

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 55

(a) Sample Code Without Prefetching

for (i = 0; i < 64; i++) {
for (j = 0; j < 64; j++)
for (k = 0; k < 64; k++)
for (l = 0; l < 5; l++)
for (m = 0; m < 5; m++)
A[i][j][k][l][m] = 0;

}

(b) Code After Software Pipelining (original)

for (i = 0; i < 64; i++) {
for (j = 0; j < 64; j++)
for (k = 0; k < 32; k++)
for (l = 0; l < 5; l++) {
prefetch block(&A[i][j][k][l][0], 12); /* Prolog */
for (m = 0; m < 5; m++)
A[i][j][k][l][m] = 0;

}
}

(c) Code After Software Pipelining (new)

for (i = 0; i < 64; i++) {

prefetch block(&A[i][0][0][0][0], 12); /* Prolog */

for (j0 = 0; j0 < 45; j0 += 5) { /* Steady State */
prefetch block(&A[i][j+19][0][0][0], 4);
for (j = j0; j < j0 + 5; j++)
for (k = 0; k < 32; k++)
for (l = 0; l < 5; l++)
for (m = 0; m < 5; m++)
A[i][j][k][l][m] = 0;

}

for (j = 45; j < 64; j++) /* Epilog */
for (k = 0; k < 32; k++)
for (l = 0; l < 5; l++)
for (m = 0; m < 5; m++)
A[i][j][k][l][m] = 0;

}

Figure 3.7. Example of Software Pipelining with Small Loop Bounds.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 56

locality, and the total data traffic across all iterations of that loop is less than a block (i.e. four pages in our

experiments), then we choose the next surrounding loop nest as the pipeline loop instead. We apply this

heuristic recursively until a loop that accesses more than a block of data, or the outermost loop is found. The

result of this modification is shown in Figure 3.7(c), where prefetches are software pipelined across the j

loop, rather than the m loop. It is now possible to schedule prefetches early enough to hide all the latency.

Scheduling Indirect Prefetches Indirect references such as A[index[i]] are assumed to have no local-

ity, hence it is not necessary to perform any loop splitting transformations (i.e. the prefetch predicate is always

“True”). Indirect prefetches are scheduled using software pipelining in the same manner as direct prefetches,

with one minor modification. In addition to fetching the indirect reference itself (A[index[i]]), it may

also be necessary to schedule a prefetch for the indexing reference, index[i]. The indexing reference is

treated like any other reference for the purposes of determining locality, however for scheduling, it needs

to be prefetched early enough to be used in the prefetch of the indirect reference, rather than in the indi-

rect reference itself. More details on prefetching indirect references are given in Mowry’s thesis on cache

prefetching [39].

A More Detailed Example Figure 3.8 shows an example of the output of our compiler for a simple

loop body (notice that it is able to prefetch the indirect a[b[i]] reference as well as the dense b[i] and

c[i][j] references). Notice that loop i has been strip-mined twice (into loops i0 and i1) to account for

the spatial locality of b[i] and c[i][j]. (The i loop has been strip-mined twice since c[i][j] accesses

data more quickly than b[i], and therefore needs to be prefetched at a faster rate.) Second, to fully exploit

the available bandwidth in our I/O subsystem, we prefetch several pages at a time for references with spatial

locality (e.g., four pages are fetched at a time for b[i] and c[i][j]). Similarly, we convert the prolog

loops from the original algorithm into block prefetches whenever possible, as shown in the first two lines of

Figure 3.8(b). For references without spatial locality—e.g., a[b[i]]—we prefetch only a single page at a

time. Also notice how the b[i] reference is prefetched well in advance of the prefetch for a[b[i]] so that

the data will be available to compute the prefetch address. Finally, this example also shows how we bundle

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 57

(a) Original Code

int a[1000000];
int b[1000000];
int c[1000000][8];

for (i = 0; i < 1000000; i++)
for (j = 0; j < 8; j++)
a[b[i]] = a[b[i]] + c[i][j];

(b) Code with Prefetching

prefetch block(&b[0], 8);
prefetch block(&c[0][0], 4);
for (i = 0; i < 128; i++)
prefetch(&a[b[i]]);

/* Note: 995328 = (b 1000000
4096

c − 1)∗4096 */
for (i1 = 0; i1 < 995328; i1 += 4096) {
prefetch release block(&b[i1+8192], &b[i1-1], 4);
for (i0 = i1; i0 < i1 + 4096; i0 += 512) {
prefetch release block(&c[i0+512][0], &c[i0-1][0], 4);
for (i = i0; i < i0 + 512; i++) {
prefetch(&a[b[128+i]]);
for (j = 0; j < 8; j++)
a[b[i]] = a[b[i]] + c[i][j];

}
}

}
for (i = 995328; i < 1000000; i++)
for (j = 0; j < 8; j++)
a[b[i]] = a[b[i]] + c[i][j];

Figure 3.8. Example of the output of the prefetching compiler. (The first argument to all prefetch calls
is the prefetch address; the second argument to prefetch release block is the release address;
the final argument to “block” versions is the number of 4KB pages to be fetched and/or released.)

prefetch and release requests together whenever appropriate, to minimize the number of system calls.

3.1.3 Compiler Implementation

We implemented our prefetching algorithm as a pass in the SUIF (Stanford University Intermediate For-

mat) compiler [26, 61]. The output from the SUIF compiler is C code containing prefetch and release calls

(as illustrated in Figure 3.8(b)). We also use the SUIF compiler to convert the original Fortran source code

of each benchmark into C code for the original, non-prefetching versions that we use in our experiments. We

then compile the resulting C code into an executable for our target systems using gcc version 2.5.8 (with the

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 58

-O2 optimization flag set) for the HURRICANE system and SGI’s MIPSpro compilers version 7.2.1 (with the

-O3 optimization flag set) for the IRIX system. During the second compilation step, the prefetching versions

are linked to a set of library routines that implement the run-time layer support. Routines to check the bit

vector to filter prefetch requests are inlined for performance.

3.2 An Initial Prototype: HURRICANE

The HURRICANE operating system was designed with a micro-kernel structure. A small number of vital

services, such as memory management, are provided by kernel-level servers. The Hurricane File System

(HFS), and the majority of other operating system services are provided by user-level servers, however. A

very fast inter-process communication mechanism, called Protected Procedure Calls (PPC) [23], are used for

most communication between user programs, kernel servers, and user-level servers. One important feature of

HURRICANE is that it was designed for multiprocessors and has strong support for concurrency. Each server

maintains a pool of light-weight worker processes which are used to handle client requests. We take advantage

of this feature to implement asynchronous prefetch requests—control can be returned to the application as

soon as a worker thread hands the request to the file system.

Because HURRICANE is a research operating system, it does not contain all the functionality that is

required of a commercial system. In particular, it does not have support for writing and reading virtual

memory pages to and from swap space. Instead, we needed to modify the NAS Parallel benchmark programs

to use mapped files to provide the backing storage space for their data in the HURRICANE experiments.

The overall structure of HURRICANE, and the implementation of our scheme on this platform, is illus-

trated in Figure 3.9. We now take a detailed look at this implementation.

3.2.1 Operating System and Run-Time Layer Implementation

HURRICANE supports our approach in the following three ways. First, when a prefetch request is received

by the operating system, the memory manager checks to see if the specified page is already in memory (or

if another read request for that page has already been scheduled). If the page is not in memory, the memory

manager allocates a physical page from the free list to hold the file data, a worker thread is allocated to send

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 59

Transformed Application Code

Run−time Layer
release processing prefetch processing

lo
op

prefetch_block(addr, num, tag);

release_block(addr, num, priority, tag);

Yes

No
bit set for page?

Yes
discardbit clear for page? discard

No

MicroKernel

Device Server

Hurricane File System

Kernel

Memory Manager

release PPC prefetch PPC

Kernel Servers

User Level Servers

Worker Worker Worker

Allocate page

Return
Hand−off to workerReturn

(B
itv

ec
to

r)

Free page

Sh
ar

ed
 P

ag
e

Figure 3.9. Implementation of prefetching and releasing support on HURRICANE.

an asynchronous read request to the Hurricane file system, and control is returned to the application. The disk

scheduler treats prefetches the same as normal disk read requests (both read and prefetch requests are serviced

ahead of write requests). In the event that there are no pages on the free list, the memory manager drops the

prefetch request and clears the corresponding bit in the shared bit vector to indicate that the requested page

has not been fetched. We believe this to be a reasonable strategy since prefetch requests are non-binding

performance hints that do not need to be satisfied for program correctness. Also, we want to encourage

prefetching applications to balance their memory requirements by explicitly releasing pages that they no

longer need—thus, when all memory is in active use it is better to drop the prefetch than risk replacing data

that will be needed before the prefetched data.

When a release request is received, the memory manager simply removes the mapping for that page from

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 60

the process’s page table (and from the TLB if necessary) and places the page at the end of the free list. We

choose to place explicitly released pages at the end of the free list rather than at the head so that they can be

reclaimed easily if imperfect compiler analysis causes the page to be released too early. HURRICANE uses

a separate system daemon to periodically scan the free list and schedule writes for any dirty pages, so our

implementation does not need to check for this case separately.

The shared bit vector is implemented using a single 4 kB page of physical memory, which is used as a

map of the process’s virtual address space. HURRICANE uses physical addresses to access the shared page, so

a larger bit vector would require either (i) the allocation of multiple contiguous physical pages, or (ii) a more

complex strategy for accessing the bit vector each time a bit needs to be updated. Limiting the bit vector to a

single page provides simplicity and fast access. However, with a 4 kB page size and each bit representing a

single page of the virtual address space, the bit vector is capable of tracking only 215 pages of virtual memory

or 134 MB of data. This is an unreasonably small amount of data for “out-of-core” applications; our solution

on HURRICANE is to allow each bit to represent one or more contiguous virtual memory pages. We refer to

the number of pages represented by each bit as the granularity of the bit vector.

If the application accesses more than 134 MB of data, then each bit must represent multiple pages and

both the operating system and the run-time layer must agree on the granularity to use. In general, either the

operating system or the run-time layer could decide on the appropriate granularity and inform the other layer

of the choice; in our implementation the decision is made by the run-time layer. The granularity of the bit

vector needs to be considered by both the run-time layer and the operating system, not only to ensure that

the right bits are set, but also to ensure that the bit vector remains useful for the purposes of the run-time

layer. For example, if the compiler schedules a prefetch request for a single page and the corresponding bit is

turned on, then it will appear as if all pages in the same group (i.e. all pages represented by the same bit) are

already in memory. The result is that a prefetch request for another page in that group will be filtered out by

the run-time layer. The same problem can occur when the operating system turns bits on for pages brought

into memory through page faults. In our implementation we handle granularities greater than a single page

as follows. The run-time layer asks the operating system to prefetch all the pages in a group whenever a

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 61

prefetch is needed for any page in that group, thus preserving the notion that the pages are in memory if the

corresponding bit is turned on. In turn, when a single page is brought into memory due to a page fault the

operating system does not turn the bit on, allowing the run-time layer to still issue prefetch requests for the

other pages in the group.

When a prefetching application is executed, the run-time layer binds a page-sized region of memory to

a fixed virtual address to use as the bit vector. Information about the size of mapped files is used to set the

granularity of the bit vector. Next, a system call passes the starting virtual address and the granularity of

the bit vector to the operating system, which records the physical page corresponding to the specified virtual

address and the granularity in the process’s address space descriptor. At this point, the operating system and

the run-time layer have agreed on which page will be shared and how it will be used to map the process’s

virtual address space. The operating system can now turn bits on in the vector whenever the process page

faults or prefetches, and clear them whenever pages belonging to the process are unmapped.

During execution of the modified application, the run-time layer uses the shared bit vector to filter prefetch

and release requests, discarding them if no further action is necessary. For block prefetch requests, the run-

time layer checks the bit for each page in the block until one is found that is not in memory, or the end of

the block is reached. When a page is found that needs to be prefetched, a request is issued to the operating

system for the missing page and all subsequent pages in the block. This strategy ensures that at most one

system call is required for a block prefetch. In the operating system, worker threads are used to allow each

page in a block request to be fetched in parallel.

In addition to adding prefetch and release operations to HURRICANE and supporting the shared page,

we also added extensive instrumentation to enable us to observe the effect of each static prefetch request.

Each static prefetch instruction in the code is given a unique identifier by the compiler. This identifier is

passed to the kernel together with the prefetch address and the number of pages to fetch. When a prefetch

request is received by the kernel, we record the requested address, the time the request was received, and the

identifier of the static prefetch instruction in a prefetch record. When a page fault occurs, the kernel checks

if the faulting page was prefetched, and updates a set of counters based on the result. This technique allows

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 62

Memory Required Original
% of Execution

Name Input Data Set Absolute Available Time (mins)
BUK 223 19-bit integers 103 MB 215% 21.0
CGM sparse matrix with 7,607,024 non-zeros 103 MB 215% 57.2

EMBAR 224 random numbers 134 MB 279% 53.9
FFT 128x128x128 matrix of complex numbers 117 MB 244% 87.9

MGRID 128x128x128 matrix 58 MB 121% 31.9
APPLU 5x5x64x64x32 matrices 120 MB 250% 48.9
APPSP 90x90x90 matrices 117 MB 244% 224.3
APPBT 5x5x64x64x32 matrices 94 MB 196% 85.2

Table 3.2. Application characteristics on HURRICANE.

us to observe the success rate of each static prefetch instruction added to the code by the compiler, and was

essential for us to be able to identify the parts of the compiler algorithm that needed to be modified to handle

I/O prefetching efficiently. This instrumentation is also used to produce the detailed statistics shown in the

HURRICANE results section (Section 3.2.2).

3.2.2 Evaluation of HURRICANE Implementation

We begin by focusing on the impact of our scheme on overall execution time. We then look at the

performance from a system-level perspective, including the effects on disk and memory utilization. Next,

we evaluate the effectiveness of the compiler and the run-time layer at scheduling prefetches and reducing

overhead. To assess the robustness of our results, we then study the effect of varying problem sizes. Finally,

we presents a detailed case study of one of the benchmark applications, BUK.

Overall Performance

Table 3.2 gives basic characteristics of the NAS Parallel benchmarks as executed on the HURRICANE

platform, including a description of the data set, the total amount of memory required (both in megabytes

and as a percentage of the physical memory available), and the absolute time required to execute the original

non-prefetching versions.

Figure 3.10(a) shows the overall performance improvement achieved through our automatic prefetching

scheme. For each application, we show two bars representing normalized execution time: the original pro-

gram relying simply on paged virtual memory to perform its I/O (O), and the program once it is compiled to

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 63

100

O

33

P
BUK

100

O

27

P
CGM

100

O

91

P
EMBAR

100

O

53

P
FFTPDE

100

O

55

P
MGRID

100

O

54

P
APPLU

100

O

80

P
APPSP

100

O

65

P
APPBT

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

idle time
system prefetch overhead
system time
user time

(a) Execution Time Breakdown (O = original, P = with prefetch)

Original With Prefetch
Avg. Avg. I/O

Total Stall Total Stall Stall
Faults Time Faults Time Reduction

Benchmark (x1000) (msec) (x1000) (msec) (%)
BUK 41.529 24.5 0.810 16.1 98.7%
CGM 135.066 22.0 0.207 26.5 99.8%

EMBAR 65.535 7.7 0.005 13.5 100.0%
FFT 135.646 31.1 28.432 39.3 73.6%

MGRID 62.231 19.9 7.642 24.2 85.1%
APPLU 91.220 26.3 31.663 26.4 65.2%
APPSP 412.234 20.5 143.996 26.2 55.4%
APPBT 156.172 26.2 77.035 25.6 51.9%

(b) I/O Stall Statistics

Figure 3.10. Overall performance improvement from prefetching on HURRICANE.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 64

prefetch and release data explicitly (P). In each bar, the top section is the amount of time when the processor

was idle, which corresponds roughly to the I/O stall time since we run only a single application during these

experiments. The bottom section of each bar is the time spent executing in user mode—for the prefetching

experiments, this includes the instruction overhead of issuing prefetches, including any overhead in the run-

time layer of checking the bit vector to filter out unnecessary prefetches. The middle sections of each bar are

the time spent executing in system mode. For the original programs, this is the time required for the operating

system to handle page faults; for the prefetching programs, we also distinguish the time spent in the operating

system performing prefetch operations.

As we see in Figure 3.10(a), the speedup in overall performance ranges from 9% to 270%, with the

majority of applications speeding up by more than 80%. Figure 3.10(b) presents additional information

on page faults1 and stall time. As we see in Figure 3.10(b), more than half of the I/O stall time has been

eliminated in seven of the eight applications, with three applications eliminating over 98% of their I/O stall

time.

Having established the benefits of our scheme, we now focus on the costs. Figure 3.10(a) shows that

the instruction overhead of generating prefetch addresses and checking whether they are necessary in the

run-time layer causes less than a 20% increase in user time in five of the eight applications—in the worst

case (CGM), the user time increases by 70%. However, in all cases this increase is quite small relative to the

reduction in I/O stall time. If we focus on the system-level overhead of performing prefetch operations, we

see in Figure 3.10(a) that in most cases this overhead is directly offset by a reduction in system-level overhead

for processing page faults. Hence the overheads of our scheme are low enough to translate into significant

overall performance improvements in all of these applications.

We wish to emphasize that all of these results are fully automatic—we have not rewritten any of the

applications or modified the code generated by the compiler. Having discussed the performance from a high

level perspective, we now look at the impact of explicitly prefetching and releasing data on system resources.

1Throughout this discussion, we will refer to page faults that cause the application to stall waiting for I/O simply as faults, and ignore
page faults for in-core data.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 65

||0

|20

|40

|60

|80

|100

|120

|140

 N
or

m
al

iz
ed

 D
is

k
R

eq
ue

st
s prefetch requests

 100
 110

 100 100 100 100 100
 105

 100 96 100 101 100 98 100 100

O P O P O P O P O P O P O P O P
BUK CGM EMBAR FFT MGRID APPLU APPSP APPBT

hard page faults
writes for dirty pages

(a) Breakdown of requests sent to disk (O = original program, P = with prefetch)

Benchmark Original With Prefetch
BUK 11.8% 40.1%
CGM 11.6% 46.0%

EMBAR 5.9% 9.0%
FFT 18.9% 35.1%

MGRID 15.8% 29.0%
APPLU 18.6% 31.8%
APPSP 16.3% 20.7%
APPBT 15.8% 20.1%

(b) Average disk utilization

Original With Prefetch and Release
Pages Minimum Average Pages Pages Minimum Average

Freed by Free Free Freed by Freed by Free Free
System Memory Memory System Release Memory Memory

Bench (pages) (%) (%) (pages) (pages) (%) (%)
BUK 68916 5.8% 26.9% 3461 41729 29.2% 73.7%
CGM 125817 14.8% 21.1% 125710 834 7.3% 23.4%

EMBAR 55647 15.0% 22.0% 0 65504 98.4% 98.5%
FFT 146699 14.9% 20.9% 156463 7164 9.9% 26.0%

MGRID 59181 14.3% 23.4% 60349 0 12.3% 25.9%
APPLU 82978 11.9% 25.0% 84395 0 7.9% 28.9%
APPSP 450507 10.5% 18.6% 448732 17196 9.0% 35.4%
APPBT 148174 11.3% 22.8% 148580 516 11.7% 25.5%

(c) Memory sub-system activity and amount of free memory

Figure 3.11. Impact of prefetch and release on system resources on HURRICANE.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 66

Disk and Memory Utilization

In Figure 3.11(a) and (b) we break down the types of requests seen by the disks and show average disk

utilization during execution for both the original and prefetching versions of the applications. In almost

all cases, the total disk requests do not increase as a result of prefetching, and for two of the applications

they actually decrease as prefetches prevent the system from writing out dirty pages that will be referenced

again soon. Hence the increased disk utilization shown in Figure 3.11(b) is simply due to the fact that we

are performing roughly the same number of disk accesses over a shorter period of time. Although we have

increased disk utilization by a considerable amount, the disks are still idle more than half of the time.

Memory usage during each application’s execution is summarized in Figure 3.11(c). Since our initial

compiler implementation was not aggressive about inserting release operations, most applications did not

contain a significant number of them. However, when release operations are used (e.g., BUK and EMBAR),

we see that a large percentage of memory is kept free at all times. This result occurs because these applications

return any pages that are not actively being used to the system and their working sets are significantly smaller

than their total data sets. We did not find that releases had a significant impact on out-of-core application

performance on a dedicated machine in the HURRICANE environment. Chapter 4, however, examines the

benefits of releases on a multiprogrammed workload in the IRIX environment.

Effectiveness of the Compiler and Run-Time Layer

Figure 3.12 presents information which is useful for evaluating how effective our compiler is at inserting

prefetches appropriately, and how effective the run-time layer is at minimizing prefetching overhead. We

begin by examining the success of the static analysis performed at compile-time and then look at how well

the run-time layer adapts to the dynamic conditions during execution.

The Compiler To assess the compiler analysis, we consider what happens to the original page faults when

prefetching is added. There are three possibilities: (i) a previously faulting page is successfully prefetched

(we call this a prefetched hit), (ii) a faulting page is prefetched but still faults when the reference occurs (we

call this a prefetched fault), and (iii) no prefetch is issued for a faulting page (this is a non-prefetched fault).

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 67

||0

|20

|40

|60

|80

|100

|120

 %
 o

f O
ri

gi
na

l F
au

lts non-prefetched fault
prefetched fault
prefetched hit

BUK CGM EMBAR FFTPDE MGRID APPLU APPSP APPBT

(a) Impact of prefetching on the original page faults.

Unnecessary Inserted Total
Prefetches Prefetches Prefetches

Issued Filtered Considered
Benchmark to OS at Run-Time at Run-Time

BUK 0.07% 99.79% 25,216,058
CGM 0.08% 99.74% 53,285,582

EMBAR 0.00% 0.02% 65,537
FFT 7.99% 99.59% 39,874,709

MGRID 8.03% 99.17% 9,004,863
APPLU 3.75% 96.99% 2,529,757
APPSP 7.55% 99.51% 89,813,618
APPBT 2.54% 98.31% 4,008,500

(b) Unnecessary Prefetches

33

W

453

WO
BUK

27

W

272

WO
CGM

91

W

91

WO
EMBAR

53

W

143

WO
FFTPDE

55

W

91

WO
MGRID

54

W

66

WO
APPLU

80

W

142

WO
APPSP

65

W

68

WO
APPBT

0

100

200

300

400

500

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

idle time
system prefetch overhead
system time
user time

(c) Performance of prefetching with (W) and without (WO) filtering
(normalized to the original, non-prefetched case).

Figure 3.12. Effectiveness of the compiler analysis and run-time filtering.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 68

We refer to the combination of the first two cases as the coverage factor (i.e. the fraction of original page

faults that were prefetched). Figure 3.12(a) shows a breakdown of the impact of prefetching on the original

page faults in each application that we study. In all cases except APPBT, the coverage factor is greater than

75% (in four cases, it is greater than 99%), indicating that the compiler is quite successful at identifying

references that need to be prefetched. In the half the cases, however, we see that there are still a non-trivial

number of page faults that are not prefetched.

Although in most cases the coverage is extremely good, we are interested in discovering why the compiler

sometimes fails to prefetch needed data. There are three basic causes that can contribute to poor coverage for

the types of applications that we are interested in. Briefly stated, they are:

1. Loop bounds and array dimensions may be unknown at compile time.

2. Data may not be aligned well with respect to page boundaries.

3. Some references that should be prefetched do not look like array accesses when the prefetching pass of

the compiler is executed.

Each of these causes are a contributing factor in the relatively poor coverage for APPLU, APPSP and APPBT.

First, when both the loop bounds and the array dimensions are unknown, the compiler must make an

assumption about the amount of data accessed in the loop. If the compiler incorrectly assumes unknown

loops to be small, it can fail to schedule needed prefetches. The fundamental problem is that such loops

appear to be localized, implying that reuse can be exploited and prefetching is needed only for the first

reference. Unfortunately, simply assuming unknown bounds to be large is not a reasonable solution since

it can cause another scheduling problem if the loops are actually small (as discussed in Section 3.1.2). In

Chapter 5 we develop and evaluate a new algorithm for scheduling prefetches in the presence of unknown

loop bounds that overcomes some of these problems.

The second instance in which some pages are not prefetched arises when the data is not well-aligned with

respect to the page boundaries. When calculating group reuse, our compiler implementation assumes that

two references will probably touch the same page if the data locations that they access are separated by less

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 69

for (i = 0; i < 100; i++) {
foo(&A[i]); /* not recognized as an array reference */
bar(B[i]);

}

Figure 3.13. Example of a reference not recognized as an array reference (inside foo) by the compiler.

than half a page. If the two data locations are actually on adjacent virtual pages, then only the first page will

be prefetched and the second will still suffer a page fault. In general we expected this problem to be rare,

however, it arises relatively frequently in APPLU, APPSP, and APPBT.

