for which communication
is particularly unreliable relative to the rest of the network, so it is generally not necessary to
consider fault tolerance when determining the placement of particular nodes within the network.
The primary exception are the nodes 2 f1; 2; : : : ; S � 1g, but the extent of this e�ect is di�cult to
evaluate because this is also the region where the lower and upper bounds di�er the most. This
is because the fact that the lower bound only accounts for single cycle paths has the most impact
here. For example, there is only one single cycle path from node 0 to node 1, the one consisting
of S � 1 short links followed by a long link. However, there are likely to be many multiple cycle
paths, since the path ends on the �rst node of the second cycle. The low fault tolerance of the lower
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bound in this region also produces damped waves of increasing and decreasing fault tolerance with
period S. The other area where the lower and upper bounds di�er signi�cantly is near node N �S
where approximations were necessary to accommodate the overlap between the S � 1 nodes before
the source and the S � 1 nodes after the destination.

Figure 8: Probability of reaching node k, P (k). 50 nodes, S = 6, RN=.9, RS=.97, RL=.93.

Let us now consider a practical example in which it must be determined in a reasonable length
of time which values of S lead to a level of fault tolerance that the network designer considers
adequate. Since networks are not typically redesigned every time a node is added or removed, we
will assume that some minimum fault tolerance must be guaranteed over a given range. Let N vary
from 100 to 125, with RN=.9, RS=.97, and RL=.93. Failures are independent. In Figure 9, the
smallest lower bound in this range of N is shown for every S between 1 and 12. It appears that
the best selection of S in terms of f would be 7 or 8, but any value of S from 6 to 10 would yield
roughly the same fault tolerance. Using the methods of Raghavendra et al., [8, 9, 12] one would
predict that the best value of S is 10 or 11. This is close, but judging from Figure 9, setting S to 11
would signi�cantly reduce fault tolerance. Although this is only a lower bound, and thus does not
actually prove that f is signi�cantly lower for S = 11, the accuracy of the lower bound generally
seems to be too good to account for all of the drop in f shown in Figure 9.

Figure 9: Minimum lower bound of fault tolerance within range, f , vs. skip length, S. From 100
to 125 nodes, RN=.9, RS=.97, RL=.93.

Figure 10 shows the time it took to calculate both the upper and lower bounds for all N in this
range as a function of S. Computation was performed on a 3 million instructions per second (MIPS)
Sun 3/80 workstation without the oating point coprocessor. Even with S=12, the computation
for the entire range of N took less than four and a half hours. Larger networks are not a signi�cant
problem, since computational complexity of �nding lower and upper bounds is linear with respect to
N . The complexity of computing bounds is exponential with respect to S, because the cardinality
of the matrices is exponential with respect to S. However, in Figure 10, the rate of exponential
increase is only about 2.15, presumably because of the inherent sparsity of the matrices which also
goes up with S. For comparison, an exact calculation of fault tolerance for a single, 7- node network
with given S took over 40 minutes, and computation for an 8- node network took almost four and
a half hours. Times for exact computation should go up at a rate of approximately 8N . Under this
assumption, an exact numerical computation of f in a single 125-node network with given S would
take about 10102 years. Therefore, �nding an exact measure of f or P (k) is not feasible in many
typical FLBH networks, but bounds can be calculated for most practical networks in a tolerable
amount of time.

Figure 10: Time to determine upper and lower bounds vs. skip length, S. From 100 to 125 nodes.

5 Conclusion

In this paper, we have presented an e�cient method of calculating upper and lower bounds on fault
tolerance in forward-loop backward-hop (FLBH) networks. It enables us to evaluate networks much
larger than would be possible through enumeration, and with a direct and meaningful measure of
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fault tolerance. With the lower bound on fault tolerance, a network designer can determine whether
an FLBH network is guaranteed to meet fault tolerance speci�cations, and if so, with what values of
S. In the examples considered here, we found the optimal value of S, based on our lower bound on
fault tolerance, to be much smaller than N=2� 1 as proposed in [33], and slightly smaller than

p
N

as proposed in [8, 9, 12] We also found that, in large networks, fault tolerance is close to optimal
for a wide range of values for S.
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