
Carnegie Mellon University
Research Showcase @ CMU

School of Architecture College of Fine Arts

1987

ARCHPLAN : an architectural planning front end
to engineering design expert systems
Schmitt
Carnegie Mellon University

Carnegie Mellon University.Engineering Design Research Center.

Follow this and additional works at: http://repository.cmu.edu/architecture

Part of the Architecture Commons

This Technical Report is brought to you for free and open access by the College of Fine Arts at Research Showcase @ CMU. It has been accepted for
inclusion in School of Architecture by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-
showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Farchitecture%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/architecture?utm_source=repository.cmu.edu%2Farchitecture%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cfa?utm_source=repository.cmu.edu%2Farchitecture%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/architecture?utm_source=repository.cmu.edu%2Farchitecture%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/773?utm_source=repository.cmu.edu%2Farchitecture%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ARCHPLAN - an Architectural Planning Front End to
Engineering Design Expert Systems

by

G. Schmitt

EDRC-48-04-87

ARCHPLAN - an Architectural Planning Front End to Engineering Design Expert
Systems

Gerhard Schmitt
Engineering Design Research Center

Department of Architecture
Carnegie Mellon University

Pittsburgh, PA 15213

1. Abstract
ARCHPLAN is a knowledge-based ARCHitectural PLANning front end to a set of vertically integrated

engineering expert systems. ARCHPLAN is part of a larger project to explore the principles of parallel

operation of expert systems in an Integrated Building Design Environment. It is designed to operate in

conjunction with HIRISE, a structural design expert system; with CORE and SPACER, two expert systems

for the spatial layout of buildings; and with other knowledge based systems dealing with construction

planning, specification, and foundation design. ARCHPI.AN operates cither in connection with these expert

systems or as a stand-alone program. It consists of three major parts: the application, the user interface, and

the graphics package. The application offers a knowledge based approach towards the conceptual design of

high rise office buildings, taking into account qualitative and quantitative considerations. Strategies used for

design are prototype refinement, evaluation, and local optimization. The four major modules in the

ARCHPLAN application deal with massing, building functions, vertical building circulation, and structure.

The user interface provides a graphical environment for the interactive design of buildings and monitoring

program states. Ihe graphics package allows the workstation to function as the external representation

medium of design decisions made by the user and the application. A particular emphasis of ARCHPI AN is

to explore the usefulness of object-oriented programming techniques to support the abstract representations

of the design process and the resulting building.

Keywords

Object-oriented programming, prototype refinement, conceptual design process, interactive design, building

performance, vertical integration.

W-SS«U£g5S
PITTSBURGH, PA 15213-3890

Table of Contents
1. Abstract 0
2. Introduction 1
3. Representation of Architectural Design 1
4. The ARCHPLAN Concept 4
5. The ARCHPLAN Modules 7

5.1 The Building Object 7
5.2 Module One: Site, Cost, And Massing - SCM 8
5.3 Module Two: Function 12
5.4 Module Three: Circulation 14
5.5 Module Four: Structures 17

6. Critique and Future Developments 19
7. Conclusion 20
Acknowledgements 20

List of Figures
Figure 1: Top: IBDE - Integrated Building Design Environment. Bottom: ARCHPLAN modules 6

and top level user interface. The top left window gives access to the four modules and to
HIRISE. TTie top right window is the graphic window. The bottom left window is
reserved for alpha-numeric display and interaction, the bottom right window displays
messages.

Figure 2: User view of the SCM module. Top: a 525,000 sqft building. The user supplied 10
weighting factors for cost, building height, and the building footprint. Bottom: a smaller
building. Right: optimized for minimum cost, Left: user defined.

Figure 3: User view of the Function module. Top: wireframe representation of the building, office 13
area displayed as a solid. Bottom: elevator and service shafts.

Figure 4: User view of the Circulation module. Different two-dimensional layouts are shown as a 16
result of user input through sliding bars. Sliding the bar for a parameter from left to right
increases the relative importance of this parameter.

Figure 5: User view of the structure module. A maximum of eight different structural types is 18
offered, if the selection has not been restricted by previous constraints. The options which
are blotted out, in this case 1, 3, and 5, should not be chosen.

1

2. Introduction
Computer-aided drafting tools are employed to record and manipulate the results of design decisions. In that

sense, the present use of computers differs only slightly from the traditional recording of design ideas and

design stages on an external medium, such as paper. Only the geometric properties and a few other

quantifiable attributes of design are represented by the models or abstractions used in current computer-aided

design programs. This approach places heavy emphasis on the syntactic aspects of design and represents a

building at a very low level of abstraction. Due to the lack of appropriate abstraction and representation

methods, and their consequently missing computational counterpart, the semantic and conceptual aspects of

design decisions are not sufficiently covered and must be supplied entirely by the user.

As a result, most designs created on computers are one-dimensional in their treatment of the complex issues

involving the design process. Moreover, when quantifiable properties of the design are evaluated, for

example the energy performance of a building, the user is forced to take descriptions and quantities from the

lowest level of representation, in this case the geometric representation. Abstractions must be made on the

geometric model, which in itself is an abstraction, and as a consequence, the results of evaluation are

unreliable. We therefore propose to start the quantitative and qualitative performance evaluation of

architectural design at a higher level of abstraction. This approach towards architectural design modeling

requires a representation and abstraction concept different from traditional approaches. A hybrid system,

consisting of traditional and object-oriented programs is explored to model the conceptual design of high-rise

buildings.