The final problem is best explained with the use of an illustrative example. Consider the code shown

in Figure 3.13. In this loop, procedure foo is called with the address of A[i], while procedure bar is

called with the value of B[i]. Ideally, we would like to prefetch both of these references, but the current

prefetching pass of the compiler only recognizes the B[i] reference. The reason is that earlier passes of the

SUIF compiler have converted the high-level source code shown in Figure 3.13 to an internal representation

where &A[i] is not identified as an array reference.2 This situation arises during the initialization phase in

APPLU, APPSP, and APPBT. While this problem does not contribute greatly to the non-prefetched page faults

in these applications, it could be an important case to recognize in general.

Having shown why the compiler is unable to prefetch all of the original faults, we now turn our attention

to the prefetched fault category in Figure 3.12(a). A page fault can occur for prefetched pages for two reasons:

either the prefetch has not had time to complete and the page has not yet arrived in memory, or the prefetch

was issued far too early and the page has been replaced from memory. This category reflects the effectiveness

of our compiler in scheduling prefetches the right amount of time in advance. In the cases where prefetched

faults are noticeable in Figure 3.12(a), the problem is almost always that the prefetches were not issued early

enough.

Two observations help to explain why prefetches may not have time to complete before the data is needed.

First, the compiler schedules prefetches so that they will be issued early enough during the steady state of the

software pipeline. Prefetches issued in the prolog sections are intended to initialize the pipeline, but are not

2In fact, handling this case properly may require interprocedural analysis, since whether or not the data at &A[i] needs to be brought
into memory depends on what the procedure foo does with the argument that is passed to it. Also, scheduling a prefetch properly for
this data depends on when it is used by foo.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 70

for (i = 0; i < 100; i++)
A[i] = i;

for (i = 0; i < 100; i++)
A[i] = A[i] * i;

Figure 3.14. Example of reuse not identified by the compiler.

scheduled to complete before the data is needed. Second, when loop bounds in multi-dimensional loops are

unknown at compile-time, the compiler may pipeline around the wrong loop nest. As shown in Section 3.1.2,

the result is that prefetches are only issued in the prolog and the steady state is never reached. Again, our

solution to this problem is presented in Chapter 5

Finally, the middle column of Figure 3.12(b) shows that most of the prefetch requests scheduled by the

compiler are actually unnecessary (i.e. the page was already mapped into memory) and are filtered out by the

run-time library. For BUK and CGM, most of these unnecessary prefetches result from always prefetching

indirect references. Locality analysis is not applied to these types of references, instead, the compiler assumes

that each such reference could touch a different page of data. For these applications this “worst-case” behavior

rarely occurs and most of the prefetches are unnecessary. We will examine the utility of prefetching indirect

references more closely during our case-study of BUK. In all cases, unnecessary prefetches occur whenever

the compiler underestimates memory’s ability to retain data. One cause of this effect is that locality analysis

is applied to each set of nested loops independently—if two independent loops access the same data, both

will be treated as the first reference to that data, regardless of the amount of data accessed. Thus, the type

of reuse shown in Figure 3.14 cannot be discovered by the current compiler algorithm. In general, this

problem is extremely difficult to solve since it may require interprocedural analysis to evaluate all the loops

in a program. A notable exception to the problem of unnecessary prefetches is EMBAR; the data access

pattern in this program is simple enough to be analyzed perfectly by the compiler. All array references

are sequential and within one-dimensional loops, thus the problems of strip-mining the loop correctly and

choosing a pipelining loop (discussed in Section 3.1.2) do not occur. Furthermore, since the single array used

in EMBAR is large enough to flush all of memory, there are no unnecessary prefetches that result from only

considering a single loop at a time.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 71

The Run-Time Layer The primary purpose of the run-time layer is to efficiently filter out prefetches for

pages that are already in memory, thus reducing the overhead of the unnecessary prefetches scheduled by the

compiler. To evaluate the effectiveness of the run-time layer at this task, Figure 3.12(b) presents statistics on

how many prefetches were unnecessary. Note that a prefetch for a page that is in memory but is on the free

list is not considered to be unnecessary, since it performs useful work by reclaiming the page. The left-hand

column of Figure 3.12(b) shows that almost all of the prefetches issued to the system by the run-time layer

are useful. All unnecessary prefetches that are issued to the system occur as part of a block prefetch request in

which prefetching is required for at least one page. The middle column of Figure 3.12(b) shows the fraction

of dynamic prefetches that were inserted by the compiler and filtered out by the run-time layer. As discussed

in the previous section, it would be extremely difficult to remove many of these unnecessary prefetches

statically, making run-time filtering the best option for reducing overhead. Finally in the third column of

Figure 3.12(b) we show how many prefetches are checked by the run-time layer. The large numbers in this

column provide a strong argument for making the filtering as efficient as possible, and also help to explain

why the user time component in Figure 3.10(a) increases significantly for some applications.

Figure 3.12(c) quantifies the performance advantage of the run-time layer. As we see in this figure, half

of the applications (BUK, CGM, FFT and APPSP) run slower than the original non-prefetching versions when

the run-time layer is removed. This is not surprising since the overhead of dropping an unnecessary prefetch

in the run-time layer is roughly 1% as expensive as issuing it to the operating system. From these results,

we conclude that the run-time layer is clearly an essential component for achieving good performance in our

system.

Problem Size Variations

Having demonstrated the benefits of I/O prefetching where the problem size is roughly twice as large as

the available memory, we now look at the performance when the problem size is varied.

In-Core Problem Sizes We begin with cases where the data sets fit within main memory. In these cases,

we would expect prefetching to degrade performance, since the prefetches incur overhead but provide little

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 72

100

O

74

P
Cold

36

O

46

P
Warm

BUK

100

O

136

P
Cold

41

O

126

P
Warm

CGM

100

O

99

P
Cold

99

O

99

P
Warm

EMBAR

100

O

148

P
Cold

58

O

117

P
Warm

FFT

100

O

116

P
Cold

79

O

107

P
Warm

MGRID

100

O

59

P
Cold

41

O

43

P
Warm

APPLU

100

O

107

P
Cold

95

O

105

P
Warm

APPSP

100

O

77

P
Cold

59

O

68

P
Warm

APPBT

0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

idle time
system prefetch overhead
system time
user time

Figure 3.15. Performance with in-core data sets (O = original, P = with prefetch; Cold = cold-started,
Warm = warm-started). Performance is normalized to the original, cold-started cases.

or no benefit. Figure 3.15 shows two sets of experiments—the cold-started and warm-started cases—on data

sets that are roughly 10-35% as large as the available memory. Starting with the cold-started cases, we see

that prefetching degrades performance in four cases, but actually improves performance in three cases (BUK,

APPLU, and APPBT) by hiding the latency of cold page faults. To further isolate the prefetching overhead,

we also warm-started the applications by preloading all of their data from the input files into memory before

timing the runs. As expected, prefetching typically degrades performance in the warm-started cases since

it offers no potential advantage. However, we believe that the cold-started cases are more realistic for most

applications, since real programs must read their input data from disk.

In these experiments, we made no attempt to minimize prefetching overhead for in-core data sets, but

this is a problem that we are planning to address in future work. In particular, we can generate code that

dynamically adapts its behavior by comparing its problem size with the available memory at run-time, and

suppressing prefetches (after the cold faults have been prefetched in) if the data fits within memory. The fact

that I/O prefetching can still potentially improve performance even on relatively small data sets by hiding

cold page faults is an encouraging result.

Larger Out-of-Core Problem Sizes In addition to looking at smaller problem sizes, we also experimented

with much larger data sets than our earlier out-of-core problem sizes. Figure 3.16 shows the performance of

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 73

100

O

42

P
4X

FFT

100

O

42

P
10X

MGRID

100

O

48

P
4X

APPBT

100

O

51

P
4X

APPLU

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

idle time
system prefetch overhead
system time
user time

Figure 3.16. Performance with larger out-of-core problem sizes. Numbers above application names
indicate how much larger the problem sizes are than available memory.

four applications where the problem size is 4-10 times larger than the available memory.

For FFT, APPLU and APPBT the problem size used in this experiment is approximately 200 MB, which

requires that each bit in the bit vector represent two contiguous virtual memory pages (Recall from Sec-

tion 3.2.1 that we restrict the size of the bit vector to a single page). A larger size is used for MGRID

because the structure of the program requires that the data set be cubical. The problem size used in our earlier

experiments was only only 20% larger than the available memory–the next larger problem size (shown in

Figure 3.16) requires 464 MB of memory, which is approximately 10 times more than what is available, and

each bit in the bit vector must represent four pages.

The granularity of the bit vector can potentially have an impact on performance because the run-time

layer is given a less detailed view of the state of main memory. The results in Figure 3.16, however, show that

for these applications the performance improvements remain large. In fact, prefetching offers slightly larger

speedup in all these cases since there is more I/O latency to hide. In addition, APPLU and APPBT benefit

from the coarser granularity since fetching both pages in the set corresponding to a given bit automatically

solves the alignment problem discussed earlier in this section.

Case Study: BUK

In this section we take a closer look at how explicitly prefetching and releasing pages affects application

performance by focusing on a single application. We have chosen to examine BUK for this case study for

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 74

three reasons: (i) the program is short and easy to understand; (ii) the problem size can be scaled linearly; and

(iii) the program contains both direct and indirect references, allowing us to evaluate the costs and benefits

of indirect prefetches. We begin by describing the computation and data accesses performed in BUK before

looking at the indirect prefetches. Finally, we examine what happens to execution time as we move from

in-core problem sizes to out-of-core problem sizes, both with and without prefetching.

Description of Application Figure 3.17 shows the main computations performed by BUK as C source code.

(The actual program that we use in our experiments is written in FORTRAN; in our C representation of this

code, we only show the computations that are relevant to this discussion.) BUK takes an array of unsorted

integers that are held in key, computes the the position that each integer should have when sorted and stores

the position in rank, and finally copies the integers from key into key2 using the values stored in rank.

The computations performed in BUK are organized in two phases. During the bucksort procedure,

the input array key and the temporary storage array rank are both accessed using direct references. The

temporary array keyden is used to record the number of times each distinct value in the input array key

occurs, and then to calculate the position each integer should have when sorted. The keyden array is

accessed by direct references in some loops, and by indirect references in others. We refer to this phase as

the ranking phase in our discussion. The second phase occurs after bucksort in the main procedure when

the integers are sorted by copying each one from key to its proper position in key2 using the values stored

in rank. In this phase, which we will refer to as the copying phase, rank and key are accessed by direct

references while key2 is accessed indirectly.

All of the array references in BUK are identified and prefetched by our compiler (the bar for BUK in

Figure 3.12(a) shows that the coverage factor is 100%).

Benefits of Indirect Prefetches Since the compiler has no information about the locality of indirect refer-

ences a decision must be made at compile time to either always or never prefetch them. To evaluate the costs

and benefits of prefetching indirect references we examine the performance of BUK when only direct refer-

ences are prefetched, and when both direct and indirect references are prefetched. In addition to the overall

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 75

extern int main() {
int i, j;
int key[8388777], key2[8388777], rank[8388777], keyden[524288];

/* Get the rank for each key */
bucksort(key, rank, keyden, 8388608, 524288);

/* Copy keys in sorted order into key2 */
for (i = 0; i <= 8388607; i++)
key2[rank[i]] = key[i];

/* Test if any keys are out of order */
j = 0;
for (i = 0; i <= 8388606; i++) {
if (key2[i + 1] < key2[i])
j = j + 1;

}
if (j == 0) printf("PASSED: 0 out of place.");
else printf("FAILED: %d out of place", j);

return 0;
}

extern int bucksort(int *key, int *rank, int *keyden, int n, int maxkey) {
int i;

/* Zero the keyden array */
for (i = 0; i < maxkey; i++)
keyden[i] = 0;

/* Count occurrences of each key (the ’key density’) */
for (i = 0; i < n; i++)
keyden[key[i]] = keyden[key[i]] + 1;

/* Create running sum (i.e. starting index) of keyden array */
for (i = 1; i < maxkey; i++)
keyden[i] = keyden[i] + keyden[i - 1];

/* Compute rank for each key */
for (i = 0; i < n; i++) {
keyden[key[i]] = keyden[key[i]] - 1;
rank[i] = keyden[key[i]];

}
return 0;

}

Figure 3.17. Source code (C representation) for BUK

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 76

100

O

43

D

34

B
Overall

22

O

17

D

21

B
Ranking

78

O

26

D

13

B
Copying

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

idle time
system prefetch overhead
system time
user time

Figure 3.18. Performance for different phases of BUK, normalized to the original, non-prefetching case
(O = original, D = with direct-only prefetching, B = with direct and indirect prefetching).

effects, we also consider the impact of prefetching indirect references in each phase of the program separately.

The results of these experiments are shown in Figure 3.18. In this figure, all bars have been normalized to

the original, non-prefetching execution time. The first set of three bars (labeled Overall) show the execution

time breakdown for the entire program for the original (O), direct-only prefetching (D), and both direct and

indirect prefetching (B) versions. From these bars, it can be seen that prefetching indirect references reduces

execution time by an additional 9% over direct prefetching alone. The second set of three bars shows what

happens during the ranking phase, while the final set of three bars shows what happens during the copying

phase of the program. During ranking, the indirect prefetches are for the keyden array, which is small com-

pared to the size of memory (only 2 MB) and is always found in core. In this phase, direct prefetching alone

is able to capture all the important references and the indirect prefetches merely introduce overhead with no

benefit. In the copying phase however, the indirect prefetches are for the key2 array, which is much larger

(33 MB). During this phase, a large number of important references are missed by only prefetching the direct

references. The additional overhead of filtering the indirect prefetches is amply offset by the reduction in I/O

stall time for the copying phase.

Ideally, we would like to be able to achieve the best of both worlds—avoid scheduling indirect prefetches

when the locality of the indirect references is good (as in the ranking phase) and issue indirect prefetches

aggressively when the locality is poor (as in the copying phase). This could potentially be accomplished by

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 77

� Original� With Prefetch

|
15

|
20

|
25

|
30

|
35

|
40

|
45

|
50

|
55

|
60

|
65

|
70

|
75

|
80

|
85

|
90

|
95

|
100

|
105

|0

|100

|200

|300

|400

|500

|600

|700

|800

|900

|1000

|1100

|1200

|1300

 Problem Size (MB)

 E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

� � �
� � �

� �
� �

�
�
� �

� �
�
� �

� � � �
� � � �

� � �
� � � �

� � � �

Figure 3.19. Performance of BUK (cold-started) across a range of problem sizes.

creating multiple versions of the loops (one in which indirections are prefetched and one in which they are

ignored) and choosing the best one to execute based on the dynamic conditions at run-time.

Crossing the In-core / Out-of-core Boundary In BUK, the amount of work to be done grows linearly with

the problem size. Ignoring page faults, we would normally expect the execution time to also increase linearly

with the problem size. To show how performance is affected when an application runs out of physical mem-

ory, we executed BUK with problem sizes ranging from roughly one quarter to twice the size of main memory

both with and without prefetching. The execution times for each problem size are plotted in Figure 3.19.

The original version of BUK (without prefetching) suffers a large discontinuity in execution time once the

problem no longer fits in memory (recall that our prototype has 64 MB of physical memory, with about 48 MB

available to the application). In contrast, the prefetching version of the code suffers no such discontinuity—

execution time continues to increase linearly. For this particular application, the prefetching version of the

code consistently outperforms the original code, since even small problem sizes benefit from prefetching cold

misses. (For BUK, it is more realistic to cold-start the application, since it must always read its input data

set from disk.) Hence this application exemplifies what we are attempting to accomplish with automatic I/O

prefetching: programmers can write their code in a natural manner and still achieve good performance, even

for out-of-core data sets.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 78

File System

pthreads

Transformed Application Code

Run−time Layer

Operating System
prefetch/release syscalls

Releaser
free pages

release processing

bit set for page?
Yes

discard

prefetch processing

Upper
Limit

(B
itv

ec
to

r)

No

PagingDirected Policy Module
read prefetched data

requests
release

lo
op

prefetch_block(addr, num, tag);

release_block(addr, num, priority, tag);

bit clear for page?
Yes

discard
No

Requests
to send to
OS

Sh
ar

ed
 P

ag
e

Current
Usage

Figure 3.20. Implementation of prefetching and releasing support on IRIX.

3.3 Experience with a commercial operating system: IRIX

Like HURRICANE, IRIX 6.5 is designed to run on high-performance multiprocessors, however unlike

HURRICANE, it does not have a microkernel design. Major subsystems in IRIX include scheduling, interpro-

cess communication, memory management and file systems. The overall structure of our implementation on

this platform is illustrated in Figure 3.20. We now take a detailed look at this implementation, focusing again

on the prefetch operation and its performance impact.

3.3.1 Implementation

We have implemented support for user-level paging directives (i.e. prefetch and release) within the

SGI IRIX 6.5 operating system. IRIX 6.5 supports a Memory Management Control Interface, which con-

sists of policy modules that allow users to select various policies for page size, allocation, migration, and

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 79

replication. A policy module may be connected to any range of an application’s virtual address space, down

to the level of a single page. We have defined a new policy module—called “PagingDirected”—that allows

a user-level process to invoke prefetch and release operations on pages of its address space associated with

this policy. In addition, the PagingDirected policy module shares information about memory usage with the

application through a single 16KB page. This page is allocated by the operating system and mapped read-

only into the application’s address space when the PagingDirected policy module is created. The page is

used primarily as a bitmap, indexed by virtual page number, in which bits are turned on to indicate that the

corresponding page is in memory, and cleared otherwise. We also use the shared page to convey additional

information to the run-time layer, such as the amount of memory still available and the current size of the

application’s resident set. We will examine how the run-time layer uses this information in Chapter 4.

When the PagingDirected policy module receives a request to prefetch a page, it performs actions similar

to those that occur for a page fault, with two notable exceptions. First, if there is no free memory available

to allocate for the prefetched data, the prefetch request is discarded immediately. Second, when the request

completes, the prefetched page is not fully validated and no entry is made in the TLB. The second feature

prevents mappings for prefetched (and not yet referenced) pages from displacing TLB entries which are still

in use.

Requests to release pages are handled by passing the released addresses to a new system releasing

daemon—called the releaser—which is similar in function to the paging daemon, but is specialized to re-

claim only the pages specified by the application. When a release request is made, the PagingDirected policy

module clears the bits for the pages and enters the request in the releaser’s work queue. The releaser handles

requests from each prefetching/releasing application as they are received, first checking the bit vector to make

sure that the pages have not been referenced again (either by a prefetch or a real reference) between the time

that the application made the request and the time that the request is handled. The releaser then performs

all actions needed to free the pages, including the allocation of swap space and writing back dirty pages if

necessary. Released pages are placed at the end of the free list, so that they will not be reallocated for another

purpose immediately. This strategy gives pages that were released too early a chance to be rescued from the

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 80

free list.

All updates to the shared page are handled by the operating system. When the PagingDirected policy

module is created, all bits in the shared page are initially set. When the application attaches the policy module

to a region of its virtual address space, the bits corresponding to those addresses are all cleared. Thereafter,

bits are turned on whenever a physical page is allocated for a virtual page associated with this policy module,

either due to prefetch requests or ordinary page faults. Bits are cleared when pages are reclaimed, either by

an explicit release request or due to default page replacement activity. Note that since the base page size in

IRIX 6.5 is 16KB, we are able to represent 2GB of memory using a granularity of one page per bit, which is

sufficient for a 32-bit address space. For 64-bit address spaces that are expected to be sparsely populated, a

multi-level bit vector scheme may be more appropriate than requiring a single bit to represent multiple pages.

To achieve the full benefit of prefetching, we need to be able to both fetch data asynchronously (so the

application can continue after issuing the prefetch) and take advantage of any available parallelism in the

underlying disk subsystem. The run-time layer accomplishes these requirements by creating a number of

Pthreads [29] that make the actual calls to the PagingDirected policy module and wait for the prefetches to

complete. When a prefetch request inserted by the compiler is intercepted by the run-time layer, the bitvector

is first checked to see if a prefetch is really needed. Then, if necessary, the request is placed on a work

queue and one of the prefetching threads is signaled to handle the request. The prefetching threads simply

remove requests from the queue and issue them to the PagingDirected policy. This Pthreads-based approach

to achieving asynchronous prefetching is very similar to the implementation of the asynchronous I/O library

in IRIX.

As with HURRICANE, extensive instrumentation was added to the IRIX memory management routines to

enable us to evaluate our approach.

3.3.2 Evaluation of IRIX Implementation

Having demonstrated the effectiveness of compiler-inserted I/O prefetching on a research platform, we

now focus on whether these significant performance gains can also be achieved on a modern commercial

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 81

Memory Required Original
% of Execution

Name Input Data Set Absolute Available Time (mins)
BUK 224 20-bit integers 206 MB 275% 9.5
CGM sparse matrix with 15,167,342 non-zeros 206 MB 275% 49.2

EMBAR 224 random numbers 134 MB 179% 8.4
FFT 256x128x128 matrix of complex numbers 235 MB 313% 28.3

MGRID 256x256x256 matrix 452 MB 600% 14.9
APPBT 5x5x64x64x64 matrices 189 MB 252% 37.3
APPLU 5x5x62x62x62 matrices 219 MB 292% 13.6
APPSP 110x110x110 matrices 213 MB 284% 74.9

Table 3.3. Application characteristics on IRIX.

100

O

58

P
BUK

100

O

44

P
CGM

100

O

57

P
EMBAR

100

O

59

P
FFTPDE

100

O

66

P
MGRID

100

O

75

P
APPBT

100

O

40

P
APPLU

100

O

89

P
APPSP

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

waiting for I/O
resource contention
system
user

Figure 3.21. Overall performance improvement from prefetching and releasing on IRIX (O = original, P
= with prefetching and releasing).

system—in this case, an SGI Origin 200 machine [36] running our modified version of IRIX 6.5. Since this

modern system has more available physical memory than the research platform we considered earlier (75 MB

vs. 48 MB, as discussed earlier in Section 2.4.1), we have increased the problem sizes of the NAS Parallel

benchmarks accordingly, as shown in Table 3.3.

Figure 3.21 shows the results of our experiments, where execution time is once again broken down into

four categories. Just as before, the top section is I/O stall time, the bottom section is user mode time, and the

middle two sections are system mode time. In contrast with our HURRICANE experiments, however, these

latter two components are now broken down into time spent executing system code (system), which in this

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 82

case is primarily time spent in the fault handling code, and time spent waiting for resources held by other

processes (resource contention) such as locks, the CPU, memory, etc.

As we see in Figure 3.21, most of the applications are enjoying large performance gains as a result of

compiler-inserted I/O prefetching on this commercial system. In six of the eight cases (BUK, CGM, EMBAR,

FFT, MGRID, and APPLU), the I/O stall times have been reduced by 50% to 99%, thus resulting in overall

program speedups ranging from 34% to over twofold. In the other two cases (APPSP and APPBT), I/O stall

times are reduced by only 11% to 25%, resulting in more modest overall program speedups. While a direct

comparison with the earlier HURRICANE experiments would be meaningless because so many parameters

have changed (e.g., the hardware, the system software, the application inputs, etc.), we nevertheless observe

the same general trends. Note that APPLU shows much greater benefit on the IRIX system, however. The

poor performance on HURRICANE was the result of a default compiler option that limited code growth and

prevented the prefetching transformation from being applied in one critical routine. This limit was increased

for the IRIX experiments, allowing us to obtain a better indication of APPLU behavior with prefetching.

In all cases, we observe in Figure 3.21 that system overheads (i.e. system time and resource contention

combined) actually decrease once we add prefetching and releasing. There are two reasons for this. First,

prefetch requests are serviced by separate threads (implemented using Pthreads [29], as discussed earlier in

Section 3.3) that can potentially run on other processors, since the Origin 200 is a multiprocessor. Hence

some of the system software overhead associated with servicing page faults can potentially be overlapped

with useful computation. Second, by using release operations to keep a sufficient amount of physical memory

free, we can avoid resource contention with the system paging daemon as it tries to determine which pages it

should reclaim. (A detailed analysis of this latter effect was published recently [10].) While the reduction in

I/O stall time is the dominant effect in improving performance, many applications also benefit significantly

from these overhead reductions.

