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Abstract

We present a new, non-parametric forecasting method for data where con-

tinuous values are observed discretely in space and time. Our method, light-

cone reconstruction of states (LICORS), uses physical principles to identify

predictive states which are local properties of the system, both in space and
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time. LICORS discovers the number of predictive states and their predic-

tive distributions automatically, and consistently, under mild assumptions on

the data source. We provide an algorithm to implement our method, along

with a cross-validation scheme to pick control settings. Simulations show that

CV-tuned LICORS outperforms standard methods in forecasting challenging

spatio-temporal dynamics. Our work provides applied researchers with a new,

highly automatic method to analyze and forecast spatio-temporal data.

Keywords: non-parametric prediction, dynamical system, forecasting, predic-

tive state reconstruction, spatio-temporal data.

1 Introduction

Many important scientific and data-analytic problems involve fields which vary over

both space and time, e.g., data from functional magnetic resonance imaging, mete-

orological observations, or experimental studies in physics and chemistry. An out-

standing objective in studying such data is prediction, where we want to describe

the field in the future.

Spatio-temporal data being increasingly easy to acquire, manipulate and visu-

alize, statisticians have developed corresponding methods for statistical inference,

reviewed in works like Finkenstädt et al. (2007); Cressie and Wikle (2011). The

usual tools are a combination of ways of describing the distribution of the random

field (e.g., various dependency measures), and stochastic modeling, focusing primar-

ily on parametric inference, and secondarily on parameter-conditional predictions.

While these approaches are valuable, there is a complementary role for direct,
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non-parametric prediction of spatio-temporal data, just as with time series (Bosq,

1998; Fan and Yao, 2003). Our aim here is to blend modern methods of non-

parametric prediction with insights from nonlinear physics on the organization of

spatial dynamics, yielding predictors of spatio-temporal evolution that are compu-

tationally efficient and make minimal assumptions on the data source, but are still

accurate and even interpretable.

The idea behind our approach is simply that it takes time for influences to

propagate across space, so we can constrain the search for predictors to a spatio-

temporally local neighborhood at each point. We combine this with a novel form

of non-parametric smoothing, which infers the prediction (regression or conditional

probability) function by averaging together similar observations, where “similarity”

is defined in terms of predictive consequences, effectively replacing the original ge-

ometry of the predictor variables with a new one, optimized for forecasting. The

combination of these two tools lets us discover underlying structures, as well make

fast and accurate predictions.

Section 2 formally defines our prediction problem and introduces our non-parametric

localized approach. Section 3 gives the statistical methods to estimate these optimal

predictors from discretely-observed continuous-valued fields. Section 4 shows, under

weak conditions on the data-generating process, that our method consistently esti-

mates the predictive distributions. Section 5 proposes a cross-validation scheme to

choose our control settings, and compares our predictive accuracy to standard time

series techniques. Finally, Section 6 summarizes this new methodology and discusses

future work. Proofs and implementation details can be found in the Supplementary
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Material.

2 Local Prediction of Spatio-temporal Fields

2.1 Setting and Notation; Light Cones

We observe a random field (X (r, t))r∈S,t∈T in discrete space and time. The field takes

values in a set X , which may be discrete or continuous. Space S is a regular lattice,

equipped with norm ‖r‖. Time T is taken to be the positive integers up to T .

Suppose that disturbances or influences in the system have a maximum speed of

propagation, c. Then the only events which could affect what happens at a given

(r, t) are those where s ≤ t and ‖r− u‖ ≤ c(t− s). Since this set grows as s recedes

into the past, we call this the past light cone (PLC) of (r, t). The future light

cone (FLC) are all events which could be affected by the present moment (r, t); it

thus consists of all those (u, s), where s > t and ‖r − u‖ ≤ c(s − t). Light cones

look like triangles in (1 + 1)D fields, and in (2 + 1)D, pyramids (Fig. 1). Denote the

configuration in the past cone of (r, t) by L− (r, t):

L− (r, t) = {X (u, s) | s ≤ t, ‖r− u‖ ≤ c(t− s)} (1)

L+ (r, t) is, similarly, the configuration in the future cone.

The spatio-temporal prediction problem is thus: use the configuration of the past

cone, L− (r, t), to forecast the configuration of the future cone, L+ (r, t). Light-cone

prediction compromises between capturing global patterns and needing only local
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Figure 1: Past (red) and future (blue) light cones in a (1 + 1)D (a) and (2 + 1)D
(b) system. Here c, the velocity of signal propagation, is set to 1. The past cone is
truncated at a horizon of hp = 3 steps, while the future cone’s horizon is only hf = 2.
Whether the present (green) is included in the past or the future cone is a matter of
convention; see Section 5.

information. We will construct optimal predictors for light cones presently. Light

cones can be defined for spatial extended patches of points. (When the “patch”

becomes the whole spatial lattice, we are back to global prediction.) This leads to

a parallel theory of prediction, but it turns out that the predictive state of a patch

is determined by the predictive states of its points (Shalizi, 2003, §3.3, Lemma 2

and Theorem 3), so we lose no information, and gain tractability, by not considering

cones for patches.

Computationally, we need to truncate the cones at a finite number of time steps

— we will call these the past horizon hp of L−, and likewise the future horizon hf

of L+. Doing this reduces L+ and L− to finite-dimensional random vectors. (For

instance, in Fig. 1, with hp = 3 and c = 1, `− (r, t) has 15 degrees of freedom.)
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The horizons are control settings, and may be tuned through (for example) cross-

validation (§5.2). Similarly, when the maximum speed of propagation c is not given

from background knowledge, it is also a control setting.