3. Representation of Architectural Design
Over the last few centuries, design professionals have developed one of the most powerful forms of

representation: the graphical image whose syntax induces semantic explanations in educated viewers. In other

words, we have become so familiar with the symbols and techniques of graphical representation, that we are

able to interpret meaning where the untrained eye or the computer would recognize only lines or surfaces.

Representation involves abstraction. Abstraction is the reduction of a real world object (a building, a tree, an

idea) to its most important characteristics, according to a certain model. Abstraction and with it representation

became necessary with the paradigm change from making buildings towards planning buildings [Schmitt86b|.

It is crucial that the creator and the viewer or user of the abstraction base their work on the same model. With

the introduction of computers in the design process, new forms of representation and abstraction become

necessary. Several approaches were explored in the past, three of which arc of particular interest in this

context:

Geometric models [Eastman751, [Eastman77|. Geometric models describe the geometric properties of a

design. They are based on the assumption that the architectural design stages are representable with data

structures of varying complexity [Mclntosh82|. The simplest data structures for two-dimensional

representations are lists of points, lines, and polygons. Three-dimensional representations require more

complete information, especially if realistic views of the object are a concern. Winged edge and boundary

representation data structures are only two of a number of possibilities if solids are represented, and the

typical set operations of union, difference, and intersection are to be performed. While the data

representations are quite efficient and workable for present computer programs, they are not transparent to

the designer who thinks and designs in quite different categories and operations.

Relational Databases. Relational database management systems are important tools in business. The

underlying principle of relations or tables is useful in the representation of design as well. The relational

model is able to express properties (in the rows and columns of the table) and relations (through primary and

foreign keys in the table) in a straightforward manner. The relational model has higher semantic quality than,

for example, the hierarchical model. Although there were approaches to use the relational model for solids

modeling, widespread applications of the model to represent design in its different stages are not yet

implemented. This approach takes the existing relational view of data and extends it, treating shapes as

attributes [McIntosh84J.

Frames [Minsky75]. Frames, also known as schemata and scripts, are abstractions of semantic network

knowledge representation. A collection of nodes and links or slots together describes a stereotyped object,

idea, or event. Frames may inherit information from other frames. Frames are similar to forms that have a

title (frame name) and a number of slots (frame slots) that only accept predetermined data types. Frames are

effective in expectation driven processing, a technique often used in architecture, where the program looks for

expected data, based on the context [Rosenman85|.

None of the above described representation methods is ideal for describing architecture and the design

process. Researchers using these methods apply existing theory from other fields to model particular aspects

of design as closely as possible. Although it is possible to express particular design knowledge in other forms,

such as semantic networks, predicate logic, production systems, or decision tables, all of these representations

develop serious shortcomings if applied to non-trivial design problems. The reason is that design and the

artifact being designed have various degrees of "softness" in the process. In the early or conceptual design

stage, for example, the application of solids modeling would be too "hard" and exact a representation,

whereas later in the process it is a welcome help. On the other hand, production systems that are of use in the

early stages of design, supporting the user with explanations and rule-of-thumb knowledge, are of little use in

a phase of design when exact analysis results are needed.

These observations lead to the search for a more flexible and less restrictive abstract representation of the

architectural design process and the design artifact. The method we selected is related to the concept of

object-oriented programming (OOP). OOP has two fundamental properties, encapsulation and inheritance.

Encapsulation means that a user can request an action from an object, and the object chooses the correct

operator, as opposed to traditional programming where the user applies operators to operands and must

assure that the two are type compatible. The second property, inheritance, greatly improves the reusability of

code, as opposed to traditional programming where new functionality often means extensive

re-coding [Cox86|. From an architectural standpoint, object oriented programming is interesting for several

reasons:

1. Objects represent data as well as operations to be performed on these data. This important
property of objects is a combination of properties from geometric modeling and semantic
networks. The representation of a building as an object, for example, may allow the rotation of an
early concept only around the vertical z-axis, whereas a roof plane as part of the building may be
rotated around all three axes.

2. Objects can represent physical objects, ideas, building functions, relations between building
functions, and other real world entities. Semantic networks and frames have a similar capacity,
whereas geometric modeling is less complete in this respect. In architecture, the functional
diagram of a building is very important in the conceptual design phase. This diagram, developed
normally from the building program, with matrices expressing relations between spaces, kinematic
maps and other forms of abstractions, can be implemented as an object. The implementation of
the functional module in ARCHPLAN, described in detail below, is an example for this approach.
Such an object has the advantage that it can be related to other objects, that is, the error prone
traditional process to translate the meaning of one representation (the kinematic map, for
example) and a second representation (the adjacency matrix) into a third representation (a floor
plan) is improved.

3. Objects can inherit knowledge from other objects, ("lass inheritance, also a property of semantic
networks, allows the establishment of hierarchical and other forms of order between building
elements and functional relations. This capacity is crucial in architectural design because useful
spatial or functional constructs are defined once and then inherited completely or partially by
other constructs on a different level of abstraction. Standard test cases arc the movement of a wall
containing doors and windows, and the rotation of an entire building with all its associated
elements.