To help gain further insight into the performance of these applications on IRIX, Figure 3.22 shows a

breakdown of how prefetching affected the original page faults. It is interesting to compare this graph with

Figure 3.12(a), which showed the same breakdown for the HURRICANE experiments. As expected, the frac-

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 83

BUK CGM EMBAR FFTPDE MGRID APPBT APPLU APPSP
0

20

40

60

80

100

%
 o

f O
ri

gi
na

l F
au

lts

non-prefetched fault
prefetched fault
prefetched hit

Figure 3.22. Impact of prefetching on the original page faults under IRIX.

tion of original page faults that the compiler failed to prefetch (i.e. the non prefetched fault category) is quite

similar across the two systems, since it largely reflects limitations in the compiler analysis that are common

across both platforms (with the exception of APPLU, where prefetching on HURRICANE was restricted due

to code growth limits as described earlier). The most noticeable change between the HURRICANE and IRIX

experiments is the relative fraction of prefetches that were early enough (i.e. prefetched hit) versus too late

(i.e. prefetched fault). Comparing Figure 3.22 with Figure 3.12(a), we see that more of the prefetches on the

IRIX platform were not launched early enough, and thus failed to hide all of the page fault latency. The reason

is that we have a significantly larger relative disk latency on the Origin 200, due to its much faster proces-

sors, which is harder to hide fully. Problems with late prefetches in the HURRICANE experiments that were

already apparent in Figure 3.12(a)—as discussed in Section 3.2.2—tend to be amplified, and are exposed in

new places. The most dramatic example of this effect is CGM: roughly 23% of the prefetches are issued too

late under IRIX, while they were nearly perfect under HURRICANE. To overcome this limitation, the compiler

must do a better job of using software pipelining to schedule prefetches early enough in the presence of small

or statically unknown loop bounds. Despite these late prefetches, however, we are still achieving impressive

performance gains for the majority of the applications, confirming that compiler-inserted I/O prefetching is

an effective technique for accelerating out-of-core applications, even on state-of-the-art commercial systems.

CHAPTER 3. IMPACT ON OUT-OF-CORE APPLICATIONS 84

3.4 Lessons and Limitations

From our experiences with the two implementations of our design for compiler-directed I/O prefetching

described in this chapter, we extract the following lessons:

• The overall design and distribution of responsibilities is effective. Sharing information between the

system components enables better decisions than would be possible using the information available to

any single component in isolation.

• A user-level dynamic adaptation layer is critical for achieving good performance. Although very ef-

fective in many cases, the compiler analysis will never achieve perfect static prediction, and it is too

expensive to consult the operating system to resolve each mistake.

• Complicated operating system memory management policies are not required. Simple support allow-

ing applications to specify their own needs, combined with exposing information to the user-level, is

sufficient.

In the cases where our system failed to hide the I/O latency completely, we have repeatedly found that the

compiler analysis is hampered by the need to choose a single code transformation with incomplete informa-

tion (due to symbolic loop bounds, varying memory availability and other compile-time unknowns). While

dynamic adaptation is a key component of our system, our run-time layer is only able to react to requests

inserted by the compiler. In the case of prefetches, if the compiler fails to insert a request for a given refer-

ence, or fails to schedule the request early enough, the run-time layer cannot correct the situation. To address

this limitation, the compiler needs to generate code so as to effectively defer the scheduling of prefetches

until run-time, which is the subject of Chapter 5. In the case of releases, the compiler may insert a request

for a given reference too early. We address this in Chapter 4, where we describe extensions to the compiler

algorithm which allow the run-time layer to buffer release requests until they are needed, and then prioritize

them based on their inherent reuse characteristics.

Chapter 4

Performance in Multiprogrammed

Environments
Prediction is very difficult, especially about the future. — Niels Bohr

In the first part of our evaluation (Chapter 3), our focus was on using prefetching to hide the I/O latency of out-

of-core applications running on a dedicated machine. In this chapter, we focus on using release operations

to manage physical memory intelligently within a multiprogramming workload that includes an out-of-core

application. This problem is important for three reasons. First, we may be able to leverage our knowledge of

access patterns (extracted via compiler analysis) to implement application-specific replacement policies. By

managing main memory more efficiently, demand on the I/O subsystem can be reduced, allowing prefetching

to be more effective. Second, we can reduce the amount of work performed by the page daemon by explicitly

identifying pages that can be freed. By replacing work done by the paging daemon at run-time with work

done at compile-time, we can spend more time executing user programs instead of the page daemon. Third,

we can limit the amount of memory consumed by the out-of-core program, leaving more memory pages free

for use by other applications.

Although we included the release operations for the results in Chapter 3, we did not attempt to improve

85

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 86

on the compiler analysis dynamically, beyond filtering out releases for pages that were not in memory. On the

HURRICANE platform, for stand-alone out-of-core applications, explicitly releasing memory did not result in

a significant performance benefit over prefetching alone. The benefits of releases on the IRIX platform are

quite different, and we explore them in detail in this chapter.

We begin our discussion in Section 4.1 by examining why out-of-core programs cause problems for the

default memory management policies of operating systems, especially when mixed with interactive tasks that

have very different characteristics. We then briefly consider some alternatives for addressing this problem

in Section 4.2, and advocate a pro-active approach in which out-of-core programs are given the ability to

control their own memory usage. Details of our compiler algorithm for explicitly releasing pages are given in

Section 4.3 and the extensions to the operating system and run-time layer in Sections 4.4 and 4.5, respectively.

The impact of the release operation on the out-of-core and interactive application performance is the subject

of Section 4.6; out-of-core performance is studied in Section 4.6.2, the effectiveness of the release operation

is studied in Section 4.6.3 and the effect on concurrently executing interactive applications is examined in

Section 4.6.4. We end the chapter by summarizing the main results in Section 4.7.

4.1 Issues with Interactive Applications

In the previous chapter, we demonstrated that out-of-core applications can achieve excellent performance

on a dedicated machine, however, it would be far more cost-effective if these tasks could coexist with other ap-

plications in a multiprogrammed environment. Unfortunately, out-of-core tasks have the potential to severely

degrade the performance of other tasks which are attempting to use the machine at the same time. This

problem arises because operating on massive data sets consumes physical resources (memory and disk band-

width) at a rapid rate, displacing the working sets of other applications and increasing their page fault service

times. To make matters worse, successful prefetching causes physical resources to be consumed even faster,

increasing the negative impact on other applications.

In many cases, the excessive resource consumption by out-of-core tasks is caused not by inherent re-

source requirements, but rather by sub-optimal resource management policies in the operating system. While

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 87

 With Out-of-Core that Prefetches
 With Out-of-Core (Original)
 Alone

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|50

|100

|150

|200

|250

|300

|350

|400

 Sleep Time (secs)

 R
es

po
ns

e
Ti

m
e

(m
se

cs
)

Figure 4.1. Impact of sharing the machine with an out-of-core matrix-vector multiplication (MATVEC)
on the response time of an interactive task across a range of sleep times between touching 1 MB of
data.

the default policies perform well in most cases, they are poorly suited to the demands of memory-intensive

programs. For instance, most commercial operating systems use a global page replacement algorithm, which

allows pages to be stolen from any application to satisfy page faults. Various approximations of a least-

recently-used (LRU) policy, or the well-known clock algorithm [15] are common. Interactive tasks are

particularly vulnerable in such an environment since they are unable to defend their memory effectively.

Consider an editor program which may have no memory system activity for several seconds while it waits for

user input. A program computing the inner product of two out-of-core vectors could easily sweep through all

of physical memory in this time, stealing pages from the editor as they move to the head of the LRU queue.

In this case, the out-of-core computation could have achieved the same performance using only two pages of

physical memory, allowing the editor to retain its pages and remain responsive regardless of the intervening

delay.

To illustrate the impact of out-of-core applications on interactive performance, we ran the following

experiment on a 4-processor SGI Origin 200 configured to have approximately 75 MB of memory available to

user programs. A simple program emulates the memory system behavior of an interactive task by repeatedly

touching a 1 MB data set, then sleeping for a fixed amount of time. By varying the amount of sleep time we

can control the frequency with which each page of the “interactive” task is accessed. The “response time” is

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 88

the time to touch the entire data set. This program is run concurrently with one that repeatedly performs a

matrix-vector multiplication on an out-of-core data set (400 MB). The results are shown in Figure 4.1. With

no sleep time, the “interactive” task defends its memory extremely well, achieving the same response time as

on a dedicated machine. As the sleep time increases, however, the task incurs an increasing number of page

faults and the response time rises. When the out-of-core program uses prefetching, the response time of the

interactive task begins to increase at much shorter sleep times, grows much faster, and rises to a higher level.

Prefetching combined with global replacement puts the interactive task at a serious disadvantage.

In recognition of the shortcomings of existing operating system policies, a significant amount of recent

research has focused on customizable operating systems (as discussed in Section 1.2.5). While a customiz-

able operating system could provide the flexibility to tailor the resource management policies for out-of-core

codes, our results in this thesis demonstrate that we can achieve the desired outcome (i.e. customizable be-

havior) in this particular case through relatively modest extensions of today’s commercial operating systems.

The role of the operating system continues to be the global allocation of resources across all applications,

while the role of each out-of-core application (via the compiler and run-time layer) is to effectively manage

the resources it has been granted.

4.2 Alternatives for Memory Management

The goal of a virtual memory management system in a multiprogrammed environment is to share the

physical memory resources among all the competing applications. Most operating systems provide policies

that perform well in the common case, but exhibit bad behavior when a memory-intensive program is sharing

the machine with others. In this section we discuss why it may be beneficial to give demanding applications

control over their own memory management, and examine some forms such control could take.

4.2.1 Global vs. Local Replacement

An out-of-core task can degrade the responsiveness of an interactive task because global replacement

policies select victims from among all the pages in the system without regard to ownership. In contrast,

a local page replacement strategy helps to isolate each process from the paging activity of others. Each

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 89

process is allocated a fixed set of physical pages and a victim is selected from among them as needed.

Thus, interactive tasks would not have to worry about losing pages to a demanding out-of-core program.

Unfortunately, poor memory utilization may occur, as pages are not allocated to processes according to

their need. Attempting to determine the right number of pages to allocate to each process and dynamically

adjusting this number during execution can improve memory usage but greatly complicates the operating

system. A second, and more serious problem, with dynamically adjusting the allocations is that out-of-core

programs may still be allocated too many pages at the expense of interactive tasks. For instance, re-allocation

strategies based on page fault frequency [14] could be fooled by the consistently-high page fault rate of an

out-of-core application. In practice, most workstation operating systems use global page replacement.

Although local replacement policies can help to insulate processes from each other, they may not pro-

vide the best replacement policy for each application. Rather than altering the overall strategy employed by

the operating system, it is preferable to modify individual applications so that their competition for phys-

ical resources better reflects their actual needs. This approach enables applications to improve their own

performance through local replacement decisions that are superior to those used by the operating system.

The largest drawback of specializing applications to do memory management is the burden placed on the

programmer; however, in our framework all the necessary modifications are performed automatically by the

compiler.

4.2.2 Application-Managed Replacement

Giving specialized applications more control over their own memory management to improve their per-

formance has been suggested before. For instance, the Mach operating system supports external pagers to

allow applications to control the backing storage of their memory objects [44]. Extensions to the external

pager interface have been used to implement user-level page replacement polices [38], and to support dis-

cardable pages (i.e. dirty pages that do not need to be written to backing store) [51]. In contrast, our approach

shows that specialized applications can and should exploit extra control for the benefit of other applications

executing concurrently. This is especially true for programs that use prefetching to improve their own perfor-

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 90

mance since the gains they enjoy impose a heavy penalty on other processes sharing the system. In this case,

the operating system could require that prefetching applications also explicitly release pages.

Given that application-controlled memory management is desirable, one possibility is for the operating

system to allow applications to choose from a small set of “reasonable” replacement policies. This strategy

does not require much effort on the part of the application programmer, but also does not provide a great deal

of power or flexibility. Another possibility is for the operating system to provide a more general interface that

allows applications to explicitly specify which of their pages can be reclaimed. This approach is preferable

since individual applications can implement a variety of replacement policies tailored to their specific needs.

Application management of memory resources through an interface that allows individual pages to be

specified can be either reactive or pro-active. In a reactive approach, the operating system notifies the appli-

cation when one or more of its pages is about to be reclaimed. The application can then implement its own

replacement policy by telling the system which pages to take. This is essentially the approach taken by the

VINO page eviction extension [47], for example. A reactive system benefits applications that can make better

replacement decisions than the default operating system policy, and has the advantage of delaying the deci-

sion until memory actually needs to be reclaimed. Unfortunately, it will not help isolate other applications

from a memory-intensive one—the operating system still decides which processes should give up pages.

In a pro-active system, an application returns pages to the system before they are strictly required, either

as soon as they are no longer needed or based on some other criteria such as the amount of free memory.

A pro-active approach can obviate the need for the operating system to steal pages by increasing the global

pool of free memory, thus providing benefit to all applications sharing the system. Of course, the pro-active

approach is not without potential cost to the application using it. If the decision to release memory is made

without full knowledge of future accesses, as is typically the case, then the application may give up pages

that are still useful.

Our system allows applications to pro-actively return memory to the system on a page-by-page basis, for

the mutual benefit of themselves and other concurrently executing applications, without placing any addi-

tional burden on the programmer. We now describe the extensions to each of the three parts of our system

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 91

(the compiler, the run-time layer and the operating system) that are needed to support the effective use of the

release operation.

4.3 Compiler Support

To determine whether a given page should be released at a particular point, the compiler attempts to

answer the following questions. First, will the page be referenced again in the future (i.e., does the reference

have reuse)? If not, then a release hint is inserted. Second, is the number of other unique pages that will

be accessed before the page is reused less than the expected amount of available memory (i.e., is there also

locality)? If not, then the page is unlikely to remain in memory, and a release hint is inserted. Otherwise,

release hints are not inserted.

4.3.1 Complications with Generating Release Requests

There is a certain duality between the analysis for inserting prefetches and releases. In both cases, the

compiler attempts to model when pages are being reused, and whether enough intervening accesses exist

between these reuses to cause displacement. For prefetching, the question is whether a given page has

remained in memory since its last use (if so, we do not need to insert a prefetch hint for it); for releasing, the

question is whether a given page will remain in memory until its next reuse (in which case we do not want

to release it). One difference, however, is that prefetching uses this analysis only to minimize overheads—

the latency-hiding benefit of prefetching depends only on scheduling prefetches early enough—whereas the

benefit of release hints depends directly on the quality of this reuse analysis.

Ideally, the compiler would be able to analyze the data accesses perfectly and insert these paging directives

precisely where they are needed. However, this ideal is not realistic for the following two reasons. First, one

cannot always predict memory access patterns with only static information. They may depend on run-time

parameters (such as the problem size for the current run) or be data-dependent (such as the indirect references

that often occur in sparse-matrix programs, e.g., a[b[i]]). While it is possible to issue prefetches for

indirect references [21, 40], it is not possible to reason statically about any reuse that they may have, and hence

it is not clear that the compiler can generate useful release hints for them. The second major limitation of the

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 92

(a) Source code for averaging nearest-neighbors
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
a[i][j] = (a[i+1][j-1] + a[i+1][j]

+ a[i+1][j+1] + a[i][j-1] + a[i][j]
+ a[i][j+1] + a[i-1][j-1] + a[i-1][j]
+ a[i-1][j+1])/9.0;

(b) View of data references to the matrix a

Trailing reference
a[i-1][j-1]

a[i][j]

j

i

Leading reference
a[i+1][j+1]

Leading edge
references

Figure 4.2. Example source code showing multiple references with different types of reuse, and graph-
ical view of the data accesses during a single iteration of the innermost loop.

compiler is that it decides when reuse will result in locality based on an assumption of how much memory

will be available to the application at run-time. In a multiprogrammed environment, such assumptions may

be wildly inaccurate, especially since the amount of available memory may fluctuate dynamically during

execution.

For these reasons, it may be undesirable to actually release a page at the point where the compiler has

inserted the corresponding release hint. Instead, the run-time layer should collect information about pages

that could be released, according to the compiler-generated addresses, and actually perform the releases only

when necessary. In addition to the addresses of releasable pages, the compiler should include some indication

of whether it believes the released pages will be used again or not.

4.3.2 An Example of Data Reuse and the Effect on Releases

To help illustrate these concepts, we now present a simple example. Figure 4.2(a) shows the source code

for a calculation that averages an element of a matrix with its neighbors, while Figure 4.2(b) depicts the data

elements that are touched during a single iteration of the innermost loop. The references have temporal reuse

along the i dimension (since the items accessed at a[i+1][*] are touched again in the next iterations of

the i-loop). There is spatial reuse along the j dimension, and there may also be spatial reuse along the i

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 93

dimension, depending on the length of the rows.

We can identify two major working sets in this access pattern. At the smallest level, we need to hold the

leading edge of the data access square (those references indexed by j+1) in memory, requiring at most one

page for each of the three references on this edge. Except at page boundaries, the references indexed by j-1

will fall on the same page as this leading edge due to spatial reuse. We therefore need at most six pages to

fully exploit the spatial reuse along the j dimension. The second level working set exploits the temporal reuse

along the i dimension, requiring us to hold three rows of the matrix in memory, so that the row first indexed

by i+1 in one iteration will still be available for the i and i-1 references in the subsequent iterations. Of

course, there is also a third level, which corresponds to keeping the entire matrix in memory.

The compiler can determine precisely which references to prefetch and release if it has the dimensions

of the matrix and a good estimate of the physical memory available. To successfully exploit the reuse across

iterations of the i loop, we need to retain three rows of the matrix in memory. If this is possible, then a

prefetch will be inserted only for the leading reference, a[i+1][j+1], and a release will be inserted for the

trailing reference, a[i-1][j-1]. This corresponds to keeping the second level working set in memory. If

the amount of memory needed to hold three rows is less than the amount available, the compiler will instead

decide to prefetch all three references on the leading edge of the data access square (i.e. the a[i+1][*]

references) and release the references on the trailing edge, corresponding to the first level working set. If the

dimensions of the matrix are unknown at compile-time, the compiler must choose between these two options.

Since over-estimating the ability of memory to retain data leads to missed opportunities (both for prefetching

and releasing), it is preferable to assume that only the smallest working set will fit in memory. The run-time

layer is responsible for reducing the overhead of unnecessary operations that result.

4.3.3 Implementation of Compiler Analysis

Our previous discussion of the compiler implementation in Section 3.1 described how reuse and locality

analysis is used to identify references that should be prefetched and released, and how these operations are

scheduled using loop splitting and software pipelining techniques. Here, we describe how that implemen-

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 94

tation was extended to also encode reuse information into the release hints, allowing the run-time layer to

choose which pages to release first. Note that for indirect references (e.g., a[b[i]]), we do not insert a

release request since it is too hard to predict whether the data will be accessed again.

In addition to identifying the addresses of data that can be released, the compiler also indicates whether

the data has temporal reuse, and how soon the reuse is expected, based on the reuse analysis. (Recall that

releases may be generated because the reuse is not expected to result in locality). The reuse information is

encoded as a priority value which is passed as a parameter in the release requests; larger numbers represent

references with earlier reuse—i.e. those which we would most prefer to retain in memory. The release priority

is calculated as follows. Let depth(i) denote the depth of loop i, with the outermost loop nest having a depth

of 0. Let temporal(x) be the set of nested loops in which reference x has temporal reuse. The release priority

is computed by the following equation:

priority(x) =
∑

i ∈ temporal(x)

2 depth(i) (4.1)

The run-time layer can use this information to prioritize which pages are actually returned to the system when

the memory usage approaches the upper limit, attempting to retain those pages that will be reused earlier to

reduce the total amount of paging.

Figure 4.3 shows an example of the output of our compiler for a set of loops that repeatedly perform

a matrix-vector multiplication. The compiler analysis has determined that references to the b array have

temporal reuse with respect to both the i-loop and the iter-loop, but that this reuse is not expected to result

in locality since the volume of data accessed between reuses is more than the memory size parameter. In

contrast, references to the a array have temporal locality with respect to the iter-loop only. Both array

references have spatial reuse (and locality) causing the compiler to schedule prefetches for the first reference

to each page, and releases after the last reference to each page. Using equation (4.1), a release priority of 1 is

assigned to the releases for the a array, and a priority of 3 is assigned to the releases for the b array, indicating

that b’s pages will be reused before a’s pages. Neither prefetches nor releases are inserted for the c array

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 95

(a) Original Code

int a[100][1000000];
int b[1000000];
int c[100];

for (iter = 0; iter < 10; iter++)
for (i = 0; i < 100; i++)
for (j = 0; j < 1000000; j++)
c[i] = c[i] + a[i][j]*b[j];

(b) Code with Prefetch and Release

for (iter = 0; iter < 10; iter++) {
for (i = 0; i < 100; i++) {
prefetch block(&a[i][0], 56, 1, 0);
prefetch block(&b[0], 56, 3, 3);
for (j1 = 0; j1 < 770048; j1 += 16384) {
prefetch release block(&a[i][245759 + j1],

&a[i][j1-16384], 4, 1, 2);
prefetch release block(&b[245759 + j1],

&b[j1-16384], 4, 3, 5);
for (j = j1; j < j1 + 16384; j++)
c[i] = c[i] + a[i][j]*b[j];

}
for (j = 770048; j < 1000000; j++)
c[i] = c[i] + a[i][j]*b[j];

release block(&a[i][770048], 56, 1, 1);
release block(&b[770048], 56, 3, 4);

}
}

Figure 4.3. Example of the output of the prefetching compiler. Arguments are: (prefetch address,
release address, number of 16KB pages, release priority, request identifier)

since this item is smaller than a page and is expected to remain in memory.

4.4 Implementation of Operating System Support for Release

As described in Section 3.3.1, the operating system handles the prefetch and release requests, and main-

tains the shared page which is used primarily as a bitmap, indexed by virtual page number, in which bits are

turned on to indicate that the corresponding page is in memory, and cleared otherwise. To allow the run-time

layer to make intelligent choices about when to release memory, the operating system also uses the shared

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 96

page to indicate the current number of pages in use by the process, and the upper limit on pages that the

process should be using. The first two words in the shared page are reserved for this purpose.

The estimates of current and maximum usage are updated only when the process experiences some type of

memory system activity, rather than every time the information changes. One consequence of this approach

is that an application’s upper limit may drop dramatically if another process begins using memory (reducing

the total free memory in the system), but the first process will not be informed of this change until it issues

a prefetch/release request, page faults, or has memory stolen from it. The alternative approach of immediate

updates would require the operating system to either maintain a list of processes that should be informed, or

to scan the list of all processes each time the amount of free memory in the system changes. This additional

expense does not appear to be justified.

4.4.1 Setting the Memory Limit

The goal in setting the upper limit on memory usage is to prevent the default page replacement policies

from being activated, if at all possible. IRIX provides a number of tunable system parameters that control

when pages will be stolen; these parameters can be also used by the PagingDirected policy module in an

effort to prevent such activity. First, the maximum number of pages that any process can have resident in

memory (max rss) can be set. If a process exceeds this limit, the system paging daemon will attempt to trim

physical pages from it. Second, the minimum number of pages that should be kept free (min freemem) can

be set. If total free memory falls below this limit, the paging daemon will steal pages from all processes in

the system according to an approximation of an LRU policy.

If physical memory is ample, it is sufficient to tell the process to remain below max rss. When memory is

limited, the process should be encouraged to use no more than its current memory usage (current size), plus

the amount of free memory in the system (tot freemem), less min freemem. The recommended upper limit on

memory usage in our system is thus given as follows:

upper limit = min(max rss, (current size + tot freemem− min freemem)) (4.2)

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 97

Note that in setting this upper limit we are not guaranteeing that the application will be able to allocate this

many pages for itself. Instead, the upper limit is an indication of the number of pages for which the application

is allowed to compete. Pages that have already been allocated to another process are not part of the global

free memory pool and thus may not be acquired by the prefetching application. One result of this decision is

that the upper memory limit is a moving target which is dynamically adjusted as the total demand for physical

memory by all applications changes. Thus, the OS does not try to determine the “right” amount of memory

to allocate to each process, it simply tells interested processes how much memory is still available.

4.5 The Run-Time Layer Support

The role of the run-time layer is to use the information provided by the operating system and the compiler

to answer the following questions: When should memory be returned to the operating system? How many

pages should be released? Which of the “releasable” pages should actually be given up?