2.2 Predictive States

To predict the future L+ (r, t) from a particular past configuration, say `−, requires

knowing the conditional distribution

P
(
L+ (r, t) | L− (r, t) = `−

)
(2)

for all `−. (Subsequently (r, t) may be omitted for readability.) Since treating this

conditional distribution as an arbitrary function of `− is not feasible statistically or

computationally, we try to find a sufficient statistic η of past configurations that

keeps the predictive information:

P
(
L+ (r, t) | H (r, t) = η(`−)

)
= P

(
L+ (r, t) | L− (r, t) = `−

)
. (3)

There are usually many sufficient statistics η, η′, . . .. When η and η′ are both suf-

ficient, but η(`−) = f(η′(`−)) for some f , then η is a smaller, more compressed,

summary of the data than η′, and so the former is preferred by Occam’s Razor. The

minimal sufficient statistic ε compresses the data as much as can be done without

losing any predictive power, retaining only what is needed for optimal predictions.

We now construct the minimal sufficient statistic, following Shalizi (2003), to

which we refer for some mathematical details.
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Definition 2.1 (Equivalent configurations). The past configurations `−i at (r, t) and

`−j at (u, s) are predictively equivalent, (`−i , (r, t)) ∼ (`−j , u (s, )), if they predict the

same future with equal probabilities, i.e. if

P
(
L+ (r, t) | L− (r, t) = `−i

)
= P

(
L+ (u, s) | L− (u, s) = `−j

)
(4)

Let [(`−, (r, t))] be the equivalence class of (`−, (r, t)), i.e., the set of all past

configurations and coordinates that predict the same future as `− does at (r, t). Let

ε(`−, (r, t)) ≡
[
`−
]

(5)

be the function mapping each (`−, (r, t)) to its predictive equivalence class. The

values ε can take are the predictive states; they are the minimal statistics which are

sufficient for predicting L+ from L− (Shalizi, 2003).

Since each predictive state has a unique predictive distribution and vice versa.

We will thus slightly abuse notation to denote by E both the set of equivalence

classes and the set of predictive distributions, whose elements we will write εj. We

will further abuse notation by writing the mapping from past cone configurations to

predictive distributions as ε(·), leading to the measure-valued random field

S (r, t) := ε
(
L− (r, t)

)
. (6)

One can show (Shalizi, 2003) that S (r, t) is Markov even ifX (r, t) is not. However, X

is not an ordinary hidden Markov random field, since there is an unusual deterministic
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dependence between transitions in S and the realization of X, analogous to that of

a chain with complete connections (Fernández and Maillard, 2005).

To be able to draw useful inferences from a single realization of the process, we

must assume some form of homogeneity or invariance of the conditional distributions.

Assumption 2.2 (Conditional invariance). The predictive distribution of a PLC

configuration `− does not change over time or space. That is, for all r, t, all u, s,

and all past light-cone configurations `−,

(`−, (r, t)) ∼ (`−, (u, s)) (7)

We may thus regard ∼ as an equivalence relation among PLC configurations, and ε

as a function over `− alone.

This is just conditional invariance, like the conditional stationarity for time series

used in Caires and Ferreira (2005). It would be implied by the field being a Markov

random field with homogeneous transitions, or of course by full stationarity and

spatial invariance, but it is weaker. Assumption 2.2 lets us talk about the predictive

distribution of a PLC configuration, regardless of when or where it was observed,

and to draw inferences by pooling such observations. If this assumption fails, we

could in principle still learn a different set of predictive states for each moment of

time and/or each point of space (as in Shalizi (2003)), but this would need data from

multiple realizations of the same process.
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3 Estimating Predictive States

We extend the work of Shalizi (2003); Shalizi et al. (2004) to continuous-valued fields,

introducing statistical methods to estimate and predict non-linear dynamics accu-

rately and efficiently, while still obtaining insight into the spatio-temporal structure.

Algorithmic details are given in the Supplementary Material.

Assume we have T consecutive measurements of the field X (r, t), observed over

the lattice S, with N = |S| · T space-time coordinates (r, t) in all. Each one of

these N point-instants has a past and a future light-cone configuration, `− (r, t) and

`+ (r, t), represented as, respectively, np and nf dimensional vectors. Since predictive

states are sets of PLC configurations with the same predictive distribution, we need

to test this sameness, based on conditional samples {`+ | `−i }Ni=1 from the observed

field. We will apply non-parametric two-sample tests for H0 : P
(
L+ | L− = `ji

)
=

P
(
L+ | L− = `−i

)
pairwise for all i and j. Because there are typically a great many

past light cones (one for each point-instant), and light-cone configurations are them-

selves high-dimensional objects, we generally must do this step-wise.

3.1 Partitioning PLC Configurations: Similar Pasts Have

Similar Futures

It is often reasonable to assume that the mapping from the past to predictive distri-

butions is regular, so that if two historical configurations are close (in some suitable

metric), then their predictive distributions are also close. This lets us avoid having

to do some pairwise tests, as their results can be deduced from others.
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Assumption 3.1 (Continuous histories). For every ρ > 0, there exists a δ > 0 such

that

‖`−i − `−j ‖ < δ ⇒ DKL
(
P
(
L+ | `−i

)
|| P

(
L+ | `−j

))
< ρ, (8)

where DKL (p || q) is the Kullback-Leibler divergence between distributions p and q

(Kullback, 1968).

Assumption 3.1 requires that sufficiently small changes (< δ) in the local past

make only negligible (< ρ) changes to the distribution of local future outcomes. Sta-

tistically, such smoothness-in-distribution lets us pool observations from highly sim-

ilar PLC configurations, enhancing efficiency; physically, it reflects the smoothness

of reasonable dynamical mechanisms. Chaotic systems, where the exact trajectory

depends sensitively on initial conditions, do not present difficulties, since Assumption

3.1 is about the conditional distribution of the future given partial information on

the past, and chaos has long been recognized as a way to stabilize such distributions,

forming the basis for prediction and control of chaos (Kantz and Schreiber, 2004).

We use Assumption 3.1 to justify an initial “pre-clustering” of the PLC configu-

ration space, greatly reducing computational cost with little damage to predictions.