4. Objects can contain some form of "local intelligence". Identical messages exchanged between
different objects can have different effects, and different messages exchanged between different
objects can have the same effect. Through the possibility to embed decision mechanisms into each
object in form of rules or type and range checking procedures, the objects can "decide" if they
accept particular operations or not. The previous example of the higher degree of freedom of roof
rotations versus buiding rotation applies here as well: after the building location and orientation
are fixed, the degrees of freedom for the roof rotation may be reduced by a simple rule in the
roof-object to the x- and y-axis.

For the above reasons, we decided to implement ARCIIPLAN based on the object oriented programming

approach. Hie language is lisp, with the object-oriented extensions supplied by Hewlett Packard

[Hewlett-ftickani86].

4. The ARCHPLAN Concept
ARCHPLAN is a conceptual tool for the design of high-rise buildings and has four major purposes:

• To provide a graphical feedback and representation of decision processes in the conceptual design
of high-rise buildings.

• To provide a general graphical front end for a set of engineering design expert systems.
• To describe the desired attributes of a high-rise office building in different decision-making

domains.
• To create a building design according to this description that will satisfy the requirements either

through interactive design or partially automated or optimized decisions.

The first purpose deals with the visualization of analysis and decision processes and the implementation of an

appropriate graphics package. The second purpose deals with the development of a general user friendly

graphical interface. We selected the StarBase graphics package which provides Common lisp language

interfaces [Starbase85). Purposes 3 and 4 deal with the implementation of a particular design application. The

design strategy we chose to simulate with ARCHPLAN is that of rational decision making, which breaks

down into four steps [Akin87]:

• the generation of alternatives,
• the prediction of consequences for each alternative,
• the evaluation of each alternative, and
• the selection of an alternative for implementation.

This conceptual strategy determines the ARCIIPI AN architecture and the types of abstractions needed. For

interactive generation, analysis, evaluation, and selection of alternatives a modular structuring approach is

best suited. These activities take place in each of the decision making domains, which are at the moment

• Site, Cost and Massing (SCM). After a site is chosen, preliminary design starts on developing a
massing model that will fit a given budget. Cost and massing options arc inter-dependent
variables based partially on site characteristics.

• Function. Examples for building functions are office, retail, and parking space. Fach function has
particular requirements and affects the layout, appearance, and cost of the building.

• Circulation. Vertical circulation in high-rise buildings is part of a central service core or externally
attached to the building. As it is a spatial and structural vertical continuum through the entire
building, its size and location are important for design.

• Structure. The structural system of a building is affecting architectural expression, functional
layout, and cost. In some cases, design develops after the structural system has been determined,
in other cases the structural system is the result of design decisions.

Each of these domains is responsible to a general building database, implemented as an object, whose

responsibility is to maintain the high level consistency of the building abstraction, to warn the user if the

consistency is violated, and to direct control to the appropriate decision making domain to correct the

problem. The decision making domains are responsible for local decisions which will be of no concern to the

general database unless they violate important parameters.

The overall model to simulate the decision processes is best described as prototype refinement on a global

level, and of simulation and optimization on a local level. Prototype refinement means that a typical prototype

for the particular building type is chosen at the beginning of the design process which is subsequently

changed and refined [Gero87c]. Simulation includes operations on an abstract model of the design to predict

consequences of design decisions [Schmitt86b|. Optimization involves finding optimal solutions for one or

more pre-defined design parameters [Radford86|.

In the context of ARCHPLAN the above described decision making domains are implemented as four

separate modules. Once the user has established a building prototype in the SCM module, all other modules

can be visited and consulted in arbitrary order. Their responsibility is to refine the preliminary building

description. All modules and HIRISE are accessed by selecting a menu item from the top left window

provided by the user interface (see Figure 1).

In the global context of the Integrated Building Design Environment (IBDE), ARCHPLAN's main

responsibility is to establish a site and architectural building description, based on client's needs (see Figure

1). This description is posted as a data base frame on a blackboard which is accessible by the engineering

expert systems HIRISE, FOOTER, SPEX, and PI ,ANEX, and by IOOS1, the architectural layout generator.

As an option, HIRISE can be accessed directly from ARCIIPI,AN by selecting the appropriate menu item on

the top level user control screen (see Figure 1).

This section must end with a disclaimer: we are aware of the extremely complex interactions in the human

design process and do not suggest that ARCHPLAN will be able in the near future to simulate or improve all

of them. Therefore, the set of decisions in ARCHPI AN are a subjective selection. The criteria for selection

were the ease of formalization techniques available, and the expertise of specialists in the particular areas of

interest.

SITE

STRUCTURAL
ALTCRNATIVf

STRUCTURAL
fUNCTiONS

PROJECT
ACT IV IT t $

HRCHPLRN
Mte«mg

Structure

Cireulatten

Tunct ton

HI RISC

Reset old value
Clear all weights
Balance formula
Renew venae lee

DU«P>

EXIT
ARCHPLAN

MASSING

CIRCULATION

FUNCTION

STRUCTURE

Figure 1: Top: IBDE - Integrated Building Design Environment. Bottom:
ARCH PLAN modules and top level user interface. The top left window gives

access to the four modules and to HIRISE. The top right window is the
graphic window. The bottom left window is reserved for alpha-numeric display

and interaction, the bottom right window displays messages.