The decision of when to release memory depends primarily on how close the application is to the upper

limit on memory usage suggested by the operating system. The decision of how much memory to release is

more complicated. The run-time layer needs to balance the desire to remain below the operating system limit,

the desire to retain as much memory as possible, and the desire to perform release operations as infrequently

as possible to minimize overhead. For example, suppose the run-time layer detects that the application is

close to its upper memory limit, and has knowledge of 1000 pages that could be released. By releasing all

of these pages, the run-time layer increases the amount of time before it will have to act again, but it may

have given up pages that would be used again in the future by acting too aggressively. The run-time layer

should also consider the application’s expected future need for memory when deciding how much to release.

If the application is close to the upper memory limit, but only needs a small number of additional pages, the

run-time layer may not need to release memory at all. Finally, once the run-time layer has determined that a

release is necessary, and has decided how many pages to release, it must choose which pages should actually

be returned to the operating system. This decision depends on the expected future use of these pages; the

run-time layer’s choice should be guided by information from the compiler.

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 98

File System

Requests
to send to
OS

pthreads

Transformed Application Code

Run−time Layer

Operating System
prefetch/release syscalls

Releaser
free pages

Handle Release

bit clear for page?

new address for tag?
No

No

Simple Checks Yes
discard

No
discard

release processing

Yes

bit set for page?
Yes

discard

prefetch processing

Upper
Limit

(B
itv

ec
to

r)

No

PagingDirected Policy Module
read prefetched data

requests
release

lo
op

prefetch_block(addr, num, tag);

release_block(addr, num, priority, tag);

part
(b)

seeYespriority zero?

add to release queues
release buffered if memory low

Sh
ar

ed
 P

ag
e

Current
Usage

(a) Processing of prefetch and release requests in the run-time layer.

	
	
	
	
	
	
	
	
	
	
	
	
�
�
�
�
�
�
�
�
�
�
�
�

0

1

2

3

4

5

0

1

2

3

4

release queues

Issued
to OS

Sample release requests being handled
release_block(addr1, num1, 3, tag1);
release_block(addr2, num2, 3, tag2);
release_block(addr3, num3, 0, tag3);
release_block(addr4, num4, 1, tag4);

buffered release addressestags

priority list

(b) Buffering of release requests using tags and priorities assigned by the compiler.

Figure 4.4. Handling prefetches and releases at run-time.

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 99

There are two situations that may arise from the compiler analysis. First, the compiler may have inserted

release hints because it has determined that the page will not be reused again. The run-time layer should

release these pages before any pages that are known to have reuse. Second, the compiler may have detected

that data reuse existed, but inserted release hints anyway because the volume of data accessed between reuses

was expected to flush the page from memory. For these pages, the run-time layer should perform releases

according to the intrinsic data reuse (which can be revealed by the compiler), attempting to keep as much

data in memory as possible for the subsequent accesses. For instance, suppose the application is repeatedly

accessing an array that is much larger than physical memory. The run-time layer can implement most recently

used (MRU) replacement once the memory usage approaches the upper limit set by the operating system, thus

keeping at least the first portion of the array in memory for future use.

4.5.1 Implementation Details

Figure 4.4 illustrates how prefetches and releases are processed by the run-time layer. Part (a) of the figure

is the same as Figure 3.20, except that the release processing component has been expanded. In Figure 4.4(b),

we illustrate the use of priority values and queues to buffer releasable pages in the run-time layer.

The same set of pthreads which handle prefetch requests are also used to actually issue the release requests

to the operating system. We have built run-time layers which implement two different policies for handling

the release requests inserted by the compiler—one aggressively issues release requests to the operating system

at the time when they are encountered—this is the policy that was used for the results in Chapter 3. The second

policy buffers releases based on the compiler-inserted priorities and only issues requests when necessary,

based on the information provided by the operating system. By comparing these two approaches, we can

evaluate the usefulness of buffering release requests in the run-time layer rather than simply relying on the

compiler analysis.

In both cases, the run-time layer attempts to reduce overhead by filtering out the obviously bad releases

inserted by the compiler. There are two ways in which these bad releases are detected. First, the requests

inserted by the compiler are checked against the bitvector to make sure that the pages are in memory. Second,

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 100

the run-time layer tracks the last address released for each unique release directive placed in the code, using

the request identifier (or tag) generated by the compiler. The first release request for any tag is recorded until

the next request for that tag is issued. If a release request identifies the same page as the previous request, it

is dropped since the page is obviously still in use. If instead, the current release request identifies a different

page, then the previously recorded release is actually handled and the current one is recorded. The releases

issued by the run-time layer are thus always one or more iterations behind those identified by the compiler.

Handling a previously recorded request involves either placing it in a release queue (if buffering is being

used), or issuing it to the operating system. Programs with loop nests that have unknown bounds often cause

the compiler to generate overly-aggressive code, and these simple checks help to reduce the overhead of

releasing pages that are still in active use.

Figure 4.4(b) shows how release requests are buffered. Requests with no reuse (i.e. a priority of 0) are

issued to the OS after passing the simple checks. Other requests are stored in release queues indexed by their

tags, allowing multiple buffered releases for a particular reference to be coalesced into a single entry in the

queue. When the first release for a tag is seen, the priority value is used to index into the priority list where

a pointer is set to the release queue for that tag. The priority list can hold pointers to multiple queues having

the same priority. When a release request is placed into one of the queues, the current memory usage and

memory limit are checked. If the current usage is close to the limit, the priority list is used to issue releases

from the lowest-priority queues. Requests are issued from all queues at the same priority level in a round-

robin fashion. Currently, the run-time layer attempts to release a total of 100 pages whenever releasing is

deemed necessary.

As we will show in Section 4.6, even the simple strategy of always issuing the releases improves the

performance of the prefetching out-of-core application over prefetching alone, while simultaneously keeping

memory free for other applications in most cases. When there is temporal reuse in an application, however,

the advantages of prioritizing releases become clear.

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 101

Table 4.1. Description of applications.

Memory Orig
Required Exec.
(and % of Time

Name Description Input Data Set Available) (mins)

BUK integer bucket 2
24 20-bit 206 MB 13.5

sort algorithm integers (275%)
40k x 40k

CGM sparse linear sparse matrix, 206 MB 16.2
system solver ∼15M non-zeros (275%)

EMBAR monte-carlo 2
24 random 134 MB 13.8

simulation numbers (179%)
FFTPDE 3-D FFT PDE 256x128x128 235 MB 34.2

complex matrix (313%)
computes 3-D

MGRID potential using 256x256x256 452 MB 23.9
multigrid solver matrix (600%)

MATVEC matrix-vector 102 x 106 matrix, 404 MB 11.1
multiply 106 vector (539%)

4.6 Experimental Results

To evaluate the concepts presented in this chapter, we ran several out-of-core applications with the sim-

ulated interactive task described in Section 4.1. The platform used to obtain these results is our commercial

system, IRIX, described in Section 2.4.3. We begin with a look at the impact of prefetching, alone and with

both aggressive releasing and release buffering, on the execution time of the out-of-core program. To explain

the basic performance results, we will then take a closer look at the effectiveness of the release operation

by examining the activity in the virtual memory subsystem. Finally, we evaluate the usefulness of explicitly

releasing memory for improving the response time of the interactive task.

4.6.1 Benchmarks

We performed our experiments using out-of-core versions of five applications taken from the NAS Parallel

benchmark suite [6] as well as a matrix-vector multiplication kernel (MATVEC). The code for MATVEC was

shown earlier in Figure 3.1(a). We have increased the data sets of the NAS benchmarks to make them larger

than the available memory on our system. Other than increasing the data set sizes, we did not modify these

applications by hand in any way—all prefetch and release operations were inserted automatically by our

compiler pass.

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 102

Table 4.1 summarizes the characteristics of these applications; each exhibits different data access be-

havior. EMBAR has only one-dimensional loops, while MATVEC has multi-dimensional loops with known

bounds. For both, the compiler analysis is essentially perfect and excellent results are obtained for both the

benchmarks themselves and the interactive task. BUK and CGM are more difficult cases, as they involve both

unknown loop bounds and indirect references, both of which reduce the compiler’s ability to analyze the data

accesses. Nonetheless, the run-time layer is able to adapt the behavior based on dynamic conditions and

excellent results are again achieved. MGRID and FFTPDE are the most difficult cases. Both involve multi-

dimensional loops with unknown bounds. In MGRID the loop bounds change dynamically on different calls

to the same procedures, making it impossible to release memory optimally in all cases, since we only gener-

ate a single version of the code. In FFTPDE, the access stride changes within a set of loops, making it seem

as though the access is not dependent on the loop induction variable. This causes the compiler to identify

some releases as having reuse when in fact none exists. Ultimately, the solution to the problems experienced

by MGRID and FFTPDE is to generate more adaptive code, and specialize the loops at run-time according to

dynamic conditions. Even without this extra sophistication, MGRID performs better with releases and can

significantly reduce (although not eliminate) its negative impact on interactive response time. In Chapter 5,

we consider how improvements to the compiler scheduling algorithm can generate code that adapts better to

dynamic conditions, improving the usefulness of both prefetching and releasing.

4.6.2 Performance of the Out-of-Core Applications

The goal of I/O prefetching is to improve the execution time of out-of-core applications by hiding the page

fault latency. The goals of explicitly releasing memory are to reduce the number of page faults in out-of-core

programs by making better replacement decisions, to reduce the interference caused by the OS selecting

victims for replacement, and to alleviate the impact of out-of-core programs on other applications sharing the

same system. We begin by examining how well our scheme achieves these goals from the perspective of the

out-of-core applications.

In Figure 4.5, we show the execution times of the out-of-core programs, normalized to the original case.

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 103

100

O

114

P

69

R

72

B
BUK

100

O

83

P

40

R

39

B
CGM

100

O

79

P

61

R

61

B
EMBAR

100

O

84

P

61

R

76

B
FFTPDE

100

O

85

P

68

R

66

B
MGRID

100

O

81

P

110

R

56

B
MATVEC

0

20

40

60

80

100

120
N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

waiting for I/O
resource contention
system
user

Figure 4.5. Impact of prefetching and releasing on the execution times of the out-of-core applications.
(O = original, P = with prefetching, R = with prefetching and releasing, B = with prefetching and release
buffering)

For each benchmark we show four bars: the original, unmodified program (O), the program compiled to

use prefetching only (P), the program compiled to use both prefetching and aggressive releasing (R), and

the program compiled to use both prefetching and release buffering (B). Each bar is broken down into four

components. The top section is the time that the program was stalled waiting for I/O. The next component is

the time that the process was stalled waiting for unavailable resources, including physical memory, memory

system locks, and CPUs. The second-lowest component is the system time, which is primarily spent handling

page faults. The bottom section of each bar is the time spent executing user code. Increases in user time over

the original case show the overhead of handling prefetch and release requests in the run-time layer. Note

that the O and R bars correspond to the experiments shown in Section 3.3.2, although the actual results were

obtained on an earlier version of the system software, and should not be compared directly.

All prefetching versions of the benchmarks achieve similar reductions in the I/O stall time, with over 85%

of the I/O stall eliminated in all cases. Also, the time spent executing system code is nearly identical across

all versions of the benchmarks, and only modest increases in user time occur in the prefetching versions. The

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 104

increase in user time is most pronounced for CGM, where a very large number of unnecessary prefetch and

release requests need to be filtered out by the run-time layer. These unnecessary requests are the result of the

compiler’s inability to reason about the amount of data accessed in loops with unknown bounds. For CGM,

most of these loops are small and prefetches and releases are not needed. In all cases except for FFTPDE and

MATVEC, the results for aggressive releasing and release buffering are very similar, since these applications

do not have temporal reuse within a single set of loops, and the compiler analysis is unable to detect reuse

across independent sets of loops. When all release requests have zero-priority, both implementations of

the run-time layer perform the same actions (issuing the requests to the OS without buffering), although the

version which attempts to buffer requests incurs a small amount of additional overhead to check the priorities.

In FFTPDE, the compiler incorrectly identifies some references as having temporal reuse, causing the run-time

layer to preferentially retain these pages in memory to the detriment of others. For MATVEC, however, the

benefit of buffering and prioritizing releases is dramatic. In this case, without buffering, both the matrix and

the vector are released, but the vector is frequently reused shortly thereafter. Large amounts of contention

occur between the release daemon attempting to free the pages of the vector and the application attempting

to reclaim them. When the run-time layer buffers and prioritizes the releases, only the pages of the matrix

need to be released and contention is greatly reduced. In the remainder of this section, we will discuss both

releasing versions of the benchmarks together, since their behavior is essentially the same, making specific

reference to MATVEC in the cases where buffering makes a difference.

Using our experimental HURRICANE platform, we had previously found that releasing memory provided

no significant benefit to the out-of-core applications over prefetching alone. Our results here, in contrast,

show that there is a substantial reduction in the execution time of the out-of-core applications when releasing

is applied aggressively. The speedups from applying both prefetching and releasing over prefetching alone

range from 13% for EMBAR to over 50% for CGM. This added benefit is rather unexpected, both because it

did not occur in the previous study, and because the run-time layer implementations are not trying to actively

improve the replacement policy (since there is no known reuse)—they simply try to maintain as large a pool

of free memory as possible by releasing pages which the application apparently no longer needs. There

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 105

||0

|20

|40

|60

|80

|100

|120

|140

 N
or

m
al

iz
ed

 R
ef

er
en

ce
 B

it
Fa

ul
ts

 100

 187

 21 20

 100 105

 2 2

 100

1020

 0 0

 100

 179

 65

 158

 100

 117

 7
 16

 100 104

 0 4

O P R B O P R B O P R B O P R B O P R B O P R B
BUK CGM EMBAR FFTPDE MGRID MATVEC

Figure 4.6. Soft page faults due to page invalidations.

are essentially three reasons for the improvement due to aggressive releasing: (i) a reduction in the number

of soft page faults caused by the paging daemon attempting to identify unused pages; (ii) a reduction in

the contention for memory locks needed by both the fault handling code and the paging daemon; and (iii)

improvements in the replacement policy created by the compiler analysis alone. We now discuss the impact

of each of these effects.

Looking at the components of the bars in Figure 4.5, we see that the greatest difference between the

prefetching-only and the two prefetching-and-releasing cases is in the time stalled for unavailable resources.

Without releasing, the paging daemon needs to determine which pages should be reclaimed. To do so, a

variant of a clock algorithm is used, in which pages can be reclaimed if they have not been referenced for a

number of passes of the clock hand. Since the MIPS TLB does not have reference bits, reference information

must be simulated in software using the valid bit instead. As free memory becomes low, pages are periodically

marked invalid to see if they are still in use. These invalidations increase the number of soft page faults as

the process references, and needs to re-validate, the pages that were still in its working set. However, with

aggressive releasing, the paging daemon does not need to find pages to reclaim, thus greatly reducing the

number of invalidations.

Figure 4.6 shows the number of page faults caused by these periodic invalidations for each version of

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 106

our out-of-core benchmarks. Not only are the number of soft page faults greater when prefetching is used

without releasing, the time to service each of these faults is also amplified due to increased contention for

locks between the paging daemon and the fault handling code. The time to handle hard page faults is also

increased by this contention. When the paging daemon needs to invalidate or reclaim pages, it holds locks on

the address spaces of the processes from which pages are being stolen. During this time, page faults for these

virtual memory regions cannot be serviced. The releasing daemon must hold the same locks while freeing the

explicitly released pages; however, it typically operates on smaller blocks of pages, so the locks can be held

for much shorter periods of time. Furthermore, the releasing daemon has been specialized for the purpose of

freeing pre-identified pages. Thus, it requires fewer locks overall and can do much less processing per page

while locks are held. The resulting lock contention caused by the releasing daemon is significantly less than

that caused by the paging daemon.

Finally, in some cases the compiler analysis is able to improve upon the replacement policy without extra

support from the run-time layer. In BUK, the data set consists of two very large sequentially-accessed arrays

and a third equally large randomly-accessed array. The compiler inserts releases for the first two, but does

not try to release the third because it cannot reason about any locality that may exist. The result is that

demand for new pages is satisfied by the releases of the first two arrays and the pages of the third array

are able to remain mostly in memory. Without releasing, the paging daemon reclaims pages from all three

arrays according to their last use, but without regard to their access patterns, causing many more page faults

to occur. Although the run-time layer is not able to prioritize releases due to a lack of temporal reuse, the

decision by the compiler to not release randomly accessed data effectively accomplishes the desired effect.

Having discussed the overall performance impact of our system, we now take a closer look at how effective

the compiler and run-time layer are at generating and managing releases.

4.6.3 Effectiveness of Releases

There are two considerations when evaluating the effectiveness of the release operation. First, the purpose

of issuing releases is to maintain a large enough pool of free memory to prevent the default page reclamation

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 107

Pages System Page Stolen Pages Released Total
Stolen Reclamation Pages Freed Pages Pages

Benchmark by System Events Rescued by release Rescued Allocated
Original

BUK 126,842 2,796 32,532 N/A N/A 131,354
CGM 289,696 6,130 3,472 N/A N/A 313,522

EMBAR 126,793 2,987 4 N/A N/A 165,838
FFTPDE 330,490 7,847 9,999 N/A N/A 389,504
MGRID 313,595 7,555 806 N/A N/A 376,301

MATVEC 272,541 11,679 7,159 N/A N/A 281,297

With Prefetch and Release
BUK 5,043 111 4,340 33,916 3,176 158,210
CGM 1,567 34 109 72,276 266 305,805

EMBAR 0 0 0 32,712 4 132,170
FFTPDE 134,612 3,172 16,574 81,520 2,801 395,478
MGRID 72,883 1,735 111 255,114 183,835 360,599

MATVEC 0 0 0 105,588 261,100 286,294

Table 4.2. Pages freed by system or by release, and pages rescued from the free list.

behavior. To see how well we achieve this goal, we look at how much work the paging daemon performs,

both with and without releases. Second, we should only be releasing pages that are really no longer in use by

the application (or will not be used again for a long time) to avoid increasing the page fault rate. To see how

useful the releases are, we look at how many released pages are “rescued” from the free list (i.e. returned to

the process that was using it). If we are actually releasing pages that are no longer needed, very few pages

should be rescued. The page reclamation and allocation activity is summarized in Table 4.2 for the original

out-of-core programs and the versions that both prefetch and release memory without buffering.

From Table 4.2, we see that releases are usually very effective at reducing the need for the paging daemon

to reclaim memory. In the worst case, the number of times that the paging daemon needs to operate is reduced

by more than half, and the total number of pages stolen is reduced by more than a factor of three. In the other

cases, the activity of the paging daemon is reduced by one to two orders of magnitude, both in terms of

frequency and number of pages stolen. Although it is very difficult for the application to release its pages

perfectly, it can still provide a great deal of assistance to the OS.

Next we look at how often useful pages are reclaimed too early, either by the paging daemon or due to

explicit release requests. There are two possibilities. First, useful pages may still be on the free list when

they are referenced again, and can be rescued and returned to the application. Second, useful pages may have

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 108

O P R B
BUK

O P R B
CGM

O P R B
EMBAR

O P R B
FFTPDE

O P R B
MGRID

O P R B
MATVEC

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

released by application & rescued from free list
released by application & re-allocated
reclaimed by OS & rescued from free list
reclaimed by OS & re-allocated

Figure 4.7. Breakdown of outcomes for freed pages.

been re-allocated to hold other data before being referenced again, and the reused data will need to be brought

back into memory from swap.

Figure 4.7 shows what fraction of all the pages freed are freed by the paging daemon vs. the fraction

freed explicitly by release requests. We also show the fraction of each that are rescued from the free list. The

interesting cases here are BUK, MGRID and MATVEC. As we see in Figure 4.7, BUK without any releasing

(both the original and prefetching versions) frequently needs to rescue the pages reclaimed by the paging

daemon from the free list. The greater demand on memory introduced by prefetching increases the need for

the paging daemon to reclaim memory, resulting in useful pages being placed on the free list more often.

Consequently, the fraction of reclaimed pages that are rescued also increases. With releasing, however, most

of the pages are freed by explicit release requests and very few are rescued from the free list. In this case,

releasing helps the application to retain its most-needed pages in memory. For MGRID, we see that even with

releasing, over half of the pages freed are reclaimed by the paging daemon, and that more than half of the

pages explicitly released are rescued from the free list. This suggests that the compiler is unable to determine

which pages to release and when for MGRID. Note also that FFTPDE with release buffering performs very few

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 109

useful releases due to incorrectly attempting to retain pages with no reuse. For MATVEC without releasing,

the OS does a reasonable job of freeing the pages of the matrix and keeping the frequently accessed vector in

memory. With aggressive releasing, however, approximately half of the pages released are for the vector and

need to be rescued from the free list. When release buffering is used, most of the released pages are for the

matrix, and the number of rescued pages is much smaller. Overall, we can see that releasing greatly reduces

the need for the paging daemon to reclaim memory, and typically does a good job of releasing pages that are

no longer in use.

Detecting pages that were freed too early and re-allocated before they could be rescued is a more difficult

task. These pages will increase the total number of page allocations required (over the ideal) as new pages

are needed to bring the reused data back into memory. While we cannot compare the total number of page

allocations to the ideal number, we can look at the number of allocations in the original case versus the

prefetching-and-releasing cases. From Table 4.2, we see that the total number of page allocations increases

by a small amount with prefetching and releasing in half of the cases, and decreases by a small amount in the

other half. This suggests that releasing is typically doing no worse at freeing needed pages than the paging

daemon, but results in much less contention.

We now look at how useful releases are for improving the performance of the interactive task.

4.6.4 Impact on Interactive Response Time

Figure 4.8 gives an overview of the performance improvements obtained for the “interactive” task. In

Figure 4.8(a), we show the average response time for the interactive task when executed concurrently with

MATVEC across a range of sleep times. As discussed in Section 4.1, the response times become greatly in-

flated when the out-of-core program executes normally, and are made even worse when prefetching alone is

used. When releasing is added to prefetching, however, the response times of the interactive task almost per-

fectly matches the times obtained when it is run alone on the machine, regardless of the amount of sleep time.

Although blindly following the release directives inserted by the compiler has a severe effect on MATVEC’s

own performance, this strategy does leave most of memory free for the interactive task. However, when

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 110

 With Out-of-Core that Prefetches
 With Out-of-Core (Original)
 With Out-of-Core that Prefetches & Releases
 With Out-of-Core that Prefetches & Buffers Releases
 Alone

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10

|0

|50

|100

|150

|200

|250

|300

|350

|400

 Sleep Time (secs)

 R
es

po
ns

e
Ti

m
e

(m
se

cs
)

(a) Impact of MATVEC on response time (last 3 lines in key overlap).

||0

|10

|20

|30

|40

 N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

 12 13

 1 1

 28

 38

 1 1

 18
 22

 1 1

 19

 31

 12

 31

 19

 32

 8 9

 29

 36

 1 1

O P R B O P R B O P R B O P R B O P R B O P R B
w/BUK w/CGM w/EMBAR w/FFTPDE w/MGRID w/MATVEC

(b) Impact of each out-of-core benchmark on response time at 5 second
sleep time, normalized to stand-alone response time of 9.5 msec.

Interactive Hard Page Faults
with Prefetch Prefetch & Prefetch &

Benchmark Original Only Release Buffer Release

BUK 25 29 0 0
CGM 61 65 0 0

EMBAR 51 62 0 0
FFTPDE 28 55 28 44
MGRID 30 48 11 11

MATVEC 61 63 0 0

(c) Average number of page faults requiring I/O for the interactive task
with each out-of-core benchmark.

Figure 4.8. Impact of releasing on interactive response time.

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 111

release buffering is used to improve the performance of MATVEC, there is still nearly no impact on the inter-

active task. The run-time layer is able to both buffer releases for the benefit of the out-of-core task and keep

enough memory free for the interactive one. The negative impact of the out-of-core program on the response

time of the interactive task in this case has been almost completely eliminated. For the other out-of-core

applications, we chose an intermediate sleep time of five seconds for the interactive task and recorded the

average response times. The results for each of the four versions of the out-of-core programs are shown in

Figure 4.8(b). The response times in this graph have been normalized to the time for the interactive task

executing alone on the machine. As we see in Figure 4.8(b), releasing is usually successful at eliminating

or substantially reducing the degradation in interactive response time. FFTPDE with release buffering is the

exception as this benchmark fails to release enough memory.

Figure 4.8(c) shows the average number of hard page faults (i.e. those that require I/O) experienced by the

interactive task during a single sweep through its data set, when it is executed concurrently with each version

of our out-of-core benchmarks. From this table, we see that the number of page faults increases when the

out-of-core program uses prefetching alone, rising to the maximum level of 65 pages. At this point, the entire

data set of the interactive task must be paged in from the swap space. When the out-of-core program also

releases pages, the number of hard page faults is significantly reduced. This result verifies that the primary

reason for the increased interactive response time is not being able to keep pages in memory.

