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Abstract

Recent studies have shown that router misconfigurations are pervasive
and have dramatic consequences for the operations of networks. Not only
can misconfigurations compromise the security of a single network, they
can even cause global disruptions in Internet connectivity. Several solu-
tions have been proposed that can detect a number of problems in real
configuration files. However, these solutions share a common limitation:
they are rule-based. Rules are assumed to be known beforehand, and vi-
olations of these rules are deemed misconfigurations. As policies typically
differ among networks, rule-based approaches are limited in the scope of
mistakes they can detect. In this paper, we address the problem of router
misconfigurations using data mining. We apply association rules min-
ing to the configuration files of routers across an administrative domain
to discover local, network-specific policies. Deviations from these local
policies are potential misconfigurations. We have evaluated our scheme
on configuration files from a large state-wide network provider, a large
university campus and a high-performance research network, and found
promising results. We discovered a number of errors that were confirmed
and later corrected by the network engineers. These errors would have
been difficult to detect with current rule-based approaches.

1 Introduction

Configuring routers is a tedious, error-prone and complex task. [11] presents a
quantitative study of configuration errors in 37 firewall engines, and found that
all of the firewalls contained some misconfigurations. The author’s conclusion
is “complex rule sets are apparently too difficult for administrators to manage
effectively.” [4] found more than 1000 errors in the router configurations of 17
networks while focusing only one aspect of the configurations – BGP. [7] mea-
sured BGP configuration errors that were visible from routing updates at the
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Oregon RouteViews server over the course of 21 days, and found that miscon-
figurations were pervasive. For example, about 75% of all new routes advertised
were erroneously announced during that time, a conservative estimate accord-
ing to the authors. Although these misconfigurations did not disrupt Internet
connectivity per se, they do contribute to router load and increase in routing
convergence time. Other misconfigurations can have had a larger impact: in
December 2004, misconfigurations in network AS9121 resulted in the propaga-
tion of 100K+ routes, leading to “misdirected/lost traffic for tens of thousands
of networks” [1].

Several solutions have been proposed to deal with the router misconfigura-
tion problem [5, 2, 4, 10, 3]. All but one of them compare configurations with
a list of constraints or common best practices that a network ought to follow to
function correctly. This approach of rule-based analysis makes the assumptions
that rules violations are misconfigurations, and is very effective in detecting cer-
tain type of clear-cut problems. For example, ensuring all routers in a network
are up-to-date on security patches [10], checking internal BGP speakers form a
full mesh [4], and determining whether referenced routing policies are actually
defined [5].

However, what constitutes an error sometimes depends on the network –
what is an error for one network can be common practice for another. This rel-
ativism of error definition is echoed by others. [8] studied configuration files from
31 networks, and concluded that routing design can be diverse and each network
is so different from another that it is not possible to classify them: the design
of network routing is eclectic, “an art where many approaches might be used
to try to achieve the same result”. While, for routing designs, classic textbooks
generally define two architectures – the enterprise and backbone architectures
– 2/3 of the analyzed networks “exhibited designs that were markedly differ-
ent from textbook examples and from each other”. To give another example,
in interdomain routing, a neighbor is usually categorized as either a provider,
peer, or customer. However, we know of arrangements in a fairly large provider
network that treat a neighbor as both peer and customer. Rule-based analysis
presents limitations in the scope of errors it can detect. Its rules would have to
be the “lowest common denominator”, ones that are universally applicable to
all networks.

Solutions to detect router misconfigurations fall on a spectrum. On one
extreme, we can use tools that apply best common practice rules to detect
known misconfigurations. On the other extreme, there is pure data mining
that ignores underlying structure of router configuration commands and domain
specific knowledge. We choose to be somewhere in the middle of this spectrum
of the two extremes. Minerals applies data mining on router configuration files
across a network to infer local, network-specific policies and detect potential
errors that deviate from the inferred policies.

We discuss related work in the next section. Section 3 describes our ap-
proach, Minerals. Section 4 presents our evaluation of Minerals on configura-
tion files from three different networks. The results are promising. Finally, we
conclude the paper with discussions and future work.
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Figure 1: Taxonomy.

2 Related Work

In this section, we introduce a taxonomy to classify approaches that analyze
network configurations and describe work related to Minerals in the context of
this taxonomy. The taxonomy divides the approaches in two dimensions. The
spatial dimension describes how many routers we study at a time. The temporal
dimension represents whether we are looking at configurations from a specific
point in time or across time. Figure 1 illustrates this taxonomy.

