Measuring Industry Productivity and Cross Country Convergence

Robert Inklaar
University of Groningen, r.c.inklaar@rug.nl

Erwin Diewert
University of British Columbia, erwin.diewert@ubc.ca

Follow this and additional works at: http://repository.cmu.edu/sem_conf

Part of the [Economics Commons](http://repository.cmu.edu/sem_conf)

http://repository.cmu.edu/sem_conf/2015/full_schedule/35

This Event is brought to you for free and open access by the Conferences and Events at Research Showcase @ CMU. It has been accepted for inclusion in Society for Economic Measurement Annual Conference by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
Measuring industry productivity and cross-country convergence

Robert Inklaar
University of Groningen, Netherlands

W. Erwin Diewert
University of British Columbia, Canada

SEM Conference, July 22–24, Paris
Motivation

• Analysis of productivity convergence is of interest (Barro, 2012; Rodrik, 2013; Aghion et al., 2014), ...

• ... yet suffers from inadequate methods & data
 – Simultaneous cross-country/over-time setting
 – Accounting for outputs & all inputs
This paper

- New method for cross-country/over-time industry productivity measurement
 - Combination of Caves, Christensen & Diewert (1982) and Diewert & Morrison (1986)
This paper

- Illustration to convergence across 38 economies, 17 years and 2 sectors
 - Faster convergence in traded than non-traded sector
 - Extends literature on Harrod-Balassa-Samuelson to convergence setting
Value added function

\[g^i(p, x) \equiv \max_y \left\{ \sum_{m=1}^{M} p_m y_m : (y, x) \in S^i \right\}; \ i = 1, \ldots, I \]

- A set of \(M \) net outputs \(y \), primary inputs \(x \), output prices \(p \), and \(S^i \) the feasible production set for industry \(i \)

- Assumes competitive price takers, CRS, and homogeneity within each industry and assume translog functional form

- Follows Diewert & Morrison (1986)
Information requirement

- Value of net output v_{ktn} (K countries, T years)
- Price of net output p_{ktn}
- Value of primary input V_{ktn} (N primary inputs)
- Prices of primary inputs w_{ktn}
- Values in current national prices, prices that are comparable across countries and years
Output prices

• Given the translog value added function and given the required data:

\[P_{kt/j_s} \equiv P_T(p_{js}, p_{kt}, y_{js}, y_{kt}) \]

\[\equiv \exp \left[\sum_{m=1}^{M} \frac{1}{2} (s_{jsm} + s_{ktm}) \ln(p_{ktm}/p_{jsm}) \right] \]

• Output quantity index as ratio of the value index \(v_{kt}/v_{js} \) and price index
Numeraire independence

• With multiple countries and years, the price index $P_{kt/js}$ is not independent of the base country & year.

• Solution (following Caves et al. 1982): average over all possible choices of j and s:

$$P_{kt*} = \left[\prod_{j=1}^{K} \prod_{s=1}^{T} P_{kt/js} \right]^{1/KT} = \sum_{m=1}^{M} \frac{1}{2} (s_{..m} + s_{ktm}) \ln \left(\frac{p_{ktm}}{p_{..m}} \right)$$

Where $s_{..m}$ is the average net output share and $p_{..m}$ the average price, across all countries and years.
Factor inputs

• Analogous logic, but aggregation of quantities, not prices:

\[
X_{kt/Js} \equiv Q_T(w_{js}, w_{kt}, x_{js}, x_{kt}) \\
\equiv \exp \left[\sum_{n=1}^{N} \frac{1}{2} (S_{jsn} + S_{ktn}) \ln(x_{ktn}/x_{jsn}) \right] \\
X_{kt*} \equiv \left[\prod_{j=1}^{K} \prod_{t=1}^{T} X_{kt/Js} \right]^{1/KT} = \sum_{n=1}^{N} \frac{1}{2} (S_{..n} + S_{ktn}) \ln(x_{ktn}/x_{..n})
\]
Productivity

- Relative output divided by relative inputs:
 \[\Gamma_{kt/js} \equiv \frac{Y_{kt/js}}{X_{kt/js}} \]

- Multilateral productivity index:
 \[\Gamma_{kt} \equiv \frac{[Y_{kt*}/X_{kt*}]}{[Y_{11*}/X_{11*}]} = \frac{Y_{kt}}{X_{kt}} \]
Convergence

1. ‘World’ efficiency

\[E_t = \frac{\Gamma_t}{\Gamma_{t,\text{max}}} , \]

where \(\Gamma_t \equiv \frac{\sum_{k=1}^{K} Y_{kt}}{\sum_{k=1}^{K} X_{kt}} \)

- Efficiency measure in the tradition of Debreu (1951) and Farell (1957)

- Fits with the ‘distance to the frontier’/Schumpeterian literature (Aghion et al., 2014).
Convergence

2. Cross-country dispersion

\[\sigma_t \equiv \left[\sum_{k=1}^{K} \omega_{kt} \ln \left(\frac{\Gamma_{kt}}{\Gamma_t} \right)^2 \right]^{1/2} \]

where \(\omega_{kt} = \frac{X_{kt}}{\sum_{k=1}^{K} X_{kt}} \)

• Measure of \(\sigma \)-convergence, see Lichtenberg (1994) and Barro (2012)

• Productivity counterpart of cross-country income inequality (e.g. Milanovic, 2012).
Data

• Value of net outputs and primary inputs from WIOD Supply/Use Tables and Socio-Economic Accounts (in current prices, national currencies)

• Net output prices: ICP PPPs matched to commodities; interpolated (Diewert, 2014) and extrapolated.

• Primary input prices: wages by skill type, gross rental price (à la Dennison)

• Traded (agriculture, mining, manufacturing) vs. non-traded (utilities, construction, market services) sector
World efficiency

Non-traded sector

Market sector

Traded sector

1995 2000 2005 2010
Cross-country dispersion

Traded sector

Market sector

Non-traded sector
Concluding remarks

• Has productivity converged?
 – This paper provides the method to answer this question
 – Aggregate productivity convergence is driven by China & India through increasing weight (world efficiency) and productivity growth (dispersion)
 – Faster convergence in traded than in non-traded sector