4.7 Summary

Our investigation of pro-actively releasing memory, based upon inserting release hints at compile-time

and exposing the results of the compiler’s reuse analysis to the run-time layer, has produced a number of

interesting results.

First, we found it was beneficial to the performance of an out-of-core application to explicitly release

memory, even without using buffering to improve the replacement policy. We found a surprisingly high

degree of contention between the system page daemon and our applications, as each needed to manipulate

page tables, and perform I/O. The IRIX page daemon is designed with the assumption that paging is expensive;

CHAPTER 4. PERFORMANCE IN MULTIPROGRAMMED ENVIRONMENTS 112

thus when the system runs out of memory and pages need to be reclaimed, performance is expected to be

poor. The addition of prefetching to hide the latency of page faults changes this underlying assumption, and

the manner in which pages are reclaimed needs to be carefully considered.

Second, we found that there are situations in which delaying the decision to release memory, and re-

ordering the pages to be released, can be a significant benefit. By considering both the inherent reuse of

data, and the global memory pressure, the run-time layer can begin to implement an application-specific

replacement policy that is closer to optimal.

Finally, we found that an out-of-core program does not have to cause problems for interactive applications

sharing the machine. The same techniques for explicitly releasing memory that improve the performance for

the out-of-core program also leave enough memory free for the interactive task. By limiting the work done

by the page daemon, we reduce the chances that pages will be stolen from applications that are still using

them.

Despite these encouraging results, we see that generating useful release information suffers from the

same problems as generating prefetches—many important quantities are unknown at compile-time and the

compiler must make a single, static decision in the face of incomplete information. To address these problems,

we consider a novel technique for software pipelining around multiple loop nests in Chapter 5.

Chapter 5

Improving the compiler scheduling

algorithm
If everything seems under control, you’re just not going fast enough. — Mario Andretti

In Chapters 3 and 4 we described our compiler algorithm for prefetching and releasing and showed it to be a

promising approach for handling the memory demands of out-of-core numeric benchmarks when combined

with run-time and operating system support. We also showed, however, that there were numerous situations

where the code transformations made at compile-time could not be adequately adapted to deal with dynamic

run-time conditions. In particular, prefetches were frequently scheduled too late to be fully effective, limiting

our ability to hide the I/O latency and reduce overall execution time.

In this chapter, we introduce a new compiler algorithm for scheduling prefetch operations and show that

this algorithm allows us to handle a much wider range of dynamic conditions. We begin in Section 5.1 with

a discussion of the scheduling challenges that our new algorithm needs to address. We then develop our new

algorithm incrementally in Section 5.2. Throughout this section, we evaluate the effect of each improvement

to the algorithm using simulations and micro-benchmarks. Section 5.3 evaluates the impact of the final

algorithm on the performance of the NAS Parallel benchmarks.

113

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 114

5.1 Scheduling challenges

As discussed in Section 3.1, our compiler algorithm for inserting prefetch requests into application source

code uses software pipelining to ensure that the request for data is issued early enough to hide the latency of

a disk fetch. If we can construct an effective pipeline of prefetch requests and data accesses across a set of

loops, we can substantially improve performance by avoiding stalls due to page faults.

Software pipelining is a technique commonly applied to expose instruction-level parallelism in loops. Our

usage of the technique was adapted from its application to the problem of scheduling prefetches for cache

misses in looping codes [41]. In both cases the latencies that need to be hidden by the pipeline are known

at compile-time and are small relative to the size of the loop being pipelined. Under these conditions, it is

reasonable to compile for a fixed latency when constructing the pipeline and to consider only the innermost

loop nest. When software pipelining is used to schedule prefetches for page faults in out-of-core looping

codes, however, one or both of these properties may not hold.

Our initial compiler algorithm for I/O prefetching used a fixed latency estimate and attempted to address

the problem of small inner loops by introducing the simple heuristic described in Section 3.1.2: construct

the pipeline across the innermost loop that accesses a sufficient amount of data [40]. This technique can

help to select a loop that is large enough for a given latency, but only if the loop bounds are known during

compilation so that the amount of data accessed can be calculated. When loop bounds are symbolic, choosing

the right loop for pipelining remains a problem. The combination of nested loops and large latencies creates

a third problem for software pipelining of I/O prefetch requests: the pipeline is repeatedly filled and drained

on each iteration of the surrounding loop, and the time to initialize the pipeline may be large compared to the

time spent in the steady state. We now elaborate on the problems of finding the right prefetch distance and

dealing with nested loops.

5.1.1 Variations in Prefetch Distance

The first step in the software pipelining algorithm (for both the original I/O prefetching version, and

our new variations) is to determine the prefetch distance. This distance is expressed as a number of loop

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 115

iterations, and is calculated using an estimate of the I/O latency, and the shortest path through the loop body

(see Equation 3.1 on page 52). If our calculated prefetch distance is too large, then we will increase the

memory pressure since more pages are needed to hold prefetched data. As a result, evictions may occur

earlier than necessary. Over-estimating the prefetch distance by a small amount is not a serious problem,

however, because main memory has plenty of capacity to buffer the prefetch requests and we can use the

release hints to make good replacement decisions. If, on the other hand, we underestimate the prefetch

distance, then we will be unable to hide all of the I/O latency. There is no way for the run-time layer to

compensate for a late prefetch request by issuing it earlier—by the time the run-time layer sees the request,

it is already too late. There are two basic reasons that we may be unable to estimate the prefetch distance

accurately at compile-time: the estimate of the time to execute the loop body may be inaccurate, and/or the

estimate of the I/O latency may be inaccurate.

Causes of Inaccurate Estimates

We estimate the time to execute one iteration of the loop body by counting SUIF instructions in the

shortest path through the loop. At this point in the compilation process, the instructions are in an intermediate

format, so we do not know the actual machine instructions that will be executed at run-time. Some of these

instructions may be removed completely by later optimization passes. We make an additional simplifying

assumption that each SUIF instruction will execute in one cycle. These inaccuracies could cause the loop to

execute faster than expected, resulting in late prefetches which cannot hide all the I/O latency. Even if we

knew the actual cycle count for the shortest path, we would still have a problem with calculating the prefetch

distance. The actual path through the loop taken at run-time may be many times longer than the worst-case

shortest path; this would result in prefetches being issued earlier than necessary.

The I/O latency estimate is a compile-time parameter which we have chosen based on measurements of

our target systems. It is expressed in terms of processor cycles, so both the disk speed and the clock speed

of the target system are implicitly included in the estimate. Even on a single, uncontended system, however,

the worst-case time to read a page from disk could be about twice as long as the average case depending on

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 116

the disk seek time and rotational latency required to locate the data. Using an average measured value means

that some pages may be requested too early, while others will be requested too late. We could conservatively

double the average page fetch time, relying again on the large buffering capacity of main memory, and the

release hints to cope with the inflated prefetch distance, but there is another more serious problem. We do not,

in general, want to recompile the applications for each target system. Consider, for example, general-purpose

computers based on the Intel Pentium IV architecture. Currently, the same binary program could execute on

processors that differ by more than 1 GHz in clock speed. At the same time, a particular system built around

these processors could include anything from 5400-7200 IDE disks to 10K-15K SCSI disks. It is highly-

undesirable (if not completely unreasonable) to have to compile a unique binary for each configuration on

which the application will execute, just so the target latency parameter can be specified.

Solution: Variable Prefetch Distances

Rather than compile for a fixed latency estimate and a statically estimated dynamic loop execution time,

we would prefer to express the prefetch distance as a variable at compile-time and generate code to calculate it

dynamically based on actual run-time behavior. There are numerous options for obtaining a dynamic latency

estimate during execution. For instance:

• Obtain a latency estimate by measuring the actual time for a page fetch (this could be done once for

a given system and stored in a well-known location such as the /proc filesystem where all interested

processes could read it). The actual time to execute the loop body can be obtained using profiling infor-

mation (such as cycle counters)—the compiler’s static shortest-path estimate can be used as an initial

value. With these two parameters obtained at run-time, we can now calculate the prefetch distance as

the latency divided by the loop execution time as before.

• Track the percentage of late prefetches in a loop and dynamically increase the prefetch distance until

the late fraction becomes acceptably small. It would likely be useful in this case to include additional

information, such as disk queue length, to avoid continually increasing the prefetch distance in a system

that is bandwidth-limited.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 117

100

O

58

S

58

D
BUK

100

O

44

S

44

D
CGM

100

O

57

S

56

D
EMBAR

100

O

59

S

58

D
FFTPDE

100

O

66

S

65

D
MGRID

100

O

75

S

75

D
APPBT

100

O

40

S

41

D
APPLU

100

O

89

S

90

D
APPSP

0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

waiting for I/O
resource contention
system
user

Figure 5.1. Effect of calculating prefetch distances at run-time. Bars labeled “O” are the original, non
prefetching version; bars labeled “S” use a static compile-time latency; bars labeled “D” use a dynamic
latency value (equal to the static value) obtained at run-time.

Other options are also available, but an important question is whether or not using a variable latency and

adding code to calculate the prefetch distances at run-time, rather than calculating these values statically at

compile-time, introduces substantial run-time overhead.

To address this question, we modified our compiler to generate code that calculates the prefetch distances

dynamically at run-time. The latency estimate is simply entered from an input file, or the command line,

since we are primarily interested in evaluating the overhead of performing these calculations at run-time, not

in exploring how to measure latency in a running system. We also added code to calculate the length of a

loop body at run-time. This calculation uses the compiler’s count of the number of SUIF instructions in the

loop body and continues to assume that each SUIF instruction can execute in a single cycle, however, we are

able to use the run-time values of symbolic inner loop bounds rather than assuming a worst-case execution

of a single iteration. Using this version of the compiler, we generated code for the NAS Parallel benchmarks

and executed them on our Irix prototype.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 118

Benchmark Static Dynamic % Increase
BUK 21079.6 21082.1 0.01 %
CGM 15811.7 15876.4 0.41 %
EMBAR 50693.4 50719.7 0.05 %
FFTPDE 28245.9 28298.7 0.19 %
MGRID 31563.1 31581.7 0.06 %
APPBT 21731.4 21726.2 -0.02 %
APPLU 11098.4 11104.2 0.05 %
APPSP 44741.5 44795.8 0.12 %

Table 5.1. Graduated instructions for static and dynamic prefetch distance calculations (millions of
instructions)

The results of this experiment are shown in Figure 5.1. The original, non-prefetching version (labeled

“O”) is shown for reference. Bars labeled “S” are the results for prefetching with the statically-calculated

prefetch distance. Bars labeled “D” show the results for prefetching with dynamically-calculated prefetch

distances (we used the same value for the latency estimate in the dynamic cases as in the static ones).

In most cases, the difference between using a static latency value to compute the prefetch distance at

compile time, and using a dynamic value obtained at run-time is negligible. To further quantify the overhead

of calculating prefetch distances dynamically, we collected graduated instruction counts for the static and

dynamic versions of each benchmark, using the hardware counters provided by the MIPS R10K micropro-

cessor. For these experiments, we removed the actual prefetch and release operations to focus specifically

on the overhead of the prefetch distance calculations. The results are shown in Table 5.1. In all cases, the

increase in instructions is less than 0.5% confirming that the cost of the dynamic strategy is negligible.

Overall, the potential benefit of calculating prefetch distances at run-time, and the increased flexibility

(due to not needing a recompilation if the expected latency changes) make this an extremely useful feature

to incorporate into our compiler, independent of any changes to the actual scheduling algorithms. We now

consider several alternatives for further improving the performance of prefetching on benchmarks with multi-

dimensional nested loops such as FFTPDE, MGRID, APPBT, APPLU and APPSP. We do not consider BUK

or EMBAR in the remainder of this chapter, as they do not have multi-dimensional loop nests. We also

exclude CGM from further consideration since it has only a single multi-dimensional loop, in which the inner

loop bounds depend on array accesses in the outer loop. Handling this case correctly would add significant

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 119

complexity to our new scheduling algorithm, and is unlikely to further improve the performance of CGM.

5.1.2 Problems with nested loops

Even under the ideal conditions for nested loops (perfectly nested loops with compile-time constant

bounds), we can lose a lot of opportunities for latency-hiding. Consider, for example, a simple two-dimensional

loop containing an access to a two-dimensional array as shown by the code in Figure 5.2(a). We will refer to

the outer loop in this example as the i-loop and the inner loop as the j-loop. Constructing a software pipeline

to prefetch the data accesses around the inner j-loop yields the code shown in Figure 5.2(b)1. Suppose that the

number of iterations of the j-loop, Nj, is only slightly larger than the calculated prefetch distance, d. In this

case, we will execute very few iterations in the steady-state. Nearly all of the prefetches will be issued in the

prolog section to fill the pipeline, and nearly all of the data accesses will occur in the epilog section to drain

the pipeline. Further, because the j-loop is nested inside the outer i-loop, the cycle of filling and draining the

pipeline is repeated on each iteration of the outer loop. Figure 5.2(c) depicts the effect of this repeated fill

and drain cycle in terms of the number of prefetched pages in the pipeline for the case where Nj is slightly

larger than d. In this situation, very little time is spent in the steady-state where prefetches are effectively

overlapped with data accesses.

In general, we expect that Nj and d will be symbolic values, and thus we cannot know whether Nj will be

larger than d or not at compile-time. If the j-loop is not large enough to hide all the latency, then the steady-

state is never reached at all. In this case, the i-loop would have been a better choice for building our pipeline.

On the other hand, if Nj is much larger than d, then the cost of filling the pipeline will be small relative to

the time spent in the steady-state and the i-loop would be a poor choice for pipelining. Worse, if the i-loop is

not localized (as may occur if Nj is extremely large), then constructing the prefetch pipeline across the i-loop

would be disastrous. Clearly, there is no single choice of loop that will be right for all circumstances. Instead,

we need to take all the loop levels into account and avoid draining the pipeline unnecessarily.

1For simplicity, throughout this chapter we do not show the effect of the strip mining optimization, which reduces the frequency of
prefetch requests. Our implementation, however, works in the presence of strip-mining as well.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 120

(a) Simple two-dimensional array accesses

for (i = 0; i < Ni; i++)
for (j = 0; j < Nj; j++)
access(a[i][j]);

(b) Software pipelining prefetches around inner loop (the calculation of the prefetch
distance, d, is not shown)

prolog

}

steady
state

epilog

}

j_sw_pipe_upperbound = max(0, Nj−d);

 (i = 0; i < Ni; i++) {

 (jprolog = 0; jprolog < min(d, Nj); jprolog++)

 (j = 0; j < j_sw_pipe_upperbound; j++) {

 (j = j_sw_pipe_upperbound; j < Nj; j++)

 access(a[i][j]);

 access(a[i][j]);

 (&a[i][j+d]);

 (&a[i][jprolog]);

for

for

for

for
 prefetch

 prefetch

(c) Effect of repeatedly filling and draining the pipeline

����
��
����
��

����
��
����
��

j−prolog
j−steady state
j−epilog

Pr
ef

et
ch

ed
 d

at
a

in
 p

ip
el

in
e

Time
������������������������������

������������������������������

��

��

������������������������������

������������������������������

������������������������������

������������������������������

��

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

������������������������������

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

""""""""""""""""""""""""""""""

##############################

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

%%
%%

i=0 i=1 i=2 i=3 i=4

Figure 5.2. Adding prefetches for two-dimensional array accesses

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 121

5.2 Developing the Continuous Software Pipelining Algorithm

In this section we consider a sequence of techniques that address various issues with multi-dimensional

loops, leading up to the full continuous software pipelining algorithm. Throughout, we will focus on the

two-dimensional case, although the solutions generalize to higher dimensions.

5.2.1 Calculating prefetch distances for multiple loop nests

When a single loop is chosen as the target for software pipelining, we can express the prefetch distance,

d, in terms of iterations of the pipeline loop. If we wish to use multiple loop nests for pipelining, however,

we must determine how much of the total page fetch latency should be hidden by each level of nesting.

Consider again the case of a two-dimensional array being accessed within a two-dimensional set of loops,

as shown in Figure 5.2(a). When we access an element, a[i][j], in the steady-state of our software

pipeline, we want to prefetch the element that will be accessed d iterations of the inner loop in the future. If

we only consider the inner loop, then we could prefetch a[i][j+d], as shown in Figure 5.2(b). Depending

on the length of the inner loop relative to the prefetch distance, this strategy may or may not be successful at

hiding the latency. However, there may be enough work to hide the latency if we take the surrounding loop

into account as well by calculating the prefetch address as a function of both loop indices. Each iteration of

the outer loop contains Nj iterations of the inner loop, thus to prefetch d iterations of the inner loop ahead,

we will need di = d div Nj iterations of the outer loop, leaving dj = d mod Nj iterations of the inner loop.

The prefetch address (for the reference of Figure 5.2(a)) is then simply a[i+di][j+dj].

The general idea is to create an offset variable, dn, for each loop nest n surrounding the reference to

be prefetched. In the steady-state, each loop index variable, in, used in an array reference is replaced with

in + dn in the corresponding prefetch for that reference. Rather than first calculating a distance in terms of

iterations of the innermost loop, we instead calculate how much latency can be hidden by each level of nesting

from outermost to innermost based on the length of the loop body at each level, sn. For loops with symbolic

bounds, an expression for sn is generated by the compiler and evaluated at run-time when the bounds are

known. After all the loop offsets have been calculated, any leftover latency is accounted for by increasing the

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 122

algorithm Compute Nested Prefetch Distances
latency left := initial latency estimate;
for n := outermost loop that may be localized to innermost loop do

dn := latency left div sn; /* sn is length of body of loop n*/
latency left := latency left mod sn;

end for
if (latency left > 0) then

dinnermost := dinnermost + 1;
end if

end algorithm

Figure 5.3. Algorithm for calculating prefetch distances in nested loops.

}

steady
state

epilog

}

 access(a[i][j]);

j_sw_pipe_upperbound = max(0, Nj−d);

 (j = j_sw_pipe_upperbound; j < Nj; j++)

 (j = 0; j < j_sw_pipe_upperbound; j++) {

 access(a[i][j]);
 (&a[i+di][j+dj]);

prolog

 (i = 0; i < Ni; i++) {

 (iprolog = i; iprolog < min(i+di, Ni); iprolog++)

 (&a[iprolog][jprolog]);

for

for

 prefetch

 for

for

for
 for (jprolog = 0; jprolog < min(dj, Nj); jprolog++)

 prefetch

Figure 5.4. Sample code for software pipelining a single loop with multiple loop index offsets

offset for the innermost loop by one iteration.

There is one additional complication that results from the fact that the surrounding loops may not be

localized. Pipelining around a loop that is not localized is ineffective (and in fact harmful) since a single

iteration of the loop will access enough data to flush any pages prefetched for use in future iterations from

memory. In many cases, we are not certain whether a given loop nest is localized or not at compile-time. If,

however, a loop is known to be not localized, we do not attempt to use that nest or any outer nests in our new

pipelining calculations. Figure 5.3 shows the algorithm for computing the loop offsets for an arbitrary set of

nested loops.

5.2.2 Nested pipelines

As a first attempt at taking multiple loop nests into account while software pipelining, we could simply

choose a single pipelining loop as before, but use the prefetch distances for each surrounding loop nest in

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 123

(a) Sample code for nested software pipelines

sta
te

j-e
pil

og

j-p
rol

og

sta
te

}

i-s
tea

dy

i-p
ro

log

j-s
tea

dy

 for (jp = 0; jp < min(dj, Nj); jp++)
 prefetch(&a[i+di][jp]);

for (i = i_swp_ub; i < Ni; i++)

for (i = 0; i < i_swp_ub; i++) {
i_swp_ub = max(0, Ni-di);

 for (j = 0; j < Nj; j++)
 access(a[i][j]);i-e

pilo
g

 for (ip = 0; ip < min(di, Ni); ip++)

 }
 access(a[i][j]);
 prefetch(&a[i+di][j+dj]);
 for (j = 0; j < j_swp_ub; j++) {
 j_swp_ub = max(0, Nj-dj);

 access(a[i][j]);
 for (j = j_swp_ub; j < Nj; j++)

 prefetch(&a[ip][j]);
 for (j = 0; j < Nj; j++)

(b) Effect of nested pipelining on prefetched data

&&&&
&&&&
&&&&
&&&&
&&&&

''''
''''
''''
''''
''''

((((((((((((((((((((((((((((((

))))
))))
))))
))))
))))

++++
++++
++++
++++
++++

,,,,
,,,,
,,,,
,,,,
,,,,

....
....
....
....
....

////
////
////
////
////

0000
0000
0000
0000
0000

1111
1111
1111
1111
1111

222222222222222222222222222222

3333
3333
3333
3333
3333

4444
4444
4444
4444
4444

5555
5555
5555
5555
5555

6666
6666
6666
6666
6666

7777
7777
7777
7777
7777

8888
8888
8888
8888
8888

9999
9999
9999
9999
9999

::::
::
;;;;
;;

<<<<
<<
====
==

i−prolog
j−prolog
j−steady state
j−epilog
i−epilog

Pr
ef

et
ch

ed
 d

at
a

in
 p

ip
el

in
e

Time>>
>>

i=0 i=1 i=2 i=3 i=4

Figure 5.5. Nested software pipelines for two-dimensional array prefetches

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 124

the calculation of the prefetch address. Doing so gives the code shown in Figure 5.4. In the prolog, we

must prefetch everything between the first item accessed in the steady-state (a[i][0]) and the first item

prefetched in the steady-state (a[i+di][j+dj]). Although this code does use both loop nests to issue

prefetches sufficiently far ahead of the reference, it also issues far too many unnecessary prefetches. For

every iteration of the outer loop after the first one, in the prolog we repeat the prefetch of some of the same

elements that we prefetched on the previous iteration. This is caused by the fact that the first time we see

the loop we need to issue a large number of prefetches to fill the pipeline, but on subsequent iterations of the

outer loop, we only need to re-fill the portion that was drained during the epilog of the inner loop.

The logical solution is to pull out the portion of the prolog that issues prefetches for the outer loop offset

(di), placing it before the first iteration of the outer loop. Also, it would be useful to have an epilog for the

outer loop as well, to avoid prefetching more than necessary along the outer dimension. The resulting code

has the appearance of nested software pipelines, as shown in Figure 5.5(a). Around each loop nest we have

constructed a pipeline to handle address offsets involving that loop’s index variable. Viewed in terms of the

effect on prefetched data, the inner epilog only partially drains the pipeline, allowing more of the latency to

be hidden, as depicted in Figure 5.5(b). First, prefetches are issued from the outer prolog, then we have a

repeated pattern of filling the inner pipeline, executing the inner steady state, and draining the inner pipeline.

The outer pipeline is not drained until we get to the end of the pair of loops, which is the real end of the data

access. Implementing nested pipelining is straightforward once the appropriate offsets have been calculated

for each loop nest - we simply apply the original software pipelining algorithm to each level of the nested

loop.

The technique of nested pipelines can be applied to an arbitrary number of dimensions. For n dimensions,

we will have n + 1 copies of the original loop body. Each loop nest adds one extra copy in its epilog, plus

there is one copy in the innermost steady-state. This technique is similar to the hierarchical reduction strategy

introduced by Lam [35], which allows large units of code (including conditional statements or loop nests)

to be treated as a single node for the purpose of software pipelining. Although it is possible to construct

examples involving any number of loop nests, all of the concepts we need to illustrate can be shown with

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 125

only two levels, so we will focus on the two-dimensional problem in the remainder of this discussion.

At this point we have solved the problem of generating the correct prefetch address when the distance

required to hide the I/O latency spans an arbitrary number of loop nests. However, we can still do a better

of job of scheduling the prefetches. Figure 5.5(b) shows a general view of the effect of nesting the software

pipelines, but the actual effectiveness depends on the amount of latency that we are attempting to hide with

each of the nested pipelines. Consider for instance the original two-dimensional loop from Figure 5.2(a).

For this example, si (the length in cycles of the body of loop i) is equal to Nj ∗ sj . Using the algorithm in

Figure 5.3 to calculate the offsets di and dj could lead to many possible situations, depending on the value of

Nj and the initial latency estimate. In the worst case, si is only slightly larger than the latency estimate and

di = 0. All of the latency will be hidden by the inner pipeline using the dj offset, however, very little time

will be spent in the steady-state and we still pay a large cost for repeatedly filling and draining this pipeline

on each iteration of the outer loop. As the latency estimate becomes larger than si (either because Nj is

smaller or the latency is larger), the outer pipeline comes into play with di > 0. The larger di becomes, the

more latency is hidden using the outer pipeline and the smaller the cost of draining the inner pipeline on each

iteration.