SR (Single-Router) explores one router’s configuration from a specific time.
RAT [10] checks a router’s configuration file against security recommendations
set forth by the NSA [9], highlights the differences and assigns a score to indi-
cate the security level of the router in question.

MR (Multi-Router) studies multiple (or all) routers of a network from a specific
time. Maltz et al. [8] developed a method to reverse engineer a network’s routing
design from its router configuration files. The main goal is to understand how
operational networks use routing protocols. Xie et al. [12] extract information
from configuration files to conduct static reachability analysis which can detect
logic or design errors.

Feldmann and Rexford [5] are the first to propose misconfiguration detec-
tion through the parsing and analysis of router configuration files. rcc [4] aims
to detect BGP misconfigurations by examining router configurations across a
network. Some of the misconfigurations it can find include iBGP signaling
problems and commands referring to undefined policies. Both [5, 4] are rule-
based approaches in which rules or policies need to be known a priori and to
be provided in advance. EDGE [2] argues that manual configuration of routers
is error-prone and should be replaced by an automated process with inventory
control. It suggests using data mining to mine configurations for errors but
describes no details.

The work of El-Arini and Killourhy [3] is perhaps the closest to ours. They
use a set of Bayesian based algorithms to detect statistical anomalies in router
configurations. While the goal is similar, our approach is different. Their algo-
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rithms focus on the frequencies of the command lines and associated attributes
but do not consider the meaning of the commands. Instead, we preprocess the
configuration files applying domain-specific knowledge to extract the meaning
and relevant features. Also, the authors assume that each command line is inde-
pendent and do not draw any relations between different commands. However,
such assumption does not hold for router configurations as recognized by the
authors.

SR-TS (Single-Router-Time-Series) looks at one router’s configuration across
time, and MR-TS (Multi-Router-Time-Series) analyzes multiple routers across
time. EDGE suggests automating the provisioning tasks of a network by study-
ing a network’s configuration over time to identify recurring steps, but it pro-
vides no concrete method. To the best of our knowledge, there are no other
proposals in the TS area.

3 Minerals

Data mining searches for patterns and rules in large data sets. Recently, it
has been applied to systems and networking problems such as isolating bugs in
software and detecting anomalies in traffic. Data mining can be used to identify
errors in network configurations as well. Network elements often share common
configurations. For example, to block spoofed packets, all edge routers in a
network use filters blocking packets with invalid source IP addresses. Moreover,
policies are usually applied across a network and evident in most routers in the
network. Minerals uses data mining to discover local rules of a network and
detects potential misconfigurations that deviate from these rules.

Local rules of a network can be complex and usually not captured by uni-
versal rules set forth by common best practice documents. To illustrate, we
describe the usage of MD5 security to protect BGP sessions in a regional net-
work provider and a large university campus. The “textbook” rule is to turn
on MD5 if it is supported by the routers involved. Indeed, this is the local
rule of the network provider. However, the stability of MD5 implementations
varies across vendors and operating system versions. Some ASes resist turning
on MD5 because it delays session re-establishment after a reset. The local rules
in the case of the university network are MD5 is “off” if the end-point routers
have exhibited problems in the past, “off” between certain ASes who preferred
not to use it, “on” if the routers are from a particular vendor, and “on” on the
rest of the sessions.

In this section, we first describe using association mining [6] to find patterns
of correlation between elements in router configurations across a network – out-
liers to the discovered patterns are potential misconfigurations. The underlying
assumptions are: there exists common configurations across routers, and the
number of properly configured functions is large when compared to the number
of their misconfigured counterparts. The obvious drawback of these assumptions
is that non-conforming configurations can be classified as errors. To handle this
drawback, we discuss incorporating time-series data – that is, historical con-
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figurations of a network over time – to train and to improve accuracy of our
technique. Note that logic or design errors which violate general network goals,
such as incorrect packet filters preventing subnets from communicating, cannot
be detected by Minerals.

3.1 Preprocessing the Input Data

In data mining, preprocessing the input data is essential to remove irrelevant
information that can confuse a learning algorithm and yield useless results [6].
Experiments have shown that data mining is sensitive to the input data, and
there is no exception here. Below, we describe how we preprocess router con-
figurations using domain-specific knowledge before mining them. In our imple-
mentation, the preprocessing step is automated and is general so that almost
all of it can be applied on different networks without modification.