We first divide the PLC configuration space using fast clustering algorithms into

K � N clusters, and then test equality of distributions between clusters (O(K2)),

rather than light cones (O(N2)).

When N is small enough, we can skip this initial pre-clustering. To simplify

exposition, we treat this as assigning each distinct past cone to its own cluster.

10



3.2 Partitioning Clusters into Predictive States

Each cluster Pk contains a set of similar PLC configurations, and also defines a

sample of conditional FLCs, Fk(δ) = {`+j | `−j ∈ Pk} ∈ RNk×nf , k = 1, . . . , K. Since

all `−j ∈ Pk have very similar distribution, Fk ∼ Q is an approximate sample from

the predictive distribution P (L+ (r, t) | `− ∈ Pk). Lemma 4.7, below, shows that for

sufficiently small δ, Fki(δ) is an exact sample of p(ε(Pki)). Thus, to simplify the

exposition, we ignore the ρ difference in this section.

Thus, finding equivalent clusters reduces to testing hypotheses of the form H0 :

pki = pkj based on the two samples Fki(δ) and Fkj(δ). For hf = 0 and c = 1,

FLCs are one-dimensional and we can use a Kolmogorov-Smirnov test (or any other

two-sample univariate test). In general, however, Fk are samples from a very high-

dimensional distribution, and we use non-parametric, multivariate, two-sample tests

(see e.g. Rosenbaum, 2005; Rizzo and Székely, 2010; Gretton et al., 2007). Any test

satisfying Assumption 4.11 could be used.

To estimate the predictive states from an initial partitioning of PLC configura-

tions, we iterate through the list of configurations, recursively testing equality of

distributions. To initialize the algorithm, create the first predictive state ε1, contain-

ing the first configuration `−1 . Then take `−2 and test if its distribution is equal to that

of ε1. If it is (at the level α), then put `−2 in ε1; otherwise generate a new predictive

state ε2 with `−2 . Then test the next configuration against all previously established

predictive states and proceed as before. This continues until all configurations have

been assigned to a predictive state.

The predictive distribution of each predictive state can be found by applying any
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consistent non-parametric density estimator to the future cone samples belonging

to that state. If we only want point forecasts, we can skip estimating the whole

predictive distribution and just get (e.g.) the mean of the samples.

4 Consistency

LICORS consistently recovers the correct assignment of past cone configurations to

predictive states, and the predictive distributions, under weak assumptions on the

data-generating process. These allow for the number of predictive states to grow

slowly with the sample size, so that we have non-parametric consistency. We give all

assumptions and lemmas in the main text; proofs are in the Supplementary Material.

4.1 Assumptions

Let N = |S×T| be the total number of space-time points at which we observe both

the past and future light cone. We presume that N → ∞, without caring whether

|S| → ∞, |T| → ∞, or both.

Assumption 4.1 (Slowly growing number of predictive states). The number of pre-

dictive states, |E| = m(N) = o
(
N
)
, and always ≤ N .

Assumption 4.1 only guarantees that at least one of the predictive states grows

in size. To bound testing error probabilities, the number of light cones seen in every

state must grow as N grows.
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Assumption 4.2 (Increasing number of light cones in each state). The number of

light cones in each state, Nj := |εj|, grows with N : for all εj ∈ E,

lim
N→∞

Nj(N) =∞ (9)

Let Nmin = minj Nj be the number of samples in the smallest predictive state;

thus also Nmin → ∞ for N → ∞. Assumption 4.2 means that the system re-visits

each predictive state as it evolves, i.e., all states are recurrent. This lets us learn the

predictive distribution of each state, from a growing sample of its behavior.

Assumption 4.3 (Bounded conditional distributions). All predictive distributions

εj ∈ E have densities with respect to a common reference measure ν, and 0 < ι <

dεj/dν < κ <∞, for some constants ι and κ.

This merely technical assumption guarantees bounded likelihood ratios.

Assumption 4.4 (Distinguishable predictive states). The KL divergence between

states is bounded from below: ∀i 6= j,

0 < dmin ≤ DKL (εi || εj) =: di,j (10)

We do not need di,j < ∞. (In fact, DKL (εi || εj) = ∞ is helpful.) (10) is

automatically satisfied for any fixed number of states. For an increasing state space,

m = m(N), assume

inf
i,j∈m(N)

di,j = dmin > 0 for N →∞. (11)
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Lemma 4.5 (Conditionally independent FLCs). If the cones L+ (r, t) and L+ (u, s)

do not overlap, then

L+ (r, t) ⊥⊥ L+ (u, s) | S (r, t) , S (u, s) . (12)

In particular,

P
(
L+ (r, t) , L+ (u, s) | S (r, t) , S (u, s)

)
= P

(
L+ (r, t) | S (r, t)

)
P
(
L+ (u, s) | S (u, s)

)
.

(13)

Corollary 4.6. If hf = 0, then FLCs are conditionally independent given their

predictive state.

4.1.1 Getting samples from εi

We get a sample of FLCs from the predictive distribution of `i by first taking all

PLCs in a δ-neighborhood around `i,

Ii(δ) = {j | ‖`−i − `−j ‖ < δ}. (14)

For later use, we denote by Si(N, δ) = |Ii(δ)| the number of such light cones. By

Assumption 3.1, we get our sample from εi by collecting the corresponding future

cone configurations:

Fi(δ) = {`+j | j ∈ Ii(δ)}, (15)

Lemma 4.7. For sufficiently small δ > 0, all past configurations in Ii(δ) are predic-
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tively equivalent: ∀j, k ∈ Ii(δ), `−j ∼ `−k . Consequently, all `+j , j ∈ Ii(δ), are drawn

from the same distribution ε(`−i ).

For finite N , it may not be possible in practice to find and use a sufficiently small

δ. With pre-clustering, for instance, some of the clusters may have diameters greater

than the δ which guarantees equality of distribution. Then the samples Fi(δ) are

actually from multiple states. One could circumvent this by using more clusters,

which generally shrinks cluster diameters, but this would also reduce the number

of samples per neighborhood, increasing the error rate of our two-sample tests. In

practice, then, one must trade off decreasing δ to discover all predictive states and

keeping a low testing error.