Effect of Nested Pipelines

We have created a simple event-driven disk simulator to evaluate our changes to the scheduling algo-

rithm. The simulator models exact LRU replacement, and submits a request to an array of disks on an access

or prefetch of a page that is not “in memory”. Enough disks are used so that contention does not occur,

and we assume the bandwidth between disks and memory is unlimited. Multiple prefetches can proceed

in parallel, but accesses must stall until the disk read for the requested page completes. To better isolate

the effect of different scheduling algorithms, each innermost loop iteration is assumed to take one cycle to

execute, and the disk latency is expressed as a number of cycles (or equivalently, a number of inner loop

iterations). Results from the simulator indicate the improvements that could be expected from changes to the

scheduling algorithm alone, in the absence of bandwidth limitations, disk contention, latency variations, re-

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 126

placement decisions, and other run-time factors that may affect the actual performance on a real system. For

our microbenchmark experiments, pages are not reused and thus the replacement algorithm is not a factor.

Figure 5.6 compares the original, single-loop pipelining algorithm with the new nested pipelining algo-

rithm for our two-dimensional loop example using three different ratios of si to latency. For these examples,

our loops access a total of 428 pages of data. Using our event-driven simulator, we record the number of

prefetched pages that have not yet been referenced (the outstanding prefetches) as a function of simulated

time. The number of outstanding prefetches is an indication of the state of the software pipeline, however,

this number alone does not tell us anything about whether the right pages have been prefetched, or whether

the prefetches were early enough to be useful. To show the effectiveness of the prefetches, we plot stall

time as a dark solid line on the graph—better scheduling algorithms will both maintain a full pipeline of

outstanding prefetches, and show fewer and shorter stalls, resulting in fewer execution cycles overall.

In the first case, Figure 5.6(a) and (b), we demonstrate the situation where si is slightly larger than the

latency. On the left (labeled “Original”) we show the result for the original pipelining algorithm. The ten

iterations of the outer loop are clearly visible as the pipeline of outstanding prefetches is initialized and

drained each time. Note that there is a substantial stall following the prolog as each iteration enters the

steady-state. This stall occurs because the prolog prefetch of the first page of data has not had time to

complete when that page is referenced in the steady-state. Following this stall, there is a very short steady-

state phase followed by a long epilog to access all the pages that were prefetched. Beside this graph on the

right (labeled “Nested, di = 0”) we show the result of applying the new nested pipelining algorithm in the

same situation. The curves are identical to the original case because the inner loop has enough iterations to

hide the latency and the outer pipeline is not used. In this situation, we derive no benefit from applying the

new nested pipelining algorithm.

In the second case, Figure 5.6(c) and (d), we compare the two algorithms when there are only enough

iterations in the inner loop to hide two thirds of the latency. In this case, two thirds of the latency can be

hidden using one iteration of the outer loop, and the remaining third can be hidden using half the iterations

of the inner loop. On the left, the graph for the original algorithm shows that no time is spent in the steady-

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 127

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

(a) Original (b) Nested, di = 0

(a), (b) latency < total time in inner loop

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state (not present)
Epilog
Stall

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

(c) Original (d) Nested, di = 1

(c), (d) latency 1.5X total time in inner loop

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state (not present)
Epilog
Stall

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

(e) Original (f) Nested, di = 2

(e), (f) latency between 2X and 3X total time in inner loop

Figure 5.6. Comparison of nested pipelining vs. original single-loop pipelining for different latency
values

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 128

i =
 0

 to
 N

i

j = 0 to Nj

Port
ion

 of
 m

atr
ix

Port
ion

 of
 m

atr
ix

no
t a

cc
ess

ed

ac
ce

sse
d

wasteful
prefetches

Figure 5.7. Non-sequential data accesses across outer loop: only the first part of each row of matrix is
used

state at all—the code does not use the outer loop, and thus transitions directly from filling the pipeline in the

prolog to draining it in the epilog. On the right, however, we see that the nested pipelines are now having a

positive effect because they are able to use the outer loop. More time is spent in the steady-state, the pipeline

is only partially drained on each outer loop iteration, and the execution time is reduced by nearly one third

(compared to the original algorithm in Figure 5.6(c)) due to better overlap of prefetches with computation.

Finally, Figure 5.6(e) and (f) show the result of using the two algorithms when at least two iterations

of the outer loop are needed to hide the latency. On the left, the original algorithm shows similar behavior

as in (c), with no time spent in the steady-state. On the right, however, we see that the nested pipelining

algorithm continues to grow more effective as the latency increases (or, equivalently, as the inner loop gets

smaller), with an even larger portion of time spent in the steady-state and reduced penalties for draining the

inner pipeline. Somewhat surprisingly, however, nested pipelining only reduces the total execution by about

one fifth as compared with the original algorithm for this latency. To explain this unexpected result, note that

the original algorithm only stalls five times in this case (vs. ten times in the other two), and with the exception

of the first stall, the penalty is partially hidden. This happens because the data accesses are sequential in the

inner loop and the compiler-generated code optimistically issues a block prefetch for as many pages as are

needed to hide the latency, regardless of how many pages will actually be used in the inner loop. Because the

access is also sequential across the outer loop, the extra pages fetched are accessed on subsequent iterations

of the outer loop. In this case, the prolog prefetches cover more than two full outer iterations of data, and

thus a partial stall only occurs on every second outer loop iteration.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 129

Although issuing large block prefetches in the prolog has the potential to improve performance, there is

also a significant potential cost. Note that in Figure 5.6(c) and (e) the number of outstanding prefetches never

goes completely back down to zero. That is, the pipeline is never fully drained. For this example, only the

extra pages prefetched on the final prolog iteration are wasted. Suppose that the data access was not sequential

across the outer loop, however. For instance, suppose the inner loop accesses only the first portion of each

row of the matrix as depicted in Figure 5.7. In this case, the extra pages fetched by the original algorithm are

not needed; disk bandwidth is wasted and the memory may become polluted. If we take the direct approach

and limit the number of pages prefetched to the number that will actually be used in the inner loop, we can

solve the problem of wasteful prefetches. Since block prefetches are only used for references with spatial

locality, calculating the number of sequential pages that will be referenced in the loop is straightforward2.

Figure 5.8 illustrates these cases using data from our simple disk simulator.

Figures 5.8(a) and (b) are nearly identical to Figures 5.6(d) and (f), showing that the nested pipelining

is able to handle the non-sequential data layout gracefully regardless of the latency. Although there are

some wasted prefetches, the number is very small (fewer than 20 pages in both cases, or less than 5% of the

number of pages accessed by the test loops). The results for the original pipelining algorithm, depicted in

Figures 5.8(c) and (d) provide a sharp contrast. Because the data layout is no longer sequential, the excess

prolog prefetches are wasted on each iteration. The larger the latency, the worse this problem becomes—

by the end of the simulation, approximately 900 unnecessary pages have been brought into memory for the

largest latency simulated. This represents more than twice as many pages as are accessed by the test loops

themselves, and would result in extra memory pressure and wasted disk bandwidth in a real system. In

addition, because the wrong pages are being fetched, there is no longer a latency-hiding benefit to issuing

these large blocks of prefetches. The program still stalls on each iteration of the outer loop. The results

of limiting the size of the block prefetches in the original algorithm, to reduce the wasteful prefetches, are

shown in Figure 5.8(e) and (f). The shape of these two curves are identical because both are limited to

prefetching the number of pages that will be used in the inner loop. Note that this version of the original

2We perform this calculation already to avoid releasing more pages than were actually referenced at the end of a loop.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 130

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

(a) latency 1.5X time in inner loop (d1 = 1) (b) latency >2X time in inner loop (di = 2)

(a), (b) Nested pipelines with non-sequential data access

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9

|0

|50

|100

|150

|200

|250

|300

|350

|400

|450

|500

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11

|0

|100

|200

|300

|400

|500

|600

|700

|800

|900

|1000

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

(c) latency 1.5X time in inner loop (d) latency >2X time in inner loop

(c), (d) Original pipelines with non-sequential data access

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8
|

9
|

10
|

11

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 Time (millions of cycles)

 O
ut

st
an

di
ng

 p
re

fe
tc

he
s

Prolog
Steady-state
Epilog
Stall

(e) latency 1.5X time in inner loop (f) latency >2X time in inner loop

(e), (f) Original pipelines, limited prolog prefetches, with non-sequential data access,

Figure 5.8. Effect of non-sequential data access across outer loop

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 131

????
????
????
????
????

@@@@
@@@@
@@@@
@@@@
@@@@

AAAA
AAAA
AAAA
AAAA
AAAA

BBBB
BBBB
BBBB
BBBB
BBBB

CCCCCCCCC
DDDD
DD

EEEEEEEEE
FFFF
FF

i−prolog
j−prolog
j−steady state

i−epilog
j−epilog
j−epilog/prolog merged

Pr
ef

et
ch

ed
 d

at
a

in
 p

ip
el

in
e

merged prolog/epilog prefetches & accesses
steady state prefetches & accesses

accesses only
steady state prefetches &

epilog access only

prolog prefetch only

Time

Figure 5.9. Continuous software pipelines for two-dimensional array prefetches

algorithm occasionally stalls at the end of the epilog due to alignment issues that were previously hidden by

the excessively-large block prefetches.

From the graphs in Figures 5.6 and 5.8, it is clear that the nested pipelining algorithm provides significant

benefits (both in terms of execution time and better memory usage) when the latency is too large to be hidden

by the inner loop. Using memory efficiently is especially important in a multiprogrammed environment where

we are also concerned about the negative effects of prefetching on other programs. If the inner loop is large

enough to hide the latency, however, there is no benefit to using the nested pipelining algorithm even though

a large penalty may still occur due to repeatedly initializing the pipeline, as shown in Figure 5.6(b). We are

only better off using nested pipelining if multiple loop nests are actually needed to hide all the latency, but we

will typically not know whether or not this is the case until run-time. To solve this problem, we need to start

re-filling the pipeline with data from the prolog of the next iteration as we drain out the data in the current

epilog. We now discuss how this effect can be achieved by merging epilogs with the subsequent prologs.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 132

5.2.3 Merging prologs and epilogs

Figure 5.9 depicts the effect of merging the epilog of one iteration with the prolog of the following

iteration. The dashed lines correspond to the epilogs and prologs from the nested pipelining case that have

now been merged together, keeping the total number of prefetches in the pipeline steady. There is now a

single “fill” stage when we are unable to hide all of the I/O latency, but for most of the execution we are able

to stay in the steady-state.

To build a software pipeline that will have the behavior shown in Figure 5.9 we need to do three things to

the nested software pipelines. These steps are depicted in Figure 5.10, which shows the transformation from

nested to continuous pipelines. First, since the inner prolog and epilog are being merged, we can now pull

the first instance of the inner prolog out of the loops, making it part of the outer prolog. Second, in the inner

epilog we need to insert the prefetches that would be issued in the inner prolog of the next outer iteration.

Normally, the epilog begins at the point where all data that will be accessed by the current loop has been

prefetched. This occurs when the loop index plus the prefetch offset reach the original upper bound of the

loop. Continuing to prefetch at this point would cause the array index used to generate the prefetch address

to overflow the range of data originally accessed. Although prefetches are designed so that this overflow is

safe (that is, it will not cause an access exception), it may pollute memory by fetching unnecessary data and

cannot generally be relied upon to fetch the data that will be needed by the next surrounding loop nest. Rather

than overflowing, we want the prefetch index to wrap around to the next surrounding dimension. Clearly this

implies that we need to adjust the offsets that are used for prefetching in the epilog. To do so, we simply need

to calculate the address that would be used for the prolog prefetch of the surrounding loop, where the outer

loop index variable has increased by the loop step and the inner index variable has been reset to its lower

bound. For this example, the address to prefetch would be a[i+di+1][j+dj-Nj]. The result of these

two steps produces the code shown in Figure 5.10(b).

Merging the epilog with the next iteration’s prolog is successful until the point where wrapping the index

for the inner loop causes the prefetch index for the outer loop to overflow. This happens during the final

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 133

 for (j = j_swp_ub; j < Nj; j++)
 access(a[i][j]);

 j_swp_ub = max(0, Nj−dj);
 for (j = 0; j < j_swp_ub; j++) {
 prefetch(&a[i+di][j+dj]);
 access(a[i][j]);
 }

i_swp_ub = max(0, Ni−di);
for (i = 0; i < i_swp_ub; i++) {

 for (j = 0; j < Nj; j++)
 access(a[i][j]);i−ep

ilo
g for (i = i_swp_ub; i < Ni; i++)

 for (j = 0; j < Nj; j++)
 prefetch(&a[ip][j]);

 for (ip = 0; ip < min(di, Ni); ip++)

i−pro
log

i−ste
ad

y

}

sta
te

j−pro
log

j−ep
ilo

g

sta
tej−ste

ad
y

i_swp_ub = max(0, Ni−di);

 for (j = 0; j < Nj; j++)
 access(a[i][j]);i−ep

ilo
g

for (i = 0; i < i_swp_ub; i++) {

for (i = i_swp_ub; i < Ni; i++)

 prefetch(&a[i+di][jp]);
 for (jp = 0; jp < min(dj, Nj); jp++)

 for (j = 0; j < Nj; j++)
 prefetch(&a[ip][j]);

 for (ip = 0; ip < min(di, Ni); ip++)

i−ste
ad

y

sta
te

sta
tej−ste

ad
y

 prefetch(&a[min(di,Ni)][jp]);
 for (jp = 0; jp < min(dj, Nj); jp++)pro

log

 j_swp_ub = max(0, Nj−dj);
 for (j = 0; j < j_swp_ub; j++) {
 prefetch(&a[i+di][j+dj]);
 access(a[i][j]);
 }

 access(a[i][j]);

 for (j = j_swp_ub; j < Nj; j++) {
 prefetch(&a[i+di+1][j+dj−Nj]);

 }

}pro
logep

ilo
g/merg
ed

1. Move inner j−prolog
 out of loops, creating
 a single prolog section.

2. Insert prefetches in inner
 j−epilog, adjusting prefetch
 offsets to wrap to next
 outer iteration.

(a) 2−D nested pipelining example (b) Result of first 2 steps in
transformation to continuous pipelining

 for (j = 0; j < Nj; j++)
 access(a[i][j]);i−ep

ilo
g for (i = i_swp_ub; i < Ni; i++)

}

i−peel
 }
 access(a[i_swp_ub−1][j]);

sta
te

ep
ilo

g

be
gin

s

 for (j = 0; j < Nj; j++)
 prefetch(&a[ip][j]);

 for (ip = 0; ip < min(di, Ni); ip++)

i−ste
ad

y

sta
te

 prefetch(&a[min(di,Ni)][jp]);
 for (jp = 0; jp < min(dj, Nj); jp++)pro

log

sta
tej−ste

ad
y

}

 for (j = j_swp_ub; j < Nj; j++) {

 access(a[i][j]);
merg

ed

pro
logep

ilo
g/

i_swp_ub = max(0, Ni−di);
for (i = 0; i < i_swp_ub − 1; i++) {

 for (j = j_swp_ub; j < Nj; j++) {

 prefetch(&a[Ni−1][j+dj]);

 for (j = 0; j < j_swp_ub; j++) {
 prefetch(&a[i+di][j+dj]);
 access(a[i][j]);
 }

 access(a[i_swp_ub−1][j]);

 for (j = 0; j < j_swp_ub; j++) {

j_swp_ub = max(0, Nj−dj);

j_swp_ub = max(0, Nj−dj);

las
t

ste
ad

y

 }

(c) Final 2−D continuous pipelining example

 }

prefetch(&a[i+di+1][j+dj−Nj]);

3. Peel last i−steady state
 iteration, and remove
 prefetches from the
 epilog of the peel.

Figure 5.10. Progression from Nested pipelines to Continuous pipelines

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 134

foo() {
 int count := 0;
 for (int i=0; i < Ni; i++)
 for (int j = 0; j < Nj; j++) {

 }
}

 a[i][j] = count;
 count = count + 1;

:=

0 1

1Nj0j := :=

foo()

count 0 i Ni

FOR

FOR

a[i][j] count count +

count 1

lower
bound

upper
bound

Body list

Body list

Body list

index step

Figure 5.11. SUIF-style abstract syntax tree for simple procedure with loops

iteration of the outer steady-state. Ordinarily, the code would have switched to the epilog at the point where

the prefetch index overflowed, but the overflow now occurs one iteration earlier due to the wrapping of the

inner index. In this final outer steady-state iteration, we still want to issue the inner steady-state prefetches,

but we don’t have another prolog to merge into the epilog. The third step is thus to isolate the final iteration

of the steady-state by peeling it, continuing to prefetch only in the inner steady-state of the peel. In the inner

epilog of the peel we remove the prefetch instructions. The effect of this final step is shown in Figure 5.10(c).

This code has all of the properties we want for I/O prefetching: the prefetch addresses are calculated correctly

to hide large latencies, and the software pipeline remains filled as long as there is more data that needs to be

prefetched.

Having informally introduced the strategy for building continuous software pipelines, we turn now to a

detailed description of the algorithm. For concreteness, we assume the algorithm operates on program code

in a tree-structured intermediate format such as that used by SUIF. In this representation, procedures are the

roots of abstract syntax trees. Each procedure contains a list of tree nodes (or simply nodes in this discussion)

which form the procedure body. For our purposes, we are primarily interested in FOR-nodes, which are

used to represent for-loops. A FOR-node contains an index variable, lower bound, upper bound and step

expressions, and a list of nodes that form the body of the loop. Figure 5.11 illustrates the basic structure of a

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 135

Properties of a set of nested loops, N

innermost [N] The innermost loop in the nest
outermost [N] The outermost loop in the nest

Properties of a loop, L

body [L] A list of nodes forming the current body of the loop L

original -body [L] The original body of L before transformations
lower -bound [L] The lower bound of loop L

upper -bound [L] The upper bound of loop L

index [L] The index variable of loop L

step[L] The amount index [L] is incremented on each iteration of loop L

outer [L] The loop immediately surrounding L, i.e., the next outer loop from L

prefetch-offset [L] The number of iterations to pipeline loop L for prefetching
Properties of nodes and lists of nodes

head [node-list] The first node in the list
next [node] The successor of node, i.e., the next node in the list

Table 5.2. Properties used in presenting continuous pipelining algorithm

COPY-LOOP-BODY(loop) Creates a complete copy of body[loop]
BUILD-ORIGINAL-PIPELINE(loop) Constructs a standard software pipeline around loop using

the prefetch-offset[loop]
INSERT-BEFORE(node, position) Inserts node into the list containing position , immediately

preceding position

INSERT-PREFETCHES(loop, nest) for each array reference in loop, adds a prefetch instruction to
body[loop], replacing each use of index [loop] in the array
index expression with (index [loop] + prefetch-offset[loop])

ADD-ANNOTATION(loop, mesg) Attaches a simple annotation,mesg , to loop

PEEL-LAST-ITERATION(loop) Peels the last iteration of loop and returns the resulting list of
nodes

Table 5.3. Additional procedures used in presenting continuous pipelining algorithm

simple procedure containing two nested for-loops in this representation (details such as the symbol table and

the termination test on the for-loop are omitted to focus on the tree structure).

In presenting the algorithm itself, we adopt the pseudocode style of Cormen et al. [18]: indentation

indicates block structure, the “�” symbol indicates a comment, and data objects are described by attributes,

written as attribute[object]. We will refer to three main types of objects: sets of nested loops (or nests),

for-loop nodes (or loops), and lists of arbitrary nodes. Table 5.2 summarizes the attributes of these objects

which we will be using. Finally, the pseudocode for the main algorithm uses several additional procedures

which we describe briefly in Table 5.3.

Our algorithm, shown in Figure 5.12, needs to handle separately the cases of the innermost loop (lines 9–

13) and surrounding loops (lines 15–29), which include intermediate loops (lines 20–23) and the outermost

loop (lines 25–28). We begin by generating a copy of the original bodies of all of the loops (lines 1–2).

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 136

This simplifies the construction of the final epilog code where no prefetching transformations are needed.

Although we need only a single prolog section at the beginning of all the loops for continuous pipelining, we

will build the prolog incrementally as each loop is pipelined. We thus mark the point where the prolog should

be added (line 3) and then proceed to transform the loops, beginning with the innermost and working out to

the outermost loop (lines 4–29).

For each loop, we start by generating prolog , steady and epilog loops according to the original pipelining

algorithm; we use the prefetch-offset previously calculated to hide the required portion of the latency with the

current loop (line 5). The prolog is inserted immediately before the previous prolog, or before the outermost

loop in the case of the first prolog generated (lines 6–7). This causes the prologs to be ordered from outermost

to innermost in the list of nodes preceding the outermost loop. Next we deal with the three types of loops.

Lines 9–13 handle the case of innermost loops. Prefetches are added to the steady and epilog loops using

the original prefetch-offsets for each loop. The prefetch offsets are then adjusted in the epilog loop to cause

the address calculation to wrap around to the next iteration of the surrounding loop. An annotation is added

to the epilog loop to allow us to identify it later when surrounding loops are pipelined, and the original loop,

L is replaced in the body of the surrounding loop with the pair of loop nodes, steady and epilog . Note that

because this transformation of the innermost loop is performed first, all surrounding loops will contain a copy

of the pipelined innermost loop with prefetching code already added to it when they are pipelined.

We next have to deal with the cases of loops surrounding the innermost. For each of these loops, the

epilog begins when the prefetch address component for the current loop would overflow. As with the simple

two-dimensional example discussed earlier, however, wrapping the offsets of the next inner loop will cause

the current loop’s prefetch index to overflow one iteration earlier. We thus need to peel the final iteration of

the steady loop (line 15). Within the peel, we need to identify the point where the overflow would occur.

For intermediate loops, this is the point where we have to begin wrapping the prefetch index for the current

loop. For the outermost loop there is no surrounding loop onto which to wrap the index, so the overflow point

represents the point where prefetching is no longer needed. Conceptually, we must look within the current

peel for the loop where the prefetch index for the next inner loop began wrapping. Precisely how to locate

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 137

BUILD-CONTINUOUS-PIPELINES(N)

� Step 1: Preserve copy of original loop bodies
1 for L← outermost [N] to innermost [N] do
2 original -body [L]← COPY-LOOP-BODY(L)

� Step 2: Transform Loops
3 prolog-position ← outermost [N]
4 for L← innermost [N] to outermost [N] do
5 (prolog , steady , epilog)← BUILD-ORIGINAL-PIPELINE(L, prefetch-offset [L])
6 INSERT-BEFORE(prolog , prolog-position)
7 prolog-position ← prolog

8 if L = innermost [N] then � Case 1: L is innermost loop
9 INSERT-PREFETCHES(steady , N)

10 INSERT-PREFETCHES(epilog , N)
11 ADJUST-PREFETCH-OFFSETS(epilog , L, outer [L])
12 ADD-ANNOTATION(epilog ,“Epilog Loop”)
13 Replace L in parent list with (steady , epilog)
14 else � Case 2 & 3: surrounding loops
15 peel -list ← PEEL-LAST-ITERATION(steady)
16 node ← head [peel -list]
17 while node does not have “Epilog Loop” annotation do
18 node ← next [node]

� node is now loop with “Epilog Loop” annotation
19 if L 6= outermost [N] then � Case 2: L is intermediate loop
20 while node 6= NIL do
21 ADJUST-PREFETCH-OFFSETS(node, L, outer [L])
22 node ← next [node]
23 ADJUST-PREFETCH-OFFSETS(epilog , L, outer [L])
24 else � Case 3: L is outermost loop
25 while node 6= NIL do
26 Replace body[node] with original -body[node]
27 node ← next [node]
28 Replace body[epilog] with original -body[epilog]
29 Replace L in parent list with (steady , peel -list , epilog)

ADJUST-PREFETCH-OFFSETS(node, current , outer)

1 if node is not a loop then
2 Return
3 foreach prefetch instruction P in body[node] do
4 foreach expression E containing index [current] in P do
5 E ← E − upper -bound [current] + lower -bound [current]
6 foreach expression E containing index [outer] in P do
7 E ← E + step[outer]

Figure 5.12. Algorithm for building continuous software pipelines in nested loops

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 138

this loop depends on the representation. In our case, we take advantage of the tree structure of the SUIF

intermediate format as follows. We observe that wrapping always occurs in the copy of the innermost epilog

in the peel of each loop, however an arbitrary interior loop peel will have multiple copies of the innermost

epilog. The key is that each peel removes a layer of nesting. We thus require the copy of the innermost

epilog that occurs at the top level in the current peel -list . Another way to think of this property is that in the

innermost epilog we must wrap the prefetch address onto the next surrounding loop. All copies that are not

at the top level in the peel have some other loop surrounding them, which is the target of the wrapping. When

the copy is at the top level, however, the overflow condition must be handled by the current loop. To find the

point where overflow would occur, we simply walk the list of nodes in the peel -list looking for the loop with

the epilog annotation added earlier (lines 16–18).