3.1.1 Instance Type Identification

An instance is a unit of independent input data and association mining works
on a set of instances. In Minerals, an instance is also the unit of error detection.
The content of a configuration file can be divided into different instance types, in
which each type is independent from the rest and undergoes separate analysis.
The advantage of dividing into these smaller subsets is that we can reduce
the amount of meaningless patterns discovered by association mining. The
disadvantage is that we might miss patterns that exist across instance types
but are not obvious to us.

In this paper, we focus on three instance types: user account, interface
and BGP session. Many other instance types can be defined and mined for
misconfigurations, such as route import policy, route export policy, packet filter,
service, authentication scheme, VLAN definition, and so on.

3.1.2 Attribute Selection

An instance type is represented by a list of attributes. Not all attributes are
important and suitable for data mining. Some attributes do not contribute
to the operation of a network and should not be included (e.g., description
strings). Other attributes are tweaked periodically for testing purposes or on a
case-by-case basis and are not conducive to association.

We select attributes for each of the three instance types so that only rele-
vant information is retained. User account is identified by the (router name,
user name) pair and is also characterized by the attributes password, assigned
privilege level and authentication method. BGP session is identified by the
(router name, neighbor router) pair. We select the following attributes which
characterize a BGP session at a high-level: the AS number of the neighbor
router, incoming routing policies, outgoing routing policies and authentication
scheme. For the interface instance type, there are a myriad of configuration
options associated with it. We avoid attributes that are functionally indepen-
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dent thus not conducive to data mining. We select an interface’s IP address and
whether it serves as a loopback.

3.1.3 Attribute Abstraction

To remove noise that might affect association mining, we further process the
selected attributes as follows:

• Boolean. If an attribute is expected to have different values in different
instances, it is not useful to compare the values themselves, but rather if
the attribute exists. If we apply data mining on the attribute as is and
compare the values directly, there would be few or no common patterns
among them. Thus, in this case, we change the attribute so it takes on
boolean values. For example, the value of the password attribute in the
account instance type is not as important as the existence of an explicit,
non-default password.

• Group. If an attribute has values that belong to groups and the values
themselves differ in different instances, we convert the attribute so it takes
on the group names as its values. The reasoning is the same as above.
For example, instead of storing the actual IP addresses of the different
interfaces, the IP addresses are classified as private or public. Similarly,
the AS number is not employed alone but used to derive the type of BGP
session (i.e., internal or external).

3.1.4 Data Cleaning

Raw configuration files or command lines are not conducive to data mining,
especially when mining across a network with many routers. Each router vendor
has its independent configuration language, e.g. Cisco’s IOS vs Juniper JUNOS,
that can be vastly different from others. An intermediate representation is
necessary to compare configurations from different vendors, which may bear no
resemblance syntactically but are semantically equivalent. To illustrate, IOS
relies on privilege levels (0-15) to define a user’s rights whereas JUNOS uses
the concept of classes (superuser, operator, etc). An IOS’s privilege level 15
can be considered comparable to JUNOS’s “superuser” class. Sometimes an
intermediate representation cannot save the day. Vendors can implement a
feature in different ways and they cannot be reconciled across vendors. For
example, there seems to be no equivalent of IOS’s privilege level 6 in JUNOS. We
have implemented parsers and defined appropriate intermediate representations
for the three chosen instance types.

There can also be various ways to implement the same functionality. For
example, in IOS, a routing prefix can be filtered on a BGP session either directly
through applying a prefix-list, or by using prefix-list in a route-map and
applying the route-map on the BGP session. We can clean the data such that
attributes that define the same functionality are grouped into one attribute.
Using the previous example, the attributes “incoming prefix-list” and “incom-
ing route-map” can be subsumed into “incoming policies” as they both specify
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Instance Type Attribute Value
Account user name string

password bool
privilege int

BGP session type {internal,external}
MD5 bool

incoming policies bool
outgoing policies bool

AS number int
Interface loopback bool

IP addr bool
IP addr type {private,public}

Table 1: Summary of preprocessing outcome, which serves as input to associa-
tion mining algorithm.

routing policies.

The results of the preprocessing for each of the three instance types are sum-
marized in Table 1. They serve as input to the association mining algorithm,
which is described next.