5. The ARCHPLAN Modules
The four presently implemented decision making modules will be described in detail. Each of the modules

contains algorithms, rules and weighting factors to determine the importance of decisions and parameters.

The common abstraction for all modules is that of objects. The exchange of information is achieved through

the passing of messages. This also applies for the general design description which is an object with slots for

the most important building characteristics. There is no predetermined order in which the modules must be

accessed and executed, which allows idiosyncratic design interaction. The exception is the SCM module,

which must execute first to establish the basic parameters for the following session.

5.1 The Building Object

The general database is an object which contains information about the crucial parameters of the building and

a set of actions to protect this database from becoming inconsistent through the decisions of the other

modules. The object resembles a frame with slots for the various parameter values that are filled and changed

according to the degree of the building design completion. Because ARCHPLAN is also producing output for

the other expert systems in the integrated building design environment, the central building design

description contains slots with additional information. The building description data base frame has the

following (simplified) form:

SITE INFORMATION

SLOT VALUE (default)

site_longitude 60 degrees
site_latitude 40 degrees
site_rotation_angle 0 degrees
site_x 300 feet
site_y 200 feet
degree_days 6600
max_wind_load 120 raph
max_wind_dir 60 degrees

BUILDING INFORMATION FRAME

SLOT VALUE (default)

base_x 50 feet
base_y 50 feet
building_rot_angle 0 degrees
structure_grid_x (10 20 20 20 20 20

structure_grid_y
arch_mod_x
arch_mod_y
ground_floor-height
floor_height
num_of_floors
core
occupancy
Structure_system
spaces

20 20 20 20 20 20
20 20 20 10)

(15 20 30 20 15)
5 feet
5 feet
18 feet
12 feet
(0 15)
(70 130 35 65 0 15)
office
trussed frame
(atrium, mechanical,
retail, office,
parking)

In the execution of ARCHPLAN, these default values will change based on program needs and user

requirements. The building object expresses itself graphically through the interface and acts as a "read only"

object. Changes may occur only through user action in the ARCHPLAN modules, ftrmanent output is

produced through screen dumps and for the blackboard to be accessed by the other expert systems.

Eventually, these expert systems will have a critique function and will have authority to change slots in the

object.

5.2 Module One: Site, Cost, And Massing - SCM

At the very beginning of the architectural design process, decisions must be made concerning the building

site, the building cost, and the basic footprint and massing of the building. While this is not the only

approach towards designing a building, it is a valid initial assumption. The crucial parameters for the

building site are the dimensions, the required setbacks from the site boundaries, the setback angle (city zoning

laws normally require a builder to respect sun angles and daylight access to surrounding buildings), and the

climate (important for energy budgets and for wind loads for high-rise buildings).

The second, and often most important, aspect is the building budget. We chose a simplified model to

simulate the relations between the original, given budget, and parameters influencing the total budget. Given

a certain budget, the program selects a range of possible building areas from the Means catalogue [Means87].

The total building cost is of course not only a function of the area, but also of the number of stories, the height

of each story, the functions of the building, and the length and material of the perimeter. These relations are

listed in the Means tables and are based on empirical data.

The user is able to set each one of these parameters manually (the allowable ranges are checked by the

program). As one option, the user may choose to optimize the building for first-cost only. As expected, the

results are not very exciting, because the program will merely minimize all expensive parameters. As another

option, the user can choose a cost optimization that takes into account more than one criterion. The emphasis

in this option is on life-cycle-cost which is influenced by factors such as user satisfaction and maintenance

costs (up to 92% of an office building's cost over its life time consists of the occupant's salaries; therefore

absentee rates caused by user dissatisfaction have a substantial negative impact on the financial success of a

building). Due to the difficulty of quantifying relations between user satisfaction and the building's physical

appearance, this option is highly hypothetical, but acts as an interesting testing ground for the integration of

qualitative and quantitative criteria.

Based on the initial parameters, constraints, relations between parameters, and the allowed actions (see

below), the program then displays the preliminary massing of the building on the site, together with the

parameters that influence the massing (see Figure 2). The parameters are shown as normalized bar graphs,

varying from the lowest to the highest acceptable level.

In the ARCHPLAN implementation, the SCM decision module is an object that contains the following

parameters:

Variables:

Total Building Area (ranging from 5,400 to 1,000,000 square feet).
Ground Floor Area (ranging from 8,100 to 160,000 feet).
Total Building Cost (ranging from $432,000 to $200,000,000).
Cost Per Sqft (ranging from $80 to $200 per square foot).
Total Building Height (ranging from 9 to 1,000 feet).
Number of Floors (ranging from 1 to 100 floors).