After locating the point where the prefetch addresses would overflow, we need to distinguish between

intermediate loops, where we can wrap prefetches to a surrounding loop, and the outermost loop where

prefetching should stop. For intermediate loops (lines 20–23) we adjust the prefetch offsets for the current

loop and the next outer loop to wrap the prefetch addresses for every prefetch instruction in every loop until

the end of the peel list. We also adjust the prefetch addresses in the epilog in the same manner. For the

outermost loop, rather than adjusting the prefetch offsets, we simply replace the body of each loop in the rest

of the peel, and the body of the epilog with the original, untransformed body of that loop. Finally, after all

necessary adjustments have been made, we replace the original loop L with the steady loop, the peel -list and

the epilog loop in the list containing L.

Figure 5.13 illustrates the simulated performance of the continuous pipelining algorithm under the dif-

ferent latency and data layout scenarios introduced previously. In contrast to the corresponding graphs for

nested pipelining in Figures 5.6 and 5.8, the continuous pipelining curves are nearly identical in all situations.

There is a single stall when the steady-state is first entered, because the first page prefetched has not had time

to complete. Thereafter, the number of outstanding prefetched pages remains nearly constant until the sole

epilog at the end of the simulation. There is a small amount of “jitter” in the pipeline as transitions are made

from the original steady-state to the merged prolog/epilog portion of the steady-state and back, however, these

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 139

| 0
| 1

| 2
| 3

| 4
| 5

| 6

|

0

|

20

|

40

|

60

|

80

|

10
0

 T
im

e
(m

ill
io

ns
 o

f c
yc

le
s)

 Outstanding prefetches

P
ro

lo
g

S
te

ad
y-

st
at

e
E

pi
lo

g
S

ta
ll

| 0
| 1

| 2
| 3

| 4
| 5

| 6

|

0

|

20

|

40

|

60

|

80

|

10
0

|

12
0

|

14
0

|

16
0

|

18
0

|

20
0

 T
im

e
(m

ill
io

ns
 o

f c
yc

le
s)

 Outstanding prefetches

P
ro

lo
g

S
te

ad
y-

st
at

e
E

pi
lo

g
S

ta
ll

| 0
| 1

| 2
| 3

| 4
| 5

| 6

|

0

|

20

|

40

|

60

|

80

|

10
0

|

12
0

|

14
0

|

16
0

|

18
0

|

20
0

|

22
0

|

24
0

|

26
0

 T
im

e
(m

ill
io

ns
 o

f c
yc

le
s)

 Outstanding prefetches

P
ro

lo
g

S
te

ad
y-

st
at

e
E

pi
lo

g
S

ta
ll

(a
)l

at
en

cy
<

tim
e

in
in

ne
rl

oo
p,

d
i
=

0
(b

)l
at

en
cy

1.
5X

tim
e

in
in

ne
rl

oo
p,

d
i
=

1
(c

)l
at

en
cy

>
2X

tim
e

in
in

ne
rl

oo
p,

d
i
=

2

(a
),

(b
),

(c
)C

on
tin

uo
us

pi
pe

lin
in

g
w

ith
se

qu
en

tia
ld

at
a

ac
ce

ss
es

ac
ro

ss
ou

te
rl

oo
p

| 0
| 1

| 2
| 3

| 4
| 5

| 6

|

0

|

20

|

40

|

60

|

80

|

10
0

 T
im

e
(m

ill
io

ns
 o

f c
yc

le
s)

 Outstanding prefetches

P
ro

lo
g

S
te

ad
y-

st
at

e
E

pi
lo

g
S

ta
ll

| 0
| 1

| 2
| 3

| 4
| 5

| 6

|

0

|

20

|

40

|

60

|

80

|

10
0

|

12
0

|

14
0

|

16
0

|

18
0

|

20
0

 T
im

e
(m

ill
io

ns
 o

f c
yc

le
s)

 Outstanding prefetches

P
ro

lo
g

S
te

ad
y-

st
at

e
E

pi
lo

g
S

ta
ll

| 0
| 1

| 2
| 3

| 4
| 5

| 6

|

0

|

20

|

40

|

60

|

80

|

10
0

|

12
0

|

14
0

|

16
0

|

18
0

|

20
0

|

22
0

|

24
0

|

26
0

 T
im

e
(m

ill
io

ns
 o

f c
yc

le
s)

 Outstanding prefetches

P
ro

lo
g

S
te

ad
y-

st
at

e
E

pi
lo

g
S

ta
ll

(d
)l

at
en

cy
<

tim
e

in
in

ne
rl

oo
p,

d
i
=

0
(e

)l
at

en
cy

1.
5X

tim
e

in
in

ne
rl

oo
p,

d
i
=

1
(f

)l
at

en
cy

>
2X

tim
e

in
in

ne
rl

oo
p,

d
i
=

2

(d
),

(e
),

(f
)C

on
tin

uo
us

pi
pe

lin
in

g
w

ith
no

n-
se

qu
en

tia
ld

at
a

ac
ce

ss
es

ac
ro

ss
ou

te
rl

oo
p

Fi
gu

re
5.

13
.S

im
ul

at
ed

pe
rf

or
m

an
ce

of
co

nt
in

uo
us

so
ft

w
ar

e
pi

pe
lin

in
g

un
de

r
va

ry
in

g
la

te
nc

y
an

d
da

ta
la

yo
ut

s

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 140

variations do not impact on the overall effectiveness of the software pipelining. As with nested pipelining,

there are fewer than 20 wasted prefetches (less than 5% of the data accessed) when the data layout is not se-

quential across outer loop iterations. Regardless of the amount of latency, or the data layout, the continuous

pipelining algorithm is able to effectively use multiple loop nests to overlap prefetches with data accesses.

The algorithm in Figure 5.12 is able to handle arbitrary levels of nesting, including imperfectly-nested

as well as perfectly-nested loops. In all cases, prefetches are correctly generated to maintain a full software

pipeline until all needed data has been prefetched. Scheduling prefetches correctly is not the only issue,

however. Referring back to Figure 5.10(c), notice that there are now five copies of the original loop body

for the two-dimensional loop nest. In general, the strategy outlined here will lead to 3n−1 + n copies of

the original loop body, for n levels of loops since all loops except the innermost need to distinguish three

separate situations. This may lead to an unacceptable expansion in code size for even moderately deep

nestings. The important issue is the dynamic code footprint, which will depend on how the execution is split

between the various cases in the continuous pipeline based on actual loop bounds. The continuous pipelines

are flexible enough to adapt to a large number of situations, but it is unlikely that each case will occur with

equal frequency. Nonetheless, we will demonstrate how the code expansion problem can be handled.

5.2.4 Reducing code expansion

It is tempting to address the code expansion problem by ignoring the special case that occurs in the final

iteration of the steady-state, and continuing to transition to the epilog at the same point as before. This strategy

eliminates the need to peel an iteration of each surrounding loop, and reduces the number of copies to what

we had for the basic nested pipelines. Unfortunately, if we do not know the loop bounds, we cannot estimate

how important those final steady-state prefetches really are. For example, in our simple two-dimensional

example, if Ni is only 2, and Nj is extremely large, roughly half of the prefetches should be issued in the last

steady-state iteration of the outer i-loop. By ignoring this possibility, we greatly reduce our opportunities to

hide I/O latency in some cases.

Fortunately, there is a better solution. Observe that all the copies of the original loop body occur in one

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 141

st
ea

dy
 st

at
e

(m
er

ge
d

ep
ilo

g/
pr

ol
og

) j_lb = 0;
 j_off = dj;
 j_swp_ub = max(0, Nj−dj);

 access(a[i][j]);

 access(a[i][j];
 j_lb = 0;
}

 prefetch(&a[ip][j]);
for (jp = 0; jp < min(dj, Nj); jp++)

 prefetch(&a[i_idx][j+j_off]);

 }
 /* setup for merged prolog/epilog */
 j_lb = j_swp_ub;
 j_off = dj − Nj;
 j_swp_ub = Nj;
 }
}

 for (j = j_lb; j < Nj; j++)

for (i = 0; i < i_swp_ub; i++) {

for (ip = 0; ip < min(di, Ni); ip++)
 for (j = 0; j < Nj; j++)

 prefetch(&a[i+di][jp]);

i_swp_ub = max(0, Ni−di);

 /* setup for steady state */
 i_off = i + di;

 i_idx++) { (i_idx < Ni) && (i_idx < (i_off+2)); for (i_idx = i_off;
 for (j = j_lb; j < j_swp_ub; j++) {

for (i = i_swp_ub; i < Ni; i++) {

ep
ilo

g
pr

ol
og for

for

 prefetch

for

for

 for
 prefetch

 for

 prefetch

 for

for

Figure 5.14. Wrapped pipeline: only two copies of the original loop body are needed to cover all
situations.

of only two situations: either the original body by itself, or the original body with a prefetch operation added.

The only differences are the upper and lower bounds on the loops surrounding the body, and the offsets used

in the prefetch address calculation. By identifying the points where these values need to change and inserting

code to calculate them appropriately, we only need a single copy of the body with the prefetch operation.

Similarly, if we can identify the point where prefetching should stop, we only need a single copy of the

epilog code.

Our solution is to “wrap” each inner loop in a new loop that executes at most twice. Before the first

iteration of the wrapper we insert code to set the bounds on the “wrapped” loop for the steady state condition.

At the end of the wrapper, we insert code to set bounds and offsets for the merged epilog/prolog situation. An

example for the two-dimensional case is shown in Figure 5.14. This technique for reducing code expansion

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 142

Static Secondary % Increase Execution % Increase
Code I-cache Misses Over Previous Time (cycles) Over Previous

Bench Version Size (x 10
5) Version (x 10

9) Version

FFTPDE
No Prefetch 10.9K 2.76 N/A 62.36 N/A
Original pipe 16.1K 3.07 11.2 62.55 0.3
Dynamic lat. 21.7K 3.19 3.7 62.34 -0.3
Nested pipe 25.0K 3.31 3.8 62.79 0.7
Continuous 46.0K 3.84 16.1 63.36 0.9

MGRID
No Prefetch 13.1K 0.58 N/A 23.76 N/A
Original pipe 23.3K 0.65 11.9 24.24 2.1
Dynamic lat. 24.4K 0.69 5.0 25.55 5.4
Nested pipe 39.5K 0.83 21.0 27.40 7.3
Continuous 144.8K 1.34 61.1 26.94 -1.7

APPBT
No Prefetch 81.2K 1.70 N/A 11.31 N/A
Original pipe 199.5K 1.85 9.2 11.81 4.4
Dynamic lat. 203.0K 1.92 3.4 11.82 0.1
Nested pipe 290.1K 2.58 34.6 11.81 -0.1
Continuous 845.5K 3.39 31.3 11.87 0.5

APPLU
No Prefetch 58.2K 0.27 N/A 2.69 N/A
Original pipe 98.5K 0.27 -1.1 2.74 2.0
Dynamic lat. 100.5K 0.29 6.1 2.74 0.2
Nested pipe 172.0K 0.39 37.8 2.76 0.4
Continuous 442.4K 0.61 55.2 2.82 2.5

APPSP
No Prefetch 75.2K 5.62 N/A 59.49 N/A
Original pipe 133.1K 5.59 -1.5 60.40 1.53
Dynamic lat. 137.2K 5.84 4.5 60.22 -0.3
Nested pipe 224.4K 6.21 6.2 62.64 4.0
Continuous 593.8K 10.96 76.5 63.53 1.4

Table 5.4. Effect of pipelining algorithms on code size and execution time

is similar in spirit to loop rerolling [5], which has also been applied to reduce the memory footprint for

embedded applications [1]. The wrapped pipeline approach introduces some additional overhead, in the form

of the extra loop and the code to update bounds and offsets.

To evaluate whether this optimization is necessary, we applied the nested and continuous pipelining al-

gorithms to the NAS parallel benchmarks that have nested loops. We then measured the expansion in static

code size, the change in i-cache misses and the effect on execution time. To show the worst-case effect of

code expansion alone, we disabled the actual prefetch and release operations, and ran these experiments on a

quiet system with enough memory to eliminate paging. The results are shown in Table 5.4.

As expected, each enhancement to the scheduling algorithm results in an increase in the static code

size, with the most dramatic increase occurring with the continuous pipelines. The dynamic effects are less

pronounced and less uniform, however. Looking at the second-level instruction cache misses, we see that the

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 143

misses generally increase with larger static code sizes, and the largest increase again occurs for the continuous

pipelines. In the worst case, continuous pipelining for APPSP results in a 76% increase in instruction cache

misses over the nested pipelining algorithm. We are most interested in the effect of code expansion on the

overall execution time, however, and here we see that continuous pipelining has a worst case penalty of

just 2.5% over nested pipelining (for APPLU). In the case of APPSP, the massive increase in instruction

cache misses leads to only a 1.4% increase in execution cycles. For MGRID, the execution time actually

decreases with the continuous pipelining algorithm (relative to nested pipelining) in spite of a 61% increase

in instruction cache misses. Clearly other factors also have an effect on the overall performance, even in a

setting designed to highlight the impact of code expansion.

In a more realistic usage scenario (out-of-core applications with prefetching and releasing occurring),

other effects have a far more dramatic impact on instruction cache performance than the choice of software

pipelining algorithm. For instance, the main execution thread is less likely to be scheduled on the same CPU

when we have active prefetch helper threads, and the execution of operating system code to handle prefetches

and page faults both lead to large increases in the number of instruction cache mises.

Based on these experiments, we conclude that the wrapped pipelining algorithm is unlikely to have any

benefits relative to the fully-expanded continuous pipelining algorithm for the types of applications we are

targeting, and we do not consider it any further in this dissertation. There may, however, be other settings

where code footprint is a larger concern.

Having introduced our new algorithms for scheduling prefetches in out-of-core applications, we now

discuss an important property of these algorithms—the ability to deal with imperfectly-nested loops.

5.2.5 Imperfectly nested loops

In his thesis, McIntosh [37] also considered compiler algorithms for prefetching in nested loops when

latencies were large. Although he was concerned with prefetching cache misses, he observed that inner

loops with short trip counts could be too small to effectively hide long-latency memory accesses. McIntosh’s

solution, termed outer-loop pipelining, is similar to our heuristic for finding a suitable loop nest (as described

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 144

in Section 3.1.2) when the bounds are known at compile-time. When the bounds are unknown, however,

outer-loop pipelining first strip-mines the inner loop and then interchanges the strip-mine loop with the outer

loop to give the compiler control over the prefetching distance, which is now expressed in terms of the

strip-mining factor. The effectiveness of outer-loop pipelining was found to be mixed, producing modest

improvements in some cases, and modest degradations in others [37]. Further, the technique is only applicable

to perfectly-nested loops, and the compiler must be able to prove that the interchange is safe in the case of

unknown bounds.

In contrast, because we are not attempting to interchange the loops themselves, the continuous pipelining

strategy can be applied to imperfectly-nested loops. This feature is important, particularly when considering

the very long latencies that must be hidden for I/O prefetching. As the latencies become larger, it is not

sufficient to consider only the loop immediately surrounding the innermost one. For example, in the APPBT,

APPLU and APPSP benchmarks in the NAS Parallel suite, the most suitable loop for I/O prefetching fre-

quently contains multiple inner loops. Figure 5.15 shows an example drawn from the APPLU benchmark.

Consider the “do 999980” loop (the i-loop), which contains four distinct loops. Of these four, the two

perfectly-nested loops each have a total trip count of only 25 iterations, while the remaining two are them-

selves imperfectly-nested (and also have short trip counts). For I/O prefetching to have any chance of success,

we must at least pipeline the i-loop, which would be impossible using McIntosh’s outer loop pipelining strat-

egy.

The major challenge posed by imperfectly-nested loops for continuous pipelining is the possibility that

it will be too early to start the next prolog during the current epilog of an inner loop. To illustrate, refer

again to Figure 5.15. When we generate the epilog for the first loop nested inside i (the “do 99988, m

= ...” loop), we insert prefetches for the next iteration of the i-loop, however, we still have to execute

the other three loops that are nested inside the i-loop. If these later loops access a large amount of data, it

is possible for the data prefetched in the first epilog to be flushed from memory before it can be used. In

this specific example, the bounds on all the loops nested inside the i-loop are constant at compile-time, so

we can estimate the volume of data accessed and determine whether continuous pipelining will be fruitful or

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 145

do 99978, k = 2, nz - 1
do 99979, j = 2, ny - 1
do 99980, i = 2, nx - 1

C ***First loop nested inside i
do 99988, m = 1, 5
do 99989, l = 1, 5

v(m, i, j, k) = v(m, i, j, k) - omega * (ldz(m, l, i,
*j, k) * v(l, i, j, k - 1) + ldy(m, l, i, j, k) * v(l, i, j - 1, k)
* + ldx(m, l, i, j, k) * v(l, i - 1, j, k))

99989 continue
99988 continue
C ***diagonal block inversion
C ***forward elimination - Second loop nested inside i

do 99986, m = 1, 5
do 99987, l = 1, 5

tmat(m, l) = d(m, l, i, j, k)
99987 continue
99986 continue
C ***Third loop nested inside i

do 99983, ip = 1, 4
tmp1 = 1.0d+00 / tmat(ip, ip)
do 99984, m = ip + 1, 5

tmp = tmp1 * tmat(m, ip)
do 99985, l = ip + 1, 5
tmat(m, l) = tmat(m, l) - tmp * tmat(ip, l)

99985 continue
v(m, i, j, k) = v(m, i, j, k) - v(ip, i, j, k) * tmp

99984 continue
99983 continue
C ***back substitution - Fourth loop nested inside i

do 99981, m = 5, 1, -1
do 99982, l = m + 1, 5

v(m, i, j, k) = v(m, i, j, k) - tmat(m, l) * v(l, i, j
*, k)

99982 continue
v(m, i, j, k) = v(m, i, j, k) / tmat(m, m)

99981 continue
99980 continue
99979 continue
99978 continue

Figure 5.15. Example of imperfect loop nesting structure found in blts subroutine of applu.f

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 146

Simulated Simulated Pages Pages
Time Stall Page Pages Replaced Not Late

Bench Version (cycles) (cycles) Faults Prefetched Before Use Prefetched Prefetches

FFTPDE
No Prefetch 1.00e12 9.66e11 369,963 N/A N/A 369,963 N/A
Original pipe 1.45e11 1.06e11 380,323 378,029 37,608 39,980 86,623
Nested pipe 7.08e10 3.18e10 373,538 368,479 1,192 6,267 8,635
Continuous 9.67e10 5.77e10 374,171 365,878 8,765 17,091 5,582

MGRID
No Prefetch 9.36e11 8.54e11 327,038 N/A N/A 327,038 N/A
Original pipe 9.87e10 1.60e10 330,784 401,248 70,453 19 28,602
Nested pipe 1.06e11 2.36e10 327,286 329,604 2,344 28 22,092
Continuous 9.92e10 1.65e10 327,740 330,917 7,075 3,925 3,729

APPBT
No Prefetch 4.61e11 4.22e11 161,686 N/A N/A 161,686 N/A
Original pipe 1.79e11 1.40e11 162,275 121,602 4,406 47,107 6,575
Nested pipe 7.31e10 3.31e10 163,566 154,197 219 10,123 8,673
Continuous 6.73e10 2.73e10 162,359 160,187 5,714 9,168 10,625

APPLU
No Prefetch 5.68e11 5.28e11 202,432 N/A N/A 202,432 N/A
Original pipe 9.14e10 5.19e10 226,414 1,224,058 1,016,069 18,908 3,657
Nested pipe 9.96e10 6.03e10 202,846 186,934 1,331 17,324 19,262
Continuous 1.08e11 6.84e10 203,051 184,204 2,824 21,779 4,862

APPSP
No Prefetch 2.92e12 2.78e12 1,064,552 N/A N/A 1,064,552 N/A
Original pipe 8.76e11 7.34e11 1,086,023 1,449,012 421,792 59,842 234,848
Nested pipe 3.71e11 2.29e11 1,066,079 1,026,117 2,820 43,641 110,240
Continuous 3.28e11 1.86e11 1,068,317 1,016,433 8,425 61,221 43,479

Table 5.5. Simulated performance characteristics

not. If, however, we cannot estimate the volume of data traffic, we fall back on an all-or-nothing decision,

settable with a compile-time flag. The options are to either assume imperfectly-nested loops of unknown size

do not access enough data to flush the prefetches from memory, or assume that they do access a large volume

of data and use the nested pipelining strategy instead. In our experiments, we compile with the assumption

that imperfectly-nested loops will not cause prefetched data to be flushed from memory, to show the effect of

applying continuous pipelining in all cases.

5.3 Evaluation

The enhanced prefetch scheduling techniques we have introduced in this chapter were motivated by prob-

lems with the original algorithm as observed in the NAS Parallel benchmarks. We now examine how effec-

tively our new algorithms can address these problems.

When executing these applications on our prototype system, we have encountered several practical limi-

tations that make it difficult for the new scheduling algorithms to achieve their full potential. First, some of

the benchmarks are bandwidth-limited, and the hardware we have simply cannot deliver data at the necessary

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 147

rate. In these cases, although the new scheduling algorithms smooth the request patterns they cannot substan-

tially decrease the stall time. Second, the algorithms were designed to schedule prefetches more effectively,

with releases being handled by a straightforward application of the original strategy. On IRIX, generating

correct release hints is also of critical importance for performance. We have made some minor adjustments

to the run-time layer code that handles release requests to better adapt to the new scheduling algorithms,

however, this was not the primary focus of this part of the work. As a result, the new scheduling algorithms

do a worse job of releasing pages in some cases, masking the benefits of better prefetching.

To address whether the compiler algorithms could be beneficial in a future system capable of delivering

higher parallel bandwidth (a network-attached storage system, for instance), and to eliminate the effects of

the release hints, we first evaluate the NAS benchmarks on an expanded version of our disk simulator. For

these simulations, we provide a more realistic notion of time spent executing a loop, using the number of

SUIF instructions in the loop body. Release hints are disabled in the benchmarks. We chose the page size

and number of pages to match those on our prototype IRIX system (16kB and 4500 pages, respectively). We

charge a modest 100 cycle penalty for issuing a prefetch, which is intended to reflect the IRIX setup where

most of the work of a prefetch request is handled by a separate thread. Our simulated disk system continues

to have infinite bandwidth.

Table 5.5 gives the overall results of our new algorithms on the NAS Parallel benchmarks with nested

loops, obtained via the simulator. For each version, we report the total simulated time, and the simulated stall

time, as well as the number of page faults. For the prefetching versions, we report the number of pages that

were prefetched (this is the total number of prefetch requests that caused a page to be fetched from disk), the

number of prefetched pages that were replaced before they were used (prefetched pages are placed on the

top of the LRU stack when the I/O completes), and the number of pages that were not prefetched. The “Not

Prefetched” category counts all page faults for which a prefetched page was not pending or in memory, thus

some of these pages may have been prefetched, but were replaced before the reference occurred.

From Table 5.5, some broad trends are evident. First, the original pipelining algorithm has vastly more

prefetched pages that are replaced before they are used. This reflects the aggressive over-prefetching that we

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 148

first discussed with regard to Figure 5.6(e). For MGRID, these extra prefetches are generally beneficial, in

that very few page faults are not prefetched, but greater than fifteen times the total memory capacity of the

simulated system is transferred between disk and main memory unnecessarily. MGRID only pays slightly for

this excessive fetching since prefetch requests are cheap, however the additional strain on the memory and

I/O bandwidth if these fetches occurred in a real system would be substantial. The excessive prefetches are

even worse in APPLU with the original pipelining algorithm. The nested pipelining algorithm has much better

memory usage, but this does not translate into an overall reduction in stall time for MGRID, since slightly

more pages are not prefetched. For FFTPDE the situation is different. In this benchmark, the replaced pages

are not prefetched again before they are needed, and the result is a large number of page faults for the original

algorithm. In this case, the nested pipelining algorithm shows a large benefit, both in terms of reduced stall

time, and better memory usage.