3.2 Association Rules Mining

We give a brief overview of association rules mining; interested readers can refer
to [6] for details. At a high level, association rules mining examines the sta-
tistical properties of correlations present in a large data set. In the traditional
data mining context, it is used to classify and predict an attribute or combina-
tion of attributes. The prediction is called a rule. Let a, b, c, . . . be attributes.
Association mining searches for rules ((a = ai ∧ b = bj ∧ . . .) → m = mk),
in which any combination of unique attributes can be on the left-hand side.
In other words, a rule takes the form “if X then Y ”, or X → Y , where the
left-hand side represents the “condition” and the right-hand side the “conse-
quent”. The pattern (a = ai ∧ b = bj ∧ . . .) is also known as an itemset –
(a = ai) is a 1-item itemset, (a = ai ∧ b = bj) a 2-item itemset, and so on.
Given an itemset X , its support, S(X), is defined as the number of instances
that satisfy the condition X . Given X → Y , its confidence, C(X → Y ) is cal-
culated as the S(X ∧ Y )/S(X). We illustrate association mining using Table
2: S(a = a1) = 3, S(a = a2) = 2, S(a = a1 ∧ b = b1 ∧ c = c1) = 2;
C(a = a1 → b = b1) = 3

3 = 1, C(a = a1 → c = c1) = 2
3 = 0.67, and

C((a = a1 ∧ b = b1) → c = c1) = 2
3 = 0.67.

In our context, rules with high confidence are considered reflections of local
network policies. Instances that deviate from these rules are identified as po-
tential misconfigurations because they do not comply with the inferred policies.
We believe association mining is well suited for detecting anomalies in router
configurations because network policies usually present the following properties:

• Network policies can sometimes be written as correlations, if not causal
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Instance ID a b c . . .
1 a1 b1 c1 . . .
2 a1 b1 c1 . . .
3 a1 b1 c2 . . .
4 a2 b2 c1 . . .
5 a2 b2 c2 . . .

Table 2: Illustration of association rules mining.

relations. For example, the policy “BGP sessions with external ASes must
be protected” can be expressed in the rule (eBGP = 1 → MD5 = 1).

• To be effective, network policies are usually applied on most or all objects
of the same category across a network. For example, ingress filtering to
prevent spoofed packets should be applied on all border routers, not just
one, and this policy can be as (external interface = 1 → bogonfilter = 1).

• Deviations from local network policies can either be misconfigurations,
non-conforming valid configurations or “hacks”, all of which should be
audited periodically.

In Minerals, the generation of association rules and detection of violations
from those rules consist of four steps:

Step 1: Itemset generation. For each instance type, this step generates all
possible combinations of itemsets, e.g. all 1-item itemsets, 2-item itemsets, etc,
with the restriction that the support is over the threshold min supp. The de-
fault min supp is 10. A number of algorithms have been proposed by the data
mining research community to compute itemsets efficiently.

Step 2: Inference of local policies. The goal of this step is to generate
association rules. Minerals filters out rules with confidence values lower than
the threshold min conf as we want to find rules that are the most pertinent and
more likely to be reflections of local policies. The default min conf is 0.9. This
step can also apply domain-specific knowledge to eliminate irrelevant rules thus
reduce the false alarm rate: if common sense says attribute a cannot imply or be
correlated with b, we eliminate all rules of the form . . . ∧ (a = ∗) ∧ . . . → b = ∗.
Even though this only needs to be done once and can be henceforth remem-
bered by the Minerals algorithm, it nevertheless can be labor intensive. We
show in our evaluation that without applying this rule filtering we are still able
to achieve decent detection rates.

Step 3: Violation detection. Since we are focusing on misconfigurations,
we do not consider rules with confidence equal to 1. Violations are instances
that do not comply to a rule X → Y with min conf < C(X → Y ) < 1.
The attribute that might be misconfigured is in Y – the rule has the expected,
common value, whereas the violation has a potentially wrong value. We also
eliminate rules that generate more than max violations number of violations.
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The reason behind using max violations is the number of misconfigurations
should be small in a network. If a rule results in a large number of violations,
the violations are most probably not misconfigurations, and the rule unlikely to
reflect a local policy. max violations can be proportional to total number of
instances of the instance type in question. We use a simple default value of 10.

Finally, we can remove violations of a rule ((a = ai∧. . .∧b = bj) → m = mk)
if the violations comply with a longer rule ((a = ai ∧ . . . ∧ b = bj ∧ . . .) → m �=
mk). For example, instances that violate a rule (eBGP = 1 → MD5 = 1) may
conform to another rule (eBGP = 1 ∧ AS number = 9 → MD5 = 0) with an
additional attribute, AS number. This can imply that the local rules of AS 9
prefer not to use MD5 passwords. By eliminating such violations, the tradeoff
is we can reduce the number of false alarms but might miss some real errors.