Corollary 4.8. For sufficiently small δ > 0, and non-overlapping FLCs, all the

future configurations in Fi(δ) are IID samples from ε(`−i ).

In general, for hf > 0 the FLCs in Fi(δ) can be overlapping and the conditional

likelihood does not factorize. Yet, without loss of generality, we can consider only

non-overlapping FLCs. This is because we can explicitly exclude overlapping FLCs

from Fi(δ), at the cost of reducing the sample size to S̃i(N, δ) ≤ Si(N, δ). For each

`i, the maximum number of FLCs which we must thereby exclude, say w, is fixed

geometrically, by c, hf and the dimension of the space S, and does not grow with N .

The exclusion thus is asymptotically irrelevant, since Si(N,δ)
w
≤ S̃i(N, δ) ≤ Si(N, δ).

Further, note that, at least formally, it’s enough to analyze the univariate, zero-

horizon FLC distributions, which rules out overlaps. This is because longer-horizon

FLC distributions must be consistent with the one-step ahead distributions and
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the transition relations of the underlying predictive states. Thus we could get the

nf -dimensional FLC distribution by iteratively combining the univariate FLC distri-

butions and the predictive state transitions, i.e., by chaining together one-step-ahead

predictions, as in Shalizi and Crutchfield (2001, Corollary 2).

Assumption 4.9 (Number of samples from each cone). For each fixed δ > 0, and

each past light cone `i, Si(N, δ) −−−→
N→∞

∞.

For each δ, Si(N, δ) is a random variable, and to establish consistency we need

some regularity conditions on how Si grows with N . Let Smin(N, δ) = minj Sj(N, δ)

be the smallest number of samples per δ-neighborhood for each N and δ.

Assumption 4.10. For some c̃ > 0,

N ·m(N) · Ee−c̃d2minSmin(N,δ) −−−→
N→∞

0 . (16)

Since EetSmin(N,δ) is the moment generating function of Smin, this amounts to

asserting that the number of samples concentrates around its mean while growing,

ruling out pathological cases where Si(N, δ) grows to infinity, but concentrates around

small values.

4.2 Unknown Predictive States: Two-sample Problem

With a finite number N of observations, recovering the states is the same as deter-

mining which past cone configurations are predictively equivalent. We represent this

with an N ×N binary matrix A, where Aij = 1 if and only if `i ∼ `j. LICORS gives

16



us an estimate of this matrix, Â, and we will say that the predictive states can be

recovered consistently when

P
(
Â 6= A

)
−−−→
N→∞

0 . (17)

Since the predictive distributions are unknown, we use non-parametric two-sample

tests to determine whether two past cone configurations are predictively equivalent.

While simulations can always be used to approximate the power of particular tests

against particular alternatives, there do not (yet) seem to be any general expressions

for the power of such tests, analogous to the bounds on likelihood tests in terms

of KL divergence (Kullback, 1968). Nonetheless, we expect that for N → ∞, the

probability of error approaches zero, as long as the true distributions are far enough

apart. We thus make the following assumption.

Assumption 4.11. Suppose we have n samples from distribution p, and n′ samples

from distribution q, all IID. Then there exist a positive constants dn,n′ tending to 0

as n, n′ → ∞, and a sequence of tests Tn,n′ of H0 : p = q vs. H1 : p 6= q with size

α = o
(
min(n, n′)−2

)
, and type II error rate β(α, n, n′) = o

(
min(n, n′)−2

)
so long as

p and q are mutually absolutely continuous and DKL (p || q) ≥ dn,n′.

Note that if the number of predictive states is constant in N , we can weaken the

assumption to just a sequence of tests whose type I and type II error probabilities

both go to zero supra-quadratically when DKL (p || q) ≥ dmin.

Theorem 4.12 (Consistent predictive state estimation). Under Assumptions 2.2,

17



3.1, 4.1, 4.2, 4.3, 4.4, 4.9, 4.10, and 4.11,

P
(
Â 6= A

)
−−−→
N→∞

0. (18)

5 Simulations

To evaluate the non-asymptotic predictive ability of LICORS, and to compare it to

more conventional methods, we use the following simulation, designed to be chal-

lenging, but not impossible. X (r, t) is a continuous-valued field in (1 + 1)D, with a

discrete latent state d (r, t). We use “wrap-around” boundary conditions, so sites 0

and |S| − 1 are adjacent, and the one spatial dimension is a torus. The observable

field X (r, t) is conditionally Gaussian,

X (r, t) | d (r, t) ∼


N (d (r, t) , 1), if |d (r, t) | < 4,

N (0, 1), otherwise,

(19)

with initial conditions X (·, 1) = X (·, 2) = 0. The state space d (r, t) evolves with

the observable field,

d (r, t) =

[∑2
i=−2X (r + i mod |S|, t− 2)

5
−
∑i

i=−1X (r + i mod |S|, t− 1)

3

]
, (20)

where [x] is the closest integer to x. In words, Eq. (20) says that the latent state

d (r, t) is the rounded difference between the sample average of the 5 nearest sites at

t− 2 and the sample average of the 3 nearest sites at t− 1. Thus hp = 2 and c = 1.

If we include the present in the FLC, (19) gives hf = 0, making FLC dis-

tributions one-dimensional and letting us use the Kolmogorov-Smirnov test. As
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Figure 2: Simulation of (19)–(20): (a) state-space d (r, t), (b) observed field X (r, t).
Space (100 cells) runs vertically, time (200 steps, first 100 discarded for burn-in) runs
from left to right.
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Figure 3: Comparison of true and estimated predictive distributions. (a) true pre-
dictive state S (r, t), with points colored by conditional expectations; (b) LICORS
predictions, with states and distributions reconstructed using k = 50 nearest neigh-
bors (fixed) and hp = 2, α = 0.2 (chosen by cross-validation).

d (r, t) is integer-valued, a little calculation shows there are 7 predictive states,

which we may label with their conditional means as {ε−3, ε−2, . . . , ε2, ε3}. Thus

X (r, t) | εk ∼ N (k, 1).