Constants:

Site X (the east-west length of the site, ranging from 90 to
400 feet)
Site Y (the north-south length of the site, ranging from 90
to 400 feet)
Site Area (ranging from 22,500 to 160,000 square feet)
North Setback (ranging from 0 to 100 feet)
East Setback (ranging from 0 to 100 feet)
South Setback (ranging from 0 to 100 feet)
West Setback (ranging from 0 to 100 feet)
Setback Angle (ranging from 45 to 135 degrees)
Maximum Building Height (ranging from 13 to 1,000 feet)

The differentiation between variables and constants is flexible, i.e., through the use of weighting factors from

10

RROPLRN
MASSING

STRUCTURE

CIRCULATION

FUNCTION

FRCflDC

ITEM

total but Id araa

total but Id cost

cost par squara foot

total buiId hatght

floor haight

numbar of floors

ground floor araa

ground floor x

ground floor y

maximum building haight

slta x

si ta y

total

ranga <

ranga c

ranga <
ranga «
ranga <

tat back angla
>f floor haight

>f buiIdlng haight

if ground floor x
if ground floor y

Sal act
Rasat o
Claar a

Ranaw v
Optlmlz

Opt imal

Id valua

1 waights

art ablaa

a

VI aw Moda

Dump

Hi Risa

Exit

VflLUE HEIGHT
525000.0 0.
52500000.0 0.
100.0 8.
115.0 9.
20.0 0.
6.0 9.
97500.0 0.
350.0 9.
250.0 9.
500.0
500.0
440.0
20.0
20.0
20.0
20.0
90.0
9.0 60.0
1.0 80.0
10.0 300.0

1600.0 175000.0
40.0 360.0
40.0 260.0

L I 1 • 1

^̂ ^̂ ^^̂ ^̂ ^̂

4 4 0

1
floor • g area

•

1
ground »
1
ground y

RRCHPLflN
MflSSING

STRUCTURE

CIRCULATION

FUNCTION

FflCROE

Sal act Optimal

Rasat

Claar

Balanc

Ranaw

Opt(ml

Id valut

I I waights

formula

artab I at

Hi Rlaa

Exit

ITEM

total bulId araa

total build cost

floor haight

numbar of floors

ground floor x

ground floor y

maximum building haight

slta x

sita y

south sat back distanea

wast sat back dtstancs
total sat back angla
ranga of floor
ranga of numbar
ranga of butIdl

ranga of ground f
ranga of ground f

o o r

VflLUE
439450.0
4895144 1.2
111.4
135.0
12.0
11.0
39950.0
235.0
170.0
500.0
400.0
300.0
20.0
20.0
20.0
20.0
90.0
15.0
1.0
10.0

i 1600.0
40.0

WEIGHT
0.0
0.0
0.0
0.0
9.0
0.0
9.0
0.0
0.0

90.0
80.0
500.0
93600.0
360.0
260.0

.1 • l l l l l l
*m><f>% * hoiqpv* floor • f ar»a y nuni M y otnrt /

Massing modula

Figure 2: User view of the SCM module. Top: a 525,000 sqft building. The user
supplied weighting factors for cost, building height, and the building

footprint. Bottom: a smaller building. Right: optimized for minimum cost,
Left: user defined.

11

1 to 10 (1 for least commitment, 10 for highest commitment), some variables are de facto transformed into

constants. The constants listed are also represented in the database object and are constraints that are

established at the very beginning of the process. They can only be changed if absolutely necessary. The SCM

module allows the interactive editing of a set of default parameters. The most important building parameters

are organized as objects in an activation network [Brownston85]. In an activation network, each node

represents an object and each arc represents a relationship between two objects. If the arc is labeled, the label

is a number indicating the strength of the relationship. When a node is processed, its activation level may

change, and the effects of the change are propagated along arcs to related nodes, resulting in changes to their

activation level. The SCM module can be expressed as an activation network of the following form:

ground_floor_x cost_per_sqft
\ \
o- ground_floor_area o- total_cost
/ \ /

ground_floor_y o- total_area
/

no._of_floors
\
o- total_height
/

floor_height

The objects in the above activation network communicate with each other by sending and receiving messages.

When an object receives a message, it consults its data base and the appropriate rules to decide what action to

take. The rules may be stored directly with the object or in a different object. In ARCHPIAN, the result of

any change is represented numerically in the related change of other variables, and graphically in the change

of the normalized bar charts and the massing of the building.

12

5.3 Module Two: Function

The distribution of different functions in a building is of crucial importance to the appearance and

performance of the structure. It could be argued that the functional, three-dimensional layout is the first

design decision to be made. However, a close look at the design practice suggests that the functions are less

form-determining in the conceptual design phase in the majority of modern high-rise buildings than the

parameters dealt with in the SCM module. This observation also coincides with the global strategy of

prototype refinement.

The program is capable of handling five different building functions:

• office
• retail
• atrium
• parking
• mechanical

Circulation, a building function in close relation to all of these, is treated in a separate module.

The Function module assists in the vertical and horizontal distribution of the different building functions

within the basic massing volume (see Figure 3). Since this module relies heavily on built-in heuristics, user

input is restricted. The decisions are made and reflected locally, unless the constants in the global building

description object are violated. In this case, the program backtracks and control is passed back to the SCM

module. In the SCM module, the user can choose either to automatically adjust the design description to the

information received from the Function module, or make changes manually.

In a typical session, the user selects the Function module from the previous screen and makes the Function

window current. The program then presents a chart with the five available functions and allowable

percentages. Certain constraints apply:

• office space (ranging from 80%to 100%of net square footage)
• retail space (ranging from 0%to 20%of net square footage)
• atrium space (ranging from 0%to 10%of net square footage)

The sum of office, retail, and atrium space is always 100%of the net square footage. The mechanical floor is at

least 5%of this area (typically, one mechanical floor every twenty stories, or at the top of the building for less

than 20 floors). Parking is presently placed underneath the building, at the rate of one parking floor per seven

building floors.