Step 4: Filter and report. The last step reports the identified violations
in decreasing order of confidence. Since multiple rules can point to the same
misconfigured instance, we only report the instance once and indicate the rule
with the smallest item set size on the left hand side.

3.3 Time Series Analysis

The time dimension can be utilized to train a data mining algorithm in order
to increase its accuracy. We can apply Minerals periodically or every time a
router’s configuration is modified. Setting the thresholds in Minerals is a trade-
off between number of false alarms and number of detected errors. One can
slowly increase min supp and min conf and slowly decrease max violations
over time, so that the mining algorithm can be trained with more data in the
beginning.

After each run of Minerals, the network operator can provide direct feedback
on whether and how a reported violation is a false alarm: the operator can
indicate that the mined rule is not a reflection of his network policy, or the
violation is an exception to a valid policy. This knowledge can then be fed back
into subsequent runs of Minerals to filter rules and violations. Alternatively, to
ease burden from the operator, Minerals can learn indirectly. Violations that
are reported but not corrected over time are assumed to be exceptions.

Also, analysis of the evolution of a network’s configuration over time can
reveal additional misconfigurations not detected by snapshot analysis. We can
data mine successive snapshots of the configuration to expose patterns of change.
We took monthly snapshots of the CalREN-DC and CalREN-HPR configura-
tions from June 2004 through March 2006. We analyzed the evolution of user
accounts on the routers which revealed some interesting patterns. A handful of
accounts are rotated regularly: a username would be added to almost all routers
at about the same time, then deleted some time later, and replaced by another
username. This turns out to be backdoor accounts that are created to ensure
management access during times of failure, DoS or planned maintenance events.
Data mining can be applied to discover outliers in this pattern. E.g. routers
that are misconfigured during rotation which either have multiple backdoor ac-
counts, or new routers that are overlooked and have no backdoor accounts. We
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Network name Num. of routers Num. of LOC
total (IOS,JUNOS) (min,max)

CalREN-DC 44 (37,7) (230,3060)
CalREN-HPR 6 (6,0) (455,3638)
UC Berkeley 67 (65,2) (92,1688)

Table 3: Summary of networks used in evaluation. CENIC is the Califor-
nia state-wide network service provider for education and research institutions:
CalREN-DC is a backbone network serving education users, and CalREN-HPR
is a high-performance research network providing advanced services for large
application users. LOC stands for lines of commands.

also analyzed the use of private IP addresses over time, and observed that many
interfaces were starting to use them at about the same time, and released some
time later. Private IP addresses are sometimes used for testing. If some inter-
faces with private IP addresses are not removed while the rest are, after testing
is finished, a time series data mining algorithm can pick out these anomalies.

4 Evaluation and Results

We implemented and evaluated Minerals on the configuration files from three
networks. In this paper, for each of the three network, we analyzed a particular
snapshot of its configuration files, taken between January and March 2006. In-
formation about the networks is summarized in Table 3. We used default values
of min supp, min conf and max violations. We did not pre-filter any associa-
tion rules to allow the algorithm to find all possible policies and violations.

Our results show that Minerals is applicable to networks of various sizes.
Although CalREN-HPR has only 6 routers, Minerals still detected several mis-
configurations within it. Minerals detected misconfigurations in each network,
and these configurations were confirmed by the operators. While some of the
errors can be classified as benign, others were more severe and were able to ex-
pose the entire network to attackers. Many of the errors Minerals detected are
violations of local network policies, which approaches based on universal rules
cannot detect.

Table 4 summarizes the results we obtained on the three instance types: ac-
count, BGP and interface. We also included missing definition errors found by
our parser. These are definitions that are referred to but not defined anywhere
in a router’s configurations. Rule-based approaches can spot these errors as
well. We divide violations flagged by Minerals into three categories. A con-
firmed error is confirmed by the network operator as an error, and usually fixed
afterward. A false alarm is a non-conforming but valid configuration. A ”Needs
investigation” is when the reason for a particular flagged configuration was not
immediately clear to the network operator and required further investigation.