Figure 2 shows one realization of (19)–(20). The latent states have clear spatial
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structures, which is obscured in the observed field. Figure 3a shows the true predic-

tive state space S (r, t) (expected value at each at each (r, t)); the LICORS estimate

Ŝ (r, t) is shown in Fig. 3b. LICORS not only accurately estimates S (r, t), but also

learns the prediction rule (19) from the observed field X (r, t).

5.1 Forecasting Competition: AR, VAR, and LICORS

A brute-force approach to spatio-temporal prediction would treat the whole spa-

tial configuration at any one time as a single high-dimensional vector, and then

use ordinary, parametric time-series methods such as vector auto-regressions (VAR)

(Lütkepohl, 2007), or non- or semi- non-parametric models (Bosq, 1998; Fan and

Yao, 2003). Such global approaches suffer under the curse of dimensionality: real

data sets may contain millions of space-time points, so fitting global models becomes

impractical, even with strong regularization (Bosq and Blanke, 2007). Moreover,

such global models will not be good representations of complex spatial dynamics.

On the other hand, space can be broken up into small patches (in the limit,

single points), and then one can fit standard time series models to each patch’s

low-dimensional time series. Such local strategies (partially) lift the curse of dimen-

sionality, and thus make VAR or non-parametric time-series prediction practical, but

creates the problem of selecting good sizes and shapes for these patches, and ignores

spatial dependence across patches.

To show how LICORS escapes this dilemma, we compare it to other forecasting

techniques in a simulation. Using 100 replications of (19) – (20), with n = 100 points

in space, and T = 200 steps in time, we compared LICORS, with and without pre-
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(b) Out-of-sample

Figure 4: MSEs for LICORS and parametric competitors on (19)–(20). LICORS
with pre-clustering used K = 200 clusters and varying past horizons; LICORS with-
out pre-clustering use k = 50 neighbors and hp = 2; both variants fixed α = 0.05.

clustering, to (a) the empirical time-average of each spatial point; (b) a separate, uni-

variate AR(p) model for each point; a (c) separate V AR(p) for each non-overlapping

spatial patch of 5 points; and the true conditional expectation function. (See §B.1

in the Supplemental Information for details of the competing methods.)

Figure 4 shows for each predictor the estimated mean squared error (MSE) for

the in-sample (Fig. 4a) as well as out-of-sample (Fig. 4b) one-step ahead prediction

error. Splitting up space while using standard methods appears not to help and

may even hurt. LICORS performs best among all methods, once hp ≥ 2. While

pre-clustering performs worse than direct estimation, it still predicts much better

than the other methods.

Overall, LICORS with hp = 2 gives the best forecasts, where α = 0.05 was set

in advance. At no point did we make an assumption about the number of predictive

states or the shape of the conditional distribution. Even though the true system
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is conditionally Gaussian, LICORS out-performed the parametric Gaussian models.

Thus we expect to do even better on non-Gaussian fields.

Even though we know the true light cone size in simulations, the “true” α can not

be obtained directly. It controls the number of estimated predictive states: larger α

implies less merging of clusters, and thus more number of predictive states; smaller

α leads to more merging and hence less states.

In practice, one does not know the true light cone size nor the true number of

states; they are rather control settings which affect the predictive performance. As

we can accurately measure predictive performance by out-of-sample MSE, we propose

a cross-validation (CV) procedure to tune hp and α.

5.2 Cross-validation to Choose Optimal Control Settings

A good method should learn the invariant predictive structures of the system, avoid-

ing over-fitting to the accidents of the observed sample. Ideally, the method should

estimate nearly the same predictive states from (almost) any two realizations of the

same system, while still being sensitive to differences between distinct systems.

Cross-validation is the classic way to handle this sensitivity-stability trade-off,

and we use a data-set splitting version of it here. We simply divide the data set at

its mid-point in time, use its earlier half to find predictive states, and evaluate the

states’ performance on the data’s later half; see Supplemental Figure 7. (Assumption

2.2, of conditional stationarity, is important here.) While quite basic, simulations

show that it does indeed find good control settings.

Using the same realizations of the model system as in the forecasting competition,
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Figure 5: Cross-validation for LICORS: MSE, using the CV-picked control settings,
on the first half of each realization (“in-sample”), on the second half (“future”), and
on all of an independent realization (“independent”).

we tried all combinations of hp ∈ {1, 2, 3} and α ∈ {0.3, 0.2, 0.15, 0.1, 0.05, 0.01, 0.001}.

We picked the control settings to do well on the continuation of the sample realiza-

tion, but since this is a simulation, we can also check that these settings perform well

on an independent realization of the same process. Figure 5 compares, for the selected

control settings, the in-sample MSE on the first half of each realization, the MSE on

the second half, and the MSE on all of a completely independent realization, for both

the direct and the pre-clustered versions of LICORS. (As before, direct estimation

does a bit better than pre-clustering.) There is little difference between the MSEs

on the continuation of the training data and on independent data, indicating little

over-fitting to accidents of particular sample paths. (See §B.2 in the supplemental

information for further details.) Notably, CV picked the optimal hp, namely 2, on

all 100 trials.

As expected, the smaller the value of α picked by CV, the more merging between
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clusters, and the smaller the number of states (see Supplemental Figure 8). Here,

the true number of states m = 7, but both pre-clustering and direct estimation give

much higher m̂ (10–30 with pre-clustering, 30–90 without). The gap appears to

be due to cross-validating pushing (in this context) for lower approximation error

and more states, rather than fewer states and lower estimation error (§B.2 in the

supplemental information). Having m̂ be substantially larger than m thus does not

degrade out-of-sample predictions.