The program starts by checking the slots in the central database and assigning the percentages for each

function by built-in knowledge. The user can also change the default percentages by graphically moving the

13

HRCHPLHN
MOSSING

STRUCTURE

CIRCULATION

FUNCTION
FACAOC

morm offica

) • • • of#ica>

•nor* ratal I

! • • • ratal 1

I(ay at rt ui

outdoor parking

mechanical floor

Determine

View Mods
Floor
So I (d Or «wlng
Ltne Drawing

HI Rtae

Exit

OFFICE <-> RETRIL <-> RTRIUH

'•duead by S p«r*«nt

nRCHPLRN
MASSING

STRUCTURE

CIRCULflTION

FUNCTION

FACROE

O«t«rnln«

Vl«w Mod*
F\ oor
Sol Id Drawing
Lln« Drawing

Cl.ar

Dumo
HI Rlsa

Exit

tnt eorai

nor* offle*
1««« offtcm
mori r«tal1

underground parking
outdoor parking
m«ch«nieal floor
underground »«ch»nleal

OFFICE <-> RETAIL <-> ATRIUM

Chooa* all floor

Figure 3: User view of the Function module. Top: wireframe representation of
the building, office area displayed as a solid. Bottom: elevator and

service shafts.

14

bars that represent them. Built-in knowledge is used because in the SCM module no functional decisions are

made. Examples of this knowledge, in the form of design advice, are:

• Start by dividing the total volume into 70%office space, 20%retail space, and 10%atrium space.
• Start by placing retail at the ground floor and office above.
• If the building is high, place the atrium on the lower level
• If the building is low, develop it from the top level down
• Do not run a service shaft through the atrium if the atrium is at the top of the building.
• Explore several options of combining office and retail three-dimensionally: ground floor only

office, ground floor only retail, ground floor office and retail.

The rules are contained in "advice-objects", which give advice to control objects that modify the Function

module object. The knowledge in the advice objects is quite limited at the present; the intention is to develop

an interactive advice object that learns through induction from direct user input and from the frequency of

user choices of particular functional arrangements. The advice objects send messages to the Function module

object which expresses itself graphically, the Function module object also checks with the building object for

conflicts in the two databases. If they are discovered, and are substantial, the user is prompted to resolve the

problem on the Function module level. If the inconsistency produced by user choice or action in the Function

module is substantial and the user refuses to resolve it on this level, the program returns to the SCM module

and corrects the problem there, giving the user feedback how the previous decision influenced height, cost,

massing, and the other parameters.

The Function module produces three-dimensional output and interactively highlights functions to better

understand their distribution in three-dimensional space (see Figure 3). The Function module also produces

output for CORE and SPACE, the planned generative expert system for the design of core and space layouts

[Flemming86b]. It is planned that CORF and SPACE will accept the two-dimensional plan information

from ARCHPLAN and begin the individual layout of the functional spaces which ARCHPLAN only

produces as big building blocks.

5.4 Module Three: Circulation

Circulation in high-rise buildings addresses the problem of moving occupants and equipment from floor to

floor and within floors, and to guarantee the safe evacuation of the occupants in emergencies. Circulation is

not only a transportation and evacuation problem, but has a major impact on the internal functioning and on

the architectural expression of a high-rise building. The two extreme cases for the placement of vertical

circulation are the completely internal (service and elevator core in the center of the building) or the

completely external solution (service and elevator cores attached to the outside of the buildings). Most

15

high-rises have vertical circulation systems that lie in between those two extremes and. therefore ARCHPLAN

concentrates on creating vertical circulation proposals based on variations of these two prototypes.

The Circulation module is accessible as soon as the SCM module has established a "base case" building. If

Circulation is started as the second module, then the Circulation object inherits the existing data of the

building object. Supplied with this knowledge, the program starts to present the list of parameters which

influence the location and size of the circulation cores. If Circulation is accessed as the third or fourth module,

then it inherits the additional decisions that were made in the previous modules. The choice of a location for

the circulation core is important, as it affects decisions about structural system and function distribution.

Several issues play a role in the determination of the location, size, and number of the vertical circulation.

ARCHPLAN considers the following factors:

available exterior window space --> east
available exterior window space --> west
available exterior window space --> south
available exterior window space --> north
minimize total surface area
intention to add new adjacent building --> east
intention to add new adjacent building --> west
intention to add new adjacent building --> south
intention to add new adjacent building --> north
require external stair case (fire escape security)
visual interest image --> east
visual interest image --> west
visual interest image --> south
visual interest image --> north
equal distance access to cores
increased elevator accessibility
flexible tenant distribution
deep office space
fixed multitenant occupancy
structural simplicity
circulation takes lateral forces

For this module, it is particularly important to make the inference process the program uses as transparent as

possible and consequently graphically present the above parameters that influence the decision of the

circulation location (see Figure 4). As in the SCM module ARCIIPI AN uses weighting factors to represent

the relative importance of one parameter. In this case, however, the parameters have no absolute values. A

comparison of the two modules explains the reason. An example from the Circulation module:

• A deep, uninterrupted office space is very important (weighting factor 10 is assigned by sliding the
bar graphically to the right).