The continuous pipelining algorithm shows somewhat mixed results. Typically, we see fewer late prefetches

than any other algorithm, indicating that our ability to take advantage of multiple loop nests to hide latency

is effective. On the other hand, we see more pages replaced before use, and more pages not prefetched as

compared to nested pipelining, indicating that we may be prefetching too early in some cases. In two cases

(APPBT and APPSP) these effects combine to give continuous pipelining the best overall performance, and in

MGRID it is nearly as good as the original algorithm (and better than nested pipelines) with large reductions

in unnecessary disk-to-memory traffic. In the other two cases, FFTPDE and APPLU, the continuous pipelining

algorithm it not the best performer. For FFTPDE, however, the best choice is nested pipelining, whereas for

APPLU the best choice is the original pipelining algorithm. Overall, in the idealized simulator setting, the

continuous pipelining algorithm delivers competitive performance for all the benchmarks we examined.

We now consider the effect of our new pipelining algorithms for the NAS Parallel benchmarks with

multiply-nested loops on our IRIX prototype system. Figure 5.16 shows the overall execution time of original

algorithm using dynamic latency calculations (bars labeled “D”), the nested pipelining algorithm (bars labeled

“N”) and the continuous pipelining algorithm (bars labeled “C”), normalized to the original, non-prefetching

case (bars labeled “O”). The results are not as dramatic as with the idealized simulator, since our ability to

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 149

100

O

58

D

60

N

51

C
FFTPDE

100

O

65

D

68

N

59

C
MGRID

100

O

75

D

57

N

54

C
APPBT

100

O

41

D

52

N

48

C
APPLU

100

O

90

D

54

N

55

C
APPSP

0

20

40

60

80

100
N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

waiting for I/O
resource contention
system
user

Figure 5.16. Effect of new scheduling algorithms. Bars labeled “O” are the original, non prefetching ver-
sion; bars labeled “D” use a dynamic latency value with the original scheduling algorithm; bars labeled
“N” use the nested pipelining algorithm; bars labeled “C” use the continuous pipelining algorithm.

eliminate stall time is limited by the physical capacity of the machine, however the new algorithms have clear

benefits for FFTPDE, APPBT and APPSP.

In FFTPDE and MGRID, nested pipelining produces a small increase in execution time over the original

algorithm, primarily the result of an increase in system time. In each of these cases, however, the continuous

pipelining algorithm delivers an additional 7% reduction over the original algorithm. For APPBT and APPSP,

however, it is the nested pipelining algorithm that makes the largest difference, reducing execution time by

18% and 36% respectively. In these cases, most of the advantage comes from being able to select the best

loop nest for software pipelining. A large amount of time is spent in the steady-state once this is done, and

so the benefit of avoiding repeated pipeline fills and drains is relatively small. Continuous pipelining has

little effect here, leading to an additional 3% reduction in execution time for APPBT and a 1% increase in

execution time for APPSP.

In the final case, APPLU, we see that nested pipelining performs worse than the original pipelining al-

gorithm, as was the case for the simulated results. For this benchmark, the continuous pipelining algorithm

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 150

results brings the execution time within 7% of the original, reducing the penalty of nested pipelining by nearly

half.

Even under the limitations of the real system, we see that the continuous pipelining algorithm has the

best, or nearly best, overall performance in 4 of the 5 benchmarks that we studied. In the worst case, we were

still able to reduce execution time by 54% relative to the original, non-prefetching case, losing only 6% of

the best algorithm’s performance. The flexibility of the algorithm, and the ability to adapt to a wide range

of conditions, make continuous pipelining a good choice for scheduling prefetches in out-of-core numeric

applications.

5.4 Chapter Summary

In this chapter, we demonstrated that generating code to calculate prefetch distances at run-time is a

useful extension to the compiler algorithm. It has a negligible performance impact in most cases, and can

improve scheduling by itself in some cases by allowing the run-time values of loop bounds to be used, rather

than assuming worst-case executions. It also enables more sophisticated techniques for adapting the prefetch

distance dynamically, however, an exploration of such techniques is beyond the scope of this thesis.

We also presented and evaluated a progression of refinements to the compiler scheduling algorithm.

The final result, continuous software pipelining, allows us to schedule for large latencies in the presence

of multiply-nested loops with unknown bounds. It is further capable of handling imperfectly-nested loops

correctly. Using our simple disk simulator, we are able to show that the new scheduling algorithm elimi-

nates the bursty behavior of the original algorithm, keeping the pipeline of outstanding prefetches full and

increasing opportunities to overlap I/O with computation.

On our prototype IRIX system, the applications that inspired these techniques generally benefited from

them, with a large reduction in stall time observed for APPSP, previously the worst benchmark in the suite. In

some cases, bandwidth limitations on our prototype system prevented the full potential of the new scheduling

algorithms from being visible. However, technology trends such as networked-attached storage suggest that

future systems will be able to supply greater bandwidth and should see larger benefits from the continuous

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 151

pipelining algorithm. To explore the utility of the algorithms without bandwidth limitations, we used out

disk simulator to show that the new algorithms can have even greater benefits for the NAS benchmarks on

systems with significantly-higher bandwidth capabilities. Even in cases where there may not be an overall

performance benefit, the new algorithms make much more efficient use of memory.

CHAPTER 5. IMPROVING THE COMPILER SCHEDULING ALGORITHM 152

Chapter 6

Conclusions
When will you make an end? — Pope Julius II (from The Agony and the Ecstasy)

I/O performance remains a first-order bottleneck for computer systems, as the gap between processor speed

and disk latency is only growing wider. For out-of-core applications which rely on disk accesses throughout

their execution, techniques that address the I/O bottleneck are essential. As we discussed in Chapter 1, it

is important to make good replacement decisions to maximize the benefit of caching previously-used pages

in memory, as well as to make good prefetching decisions to hide the latency of the remaining I/O opera-

tions whenever possible. Many techniques have been proposed in the past to address the issue of file system

I/O performance, however, we are concerned with improving the performance of a demand-paged virtual

memory system. This setting has the potential to simplify the task of writing an out-of-core application by

relieving the programmer of concerns related to I/O, provided acceptable performance can be obtained. The

use of demand-paged virtual memory, however, also has the potential to degrade the performance of other

applications (particularly interactive ones) which must share a machine with an out-of-core program. In

this dissertation, we have addressed the open question of whether or not compiler-inserted memory manage-

ment hints can reduce the execution time of out-of-core applications while limiting their negative impact on

interactive applications sharing the same machine, in a demand-paged virtual memory environment.

The key results of this dissertation are as follows:

153

CHAPTER 6. CONCLUSIONS 154

1. Compiler-inserted prefetch and release directives can be very effective at reducing the overall execution

time of numeric applications. A combination of user-level run-time support and operating system level

support is required to adapt the compile-time decisions according to dynamic conditions.

2. The use of replacement hints is surprisingly important on a system with high overhead for making

replacement decisions, even if no attempt is made to improve the replacement policy itself. On our IRIX

prototype, we found that simulating a hardware reference bit in software led to high contention over

locks in the memory system for applications with heavy memory demands. Explicitly identifying pages

to be replaced reduced the need for the operating system to collect detailed page usage information,

resulting in a substantial decrease in lock contention and a corresponding reduction in execution time.

Although the goal of this dissertation is not to investigate hardware support, this result argues strongly

for the inclusion of a reference bit in the hardware memory management unit.

3. Allowing memory-intensive applications more control over their paging strategies can alleviate the

pressure on other applications, leading to vastly improved responsiveness for interactive jobs.

4. Adaptation to run-time conditions is critical when dealing with the large and variable latencies that

occur with disk I/O. Compiler-generated code should not require a fixed pre-specified latency parameter

to schedule prefetch operations. We demonstrated that calculating prefetch distances at run-time does

not have a negative impact on performance, and in one case resulted in a substantial improvement.

We also introduced new software pipelining algorithms capable of handling very large latencies in

the presence of multiply-nested loops with unknown bounds. Although the benchmarks that inspired

these techniques remain inherently I/O bound, we showed that future systems with greater bandwidth

capabilities will be able to benefit from them.

6.1 Future Work

The ultimate goal of our research on I/O prefetching for out-of-core applications is to reduce the I/O

bottleneck as much as possible, expanding the range of systems on which it is feasible to conduct large-scale

CHAPTER 6. CONCLUSIONS 155

scientific computing research. To this end, we desire the ability to run unmodified applications on either a

high-end supercomputer with massive physical memory capacity, or a more modest small-scale server system.

We consider recompilation for a range of systems to be a reasonable requirement, while manually re-writing

the code to deal with I/O requirements on a smaller system is too large a burden. In this section, we briefly

discuss how our research can be extended to further improve the performance of out-of-core applications.

In Section 5.1.1 we described several options for determining an appropriate prefetch distance at run-time.

An obvious next step is to explore these alternatives. Although setting the prefetch distance at the entry to a

set of loops is straightforward, it may be necessary to investigate strategies for adjusting the prefetch distance

as the loops execute.

We observed that several of our benchmarks remain I/O-bound, despite our best efforts to schedule the

prefetches more effectively. In cases where I/O bandwidth is the limiting factor, performance can be improved

with better layouts of pages to swap disks. In the context of parallel file systems, the need to match the layout

of data on disk to application access patterns has been well-studied [17, 33, 62]. For swap I/O, however,

the layout is largely controlled by the operating system pager and is optimized for generating large numbers

of clean pages quickly, without regard for the application’s access pattern. The use of replacement hints to

manage the layout of pages on swap space deserves further study. Strategies such as striping, replication,

and extents that have been deployed in persistent file systems should be investigated for swap space. We

anticipate that the compiler analysis will need to be extended to a larger program scope for these decisions,

since the best layout on swap is determined by the shape of the next access to the data, which may occur in a

different procedure entirely.

Finally, the new software pipelining algorithms introduced in this dissertation are designed to address

the problem of hiding long latencies. Similar problems are likely to occur for applications that use network

I/O, such as grid computing problems. Exploring compiler-directed prefetching using the new scheduling

algorithms in these settings is another direction for future work.

CHAPTER 6. CONCLUSIONS 156

6.2 Final Observations

The research behind this dissertation has led to several insights and lessons about working with computer

systems that are not specific to the problem of prefetching page faults in virtual memory systems. These

larger lessons may be obvious in hindsight, but they may be of use to others doing research in the broader

systems area. We thus discuss three of them here.

• Be careful of the effects of assuming that a particular phenomenon will always be a performance

bottleneck. For example, in IRIX (as in many operating systems), there is an underlying assumption

that once an application begins paging, performance will suffer so severely that there is little point

optimizing software operations. Other performance killers are hidden by the magnitude of the cost of

I/O. Simulating reference bits in software, and locking disciplines that prevent new memory from being

referenced while pages are being written out are examples of choices that are only reasonable if paging

activity represents a severe loss of performance anyway. Eliminating the ”smoking gun” performance

problem (stalls due to page faults in this example) may not immediately lead to better performance

because all it does is expose another limitation that was previously masked.

• Good performance monitoring tools are critical for developing complex high-performance software.

Without a reliable means to attribute execution time (or other metrics of interest) to particular events,

debugging a performance problem can be virtually impossible.

• Cooperation between different levels and components of a complex system is more effective than having

each component make a best guess about what needs to be done. In this dissertation, we have explored

cooperation between compile-time and run-time, and between user-level and operating system code

to enable better memory management for some applications. We had an explicit goal of requiring

no intervention on the part of the application programmer. In the real world, however, including the

programmer as a “cooperative component” that can provide hints to the rest of the system is also an

effective approach. For example, in our implementation we compile the original program to C source

code that includes the prefetch and release directives. In combination with the performance monitoring

CHAPTER 6. CONCLUSIONS 157

and reporting infrastructure that we developed, this makes it tractable for the compiler to handle most of

the references, and the programmer to manually insert prefetches for a small number of key references

that the compiler was unable to analyze completely. We have observed several cases of this sort, where

the surrounding code has already been transformed into an appropriately-pipelined form, so the manual

effort is simply a matter of copying a prefetch call and replacing the memory address. The additional

compiler effort to capture these corner cases is probably not justified and it is valuable to provide those

programmers that have extreme performance requirements with the tools to understand and modify the

results of the automatic transformations.

CHAPTER 6. CONCLUSIONS 158

Bibliography

[1] Tom Vander Aa, Francisco Barat, Murali Jayapala, Henk Corporaal, Francky Catthoor, and Geert De-

coninck. Software transformations to reduce instruction memory power consumption using a loop

buffer. In Proceedings of the 1st Workshop on Optimizations for DSP and Embedded Systems (ODES),

San Francisco, CA, USA, March 2003.

[2] Randy Allen, Ken Kennedy, and John R. Allen. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann, 2001.

[3] Meenakshi Arunachalam, Alok Choudhary, and Brad Rullman. A prefetching prototype for the parallel

file system on the Paragon. In Proceedings of the 1995 ACM Sigmetrics Conference on Measurement

and Modeling of Computer Systems, pages 321–323, Ottawa, Ontario, Canada, May 1995. Extended

Abstract.

[4] Ozalp Babaoglu and William Joy. Converting a swap-based system to do paging in an architecture lack-

ing page-referenced bits. In Proceedings of the 8th ACM Symposium on Operating Systems Principles,

pages 78–86, Pacific Grove, California, USA, December 1981.

[5] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-performance

computing. ACM Computing Surveys, 26(4):345–420, 1994.

[6] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Freder-

ickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel

159

BIBLIOGRAPHY 160

Benchmarks. Technical Report RNR-94-007, NASA Ames Research Center, March 1994.

[7] Gretta Bartels, Anna Karlin, Darrell Anderson, Jeffrey Chase, Henry Levy, and Geoffrey Voelker. Po-

tentials and limitations of fault-based Markov prefetching for virtual memory pages. In Proceedings

of the 1999 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages

206–207, Atlanta, Georgia, USA, May 1999. Poster.

[8] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc Fiuczynski, David

Becker, Susan Eggers, and Craig Chambers. Extensibility, Safety and Performance in the SPIN Op-

erating System. In Proceedings of the 15th ACM Symposium on Operating System Principles, Copper

Mountain, Colorado, USA, December 1995.

[9] Rajesh Bordawekar, Alok Choudhary, and J. Ramanujam. Automatic optimization of communication

in compiling out-of-core stencil codes. In Proceedings of the 10th ACM International Conference on

Supercomputing, Philadelphia, Pennsylvania, USA, May 1996.

[10] Angela Demke Brown and Todd C. Mowry. Taming the Memory Hogs: Using Compiler-Inserted

Releases to Manage Physical Memory Intelligently. In Proceedings of the 4th USENIX Symposium

on Operating Systems Design and Implementation, pages 31–44, San Diego, California, USA, October

2000.

[11] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated prefetching and caching

strategies. In Proceedings of the 1995 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems, pages 188–197, Ottawa, Ontario, Canada, May 1995.

[12] Fay Chang and Garth A. Gibson. Automatic I/O Hint Generation through Speculative Execution. In

Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation, New

Orleans, Louisiana, USA, February 1999.

[13] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson. RAID:

high-performance, reliable secondary storage. ACM Computing Surveys, 26(2):145–185, June 1994.

BIBLIOGRAPHY 161

[14] Wesley W. Chu and Holger Opderbeck. The page fault frequency replacement algorithm. In AFIPS

Conference Proceedings, Fall Joint Computer Conference, volume 41, pages 597–609. AFIPS Press,

1972.

[15] Fernando J. Corbato. A paging experiment with the multics system. In Herman Feshbach and K. Uno

Ingard, editors, In Honor of Philip M. Morse, pages 217–228. MIT Press, Cambridge, MA, 1969.

[16] Thomas H. Cormen and Alex Colvin. ViC*: A preprocessor for virtual-memory C*. Technical Report

PCS-TR94-243, Dartmouth College, Computer Science, November 1994.

[17] Thomas H. Cormen and David Kotz. Integrating theory and practice in parallel file systems. In Pro-

ceedings of the 1993 DAGS/PC Symposium, pages 64–74, Hanover, New Hampshire, USA, 1993.

[18] Thomas M. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-

rithms. The MIT Press, 2001.

[19] Michael Cox and David Ellsworth. Application-Controlled Demand Paging for Out-of-Core Visual-

ization. In Proceedings of the 8th conference on Visualization ’97, Phoenix, Arizona, USA, October

1997.

[20] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott Vitter. Practical prefetching via data compres-

sion. In Proceedings of the 1993 ACM SIGMOD Conference on Management of Data, pages 257–266,

Washington, D.C., USA, May 1993.

[21] Angela K. Demke. Automatic I/O Prefetching for Out-of-Core Applications. Master’s thesis, University

of Toronto, Department of Computer Science, January 1997.

[22] John Fotheringham. Dynamic storage allocation in the Atlas computer, including an automatic use of a

backing store. Communications of the ACM, 4(10):435–436, October 1961.

BIBLIOGRAPHY 162

[23] Benjamin Gamsa, Orran Krieger, and Michael Stumm. Optimizing IPC performance for shared-memory

multiprocessors. In Proceedings of the International Conference on Parallel Processing, pages 208–

211, Boca Raton, Florida, USA, August 1994.

[24] James Griffioen and Randy Appleton. Reducing file system latency using a predictive approach. In

Conference Proceedings of the USENIX Summer 1994 Technical Conference, pages 197–208, June

1994.

[25] Andrew S. Grimshaw and Edmond C. Loyot, Jr. ELFS: object-oriented extensible file systems. Techni-

cal Report TR-91-14, Department of Computer Science, University of Virgina, July 1991.

[26] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao,

Edouard Bugnion, and Monica S. Lam. Maximizing Multiprocessor Performance with the SUIF Com-

piler. IEEE Computer, 29(12):84–89, December 1996.

[27] Kieran Harty and David R. Cheriton. Application-controlled physical memory using external page-

cache management. In Proceedings of the 5th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 187–197, Boston, Massachusetts, USA, Octo-

ber 1992.

[28] James V. Huber, Jr., Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S. Blumenthal.

PPFS: A high performance portable parallel file system. In Proceedings of the 9th ACM International

Conference on Supercomputing, pages 385–394, Barcelona, Spain, July 1995.

[29] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[30] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño, Russell Hunt, David

Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth MacKenzie. Application Per-

formance and Flexibility on Exokernel Systems. In Proceedings of the 16th ACM Symposium on Oper-

ating System Principles, Saint Malo, France, October 1997.

BIBLIOGRAPHY 163

[31] Ken Kennedy, Charles Koelbel, and Michael Paleczny. Scalable I/O for out-of-core structures. Technical

Report CRPC-TR93357-S, Center for Research on Parallel Computation, Rice University, November

1993. Updated August, 1994.

[32] David Kotz and Carla Schlatter Ellis. Practical prefetching techniques for multiprocessor file systems.

Journal of Distributed and Parallel Databases, 1(1):33–51, January 1993.

[33] Orran Krieger and Michael Stumm. HFS: A performance-oriented flexible file system based on

building-block compositions. ACM Transactions on Computer Systems, 15(3):286–321, August 1997.

[34] Thomas M. Kroeger and Darrell D. E. Long. Predicting file system actions from prior events. In

Proceedings of the USENIX 1996 Annual Technical Conference, pages 319–328, San Diego, California,

USA, January 1996.

[35] Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines. In Proceed-

ings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation,

pages 318–328, Atlanta, Georgia, USA, June 1988.

[36] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceed-

ings of the 24th Annual International Symposium on Computer Architecture, pages 241–251, Denver,

Colorado, USA, June 1997.

[37] Nathaniel McIntosh. Compiler Support for Software Prefetching. PhD thesis, Rice University, May

1998. Technical Report TR98-303.

[38] Dylan McNamee and Katherine Armstrong. Extending the Mach External Pager Interface to Accom-

modate User-Level Page Replacement Policies. In Proceedings of the USENIX Association Mach Work-

shop, pages 17–29, Burlington, Vermont, USA, October 1990.

[39] Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. PhD thesis, Stan-

ford University, March 1994. Technical Report CSL-TR-94-626.

BIBLIOGRAPHY 164

[40] Todd C. Mowry, Angela K. Demke, and Orran Krieger. Automatic Compiler-Inserted I/O Prefetching

for Out-of-Core Applications. In Proceedings of the 2nd USENIX Symposium on Operating Systems

Design and Implementation, pages 3–17, Seattle, Washington, USA, October 1996.

[41] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a compiler algorithm

for prefetching. In Proceedings of the Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 62–73, Boston, Massachusetts, USA, October

1992.

[42] Michael Paleczny, Ken Kennedy, and Charles Koelbel. Compiler support for out-of-core arrays on

data parallel machines. In Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel

Computation, pages 110–118, McLean, Virginia, USA, February 1995.

[43] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. Informed

prefetching and caching. In Proceedings of the 15th ACM Symposium on Operating System Princi-

ples, pages 79–95, Copper Mountain, Colorado, USA, December 1995.

[44] Richard Rashid, Avadis Tevanian, Jr., Michael Young, David Golub, Robert Baron, David Black,

William Bolosky, and Jonathan Chew. Machine-independent virtual memory management for paged

uniprocessor and multiprocessor architectures. In Proceedings of the 2nd International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 31–39, Palo Alto,

California, United States, October 1987.

[45] Seagate Technology, Inc. Cheetah 4LP Family: ST34501N/W/WC/WD/DC, Product Manual, Volume 1,

July 1997. Publication number: 83329120, Rev. B.

[46] Silicon Graphics, Inc. SGI Irix 6.5 aio read manual page.

[47] Christopher Small and Margo Seltzer. A Comparison of OS Extension Technologies. In Proceedings of

the 1996 Usenix Technical Conference, San Diego, California, USA, January 1996.

BIBLIOGRAPHY 165

[48] Alan Jay Smith. Sequential program prefetching in memory hierarchies. IEEE Computer, 11(12):7–21,

December 1978.

[49] Inshik Song and Yookun Cho. Page prefetching based on fault history. In USENIX Mach III symposium

proceedings, pages 203–213, Sante Fe, New Mexico, USA, April 1993.

[50] Evan Speight and Martin Burtscher. Delphi: Prediction-based page prefetching to improve the perfor-

mance of shared virtual memory systems. In Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications, pages 49–55, Las Vegas, Nevada, USA, June

2002.

[51] Indira Subramanian. Managing Discardable Pages with an External Pager. In Proceedings of the 2nd

USENIX Mach Symposium, pages 77–86, Monterey, California, USA, November 1991.

[52] Sun Microsystems. SunOS 5.9 aio read manual page.

[53] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, , and Geoff Peck. Scala-

bility in the XFS file system. In Proceedings of the USENIX 1996 Annual Technical Conference, pages

1–14, San Diego, CA, USA, January 1996. Usenix.

[54] Rajeev Thakur, Rajesh Bordawekar, and Alok Choudhary. Compilation of out-of-core data parallel pro-

grams for distributed memory machines. In IPPS ’94 Workshop on Input/Output in Parallel Computer

Systems, pages 54–72. Syracuse University, April 1994.

[55] Kishor S. Trivedi. On the paging performance of array algorithms. IEEE Transactions on Computers,

C-26(10):938–947, October 1977.

[56] Ron Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm. Hierarchical clustering: A structure

for scalable multiprocessor operating system design. Journal of Supercomputing, 9(1/2):105–134, 1995.

[57] U.S. Department of Energy, Office of Advanced Scientific Computing Research and Office of Biological

and Environmental Research. Report on the Computational Infrastructure Workshop for the Genomes

to Life Program, March 2002.

[58] Vivekanand Vellanki and Ann Chervenak. A cost-benefit scheme for high performance predictive

prefetching. In Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, Portland, Ore-

gon, USA, November 1999.

[59] Geoffrey M. Voelker, Eric J. Anderson, Tracy Kimbrel, Michael J. Feeley, Jeffrey S. Chase, Anna R.

Karlin, and Henry M. Levy. Implementing cooperative prefetching and caching in a globally-managed

memory system. In Proceedings of the Joint International Conference on Measurement and Modeling

of Computer Systems, pages 33–43, Madison, Wisconsin, USA, June 1998. ACM Press.

[60] Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron White. Hector: A hierarchically

structured shared-memory multiprocessor. IEEE Computer, 24(1):72–79, January 1991.

[61] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe, Jennifer M. An-

derson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall, Monica S. Lam, and

John L. Hennessy. SUIF: an infrastructure for research on parallelizing and optimizing compilers. ACM

SIGPLAN Notices, 29(12), December 1994.

[62] David Womble, David Greenberg, Stephen Wheat, and Rolf Riesen. Beyond core: Making parallel

computer I/O practical. In Proceedings of the 1993 DAGS/PC Symposium, pages 56–63, Hanover, New

Hampshire, USA, 1993.

[63] Yuanyuan Zhou, Limin Wang, Douglas W. Clark, and Kai Li. Thread scheduling for out-of-core appli-

cations with memory server on multicomputers. In Proceedings of the Sixth Workshop on Input/Output

in Parallel and Distributed Systems, pages 57–67, Atlanta, Georgia, USA, May 1999. ACM Press.