6 Discussion

6.1 Related Work

Predictive state reconstruction estimates the prediction processes introduced by

Knight (1975). Knight’s construction is for stochastic processes X with a single,

continuous time index; but since Xt can take values in infinite-dimensional spaces,

most useful spatial models can implicitly be handled in this way, and by consider-

ing discrete time we avoid many measure-theoretic complications. After Knight, the

same basic construction of the prediction process was independently rediscovered in

nonlinear dynamics and physics (Crutchfield and Young, 1989; Shalizi and Crutch-

field, 2001), in machine learning (Jaeger, 2000; Littman et al., 2002; Langford et al.,

2009), and in the philosophy of science (Salmon, 1984).

Spatio-temporally local prediction processes were introduced in Shalizi (2003);

Shalizi et al. (2004) to study self-organization and system complexity, along lines

suggested by Grassberger (1986); Crutchfield and Young (1989). A related proposal
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was made by was made by Parlitz and Merkwirth (2000), and light cones have been

used in stochastic models of crystallization (Capasso and Micheletti, 2002), going

back to Kolmogorov (1937).

While the prediction-process formalism allows for continuous-valued observable

fields, the prior work by Shalizi et al. only gave procedures for discrete-valued fields.

Jänicke et al. used those procedures on continuous-valued data by discretizing them

(Jänicke, 2009; Jänicke and Scheuermann, 2010; Jänicke et al., 2007). We avoid dis-

cretization by using methods to estimate and compare continuous, high-dimensional

distributions.

6.2 Conclusion

We introduce a new non-parametric method, LICORS, for spatio-temporal predic-

tion. LICORS learns the predictive geometry in the state space underlying the sys-

tem, by clustering observations according to the similarity of their local predictive

distributions. Together with our cross-validation scheme, LICORS is a fully data-

driven, non-parametric method to learn and use the non-linear, high-dimensional

dynamics of a large class of spatio-temporal systems. The good performance of the

CV procedure (Fig. 7) suggests that using it to find control settings in applications

will avoid over-fitting.

Under weak assumptions, LICORS consistently estimates predictive distribu-

tions. Simulations show that it largely outperforms standard prediction methods.

We have motivated presented results for (1 + 1)D fields, but both the theory and

practice extend without modification to higher-dimensional fields. While it will be
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good to extend LICORS to handle continuous predictive states, and to derive theo-

retical guarantees about its behavior under cross-validation, it can already be applied

to experimental data. It provides a powerful, principled tool for forecasting complex

spatio-temporal systems.
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Supplementary Material for “LICORS: Light Cone

Reconstruction of States for Non-parametric Forecasting of

Spatio-Temporal Systems”

A Predictive States: Details on Methodology, Im-

plementation, and Algorithms

We partition the observed PLCs {`−i }Ni=1 ⊂ Rnp into K = K(δ) disjoint groups

{Pk}Kk=1, choosing the number of groups so that all have diameters less than δ.

This choice of K(δ) guarantees (Assumption 3.1) that all `− ∈ Pk have predictive

distributions that are at most ρ apart. Thus all PLCs within a group Pk are (nearly)

equivalent by Definition 2.1. This in turn means we only need to compare predictive

distributions between clusters.

A.1 Lebesgue Smoothing

In a standard kernel regression approach one would compute a similarity measure on

PLCs `−i and then use a weighted mean of FLCs `+i to get a point prediction of the

future cone, i.e.,

L̂+ (r, t) =
∑
(q,τ)

w− (q, τ ; (r, t)) `+ (q, τ) for all τ < t, (21)
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1. Collect the PLC and FLC configurations, `− (r, t) and `+ (r, t), for each (r, t)
in the observed field X (r, 1) , . . . , X (r, T ).

2. To cluster or not to cluster:

(a) Assign each point to its own cluster. Only for small N this is computa-
tionally feasible.

(b) Perform an initial clustering (e.g. (e.g., K-means++ (Arthur and Vassil-
vitskii, 2007)) in the PLC configuration space (Section 3.1).

3. For each pair of clusters, test whether the estimated conditional FLC distri-
butions are significantly different, at some fixed level α (Section 3.2). If not,
merge them and go on. Stop when no more merges are possible.

4. Treat the remaining clusters as predictive states, and estimate the conditional
distributions over FLC configurations.

5. Return the partition of PLC configurations into predictive states, and the
associated predictive distributions.

Figure 6: Estimating predictive states from continuous-valued data: in 2a condi-
tional distributions are tested for each `−i , i = 1, . . . , N , using a δ-neighborhood (or
k nearest neighbors) of `−i (see Section 4.1.1 for details); 2b uses an initial clustering
to reduce complexity of the testing problem from O(N2) to O(K2) (see also Section
3.1).

where w− (q, τ ; (r, t)) ∝ K− (‖`− (r, t)− `− (q, τ)‖) are normalized weights deter-

mined by a kernel K− (·) in the PLC configuration space. For example, a Gaussian

kernel K−h (`− (r, t) , `− (q, τ)) = exp(− 1
h
‖`− (r, t) − `− (q, τ)‖22) with squared Eu-

clidean distance and bandwidth h.

Since (q, τ) ranges over the entire space-time, q ∈ S, τ = 1, . . . , t− 1, computing

this many similarities {s(q,τ),(r,t)} becomes very time consuming. A typical 10-second
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Algorithm 1 Test equality of conditional predictive FLC distributions
P (L+ | clusterID = k)

Require:
Data:
F = {`+i }Ni=1 ∈ RN×nf . . . array with FLCs
clusterID . . . labels of the PLC partitioning (step 2a or 2b in Fig. 6)
Parameters:
α ∈ [0, 1] . . . significance level α for testing H0 : P

(
L+ | `−i

)
= P

(
L+ | `−j

)
Ensure:
kmax = max clusterID
for k = 1, . . . , kmax do

fetch FLC samples given partition Pk: Fk = {`+i }{i|clusterID[i]==k}
j = k
lasttested = 0
pvalue = 1
while pvalue > α or j ≤ kmax do

j = j+ 1
lasttested = j
fetch FLC samples given partition Pj: Fj = {`+i }{i|clusterID[i]==j}
pvalue ← test(P (L+ | Pk) = P (L+ | Pj) | Fk,Fj)
if pvalue < α then

merge cluster j with cluster k: clusterID[clusterID == j] = k
After no merging is possible clusterID contains the labels of the predictive states.
return clusterID

video might have N = 3 · 107 space-time points.1 To evaluate (21) needs 3 · 107

similarities in np-dimensional space — and this just to predict one FLC. If N is large,

then predictive state estimation is a necessary pre-step before making predictions.