Unused interfaces. In one network, 95% of the interfaces had public IP
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Network name Definition Account BGP Interface
CalREN-DC (2,0,0) (9,6,1) (2,0,0) (4,0,0)

CalREN-HPR (6,0,0) (0,0,0) (3,2,0) (6,0,0)
UC Berkeley (1,0,0) (0,0,0) (0,4,1) (0,0,0)

Table 4: Summary of quantitative results of Minerals. The numbers in paren-
thesis represent (confirmed error, false alarm, needs investigation).

addresses, and Minerals highlighted interfaces using private IP addresses as vi-
olations. According to the operator, private IP addresses are used to bootstrap
routers at the beginning of deployment, and should be deleted afterwards. These
confirmed misconfigurations were corrected by the operator. It is difficult for
rule-based approaches that rely on universal rules to detect such errors, because
the presence of private IP addresses does not automatically imply a misconfig-
uration. Some networks use private IP addresses permanently, e.g., for network
management devices. The advantage of data mining is it considers the statis-
tical properties of a network, and in this case, reveals the outlier interfaces as
errors.

Missing passwords. In one network, Minerals found accounts without pass-
words, which was confirmed by the operator as errors. Some of these accounts
had super-user privileges, which presented a security breach. Universal rules
might not be able to capture different account policies in different networks.
Some networks create accounts without passwords to allow access from external
parties, e.g. to view routing tables. A network can assign super-user privilege
to only one user, while permitting normal privilege for the rest of the users.
Minerals can find these patterns.

Omitted export policies. In one network, eBGP sessions that applied import
policies also had export policies, except two sessions. The operator confirmed
that the two sessions were errors and described them as “very concerning”. The
absence of export policies can result in a list of undesired effects, such as unin-
tentionally providing transit service.

Lacking MD5 security. In one network, Mineral detected three eBGP ses-
sions were missing MD5 security, and they were confirmed as oversight errors by
the operator. The lack of MD5 security on a eBGP session renders the router
vulnerable to the TCP RESET attack.

False alarms and others. Minerals reported 12 violations that were false
alarms – they were non-conforming but valid configurations. Two eBGP did
not have MD5 security because the neighbor AS preferred not to turn it on.
Four eBGP sessions did not present any export policy. An interesting set of
false alarms involves 2 usernames ux, uy on 3 routers ra, rb, rc, i.e. 6 accounts
(ux, ra), (uy, ra), (ux, ra), (uy, rb), (ux, rc), (uy, rc). Minerals found a local rule
that says all accounts on the same router should have the same privilege level.
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The 6 accounts were special case configurations for 2 neighbor ASes and were
valid on the 3 routers.

5 Discussions: Challenges and Directions

We are exploring adding attributes other than the ones listed in Table 1 in Min-
erals. In particular, besides IP address and loopback, a variety of options can be
enabled (or disabled) on an interface. A routing protocol can be associated with
an interface as well. We have started to apply Minerals on interfaces with these
additional attributes, and found a number of confirmed errors. In one network,
a majority of interfaces had proxy-ARP disabled to prevent issues where large
ARP caches can develop in poorly connected devices. Minerals found the 39
interfaces which violate this rule. Another confirmed misconfiguration Minerals
found is two eBGP interfaces with Cisco Discovery Protocol (CDP) enabled
when the common pattern in that network is to have CDP disabled. CDP can
expose details about a network to external parties which is often undesirable.
However, there are a number of challenges when using additional attributes in
Minerals. Some of the attributes may take actions that differ from their speci-
fied values. As an example, IP Redirect is ineffective on loopbacks since packets
do not arrive on these interfaces. Some of these attributes can be function-
ally independent, thus not conducive to data mining. We are investigating the
meaning behind various interface options, and how networks tend to configure
them. We believe this domain specific knowledge can be applied to Minerals to
address these issues.

We are also encountering a number of challenges with respect to configura-
tion commands in this project. First, it was at times difficult to equate features
supported by IOS and JUNOS. Second, the default values for some attributes
are different between different versions of router operating systems. For ex-
ample, in older versions of IOS, “directed broadcast” was enabled by default,
whereas in more recent versions it is disabled by default. Thus, the absence of
“[no] ip directed broadcast” command has entirely different meanings depending
on the IOS version. This disparity complicates the preprocessing of input data.
We believe a new abstraction for network configuration management would be
ideal, one that remove these details and allow network operators to work at
a higher level and across different vendors. Despite these obstacles, Minerals
was successful in detecting a number of errors that would have otherwise flown
under the radar of other techniques.
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