16

RRCHPLflN
MASSING

STRUCTURE

CIRCULATION

FUNCTION

FflCflDE

Datarmlna

Dttcovtr

Local discov

Hi Rtaa

Exit

1 win

< ntant

raquirm

1

t o

a>

add nmm

(tarnal
/dual l

rqual dt
Havator

adjacant bu i Ic

i ta i r c
itaraat

accaaa

aaajfor
[tmaga <

| i« .g . i

ib l1 i ty

ling 4 soiith

ftra aacapa
1 aaat

daap offica|«paca

multttanant oecupa

ground floor lobby

al aiwpltcIty

circulation takaa latjaral fo

RRCHPLflN
MOSSING

STRUCTURE

CIRCULATION

FUNCTION

FRCRDE

Oatarmlna
Olicovtr
Local dtaeov

HI R l a a

E x i t

l a b l a j .

qual dUti

Jaacapa

Ci rcu la t ion Modula

Figure 4: User view of the Circulation module. Different two-dimensional
layouts are shown as a result of user input through sliding bars. Sliding the

bar for a parameter from left to right increases the relative
importance of this parameter.

17

• A deep, uninterrupted office space is not necessary (weighting factor 0 is assigned by sliding the
bar graphically to the left).

An example from the SCM module:

• The total building budget is $25,000,000, and it must not be exceeded (the user enters 25,000,000
and a weighting factor of ten numerically by typing over the default numbers)

• The total building budget is $25,000,000, but other factors may be more important (the user enters
25,000,000 and a weighting factor from 0 to 5 numerically by typing over the default numbers)

Besides exploring the behavioral difference of parameters with absolute values and weighting factors and

factors with relative importance only, we were also interested in the user reaction to the two different input

modes. First results show that offering graphical interaction with sliding bars leads to about three times more

experimentation than the strictly numerical interface.

In a typical session, the user starts by first examining the above parameters which are all set to default values.

Two options are available to see the program's proposal for the location and configuration of the circulation:

discover (the equivalent to forward chaining) and determine (the equivalent to backward chaining). The

options normally produce distinct solutions for size, configuration, and location of the vertical circulation,

represented in two-dimensional floor plans. The user can also start by changing the value of the parameters

immediately and so produce a large set of possible circulation layouts.

In case of conflict with the building database (the Function module may have assigned the elevator in the

center, the Circulation module on the outside), the program will try to first solve the discrepancy on the level

of the conflicting module, in this case the circulation module. If the conflict cannot be solved, the program

backtracks to the SCM module where the central building description can be adjusted manually or

automatically. Changes from this adjustment are propagated to the other modules.

5.5 Module Four: Structures

All design decisions in the previously described modules have an impact on the type and performance of the

building's structural system. An architect interacting with ARCHPLAN will probably not start with the

structure module, whereas an engineer might want to see the impact of the building's form on the structural

system and vice versa. Both approaches are possible, as the Structure module is directly accessible after the

SCM module.

18

CRNTILEVEREO SLflB

FLflT SLBB

SUSPENSION

RIG10 FRflME

RIGID TRRME I CORE

TRUSSED FRflME

TUBE IN TUBE

BUNDLED TUBE

Figure 5: User view of the structure module. A maximum of eight different
structural types is offered, if the selection has not been restricted by
previous constraints. The options which are blotted out, in this case

1, 3, and 5, should not be chosen.

This module is intended to give the designer an overview over possible structural types appropriate for the

building design (see Figure 5). The synthesis of a structural system for a design developed with ARCHPLAN

is reserved for the HIRISE structural design expert system [Maher84|. The Structural module considers at the

moment the following structural systems:

• Cantilevered slab
• Flat slab
• Suspension
• Rigid frame
• Core & rigid frame
• Trussed frame
• Tube in tube

19

• Bundled tube

If the building object has been defined through the previous design decisions, the options are limited. If the

Structure module is executed early in the design process, the set of selectable structural types is larger. After

the user has accepted the proposed structural type for the given building, or has made an independent choice,

the structure is displayed three-dimensionally for the current building object. The program solves conflicts

that may arise out of the user's choice in the same manner as in the other modules.

6. Critique and Future Developments
ARCHPLAN is incomplete at this point and serves as a testing ground for different design methodologies and

their computational representation. We expect not one final method, but a combination of methods for

different design applications and design stages to emerge as the optimum. ARCHPLAN uses a spatial

representation closely related to that of HIRISE which restricts it at the moment to rectangular structures. The

implementation of ARCHPLAN in Common Lisp and its object-oriented extensions is advantageous in terms

of programming and experimentation. The production of a transparent and friendly user interface is a

separate project of importance for the practical application of ARCHPLAN. Based on these and other critical

remarks, the following developments are planned:

• Improvements in the flexibility of the module structure.
• Addition of optimization routines where possible (existing presently only in the SCM module).
• Addition of explanation modules ("Why" and "How" options).
• Addition of a decision history option for future induction purposes.
• Exploration of design creativity in the framework of ARCHPLAN.

Some of these problems, such as explanation and decision history, can be solved without further investment

of research work, as ARCHPLAN is now being translated in a commercial expert system shell (ESE) which

allows access to external functions and offers extensive interactive user interface support.