Our approach differs in two important ways. First, we assume a discrete predic-

tive state space which is sufficient to predict the future. Thus once we have estimated

the predictive states ε1, . . . , εm, we can predict the field at any (r, t) using the average

125 frames per second and 300× 400 pixels.
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(or mode) of the estimated predictive state at (r, t),

L̂+ (r, t) = Eε̂(`−(r,t))
(
L+ (r, t)

)
. (22)

Second, we learn a new geometry on the PLC space by defining closeness in the

FLC distribution space, rather than in the PLC configuration space. Thus a natural

continuous state space extension of (22) is a Kernel regression with weights that

depend on the similarity in the output rather than the input space, i.e.

L̂+ (r, t) =
∑
(q,τ)

w+ (q, τ ; (r, t)) `+ (q, τ) for all τ < t, (23)

where the normalized weights w+ (q, τ ; (r, t)) ∝ K+ (‖P (`+ (r, t))− P (`+ (q, τ))‖)

are based on a Kernel K+ (·) in the FLC distribution space.

One can generalize (23) to the classic non-parametric regression setting y =

m(x) + u and define a new Kernel regression estimator as

m̂(L)(x) =
n∑
i=1

Ky

(
m̂(R)(xi)−m(x)

)
hy

yi , (24)

where m̂(R)(·) serves as a pilot estimate; for example the classic kernel regression

smoother

m̂(R)(x) =
n∑
i=1

Kx (xi − x)

hx
yi . (25)

As we average over nearby predictions rather than nearby inputs, we may call (24)

“Lebesgue smoothing”, in contrast to the “Riemann” smoothing of (25). If N is
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small, then we can forecast with (23) forecast without estimating predictive states.

However, here we focus on predictive-state recovery, and leave Lebesgue smoothed

LICORS to future work.

Further performance enhancements for testing While it is better to do

O(K2) high-dimensional tests than O(N2), it would be better still to speed up each

test. Since two distributions are the same only if their moments are, we can start by

testing simply for equality of means, which is fast and powerful, and do a full distribu-

tional test only if we cannot reject on that basis. For multivariate mean tests we can

use the Hotelling test (Abello et al., 1998) and its randomized generalization (Lopes

et al., 2011). Yet another strategy to reduce the number of costly high-dimensional,

non-parametric tests is to test various functions f(·) of the samples. If the distri-

butions of Fki(δ) and Fkj(δ) are the same, then also P (f (Fki(δ))) = P
(
f
(
Fkj(δ)

))
for any measurable f . Particularly, we can apply random projections (Lopes et al.,

2011) to Fki to go from the high-dimensional Rnf down to the one-dimensional R,

followed by a Kolmogorov-Smirnov test. Only if these tests can not reject equality

for several projections, one uses fully non-parametric tests.
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1. Split dataset at its middle in time: D1 = {X (r, t)}T/2t=1 and D2 =
{X (r, t)}Tt=T/2+1

2. For each combination of control settings, do:

(a) Training: estimate predictive states from D1

(b) Test-set prediction: find predictive state of each PLC ∈ D2 and predict
its FLC ∈ D2.

(c) Error: compare to the observed FLCs ∈ D2 and compute the loss.

3. Choose the control settings with the smallest test-set loss.

Figure 7: Cross-validation to choose control settings given data {X (r, t)}Tt=1.

B The Simulation and the Forecasting Competi-

tion

B.1 Details of Competing Methods

The local VAR models were fit with Lasso regularization (Song and Bickel, 2011),

as implemented in the fastVAR package (Wong, 2012). We also tried un-regularized

VAR models, but they performed even worse.

B.2 Excess Risk, Test Size, and Number of Estimated States

Figs. 8a and 8b show the expected relationship between α and the number of pre-

dictive states recovered m̂: smaller α leads to more merging, and fewer states. Here

the true number of states m = 7, but both pre-clustering and direct estimation give

much higher m̂. Thus for LICORS, optimal forecasting pushes for more states and
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Figure 8: Relations between excess risk, test size, and the number of reconstructed
states for LICORS: (a) selected α, number of estimated states, and excess risk (Eq.
(26)) for pre-clustered LICORS; (b) the same for direct-estimation LICORS. α values
in are jittered.

lower approximation error, rather than fewer states and lower estimation error. We

can check this explanation by considering the ratio

excess risk :=
MSE(sample i+ 1) using (hp, α)i,CVi

MSE(sample i+ 1) using (hp, α)i+1,min

≥ 1. (26)

Recall that (hp, α)i,CVi is chosen using only sample i, while (hp, α)i+1,min is the min-

imizing pair after having evaluated the MSE on sample i + 1. The best that any

data-driven procedure could do would be to guess (hp, α)i+1,min from sample i, so the

excess risk is ≥ 1, with equality only if CV picked the optimal control settings. The

scatter-plots show that our CV procedure has an excess risk on the order of 10−2

compared to the oracle pair. Hence, even though m̂ is substantially larger than m,

the difference is practically irrelevant for predictions.
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B.3 Discussion of the Simulations

The simulations showed that LICORS outperforms standard forecasting techniques

by a large margin, even though it presumes very little about the data source. Es-

pecially note that the out-of-sample MSE in Fig. 5 is still much lower than the best

parametric in-sample MSE in Fig. 4a — even though it uses only half the sample

size. The good performance of the CV procedure (Fig. 7) suggests that using it to

find control settings in applications will avoid over-fitting.

In real applications N would typically on the order of millions (rather than merely

2 × 104), making pre-clustering essential computationally — at least until O
(
N2
)

comparisons for millions of data points become tractable. Pre-clustering usually

leads to a performance loss as it hides fine structures in the predictive distribution

space (see also the remark below Lemma 4.7). However, the in-sample and out-of-

sample MSE comparison showed that this performance loss is small compared to the

gain over standard parametric methods, and further attenuated with CV.

C Proofs

Proof of Lemma 4.5.

P
(
L+ (r, t) , L+ (u, s) | S (r, t) , S (u, s)

)
(27)

= P
(
L+ (r, t) | L+ (u, s) , S (r, t) , S (u, s)

)
P
(
L+ (u, s) | S (r, t) , S (u, s)

)
(28)

= P
(
L+ (r, t) | L+ (u, s) , S (r, t) , S (u, s)

)
P
(
L+ (u, s) | S (u, s)

)
(29)

= P
(
L+ (r, t) | S (r, t)

)
P
(
L+ (u, s) | S (u, s)

)
, (30)
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The first equality is simple conditioning, the second equality holds since given the

predictive state at (u, s) the distribution of L+ is independent of the predictive state

at another (r, t), and the last equality holds for the same reason as the second plus

the non-overlap of the FLCs at (r, t) and (u, s).

Proof of Corollary 4.6. The FLC of (r, t) with hf = 0 is just the single point X (r, t).

Since two univariate FLCs cannot overlap unless they are equal, the result follows

immediately from Lemma 4.5.

Proof of Lemma 4.7. By contradiction. Assume that `−j and `−k , with j, k ∈ Ii(δ),

have different predictive states, without loss of generality ε1 and ε2. By Assumption

4.4, then, DKL (ε1 || ε2) and DKL (ε2 || ε1) are both at least dmin. By the definition of

Ii(δ), ‖`−j − `−k ‖ < 2δ. By Assumption 3.1, then, DKL (ε1 || ε2) and DKL (ε2 || ε1) are

both at most ρ(2δ). But by making δ sufficiently small, ρ(2δ) can be made as small

as desired, and in particular can be made less than dmin. This is a contradiction, so

all the past cone configurations in Ii(δ) must be predictively equivalent.

Proof of Corollary 4.8. Immediate from combining Lemmas 4.7 and 4.5.

Proof of Theorem 4.12. Before going into the formal proof, we make an observation

regarding non-parametric two-sample tests. Most of these, to have good operating

characteristics, require independent samples. Since we will be applying the tests to

Fi(δ) and Fj(δ),

Properties C.1 (Pairwise independent samples). If

Ii(δ) ∩ Ij(δ) = ∅. (31)
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then the samples Fi(δ) are independent of Fj(δ), j 6= i (see (14)).

Let ∆ij := ‖`−i − `−j ‖. If ∆ij > 2δ, then (31) is satisfied. If ∆ij < 2δ, then a

sample in Fi(δ) might also appear in Fj(δ) and therefore violate the independence

assumption for two sample tests.

For these rare cases redefine the index set Ii(δ) and Ij(δ) such that (31) holds.

We can achieve this by excluding the intersection, split it in half ( ±1 sample),

and then re-assign these halves to each index set. For all pairs i 6= j determine

Ii(δ) ∩ Ij(δ) =: Ii∩j(δ). Then let

Ii := Ii \ Ii∩j ∪ {i1, . . . , i|Ii∩j |/2 | ik ∈ Ii∩j} (32)

and Ij := Ij \ Ii∩j ∪ {i|Ii∩j |/2, . . . , i|Ii∩j | | ik ∈ Ii∩j}. (33)

If Ii∩j = ∅, (32)–(33) does not change the index set; if Ii∩j 6= ∅, then (32)–(33)

guarantees an empty intersection.

The proof of consistency relies crucially on a growing index set Ii. The re-

definition in (32)–(33) does not change the rate at which Si(N, δ) grows, because

in the worst case (for very close PLCs) it just divides si(N, δ) and sj(N, δ) in half.

Proof: We first bound the error for each row Âi, and then use a union bound for

the probability of error for Â.

Bound error per row For each row Tn,m testsH0 : `i ∼ `j, j > i (due to symmetry

the cases j < i have already been tested before) based on the sample Fi(δ) ∼ εi and

Fj(δ) ∼ εj. The worst-case distance d for the non-parametric test in Assumption
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4.11 is d = dmin. For simplicity consider the first row: here we have to make N − 1

tests, of which N1 − 1 should correctly accept, and N − N1 should correctly reject

equality of distributions.

P
(
Âj 6= Aj

)
≤ (Nj − 1)P ((type I) + (N −Nj))P (type II) (34)

≤ (Nj − 1)α + (N −Nj)β (α, Smin(N, δ), Smin(N, δ)) (35)

≤ Njα + (N −Nj)β (α, Smin(N, δ), Smin(N, δ)) (36)

since the worst case, for type II error, is that both samples are as small as possible.

Bound error for entire matrix The probability of error for the entire predictive

state clustering can again be bounded using the union bound:

P
(
Â 6= A

)
= P

(
N⋃
j=1

{Âj 6= Aj}

)
(37)

≤
N∑
j=1

P
(
Âj 6= Aj

)
(38)

≤ N (Nmaxα + (N −Nmin)β (α, Smin(N, δ), Smin(N, δ))) (39)

= NNmaxα + (N2 −NNmin)β (α, Smin(N, δ), Smin(N, δ)) , (40)

where Nmax = maxj Nj is the number of light cones in the largest predictive state.

Under Assumption 4.11, α and β are both o
(
NNmax

)
, so the over-all arrow prob-

ability tends to zero.
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