20

7. Conclusion
ARCHPLAN has proven to be a valuable framework for the testing of design ideas and their representation

in a workstation environment. Simplified representations of existing high-rise buildings, such as the Lloyds of

London building in London, England, the Bank of Hongkong offices in Hongkong, and the Fifth Avenue

office building in Pittsburgh, Pennsylvania, can be generated with ARCHPLAN as test cases. The test cases

provided an invaluable tool to develop and test the knowledge base. Knowledge is represented in two forms:

as algebraic relations and as as rules, both embedded in the object-oriented programming environment.

The project demonstrated the importance of real time graphical feedback for knowledge based architectural

design systems. The object-oriented programming approach applied to design and graphics problems is

powerful and on a level of abstraction that is closer to the human designer than traditional programming

approaches. ARCHPLAN showed that hybrid programs - being part knowledge based systems, part

traditional algorithmic programs - can be realistic architectural design tools. The most valuable effect was to

gain new insights into the design process through the necessary formalization of design knowledge and

decision mechanisms in each of the ARCHPLAN modules. This experience also suggests that future design

programs will have extensive idiosyncratic characteristics.

At the moment, ARCHPLAN is a design assistant to produce meaningful high-rise building design

descriptions that are used by engineering expert systems and to compare manually designed buildings to those

designed with ARCHPLAN. Future program development has two main emphases: one is increasing design

automation and optimization on a global level in producing feasible high-rise design solutions. The other is

refining local decision making in particular design aspects such as building circulation and functional

distribution. Along with this development in which the system is now "learning" from existing design test

cases, cost tables, and personal design experience, its future role will be that of a design tutor which could

teach and explain design to novice users.

Acknowledgements
The author would like to thank his research assistants and programmers Chia Ming Chen, Chen Cheng Chen,

Shen Guan Shih, Richard Cobti, and Jeffrey Kobcrnick. Special thanks to Professor Steven Fenves and

Michael Rychener for their advice.

21

References

[Akin87] Akin, Omer, Hemming, Ulrich, Schmitt, Gerhard, and Woodbury, Robert.
' Envelopment of Computer Systems for Use in Architectural Education.

Architecture Research Series, Department of Architecture, Carnegie Mellon University,
March 1987.

[Brownston851 Brownston, Lee, Farrel, Robert, Kant, Elaine, and Martin, Nancy.
Programming Expert Systems in OPSS.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1985.

[Cox86j Cox, Brad J.
Object Oriented Programming.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[Eastman75] Eastman, Charles.
The Use of Computers instead of Drawings in Building Design.
Journal of the American Institute of Architects 3:46-50, 1975.

[Eastman77] Eastman, Charles, and Henrion, M.
GLIDE: A Language for Design Information Systems.
In Proceedings of the 1977 SIGGRAPH Conference, pages 24-33. SIGGRAPH, 1977.

[Flemming86bJ Hemming, Ulrich, Rychener, Michael D., Coyne, Robert F., and Gl avin , Timothy J.
A Generative Expert System for the Design of Building Layouts.
Technical Report, Engineering Design Research Center, Carnegie Mellon Univers ity,

1986b.

[Gero87cJ Gero, John S., Maher, Mary Lou.
A Future Role of Knowledge Based Systems in the Design Process.
In Wagter, Harry (editor), CAAD Futures. ECAADE, Eindhoven University of

Technology, The Netherlands, May, 1987.

[Hewlett-Packard86|
HP 9000 Series 300 Computers LISP Application Notes
Hewlett-Packard Company, Fort Collins, Colorado, 1986.

[Maher841 Maher, Mary Lou.
HI-RISE. A knowledge-based expert system for preliminary structural design of high-rise

buildings.
PhD thesis, Carnegie Mellon University, 1984.

[Mclntosh82) Mclntosh, Patricia G.
The Geometric Set of Operations in Computer-Aided Building Design.
PhD thesis, University of Michigan, 1982.

[Mclntosh841 Mclntosh, John F.
The Application of the Relational Data Model to Computer-Aided Building Design.
PhD thesis, University of Michigan, 1984.

[Means87] Horsley, William F.
Means Systems Costs 1987.
Robert Sturgis Godfrey, 1987.

22

[Minsky75| Minsky, M.
A framework for representing knowledge.
In Winston, P. (editor), The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[Radford86] Radford, Antony D., and Gero, John S.
Design by optimization in architecture and building.
Van Nostrand Reinhold Company, New York, 1986.

[Rosenman85] Rosenman, Michael A., Gero, John S.
Design codes as expert systems.
CAD Computer Aided Design 17(9): 399-409, November, 1985.

[Schmitt86bj Schmitt, Gerhard.
Expert Systems in Design Abstraction and Evaluation.
In Kalay, Yehuda (editor), The Computability of Design. John Wiley & Sons, New York,

1987.

[Starbase85J Hewlett-Packard Company.
Starbase Reference
2 edition, Hewlett-Packard Company, Fort Collins, Colorado, 1985.

	Carnegie Mellon University
	Research Showcase @ CMU
	1987

	ARCHPLAN : an architectural planning front end to engineering design expert systems
	Schmitt
	Carnegie Mellon University.Engineering Design Research Center.

	tmp.1335556450.pdf.WNRuy

